

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Dan Downey

Student ID:

X14728599

Supervisor:

Dr. Dominic Carr

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

I confirm that I have read the College statement on plagiarism (summarised overleaf and
printed in full in the Student Handbook) and that the work I have submitted for
assessment is entirely my own work.

Signature: Dan Downey Date: May 13th, 2018

Dan Downey - x14728599 - Vehilytics - Technical Report

1

Vehilytics

Technical Report

Dan Downey - x14728599

IoT specialization

x14728599@student.ncirl.ie

Supervisor: Dr. Dominic Carr

mailto:x14728599@student.ncirl.ie

Dan Downey - x14728599 - Vehilytics - Technical Report

2

Contents

i. Definitions, Acronyms, and Abbreviations 5

ii. Executive Summary 6

1 Introduction 7

1.1 Background 7

1.2 Technologies 8

1.2.1 Development 8

1.2.2 Testing 8

1.2.3 Version Control 9

1.2.4 Deployment 9

1.2.5 OBD Readers 10

2 User Requirements Definition 11

2.1 Brainstorming 11

2.2 Survey 11

2.3 Results 12

3 Requirements Specification 13

3.1 Functional Requirements 13

3.1.1 Use Case Diagram 13

3.1.2 Requirement 1: View analytics 14

3.1.3 Requirement 2: User preferences 16

3.1.4 Requirement 3: Reminders 18

3.2 Non-Functional Requirements 20

3.2.1 Performance/Response time 20

3.2.2 Security 20

3.2.3 Maintainability 20

3.2.4 Extensibility 21

4 Interface requirements 22

4.1 Mobile application GUI 22

 27

4.2 Web API 28

4.3 OBD 28

Dan Downey - x14728599 - Vehilytics - Technical Report

3

5 System Architecture 29

5.1 Diagnostic Reader Overview 29

5.2 Android Application Overview 31

5.3 Web Service Overview 33

5.3.1 Web Service Endpoints 33

5.3.1.1 Sessions Controller 33

5.3.1.2 Device Sessions Controller 34

5.3.1.3 Devices Controller 36

5.3.1.4 Readings Controller 37

5.3.1.5 Registrations Controller 38

5.3.1.6 Reminders Controller 39

5.3.1.7 Reports Controller 40

5.3.1.8 Sensors Controller 40

6 Testing 43

6.1 Unit Testing 43

6.1.1 Android Application 43

6.1.2 Diagnostic Reader 44

6.2 Integration Testing 44

6.3 System Usability Scale 44

7 Conclusion 46

7.1 Future Extensions 46

7.2 Difficulties 46

8 Bibliography 48

9 Appendix 49

9.1 Survey results 49

9.2 Project Proposal 53

9.3 Monthly Journals 65

9.3.1 September 65

9.3.2 October 66

9.3.3 November 67

9.3.4 December 68

9.3.5 January 68

9.3.6 February 69

Dan Downey - x14728599 - Vehilytics - Technical Report

4

9.3.7 March 70

9.3.8 April 71

9.4 Code Guide 72

Dan Downey - x14728599 - Vehilytics - Technical Report

5

i. Definitions, Acronyms, and Abbreviations

RPi Raspberry Pi

OBD On-Board Diagnostics

API Application Programming Interface

GUI Graphical User Interface

ECU Engine Control Unit

Diagnostics reader Raspberry Pi installed into the vehicle that polls the OBD port
for vehicle diagnostics, and sends these diagnostics to the web
service

Diagnostic report /
vehicle diagnostics

The raw data for a given report sent by the diagnostics reader

Vehicle analytics An easy to read analysis of the historic diagnostic reports. Used
to abstract away the technical terms and numbers into friendly
useful groupings of information to help inform decision making

Android APK Android Application Package Kit - Android application installer
file extension

Dan Downey - x14728599 - Vehilytics - Technical Report

6

ii. Executive Summary
This report discusses my attempts to design and build a system that allows vehicle
owners to more easily understand the information gathered and reported by their
vehicle, and to manage routine maintenance tasks all from an Android application.
Currently there are similar systems that exist for expensive vehicles that require the use
of manufacturer specific hardware and have no simple equivalent for cheap or mid-range
cars.

The motivation for building this system arose from seeing vehicles break down from
issues that would have been easily avoidable had the gathered data been exposed to
the owner of the vehicle such as, the battery voltage gradually becoming too low to be
able to start the car. This battery voltage can be graphed to show a fall in voltage over
days or weeks leading up to the breakdown. In more expensive cars, this information is
easily accessed by the owner through a dashboard display or a proprietary mobile
application. My aim is to provide this functionality to any vehicle regardless of the
manufacturer or value of the vehicle.

The project consists of 3 subsystems: a diagnostics reader, an Android application, and
a Ruby on Rails API. The diagnostic reader provides an interface with the vehicle to
gather and report various sensor readings. The Android application allows the user to
view the sensor readings in a readable format and set preferences for which sensors
should be reported. The Rails API acts as the bridge between the Android application
and the diagnostic reader by persisting the data and exposing it to both. The API is
designed in such a way that the reports can come from any device authenticated to use
the endpoints and the consuming client could be any mobile application or web page
that provides a login option for the user to allow them to authenticate with the web
service.

Dan Downey - x14728599 - Vehilytics - Technical Report

7

1 Introduction
Vehilytics is a system that provides the means for a user to easily access and
understand the data provided by their vehicle so they may attempt to prevent
breakdowns by performing their own preventative maintenance or having the vehicle
repaired by a mechanic while the damage is minimal before a more serious failure
occurs.

The system is intended to allow owners of cheaper vehicles to access the services
normally found in expensive vehicles as these users are far more likely to experience
part failure and less likely to be able to afford the repairs necessary. The hope is that it
will also allow people who are not technically savvy to gain an understanding of the
maintenance needs of their vehicle.

1.1 Background

My idea began as a sensor array that could be placed within a car to detect when a baby

was left unattended and notify parents, guardians, and finally emergency services as

necessary to ensure the survival of the child. The inspiration for this idea came from

reading an article which described the surprisingly common phenomenon of parents

simply forgetting they had the child with them in the car on their way to/from work and

discovering hours later that the child had perished in the heat or cold.

Developing a system to detect the presence of a baby that was left alone would end up

being an unwieldy amount of sensor configuration and processing for a singular purpose

to be served. However, a car already has a host of sensors installed, reading, and

reporting at most times to monitor things like RPM, or external temperature, or anti-theft

devices. So, the idea came about to publish these diagnostics in some form of readable

report for the vehicle owner to be viewed remotely and allow the system to be generic

and extensible so additional modules can be added at a later stage, including the baby

monitoring device.

The beauty of this general, extensible platform is that the limit of what can be reported

and viewed is based on what the user and any third-party manufacturers can design,

build and install following what I can determine to be allowable report formats. These

reports could elicit different responses based on the nature of the data. For example, a

sudden increase in engine RPM while the user is not near the vehicle could indicate the

car has been stolen.

The reports from the On-Board Diagnostics itself could save huge amounts of time and

money by allowing the user to identify faults that they can fix themselves and provide

their mechanic with the report so they don’t need to run, and can’t bill for, their own

diagnostics services.

Dan Downey - x14728599 - Vehilytics - Technical Report

8

Additional modules could also leverage the sensor readings to manipulate things like air

conditioning so that the vehicle is not too hot when the user enters the vehicle, or control

an array of suitable systems for use cases such as, theft deterrence, calculating

insurance costs, or settling traffic disputes.

There is a similar system called “Carista” but it differs from Vehilytics in a few ways.

Carista uses a proprietary OBD socket which is not suitable for some cheaper / older

vehicles, while Vehilytics is aimed at using any available OBD reader meaning it can

connect to any vehicle with an OBD port.

1.2 Technologies

The system has a wide variety of tools used throughout the technology stack so it was
tricky to decide on the best tools for each sub system to allow efficient operation and
effective communication between each of its subsystems.

1.2.1 Development

The Android application was developed using Android Studio and is written entirely in
Kotlin. The choice to use Kotlin was made because it is a newly supported language, it is
quite similar to Java, it has some very nice syntax, and it forces good practices due to
immutable and non-nullable types.

Ruby on Rails was chosen for the web service due to its expressive syntax, third party
library support, and how quickly it can be used to build a working system. The library
support allowed an effective authentication system to be built quickly without the need to
invest a large amount of time encrypting data and providing mechanisms to restrict
access to endpoints. The web service was developed in a Cloud 9 instance to reduce
the chances of errors due to manual configuration in a local installation of Rails.

The diagnostic reader was built using a Raspberry Pi since it does not require much
power to operate, and is small enough to be hidden from sight once installed inside a
vehicle. The code on the Pi was written in Python due to its simplicity and library
support, allowing me to quickly build a fully working system and have it communicating
with both the vehicle and web service. All the Python code was written using PyCharm
on a separate desktop PC and transferred using Git to allow development to progress
quickly.

1.2.2 Testing

JUnit and Mockito were the primary testing frameworks used for unit testing the Android
application. JUnit allowed me to express assertions about how my code should be
behaving, while Mockito allowed me to mock the behaviour of complex classes that I

Dan Downey - x14728599 - Vehilytics - Technical Report

9

shouldn’t need to test such as, Context or SharedPreferences, and to verify that
operations were happening in a specific order.

A full suite of integration tests was built for the web service to ensure consistency with
each of the endpoints throughout development. I used gems like RSpec, Factory Bot
Rails, and Faker for building powerful expressive tests. RSpec is a testing framework for
Rails that allowed me to build request specifications to make actual requests to the
endpoints and test the behaviour. Factory Bot Rails allowed me to generate models to
populate the test database as required and Faker provided the actual data for the
models.

1.2.3 Version Control

Each of the systems was tracked using Git to give me the ability to quickly move
between development environments and revert code when there were issues. The
diagnostic reader code was pushed to Github because it began as a fork of another
library, while the Android application and web service were pushed to Bitbucket to make
use of the free private repositories.

All the codebases were moved to Bitbucket and made public after completion of the
project for ease of access in the event of any issues with the upload of this report. I have
provided links to the final commit before submission of each of the repositories.

Python code available at:
https://bitbucket.org/danthedrummer/vehilytics_reporter/src/cabb15d572c0eb1f33b834ba0a1e561
f61de83d0/

Web service code available at:
https://bitbucket.org/danthedrummer/vehilytics_api/src/61451c0ae20e2a2380e936d5273a119d7c
1e6717/

Android application code available at:
https://bitbucket.org/danthedrummer/vehilytics_android/src/f14469eddb2a809331921f03fe860e60
4493cd01/

1.2.4 Deployment

The web service was deployed to Heroku, which is a cloud based hosting platform. The
useful thing about Heroku is that it allows you to quickly deploy using a git repository,
which I already had in place developing the entirety of the system.

https://bitbucket.org/danthedrummer/vehilytics_reporter/src/cabb15d572c0eb1f33b834ba0a1e561f61de83d0/
https://bitbucket.org/danthedrummer/vehilytics_reporter/src/cabb15d572c0eb1f33b834ba0a1e561f61de83d0/
https://bitbucket.org/danthedrummer/vehilytics_api/src/61451c0ae20e2a2380e936d5273a119d7c1e6717/
https://bitbucket.org/danthedrummer/vehilytics_api/src/61451c0ae20e2a2380e936d5273a119d7c1e6717/
https://bitbucket.org/danthedrummer/vehilytics_android/src/f14469eddb2a809331921f03fe860e604493cd01/
https://bitbucket.org/danthedrummer/vehilytics_android/src/f14469eddb2a809331921f03fe860e604493cd01/

Dan Downey - x14728599 - Vehilytics - Technical Report

10

OBD readers

OBD readers

1.2.5 OBD Readers

OBD readers are devices that plug into the OBD
port in the vehicle and allow communication with
the vehicle ECU. The image to the left shows
the 3 readers I purchased. From top to bottom
they use Bluetooth, Wi-fi, and USB technologies
to enable a connection.

Dan Downey - x14728599 - Vehilytics - Technical Report

11

2 User Requirements Definition
To help elicit some user requirements I ran a brainstorming session, and circulated a
survey. Between both elicitation techniques I was able to glean some valuable
information about the end users, their reaction to the product, and how they would like to
use the product.

2.1 Brainstorming

The brainstorming session prompted some interesting discussion on how the application
could present information to users based on their technical skill and understanding of
their vehicle, and features that could be included in the mobile application to promote
awareness of the routine of maintaining the vehicle.

For a user with little knowledge on the internals of the vehicle, the raw diagnostic data is
meaningless. So, for these users, the data should be analysed and broken down into
useful readouts that give general, high-level information about the health of the vehicle.

For more technically able users, the ability to opt in to viewing the raw data could be
important in properly diagnosing a problem that could be fixed by a hobbyist user without
needing to involve a mechanic.

An interesting feature that was requested is a mechanism to identify warning symbols
displayed by the car either through the diagnostic reports or allowing the user to take a
picture of the symbol and maintaining a glossary of these meanings.

2.2 Survey

The survey was useful for determining the types of vehicles the responders are using,
how often they use them, how familiar they are with vehicle maintenance, and whether
they would like to receive warnings about potential maintenance issues. 70.5% of
responders claim to own a vehicle so there was a small subset of responses with no
information for familiarity with vehicle maintenance and overall vehicle usage.

Responses from vehicle owners

93.5% of the vehicle owners who responded drive either a passenger (car, people
carrier) or goods (truck, van) vehicle. This is good to see as the means of gathering the
diagnostics data is through a port available in these vehicles. For the remaining 6.5%
who drive motorcycles the product will not work as the port is not available.

Dan Downey - x14728599 - Vehilytics - Technical Report

12

71% of the vehicle owners who responded say that they have some basic knowledge of
vehicle maintenance, 22.6% say they are fully capable of performing maintenance on
their own vehicle, while 6.5% say they don’t know the first thing about it.

Not surprisingly, 64.5% of the vehicle owners who responded use their vehicles daily,
with the rest split between weekly and monthly use. This is a good number to see as
with regular use, the need for routine maintenance becomes more important and the
possibility of failure increases.

Product reaction from all respondents

All respondents expressed an interest in being able to receive warnings about potential
maintenance needs of their vehicle, while only a small minority of people have an issue
with the idea of installing the reader in their vehicle dependent on how secure the device
would be.

To gather some information about the usefulness of the potential feature for determining
the meaning of symbols displayed in the vehicle, the respondents were asked how many
of the symbols displayed do they understand. Only a small number (13.6%) recognise all
of them, 36.4% recognise most of the symbols, while 47.7% are only able to recognise a
few of the symbols, and 2.3% of responders don’t understand any of the symbols.

2.3 Results

From my requirements gathering, I can see an interest in using this product as long as it
meets a few requirements:

● The analytics are easy to read and informative
● The reader is easy to install and secure
● The user can be reminded of routine maintenance tasks
● The user is alerted to potential maintenance issues
● The mobile application provides a means to help understanding the vehicle

Dan Downey - x14728599 - Vehilytics - Technical Report

13

3 Requirements Specification

3.1 Functional Requirements

3.1.1 Use Case Diagram

Dan Downey - x14728599 - Vehilytics - Technical Report

14

3.1.2 Requirement 1: View analytics

Description and Priority

The analytics system will allow a user to view their vehicle diagnostics data in a readable
format or access the raw diagnostic data if necessary. It has high priority as it is the
primary function of the system.

Use Case

Scope

The scope of this use case is to allow a user to view their vehicle analytics.

Description

This use case describes the steps involved in requesting and viewing vehicle analytics.

Use Case Diagram

Precondition

● The user is logged in to the application
● The diagnostic reader is installed in the user's vehicle

Dan Downey - x14728599 - Vehilytics - Technical Report

15

Activation

The use case starts when the user has logged into the application.

Main Flow

1. The system displays the main screen
2. The user taps “View Readings” button
3. The system gathers the latest diagnostic reports [see E1]
4. The system displays the reports to the user
5. Main flow ends

Exceptional Flow

E1: The network is unavailable

1. The system displays an error message to the user
2. Use case ends

Termination

The user leaves the “View Readings” screen.

Post condition

The user is presented with the vehicle analytics that they can examine.

Dan Downey - x14728599 - Vehilytics - Technical Report

16

3.1.3 Requirement 2: User preferences

Description and Priority

The preferences system will allow a user to specify which analytics information they
want to see or hide. Some data gathered might not be relevant to a user so they might
want to ignore it entirely in the application. This system has a low priority as it doesn’t
affect the main function of the application.

Use Case

Scope

The scope of this use case is to allow a user to define their preferences.

Description

This use case describes the steps involved in updating user preferences.

Use Case Diagram

Precondition

● The user is logged in to the application

Dan Downey - x14728599 - Vehilytics - Technical Report

17

Activation

The use case starts when the user has logged into the application.

Main Flow

1. The system displays the main screen
2. The user taps the “User Preferences” button
3. The system displays the current preferences
4. The user edits their preferences
5. The system updates the stored preferences [see A1]
6. Main flow ends

Alternate Flow

A1: The network is unavailable

1. The system stores the changed preferences locally
2. The system updates the persistent storage when connection is re-established
3. Use case ends

Termination

The user discards any changes to their preferences.

Post condition

The user preferences are updated.

Dan Downey - x14728599 - Vehilytics - Technical Report

18

3.1.4 Requirement 3: Reminders

Description and Priority

The reminders system will allow a user to set reminders for them to perform routine
maintenance checks, e.g. tyre pressure, changing oil. The user might want to adjust
frequency of updates if their vehicle is older or if a fault has occurred before because of
a particular type of maintenance being neglected. The priority for this feature is low as it
doesn’t affect the main function of the system.

Use Case

Scope

The scope of this use case is to allow a user to set reminders for performing routine
maintenance checks.

Description

This use case describes the steps involved in creating a reminder.

Precondition

● The user is logged in to the application

Activation

The use case starts when the user has logged into the application.

Main Flow

1. The system displays the main screen
2. The user taps the “Task Reminders” button
3. The system displays the reminders screen
4. The user taps the add icon
5. The system displays the create reminder screen
6. The user sets the reminder details
7. The system creates the reminder [see A1]
8. Main flow ends

Dan Downey - x14728599 - Vehilytics - Technical Report

19

Alternate Flow

A1: The task already has a reminder

1. The system asks the user if they want to replace the current reminder
2. The user replaces the current reminder [see E1]
3. Return to main flow position 7

Exceptional Flow

E1: The reminder is discarded

1. The system displays the main screen
2. Use case ends

Termination

The user discards the reminder.

Post condition

The device will now remind the user about the task described.

Dan Downey - x14728599 - Vehilytics - Technical Report

20

3.2 Non-Functional Requirements

3.2.1 Performance/Response time

The web service should be able to quickly respond to user requests for authentication
and displaying diagnostics information. The web resource will be responsible for most of
the heavy computation, such as generating useful metrics for decision making based on
historical diagnostics so it will be important that these can be served to the user in a
small amount of time.

3.2.2 Security

The web service will be collecting and storing sensitive user information such as, email
and password. This information must be handled correctly such that malicious users
cannot gain access to these credentials. All user credentials and requests should be
suitably encrypted.

The diagnostics reader will be communicating with the sensor kits via Bluetooth so it will
be necessary for it to be able to distinguish between Bluetooth transmitters that are
verified and not verified so as not to gather erroneous data.

A mobile client should only be able to connect to a device that the user possesses. A
user should not be able to get diagnostics reports from a device they don’t own by
guessing some identifying information.

3.2.3 Maintainability

An important feature of this project is for users to be able to integrate additional sensor
kits into the diagnostics reader, have the data report correctly up to the web service and
for that information to be readable by the mobile client. It should be as easy as possible
to integrate or remove these sensor kits, or replace them if they are faulty.

Dan Downey - x14728599 - Vehilytics - Technical Report

21

3.2.4 Extensibility

The mobile application could evolve in the future to include features separate from the
diagnostics reader but still related to maintaining vehicle health. This could be simple
reminders to check tire pressure, wiper fluid, and oil, or more advanced features like
allowing the user to take a picture of a symbol displayed in the car and display
information about that symbol. Building the application in such a way that these features
can be implemented without breaking the remainder of the system should be a primary
concern.

Dan Downey - x14728599 - Vehilytics - Technical Report

22

Fig 1. Splash screen

Fig 2. Login screen

4 Interface requirements

4.1 Mobile application GUI

The application opens to a simple splash screen (Fig
1) which displays the application logo. The splash
screen acts as a nice introduction to the colour
scheme of the application and in the background, it
checks for any existing credentials stored on the
device. If any credentials have been stored it will
validate them with the server and either pass the
user along to the login screen if they are invalid or
straight to the home screen if they are still valid.

The login screen (Fig 2) displays the application
logo and name, and prompts the user to enter their
email and password if they are registered. If any
fields are invalid, an error message will display. If
they are not registered, they can tap the “Sign up
now” label to be taken to the registrations page
when they can create a new account. After a
successful login, the user will be taken to the Home
screen.

Dan Downey - x14728599 - Vehilytics - Technical Report

23

Fig 3. Register
screen

Fig 4. Home screen

The registration screen (Fig 3) displays the app logo
and name, and allows the user to create a new
account by entering a valid email, a password and
confirming that password. If any fields are invalid,
then an error message will display. If the user already
has an account, they can tap the “Login” label to be
taken to the Login screen. After a successful
registration, the user will be taken to the Home
screen.

After logging in successfully, the user is presented
with the home screen (Fig 4) from which they can
navigate to any other part of the application. The
home screen consists of a number of views that
display information about which activity they lead to
and act as buttons to allow the application to
transition to that activity.

Dan Downey - x14728599 - Vehilytics - Technical Report

24

Fig 5. Menu Options

Fig 6. Vehicle screen

A menu (Fig 5) can be accessed from any screen
with an application toolbar by tapping the menu
button in the top right. This gives access to the “Sign
Out” function which will signal to the web service to
reset any authentication tokens and take the user
back to the Login screen. Once a sign out request
has been made, and the tokens have been reset, any
users attempting to use the old token will be forcibly
logged out of the application.

Tapping the “Vehicle” button will bring the user to
the Vehicle Overview screen (Fig 6) where they can
see which sensors have been reported by the
system. If there are a few readings for that sensor
that fall outside of safe ranges then a warning will be
issued and a yellow indicator will display. If there are
a lot of readings for that sensor fall outside safe
ranges then a red error indicator will display.
Tapping on a sensor will graph the readings to
provide a visual representation of that sensor.

Dan Downey - x14728599 - Vehilytics - Technical Report

25

Fig 7. Graph screen

Fig 8. Preferences
screen

The Graph screen (Fig 7) displays the readings data
in a way that effectively communicates the state of
that sensor over the previous 100 readings. If the
sensor has upper or lower safe ranges then they will
be displayed as red lines to allow the user to
understand how the component is behaving at a
glance. Information about the selected sensor is
displayed at the bottom of the screen and is updated
based on what information is available on the server.

The Sensor Preferences screen (Fig 8) allow the
user to update which sensors they want the
diagnostic reader to observe and report to the web
service. The user can tap each of the sensors to add
it to the list of preferences locally and then submit it
to the web service by tapping the floating action
button in the bottom right. Any preferences saved to
the web service will be received by the diagnostic
reader and will populate the preferences screen the
next time it is opened.

Dan Downey - x14728599 - Vehilytics - Technical Report

26

Fig 9. Reminders
screen

Fig 10. Calendar
example

The Reminders screen (Fig 9) displays a list of
reminders recommended by the web service. The list
displays a title for the reminder and how often the
task should be performed. Tapping on a reminder
recommendation will open the users calendar and
allow them to create the reminder.

When a reminder recommendation is selected a new
calendar entry will be created and populated with a
title, time, frequency, and description (Fig 10). The
user can then fine tune the reminder to their own
preference or save the default.

Dan Downey - x14728599 - Vehilytics - Technical Report

27

Fig 11. Device
Screen

Fig 12. Push Notifications

The device manager screen (Fig 11) allows the user
to attach or detach a diagnostic reader from their
account. A device can only be attached to a single
user to prevent multiple users from receiving
information which doesn’t belong to them. It displays
the currently attached device at the top. The device
name is required to perform any attaching or
detaching.

The user will be alerted via push notifications (Fig 12)
is any problems have been detected by the web
service. Readings are examined when they are
published from the diagnostic reader and notifications
pushed out immediately once an issue is detected.
Tapping the notification will bring the user to the
Vehicle Overview screen.

Dan Downey - x14728599 - Vehilytics - Technical Report

28

4.2 Web API

The web service is responsible for handling user/device authentication, gathering
diagnostic reports from diagnostic readers, and making these reports available to users.
The mobile application and diagnostic readers cannot communicate directly with each
other for security reasons and simplicity in restricting access to certain resources.

There are several authenticated and unauthenticated endpoints. The unauthenticated
endpoints allow clients to sign in, register new accounts, or to access unrestricted
resources such as, the sensors supported by the system. The authenticated endpoints
provide means for a client to access restricted resources such as, user preferences,
viewing vehicle diagnostic, or publishing diagnostic readings.

These endpoints will be restricted and only accept requests made by the appropriate
device. This means that only a diagnostic reader will be able to submit reports to that
specific endpoint. This is to prevent malicious users who know the resource location
from submitting erroneous data through their own client.

4.3 OBD

The OBD port in a vehicle is a standard that was introduced to allow consistent
communication with the vehicle’s numerous ECUs. The diagnostic reader will interface
with this port using a Bluetooth adapter which will allow the device to sit in the vehicle
glovebox after installation without leaving cables visible.

With the diagnostic reader acting as the master in this Bluetooth network, it may be
possible to add in additional Bluetooth slave devices that will also generate usable data.
This could mean that the add-on modules would form a wireless sensor network around
the car to serve multiple purposes with needing cables.

Dan Downey - x14728599 - Vehilytics - Technical Report

29

Fig 2. Diagnostic reader /
Data sources

Fig 1. Architecture overview

5 System Architecture

There are 5 main components to the Vehilytics platform architecture:

● Diagnostic reader
● Web service
● Mobile application
● Persistent storage
● Data sources

5.1 Diagnostic Reader Overview

The diagnostic reader is responsible for gathering
data from the vehicle in the form of diagnostics or
other useful sensor readings. It receives this data
from various data sources around the vehicle. These
data sources include the vehicle OBD port, and any
additional modules which might be installed into the
vehicle. The diagnostic reader can use Bluetooth or
USB to communicate with the various data sources
so there is no need to install numerous cables
around the vehicle.

Dan Downey - x14728599 - Vehilytics - Technical Report

30

The code for the diagnostic reader was built on a fork from a library called PyOBD which
handles the low-level communications through the serial port. The existing library
provided a graphical user interface for the user to interact with but for my project I need it
to run headless (without a user interface). I extended the project to include a headless
reporter which runs automatically when the Pi turns on, connecting to the API and
gathering the required data.

I hit a major obstacle here in that I purchased a number of OBD reader units, a device
that plugs into the actual OBD port and provides the communication point to the vehicle
ECU, but none of them actually worked. I was unable to retrieve any data from the
vehicle so I was forced to create a dummy interface for the reporter that generated fake
data instead of pulling real data from the sensors. It’s unfortunate that this didn’t work as
intended but by pushing up any data I could see the rest of the system work perfectly
since the web service doesn’t care how the data is created.

Dan Downey - x14728599 - Vehilytics - Technical Report

31

Fig 3. Android Class Diagram

5.2 Android Application Overview

Dan Downey - x14728599 - Vehilytics - Technical Report

32

The above diagram shows the structure of the Android application architecture while
omitting a number of data classes, OnClickListener interfaces, RecyclerView adapters,
and custom Callback objects.

I wrote a class to extend AppCompatActivity so that I could implement shared
functionality across a number of different activities in the form of the sign out menu
option. The DanCompatActivity class handles creating the options menu and performing
actions when an option is selected. It also has a protected method to allow its child
activities to display Snackbar messages when an event occurs.

I used Retrofit, a library that uses Kotlin interfaces to expose API endpoints, to handle all
the networking in the application and built the ServiceManager singleton to handle the
retrofit instance and expose the interfaces. The advantage of this design is that if I add
some headers to the retrofit instance, then every request will have the new headers
without the need to update every class making requests. It also means that when I have
a new endpoint I simply have to add it to the interface/manager and it will be available
throughout the application.

Retrofit provides a Callback interface with 2 methods, onError and onResponse, that
gets used when making requests. I created an abstract class that implements this
Callback and provides an onResponse method that will force the application to sign out
the user if any requests ever return a status code 401 (unauthorised). If the server ever
returns this status code, it means that the user authentication token was invalid so the
token was either forged or the user signed out on another device.

There are a lot of small data classes in the application for holding information about
entities specific to my system such as, a sensor, a reminder, and a sensor reading.
These models allow me to juggle the information between classes, pass the information
into requests, and parse JSON responses into meaningful objects.

There are a number of lists throughout the application and they are all built as
RecyclerViews with their own custom adapters to maintain efficiency as the lists grow
longer and longer. Each of these lists contain items with nested views (multiple
TextViews, checkboxes, ImageViews), and having custom adapters allows me to fine
tune how they all behave and look.

Dan Downey - x14728599 - Vehilytics - Technical Report

33

5.3 Web Service Overview

For security and performance reasons, the diagnostic reader and mobile application
should never communicate directly. The web service acts as the communication point for
every device in the system. This ensures that diagnostic reports and preferences are
stored for later use by the diagnostic reader or the mobile application.

The web service has 2 types of clients interacting with it, Users and Devices. Users are
people using the Android application and they have access to historic diagnostic data,
can update preferred sensors to be reported. Devices are diagnostic readers and they
can view the preferred sensors of their associated user and publish sensor readings in
the form of reports consisting of a timestamp and collection of sensor values. Both types
of client have their own authentication endpoints that give them authentication tokens to
allow them to make use of the endpoints.

The data is persisted in a Postgresql database that contains encrypted user credentials,
sensor information, historic diagnostic data, and recommendations for maintenance task
reminders. The web service contains many endpoints, most of which are authenticated,
that are described by the API documentation in the appendices.

5.3.1 Web Service Endpoints

5.3.1.1 Sessions Controller

Validate user credentials

URL /v1/sessions

Method GET

URL Params None

Data Params None

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 200 OK

Error Response Code: 401 UNAUTHORISED

Curl curl -X GET -H "X-User-Token: <user_auth_token>" -H "X-User-Email:
<user_email>" "https://vehilytics-api.herokuapp.com/v1/sessions"

Dan Downey - x14728599 - Vehilytics - Technical Report

34

User sign in

URL /v1/sessions

Method POST

URL Params None

Data Params { “email”: <user_email>, “password”: <user_password> }
OR to enable push notifications on Android
{ “email”: <user_email>, “password”: <user_password>,
“firebase_token”: <firebase_instance_id_token> }

Header Params Content-Type=application/json

Success Response Code: 201 CREATED

Error Response Code: 401 UNAUTHORISED

Curl curl -X POST -H "Content-Type: application/json" "https://vehilytics-
api.herokuapp.com/v1/sessions" -d ‘{ “email”: <user_email>,
“password”: <user_password> }’

User sign out

URL /v1/sessions

Method DELETE

URL Params None

Data Params None

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 200 OK

Error Response Code: 401 UNAUTHORISED

Curl curl -X DELETE -H "X-User-Token: <user_auth_token>" -H "X-User-
Email: <user_email>" "https://vehilytics-
api.herokuapp.com/v1/sessions"

5.3.1.2 Device Sessions Controller

Validate device credentials

URL /v1/device_sessions

https://vehilytics-api.herokuapp.com/v1/sessions
https://vehilytics-api.herokuapp.com/v1/sessions

Dan Downey - x14728599 - Vehilytics - Technical Report

35

Method GET

URL Params None

Data Params None

Header Params X-Device-Email=<device_email>
X-Device-Token=<device_auth_token>

Success Response Code: 200 OK

Error Response Code: 401 UNAUTHORISED

Curl curl -X GET -H "X-Device-Token: <device_auth_token>" -H "X-Device-
Email: <device_email>" "https://vehilytics-
api.herokuapp.com/v1/device_sessions"

Device sign in

URL /v1/device_sessions

Method POST

URL Params None

Data Params { “email”: <device_email>, “password”: <device_password> }

Header Params Content-Type=application/json

Success Response Code: 201 CREATED

Error Response Code: 401 UNAUTHORISED

Curl curl -X POST -H "Content-Type: application/json" "https://vehilytics-
api.herokuapp.com/v1/sessions" -d ‘{ “email”: <device_email>,
“password”: <device_password> }’

Device sign out

URL /v1/device_sessions

Method DELETE

URL Params None

Data Params None

Header Params X-Device-Email=<device_email>
X-Device-Token=<device_auth_token>

https://vehilytics-api.herokuapp.com/v1/sessions
https://vehilytics-api.herokuapp.com/v1/sessions

Dan Downey - x14728599 - Vehilytics - Technical Report

36

Success Response Code: 200 OK

Error Response Code: 401 UNAUTHORISED

Curl curl -X DELETE -H "X-Device-Token: <device_auth_token>" -H "X-
Device-Email: <device_email>" "https://vehilytics-
api.herokuapp.com/v1/device_sessions"

5.3.1.3 Devices Controller

Get user’s device info

URL /v1/devices

Method GET

URL Params None

Data Params None

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 200 OK
Body: { “email”: <device_email>, “device_name”: <device_name> }

Error Response Code: 401 UNAUTHORISED

Curl curl -X GET -H "X-User-Token: <user_auth_token>" -H "X-User-Email:
<user_email>" "https://vehilytics-api.herokuapp.com/v1/devices"

Attach device to user

URL /v1/devices

Method POST

URL Params function=attach

Data Params { “device_name”: <device_name> }

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>
Content-Type=application/json

Success Response Code: 201 CREATED
Body: { “email”: <device_email>, “device_name”: <device_name> }

Error Response Code: 400 BAD REQUEST
Code: 401 UNAUTHORISED

Dan Downey - x14728599 - Vehilytics - Technical Report

37

Curl curl -X POST -H “Content-Type: application/json” -H "X-User-Token:
<user_auth_token>" -H "X-User-Email: <user_email>" -d {
“device_name”: <device_name> } "https://vehilytics-
api.herokuapp.com/v1/devices?function=attach"

Detach device from user

URL /v1/devices

Method POST

URL Params function=detach

Data Params { “device_name”: <device_name> }

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>
Content-Type=application/json

Success Response Code: 200 OK

Error Response Code: 400 BAD REQUEST
Code: 401 UNAUTHORISED

Curl curl -X POST -H “Content-Type: application/json” -H "X-User-Token:
<user_auth_token>" -H "X-User-Email: <user_email>" -d {
“device_name”: <device_name> } "https://vehilytics-
api.herokuapp.com/v1/devices?function=detach"

5.3.1.4 Readings Controller

Get all readings

URL /v1/readings

Method GET

URL Params None

Data Params None

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 200 OK
Data: { “readings”: [{ “sensor”: <sensor_shortname>, “value”: <value>,
“time_reported”: <timestamp> }, …] }

Error Response Code: 401 UNAUTHORISED

Dan Downey - x14728599 - Vehilytics - Technical Report

38

Curl curl -X GET -H "X-User-Token: <user_auth_token>" -H "X-User-Email:
<user_email>" "https://vehilytics-api.herokuapp.com/v1/readings"

Get all readings for sensor

URL /v1/readings

Method GET

URL Params sensor=<sensor_shortname>

Data Params None

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 200 OK
Data: { “readings”: [{ “sensor”: <sensor_shortname>, “value”: <value>,
“time_reported”: <timestamp> }, …] }

Error Response Code: 401 UNAUTHORISED

Curl curl -X GET -H "X-User-Token: <user_auth_token>" -H "X-User-Email:
<user_email>" "https://vehilytics-
api.herokuapp.com/v1/readings?sensor=<sensor_shortname>"

5.3.1.5 Registrations Controller

Register new user

URL /users

Method POST

URL Params None

Data Params { “email”: <user_email>, “password”: <password>,
“password_confirmation”: <password> }

Header Params Content-Type=application/json

Success Response Code: 201 OK
Body: { “token”: <user_auth_token> }

Error Response Code: 401 UNAUTHORISED
Body: { “message”: “Email address already registered / New user not
saved” }

Dan Downey - x14728599 - Vehilytics - Technical Report

39

Curl curl -X POST -H “Content-Type: application/json” -d ‘{ “email”:
<user_email>, “password”: <password>, “password_confirmation”:
<password> }’ "https://vehilytics-api.herokuapp.com/users"

Register new device

URL /devices

Method POST

URL Params None

Data Params { “email”: <device_email>, “device_name”: <device_name>,
“password”: <password>, “password_confirmation”: <password> }

Header Params Content-Type=application/json

Success Response Code: 201 OK
Body: { “token”: <device_auth_token> }

Error Response Code: 401 UNAUTHORISED
Body: { “message”: “Email address or device name already registered /
New device not saved” }

Curl curl -X POST -H “Content-Type: application/json” -d ‘{ “email”:
<device_email>, “device_name”: <device_name>, “password”:
<password>, “password_confirmation”: <password> }’
"https://vehilytics-api.herokuapp.com/devices"

5.3.1.6 Reminders Controller

Get all recommended reminders

URL /v1/reminders

Method GET

URL Params None

Data Params None

Header Params None

Success Response Code: 200 OK
Data: [{ “id”: <id>, “title”: <reminder_title>, “weekly_frequency”:
<frequency>, “description”: <description> }]

Error Response Code: 401 UNAUTHORISED

Dan Downey - x14728599 - Vehilytics - Technical Report

40

Curl curl -X GET "https://vehilytics-api.herokuapp.com/v1/reminders"

5.3.1.7 Reports Controller

Create a report with readings

URL /v1/readings

Method POST

URL Params None

Data Params { “time_reported”: <timestamp>, “device_name”: <device_name>,
“readings”: [{ “shortname”: <sensor_shortname>, “value”: <value> }] }

Header Params X-Device-Email=<device_email>
X-Device-Token=<device_auth_token>
Content-Type=application/json

Success Response Code: 201 CREATED
Data: { “time_reported”: <timestamp>, “device_name”: <device_name>,
“readings”: [{ “shortname”: <sensor_shortname>, “value”: <value> }] }

Error Response Code: 401 UNAUTHORISED

Curl curl -X POST -H "X-User-Token: <user_auth_token>" -H "X-User-
Email: <user_email>" -H “Content-Type: application/json” -d ‘{
“time_reported”: <timestamp>, “device_name”: <device_name>,
“readings”: [{ “shortname”: <sensor_shortname>, “value”: <value> }] }’
"https://vehilytics-api.herokuapp.com/v1/readings"

5.3.1.8 Sensors Controller

Get all supported sensors

URL /v1/sensors

Method GET

URL Params None

Data Params None

Header Params None

Success Response Code: 200 OK
Data: [{ “id”: <id>, “name”: <sensor_name>, “shortname”:
<sensor_shortname>, “unit”: <measurement_unit> }, ...]

Error Response -

Dan Downey - x14728599 - Vehilytics - Technical Report

41

Curl curl -X GET "https://vehilytics-api.herokuapp.com/v1/sensors"

Get all sensors with available readings

URL /v1/sensors

Method GET

URL Params None

Data Params None

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 200 OK
Data: [{ “id”: <id>, “name”: <sensor_name>, “shortname”:
<sensor_shortname>, “unit”: <measurement_unit> }, ...]

Error Response Code: 401 UNAUTHORISED

Curl curl -X GET -H "X-User-Token: <user_auth_token>" -H "X-User-Email:
<user_email>" "https://vehilytics-api.herokuapp.com/v1/sensors"

Get all user requested sensors

URL /v1/sensors

Method GET

URL Params None

Data Params None

Header Params X-Device-Email=<device_email>
X-Device-Token=<device_auth_token>

Success Response Code: 200 OK
Data: [{ “id”: <id>, “name”: <sensor_name>, “shortname”:
<sensor_shortname>, “unit”: <measurement_unit> }, ...]

Error Response Code: 401 UNAUTHORISED

Curl curl -X GET -H "X-Device-Token: <device_auth_token>" -H "X-Device-
Email: <device_email>" "https://vehilytics-
api.herokuapp.com/v1/sensors"

Update requested sensors

Dan Downey - x14728599 - Vehilytics - Technical Report

42

URL /v1/sensors

Method POST

URL Params None

Data Params { “sensors”: [<sensor1_shortname>, <sensor2_shortname>, ...] }

Header Params X-User-Email=<user_email>
X-User-Token=<user_auth_token>

Success Response Code: 201 CREATED

Error Response Code: 401 UNAUTHORISED
Code: 400 BAD REQUEST

Curl curl -X GET -H "X-User-Token: <user_auth_token>" -H "X-User-Email:
<user_email>" "https://vehilytics-api.herokuapp.com/v1/sensors"

Dan Downey - x14728599 - Vehilytics - Technical Report

43

6 Testing
Several tests were implemented throughout the building of this project to ensure the
integrity of features that were built early on while more features were added and code
was refactored. The 2 main types of testing performed were unit tests and integration
tests. Unit testing was performed on the Android application while Integration testing was
performed on the web service controllers. The diagnostic reader was built upon a forked
project that wasn’t testable but unit tests were added for the portions I had written.

6.1 Unit Testing

Unit testing was performed for some of the Kotlin classes in the Android application
using JUnit and Mockito, and some portions in the Python code for the diagnostic reader
using PyUnit.

6.1.1 Android Application

Unit testing on Android can be tricky because of the dependencies on framework
classes like Context or SharedPreferences. I opted to avoid testing my activities
because they have a lot of framework dependencies and don’t actually have a lot of logic
contained within them. I instead focused on testing classes that offered reusable
functionality with minimal framework dependencies. The 2 main classes I tested were
“Vehilytics.kt”, a singleton object that allowed access to user details throughout the
application, and “Storage.kt”, a class that handled reading from and writing to
SharedPreferences.

The Vehilytics class was easy enough to test as it’s only dependency is on the Storage
class which I could easily mock using Mockito. Mocking the class allows me to control
what happens when methods from that class are called by returning values I specify so I
can focus on verifying the order of operations for a given method. The Storage class was
a little trickier to test as it has a dependency on Context and SharedPreferences. Using
Mockito allowed me to mock both classes once again and avoid any difficulties they
presented.

Dan Downey - x14728599 - Vehilytics - Technical Report

44

6.1.2 Diagnostic Reader

The diagnostic reader was not easy to test since the majority of the code was not written
in a testable way. I’ve tried to keep the code I wrote on top testable and have written a
series of unit tests for the classes and methods that warranted testing. Testing for this
system was written using the unittest module (also known as PyUnit).

6.2 Integration Testing

Most of the testing for the web service was done as request specifications using the
RSpec library and allowed me to test the behaviour of the endpoints under various
conditions. I could easily test the status code of a requests when credentials were valid
or invalid, or the return body for requests asking for collections of data. It also enabled
me to test all of my models in terms of their relationships and validators to ensure that all
of the entries in the database were acting correctly when created through requests to the
controllers.

6.3 System Usability Scale

The system usability scale is a quick way to determine the effectiveness of a system that
has proven itself to be dependable but does not provide a 100% accurate representation
of the actual practicality of the system. The scale is a questionnaire with 10 questions to
be answered by users of the system to help determine the effectiveness of the design
and implementation.

Dan Downey - x14728599 - Vehilytics - Technical Report

45

Here is a list of the 10 questions I used, adapted from some template questions
(Thomas, 2018):

1. I would regularly use this system.
2. I found it difficult to understand the information presented.
3. I thought setting up the system was easy.
4. I might need the help of someone technical to setup the system.
5. I liked all of the features offered.
6. I felt that the application struggled to express its message.
7. I feel like the barrier of entry for this application is low.
8. I found it tiring to use this system.
9. I knew what I was doing while using this application.
10. I’ll need to learn a lot before I can effectively use this system.

The scale gives a score from 0-100 to help understand the effectiveness of the system.
Anything above 68 is above average and means I did an ok job building the system,
while getting above 80 means the system is practical and usable by clients. I had some
friends and family fill out the system usability scale after showing them my project.

The system averaged just over 70 which I’m delighted about, although the score might
be a little biased due to the audience that answered the questions. Even though the
results may be a little biased this scale is only supposed to give a rough idea of the
practicality of the system, and is not a means of determining exactly how effective the
design may be.

Dan Downey - x14728599 - Vehilytics - Technical Report

46

7 Conclusion

After having built the entire system for Vehilytics, I have a much greater appreciation of
the interactions between frontend and backend systems. It’s all well and good building
and entire API but it isn’t until you start consuming it with some frontend client that you
realise that endpoint A isn’t quite what you need, or it would be nice to have endpoint B,
or a user should be able to access this resource as well as a device. It was nice to be
able to jump into the web service to extend endpoints as I needed but I can see that
being a huge problem for larger systems.

One design aspect that I’m very pleased with is the fact that none of the data is coded
into the Android application so if there is ever a need to update any information about
sensor descriptions, or reminder recommendations, I just need to update the server
database and the user will receive the updated information the next time they make a
request to the service.

Implementing a suite of integration tests turned out to be a massive time saver while
building the API as it alerted me to old working code beginning to break based on new
features I was implementing. I could have easily implemented 2-3 new features while
break 5-6 and not noticing for a few days/weeks, leading to hours of backtracking to
discover the commit where the issue first arose.

7.1 Future Extensions

The Android application subsystem gathers all information to be displayed to the user
from the web service, meaning it is easy to roll out updated information when available
without needing to update the Android APK. Currently the only way to update this
information is directly updating the database via a rails console application in the web
service. A nice feature to implement would be an Android application that allows an
administrator account to update information remotely. This admin application could also
handle registering new devices with the system as they are constructed before sale.

7.2 Difficulties

One major roadblock that I ran into was how unreliable the third party OBD readers can
be after having purchased and tested 3 devices with no success. If I was to begin this
project again I would attempt to create my own OBD reader using a PIC microprocessor,
the ELM327 protocol and C language so that I could directly control the interface
between the vehicle and the Raspberry Pi.

Dan Downey - x14728599 - Vehilytics - Technical Report

47

Another problematic trait of the OBD readers is that they will constantly drain the battery
of the vehicle so long as it is plugged in, meaning that the system must be plugged in
during use and removed at all other times to prevent the battery from going flat. This
problem could be solved by constructing a reader that only access the OBD port when
required and would be accomplished as mentioned above using a PIC microprocessor.

Dan Downey - x14728599 - Vehilytics - Technical Report

48

8 Bibliography

Obdii.com (2017), OBD-II - On-Board Diagnostic System. [online]
Available at: http://www.obdii.com/ [Accessed 2017].

Carista. (2018). Carista OBD2 App | Diagnose, customize and service your car. [online]
Available at: https://caristaapp.com/ [Accessed 2017].

Thomas, N. (2018). How To Use The System Usability Scale (SUS) To Evaluate The Usability Of
Your Website - Usability Geek. [online] Usability Geek. Available at:
https://usabilitygeek.com/how-to-use-the-system-usability-scale-sus-to-evaluate-the-usability-of-your-
website/ [Accessed 2018].

Kabiru, A. (2017). Build a RESTful JSON API With Rails 5 - Part One. [online] Scotch.
Available at: https://scotch.io/tutorials/build-a-restful-json-api-with-rails-5-part-one [Accessed 2018].

Codemy.net. (2017). Rails API: Generating an API Only Rails App - [001]. [online]
Available at: https://www.codemy.net/posts/rails-api-generating-an-api-only-rails-app-001 [Accessed 2018].

Devise. (2018). plataformatec/devise. [online]
Available at: https://github.com/plataformatec/devise [Accessed 2018].

Square.github.io. (2018). Retrofit. [online]
Available at: http://square.github.io/retrofit/ [Accessed 2018].

Site.mockito.org. (2018). Mockito framework site. [online]
Available at: http://site.mockito.org/ [Accessed 12 May 2018].

Rspec.info. (2018). RSpec: Behaviour Driven Development for Ruby. [online]
Available at: http://rspec.info/ [Accessed 12 May 2018].

Dan Downey - x14728599 - Vehilytics - Technical Report

49

9 Appendix

9.1 Survey results

Dan Downey - x14728599 - Vehilytics - Technical Report

50

Vehicle Owners

Dan Downey - x14728599 - Vehilytics - Technical Report

51

Product questions

Dan Downey - x14728599 - Vehilytics - Technical Report

52

The final question asked the responders would they be comfortable installing the
diagnostic reader in their vehicles. Most respondents said they would have issue
with it but I’ve included some notable answers below.

● Depends on how secure it is
● It would depend how secure the device would be once installed, where it would

be installed and how complex installation is and whether I could even do it
myself. But if it were not too difficult or likely to come loose then definitely.

● Depends how secure it is

● Depends on how complicated the device is

● No but I'd want to know who would have access to the data the device gathers
and how far back it stores historic data. Also, depends on how difficult the
device is to install and maintain.

● Only concern would be. Who would have access to it?

Dan Downey - x14728599 - Vehilytics - Technical Report

53

9.2 Project Proposal

Car Diagnostics Platform

Project Proposal - Draft

Dan Downey - x14728599

x14728599@student.ncirl.ie

BSc. in Computing

Internet of Things (IoT)

mailto:x14728599@student.ncirl.ie

Dan Downey - x14728599 - Vehilytics - Technical Report

54

Objectives

My primary objective for this project is to build a car diagnostics platform that will allow

an end user to view their vehicles diagnostic reports remotely. These reports should be

easily readable by the end user, while being informative enough for a mechanic to be

able to repair the vehicle in the event of a failure. The system should be extensible and

allow additional modules to add information to the diagnostic reports. As a broad

overview I can break down the project into 4 sections/milestones.

Data Sources:

This will primarily be the On-board Diagnostics (OBD) port on a car as it gives access to

a lot of pre-installed sensors and data that is used by mechanics in diagnosing issues. It

may also include additional sensors installed by the user. These data sources will be

accessible via Bluetooth and will have no function other than to provide data.

Diagnostics Reader:

This will be a Raspberry Pi that will interface with the various data sources, generate a

full diagnostics report, and will log these reports until they are requested. It will use

Bluetooth to continuously poll the data sources in a round-robin fashion to keep the logs

up-to-date. This device will sanitize the data as appropriate to maintain proper form and

order in the reports. If the reader detects an emergency it should be able to send an alert

to the web service.

RESTful Web Service:

This will be an API that can be accessed by the end user application and the Raspberry

Pi. It will act mainly as a communication point between the user and the vehicle

diagnostics reader. It will also host credentials linking an end user to a diagnostics

reader, and user settings that will allow the user to omit certain data from the reports and

add additional modules to the reports.

End User Application:

This will be an Android application that will present an end user with a diagnostics report,

allow them to forward this report to additional contacts, allow them to change settings to

their preference, and alert them if there is an emergency.

Each of these systems should be completely unaware of how the other sections operate

so that each part can be properly tested, replaced, or mocked without compromising the

system as a whole. Making the diagnostics reader vehicle agnostic would be a major

goal. The OBD-II standard was introduced to simplify interfacing with vehicle

diagnostics, but depending on the manufacturer, it implements one of 5 different signal

protocols which will need to be considered when creating the diagnostics reader.

Dan Downey - x14728599 - Vehilytics - Technical Report

55

Background

My idea began as a sensor array that could be placed within a car to detect when a baby

was left unattended and notify parents, guardians, and finally emergency services as

necessary to ensure the survival of the child. The inspiration for this idea came from

reading an article which described the surprisingly common phenomenon of parents

simply forgetting they had the child with them in the car on their way to/from work and

discovering hours later that the child had perished in the heat or cold.

Developing a system to detect the presence of a baby that was left alone would end up

being an unwieldy amount of sensor configuration and processing for a singular purpose

to be served. However, a car already has a host of sensors installed, reading, and

reporting at most times to monitor things like RPM, or external temperature, or anti-theft

devices. So, the idea came about to publish these diagnostics in some form of readable

report for the vehicle owner to be viewed remotely and allow the system to be generic

and extensible so additional modules can be added at a later stage, including the baby

monitoring device.

The beauty of this general, extensible platform is that the limit of what can be reported

and viewed is based on what the user and any third-party manufacturers can design,

build and install following what I can determine to be allowable report formats.

The type of data reported by these systems may also elicit different responses and alerts

to be issued. For example, if the user is away from their vehicle and suddenly the RPM

shoots up, we can be relatively certain that the car has been stolen and can quickly alert

the authorities. Building on that, we could install a GPS module so we can provide

coordinates of the car to help in recovering the vehicle in the event of theft.

The reports from the On-Board Diagnostics itself could save huge amounts of time and

money by allowing the user to identify faults that they can fix themselves and provide

their mechanic with the report so they don’t need to run and can’t bill for their own

diagnostics services.

On higher end cars, where the user can access features like air conditioning remotely,

this means that an internally installed temperature sensor can be used to view the

environment in the car remotely and enable the air-con before reaching the vehicle so

that it is comfortable for the driver to hop straight in and drive away.

Currently these kinds of diagnostics systems are only available on high end cars, and for

specific manufacturers. Building this system to work independently of manufacturer and

OBD-II protocol would be a huge step toward automating vehicle maintenance, vehicle

safety, anti-theft, calculating insurance costs, and settling traffic accident disputes.

Dan Downey - x14728599 - Vehilytics - Technical Report

56

Widening the scope of analysis for the project idea, we can see major use for this

technology platform in data mining. If we can continuously log vast amounts of data

about how a car is being used, then we can examine the skill of the driver, the efficiency

of the car, traffic patterns and vehicle crime.

This data could all feed into adjusting insurance, determining which roads need to be

examined and possibly reworked, and even suggesting new driving routes to the user.

Through the mobile application we could begin to target advertisements to the user

based on maintenance needs of the car, or which stores they frequent based on GPS.

Dan Downey - x14728599 - Vehilytics - Technical Report

57

Technical Approach

A key component to this project is the actual diagnostics data. This means that acquiring

an OBD-II reader and analysing the data I can retrieve in terms of both its structure and

usefulness should be my first milestone. This will allow me to determine a suitable model

for passing reports from the diagnostics reader, up to the web service, and finally on to

the end user. My hope is that it will be simple enough that I can just represent the report

in JSON format.

Once I have a good model to represent my diagnostic reports, then I can properly design

my API contracts using API Blueprint. This will allow me to configure the public

endpoints at a high level without regard for how the system internals will handle

manipulation of the data being passed out or taken in through these endpoints. This will

allow the different sections of the system to operate regardless of who is interacting with

it, which will make the entire system easily testable and extensible.

The Diagnostics reader will be built using a Raspberry Pi coded with Python. Python is a

nice lightweight language that should place no unnecessary strain on the device and

gives access to libraries, such as requests for making network requests, and json for

parsing to and from json files. It will use Bluetooth to communicate with the data sources

and act as the master device in the pairing. This will also allow me to poll a number of

Bluetooth slave devices for data, including the OBD-II port or any other modules I can

create which also use Bluetooth.

The Web service will be a simple RESTful API that handles storage and management

for diagnostic reports, user credentials, and user preferences. The Web service itself will

be created with Ruby on Rails, a SQL database for storage, and it will all be hosted on

Heroku.

The end user mobile application will be an Android application written using Kotlin. It will

allow the user to register their vehicle to a reader, view their vehicle diagnostics

remotely, change their preferences to change the format of the reports, save reports to

their device or Google Drive, and forward these reports to their contacts through email or

SMS. The application will use libraries, such as Retrofit, Gson, and RxJava to handle

network requests, json parsing, and updating UI reactively.

Appropriate testing frameworks will be used to ensure each subsystem continues to

function correctly throughout the build process. This means JUnit and Mockito for the

Android application, the built in Ruby testing framework or Cucumber for the web

service, and PyUnit on the Diagnostics Reader.

Dan Downey - x14728599 - Vehilytics - Technical Report

58

I am also toying with the idea of building the entire project in Kotlin using Android Things

on the Raspberry Pi, Kara Web Framework for the Web Service and JetBrains Exposed

for the SQL storage. This may not be feasible as the Exposed library is only a lightweight

prototype and I’m unsure if Android Things will allow me to access the Bluetooth protocol

directly.

Special Resources Required

OBD-II Bluetooth adapter

This adapter will allow me to access the OBD-II port wirelessly via Bluetooth. Hopefully

it’s possible to access this adapter directly from the Bluetooth on a Raspberry Pi,

although reading in the data through USB should be fine.

Device with an OBD-II port

I’ll need a source of data and this will likely come from an OBD-II port on a car that I can

access. Some alternatives to this could be a vehicle ECU pulled from a car or a

secondary Raspberry Pi that just emulates and emits data via Bluetooth.

Raspberry Pi Mobile Data HAT

The Raspberry Pi will need some way to communicate with the Web Server and most

likely it will not have access to Wi-Fi. A mobile data HAT (Hardware Attached on Top)

like PiAnywhere GSM will allow the Pi to access GSM networks.

Dan Downey - x14728599 - Vehilytics - Technical Report

59

Project Plan

I am using Asana to organise my project tasks and deadlines. Below I have

added pictures of my project board, organized into columns for the major

milestones. These milestones include the prototype, the diagnostic reader, the

web service, the back-end storage, the mobile application, and the finished

product. I have also included a Gantt chart for my projected timelines. This will

change as the project progresses as I suspect some tasks may take longer than

expected, while others may prove to be less complex.

Dan Downey - x14728599 - Vehilytics - Technical Report

60

Dan Downey - x14728599 - Vehilytics - Technical Report

61

Dan Downey - x14728599 - Vehilytics - Technical Report

62

Dan Downey - x14728599 - Vehilytics - Technical Report

63

Technical Details

Diagnostic reader

I’ll be using BlueZ for accessing the Bluetooth protocol stack so I can poll Bluetooth

devices for data. Libraries like request and json will allow me to easily make network

requests and parse json. After some research into other people attempting to access

their own OBD-II ports with Raspberry Pis I found pyOBD, a python library for interfacing

with the OBD-II port in a car. Using this, I can place less attention on attempting to

interface with the hardware, and focus more strongly on utilising the data.

Web service

I don’t currently have any knowledge of Ruby or Rails, but I would like to use these

technologies for the Web Service layer of this project as it is the popular web framework

in industry at the moment. For storage I will be using a MySQL database so I can design

a formal schema for the report data and user credentials.

Mobile application

Dan Downey - x14728599 - Vehilytics - Technical Report

64

Networking in the Android application will be performed using Retrofit and OkHttp.

Retrofit is an HTTP client that allows me to map my API within the application using

interfaces, and OkHttp handles making HTTP requests. I will be using GSON to parse

JSON objects and map them onto Kotlin data classes. I would like to use RxJava for

reacting to events like server responses but it may be unnecessary.

Version control, quality assurance & testing

I will be using Git and GitHub for saving my project so that I can easily work across

multiple machines, and handle code reversion if necessary. This will help for discovering

the cause of breaking bugs that may arise during development. I will be using the

various testing frameworks available for each implementation language to continuously

write appropriate tests. This will mean unit tests for individual blocks of logic, integration

tests for hardware/software integration points, and usability testing for the end-user

application, to name a few.

Evaluation

During development of my project I will be continuously writing unit tests to be certain

that my individual blocks of logic remain unbroken as I progress. This will allow me to

discover and fix bugs as they arise instead of surfacing many modifications later and

causing me to spend time debugging.

Since my project involves a hardware component and multiple software components, it

will be necessary for me to write integration tests to ensure that these components all fit

together and operate end to end as per my requirements.

Once the GUI for my mobile application is created I will begin usability testing by asking

people to test the application and see where the navigation may be confusing or difficult.

Beginning this testing before adding the core functionality will be crucial as it will allow

me to tailor the design to better suit the needs of the user and remove anything which is

seen as clutter.

Performance testing will be important as the diagnostic reader will be required to report

consistently over long periods of time and the user will want to see updated reports as

soon as possible. Leaving the diagnostic reader to monitor and report data over a few

days and graphing the data should allow me to see any inconsistencies. For testing the

response time of updated reports, I can push up modified, and easily identifiable data to

see how long of a delay there will be before the report can be requested by the user.

Dan Downey - x14728599 - Vehilytics - Technical Report

65

9.3 Monthly Journals

9.3.1 September

After 7 months of working in Zendesk, I was sad to be leaving. I enjoyed the structure

and the challenging work. I also enjoyed not having business modules to worry about.

That being said I was excited to get back into the college and dive into some new

projects with all of the experience and knowledge I gained throughout the internship.

This year I’m working as a Lab Assistant in the college and it’s really been a great

reminder of how far along my ability has come. Being able to quickly review code written

by students and give them guidance or even just to answer unusual questions on

specifics of whatever language they are learning, like the choice tag in XSD.

The best sign for me so far that this year is going to be interesting is that we were

immediately handed a practical CA, coding a chess engine. I grow bored having nothing

but reports and research papers to write, but actually being challenged with some code

from the get-go was incredible for grabbing my attention and motivating me to get the

work done early.

At the suggestion of one of my coworkers in Zendesk I began reading more tech blogs

which led me to start collecting articles and libraries that I felt might be useful in deciding

upon a project idea. I was delighted that I decided to do this as it opened up so many

brainstorming routes, some of which were fruitful while others fizzled out. So luckily, I

was walking into this year with my idea somewhat worked out in my head. I didn’t spend

too much time locking down details or fully committing to the idea in case I needed to

rework it or the idea was rejected outright. This turned out to be a good call.

I was due to make my project pitch at 11am but I headed in for around about 9am so I

could get some work done in the free room. As I reached the top of the stairs I was

greeted by Eamon who asked if I was interested in making my pitch ahead of schedule.

Not one to shy away from a presentation I jumped at the opportunity.

I strolled into the room with my coffee in one hand, earphones in the other, hat falling out

of my pocket and my extremely heavy laptop bag weighing me down. It was a bit of a

struggle setting it all down on the table but I think I stuck the landing. I pitched my idea

Dan Downey - x14728599 - Vehilytics - Technical Report

66

for a sensor array that could be fitted into a car for detecting whether a baby had been

left unattended and was delighted to find my idea being challenged.

At the suggestion of the lecturers, the project shifted more towards being a car

diagnostics platform using a Raspberry Pi to interface with the car OBD-2 port. The Pi

would report the data to a web service and the web service would push this data down to

a client mobile application, allowing a user to remotely monitor their car’s diagnostics.

My view of this project is that the Pi should report the car’s own diagnostics along with

whatever data it gathers itself from add-on “modules”. These “modules” will be sensors

that provide some valuable data to the user or platform itself (e.g. GPS for location

discovery, accelerometer for crash detection).

9.3.2 October

I dove straight into brainstorming for my project at the beginning of October. The OBD

technology is new to me so I began researching as soon as I could. I gained some

decent insight into the technology at a high level and an idea of how I will make use of it.

I used this information to begin sketching out high level architecture diagrams for the

entire system to help visualise the flow of the system and allow me to better choose the

appropriate technologies for building the other sections. All of this work went a long way

toward writing my project proposal, allowing me to be better able to defend my potential

design choices.

An interesting design choice that came about was to build the entire project end to end

in Kotlin. From researching various frameworks for the subsystems in the project, I

noticed people had created Kotlin frameworks that fit everything I needed. There's

arguments to be made for and against this route.

If I use different languages and technologies throughout then I can demonstrate flexibility

and ability to pick up these technologies. But if I use only Kotlin, then I can show

extreme competence in this new, and quite popular language. The main issue I see with

this approach is difficulty in accessing the Bluetooth protocol stack.

At the beginning of October, I was offered a role in computing support tutoring people

struggling with various subjects. I jumped at the opportunity because it forces me to

reevaluate my own aptitude with these subjects and learn them to the degree that I can

teach it to someone else.

This has given me a great help in thinking about the design of my own projects and in

developing simpler, less gimmicky/hacky solutions to problems I have been working on.

A great example of this was relearning database design and that informing my decisions

in how to store and retrieve data for my final project.

Dan Downey - x14728599 - Vehilytics - Technical Report

67

I will admit however that I haven't done enough groundwork for the requirement

specification at this point and I will have to make up for that in the coming weeks.

Hopefully I have been passively picking up on enough information over the last while

through tutoring and reading articles that I can quickly and effectively do my

requirements gathering and use case modelling.

I have been doing some thinking about how I will showcase my project in May and what

kind of form my prototype will take in December. For the prototype my plan is to just

pass dummy data from a raspberry pi to some kind of web service and read that on a

simple mobile app. The web service might be something as basic as dweet.io so I don't

need to build my own endpoints.

The showcase however will be a different game entirely as my project relies on using the

OBD port on a car. It would be awfully strange if I was to bring a car up into the Kelly

Theatre on the day so instead I have acquired an ECU stripped out of a car and my plan

is to power it up and wire it to an OBD port so I can interface using a Bluetooth adapter.

9.3.3 November

Well these last 3 months definitely went by like a flash. I can’t believe it’s been a month

since my last journal. I’ve been extremely busy between project work, assignments for

other modules, lab assisting, and acting as a support tutor. It’s tiring but I’m enjoying it.

Most of my project work this month has been toward the requirements specification and

technical report. I performed some requirements elicitation techniques to gather user

requirements for the system. The 2 techniques I employed were a survey and a

brainstorming session.

The brainstorming session provided me with some potential feature requests for the

mobile application such as, user views that can alter the nature of the data being

displayed based on the technical competence of the user, and a mechanism for learning

the meaning of symbols displayed around the vehicle. The survey highlighted some

valuable information about the potential users of the system including, how often they

drive, how familiar they are with vehicle maintenance, and if they have an issue with

installing the diagnostic reader in their car.

The user requirements I gathered helped me shape my initial prototype mockups for the

android application. Rather than designing the web service around the diagnostics being

gathered, I have decided to build it around what information the user would like to see.

I started building my prototype quite late considering the scope of my project. I had

designed mockups for the mobile application GUI as part of the requirements

Dan Downey - x14728599 - Vehilytics - Technical Report

68

specification so I set aside a Saturday to build the entire application with no function and

it turned out quite well. I was delighted to be able to get graphs working so I can graph

out diagnostic trends and highlight potential concerns.

To complement the mobile application, I also spent a Sunday building a Ruby on Rails

API that simply accepts diagnostic reports with dummy data that I can then retrieve from

the mobile application. This was a tough one because I have never written Ruby before

but I’m happy that I got it working in the end.

As of writing this journal I’m just putting the finishing touches on the technical report and

have yet to pull the API data into the mobile application but I have a few days before

they are due so I might set aside some time to add it to my prototype demonstration.

9.3.4 December

There was a healthy amount of project work to be done throughout December between
the Intro AI chess assignment, the IoT research paper and Mobile Application
Development project. The chess assignment was tricky but manageable once the
codebase was cleaned up. I enjoyed writing the research paper on ubiquitous computing
and internet of things because I got to have a massive rant and Snap Inc. and
Spectacles and how IoT is basically just a massive gimmick at the moment.

I was delighted with the outcome of the Mobile Application Development project as it led
to me releasing my first Android app to the Play Store. I managed to pick up a few
Android tricks while building it so hopefully they’ll come in handy when I’m building the
final Android app for the software project. I’ll be trying to squeeze Android in wherever I
can to cook up some new tricks.

I don’t see myself getting a whole lot of software project done this side of Christmas after
lab assisting, tutoring, and the hail of assignments. I’ll be focusing on the exams so that
I’m heading into semester 2 with a decent foot forward not having to worry about results.

9.3.5 January

January was spent preparing for my final exams and getting setup for semester 2. As a

result, there was not a lot of work done toward the final project. I’m happy enough to

have left it aside for the time being however as it meant that the exams were less

stressful and it was easier to get down to working through class assignments with delay.

Aside from Strategic Management, I’m happy enough with how the exams went. The

business modules just do not click with me so it’s a chore to sit down and learn the

notes, and even then, the material just doesn’t stick. I was a little worried about Intro to

Dan Downey - x14728599 - Vehilytics - Technical Report

69

AI but the notes were helpful and the material was interesting to learn. In the end I’m

happy with how I answered the questions. The IoT exam was enjoyable, as exams go. I

found the course content fascinating and easy to read about. The exam itself was

interesting as it was mostly just brainstorming IoT systems and I was happy with how I

answered the paper.

Overall, I was delighted at my results and they put me in a great mood heading into

semester 2, especially since the IoT stream doesn’t have any formal exams. Hopefully

we can get the briefs for all our assignments early in the semester so there’s not a rush

in the last few weeks to get 3 projects done alongside the final project.

9.3.6 February

February was an interesting month. I had some interviews for a really good company

that was spread across 4 rounds, one of which was 9 hours in length. The stress of

going through this process was probably not worth it as it made it very difficult to focus

on assignments and project work. Even though I didn’t get the job, the relief when the

process was finished was unbelievable and led on to me getting a lot of assignments

done.

As a result, there was no direct progress made on my final project, but I was forced to

quickly learn Rails for the last interview which I need to learn for both a class project and

my final project. So even though direct progress wasn’t made, I have landed in a position

where I am more capable of completing those 2 systems in a tighter time frame.

Throughout all of this though, I have been constantly asking for information regarding

module projects and very little was shared with us. My fear of ending up with 4 big

projects all at once is looking very likely at this point. I’m not so much worried about the

Cloud Application Development or IoT Application Development projects as I am about

the Data Mining project. The Data Mining project involves a hefty report and feels like we

are missing prerequisite knowledge for the class so that project will be a struggle.

I have been doing some investigating into the OBD portion of my project and have

discovered some existing tools that provide some ability to parse the raw data from the

vehicle that will be of great use to me. The problem is that these tools all have a GUI,

and don’t allow the data to be sent anywhere. Luckily these tools are open source so I

will be forking those projects and creating a headless version that will allow the data to

be pushed up to my API. I might make a pull request on the existing tools but they

haven’t seen any updates in years so the headless version will most likely just live on my

own GitHub.

Dan Downey - x14728599 - Vehilytics - Technical Report

70

9.3.7 March

My work on the headless fork of the existing pyOBD library has been going well. I have it

attempting to connect to the OBD port and make requests. There is an issue with it in

that it will write the request out to the serial port, wait, and then consume the response

but the response is just the initial request again because the OBD is never actually

seeing the request. It took some weird maths to discover this issue because I was just

receiving strange values back instead of errors.

For example, I would get back -29 degrees for the ambient air temperature. The formula

for getting the air temperature from the response code is given by:

 temp = response - 40

 -29 = response - 40

response = 40 - 29

response = 1110

response = B16

At this point you might be wondering why I labelled the last lines with their bases. I went

diving into the existing codebase and discovered that the code was raising the string

“Bogus Code” as an exception which has a weird side effect since the string class

doesn’t extend BaseException. It turns out that the code was trying to parse the string as

hex, which evaluates the first character as 11 and gives -29 for ambient air temperature.

A worrying detail I discovered about the OBD readers is that they drain the car battery as

long as they are plugged in, even if the car is off. I realised this when my Dad’s car

battery died while we were testing the system. This really hurts my idea of this device

being left plugged in constantly and only being in use while the car is on. If I was building

the microcontroller to interface with the OBD port myself I would attempt to address this

problem but I’ll just have to say that it must be plugged in before you start driving and

removed when the car is off.

I was hoping that I would get a lot of work done during reading week but it ended up

being a miserable time as I lost a close friend very suddenly. I wasn’t able to focus and

get some deep work done for the 2 weeks so I have a lot of work to catch up on coming

into April.

We have a Data Mining project due 2 weeks into April and I’m honestly terrified by it.

The concepts are tough to grasp and I can’t immediately see the practical use of the

algorithms. After speaking to someone in the data analytics stream, he was surprised

that we have a project of this scope to do solo while they did a similar project in groups

of 4. I’m amazed that we’ve gotten a more difficult data analytics project than the people

studying data analytics.

Dan Downey - x14728599 - Vehilytics - Technical Report

71

9.3.8 April

April was possibly the most stressful month since I started college. 3 sizable projects all

due a week apart from each other. The tight deadlines were only made worse by the fact

that 2 of the projects were not enjoyable at all. Data Mining was an overly difficult

module with a poorly executed project. The Cloud Application Dev project should have

been to build a Rails API with a consuming client of our choice instead of a full Rails

application.

The IoT Application Development project was a lot of fun though. We had a lot of

freedom to build any system we wanted and I ended up having a shopping spree on

Adafruit buying parts that I didn’t even use in the end, but I have them now for future

projects!

There’s not a whole lot to write about for this month as it was mostly busy work just

getting the projects done with no time to tinker with my final project. I did manage to

figure out a few cool Android tricks that I plan on using in the final project. I figured out

how to control buttons nested inside of a RecyclerView, how to trick a relative layout into

behaving like a button, and how to fully customise button animations. I plan on pulling

out all the stops for the Android portion of my final project.

The Cloud Application Dev project did give me a solid footing in understanding the Rails

framework ahead of building the API for my final project, so I’m sure I’ll be thankful for

having to build it in a weeks’ time.

One area I’m a little concerned about moving forward is testing. I haven’t had to do any

of it outside of my internship where there was a whole collection of tests already built to

use as a reference. This time it’s all from scratch, for multiple systems, all in different

languages, and performing different types of tests.

I’m happy enough that I’m in a position now that I have a decent enough level of

knowledge across a number of domains to make a decent dent in the project without

much issue. Let’s just hope that I don’t run out of steam too quickly and end up stuck on

one section for more than a few days.

Dan Downey - x14728599 - Vehilytics - Technical Report

72

9.4 Code Guide

Vehilytics Code Guide

Dan Downey - x14728599

May 10th, 2018

Contents

● Introduction

○ User Credentials

○ Device Credentials

● Subsystems

○ Diagnostic Reader

○ Web Service

○ Android Application

● Version Control

Introduction

This document will go through how to run/use each of the subsystems that makes
Vehilytics. Before we look into each of the systems, I’ll provide some credentials to
dummy accounts that exist in the system for examination. There are 2 types of clients
that can login to the system:

● User

● Device
A user is a client consuming resources via the Android application, while a device is a
diagnostic reader that publishes data to the web service.

Dan Downey - x14728599 - Vehilytics - Technical Report

73

User Credentials

 email password device description

0
dan@example.com password TEST_0 Has 2 warnings

1 paul@example.com password TEST_1 Has a warning and an error

2

glenn@example.com password TEST_2 Has a warning

3 aaron@example.com password TEST_3 New account, no problems

Device Credentials

 email device_name password In use

0
test_device_0@vehilytics.com TEST_0 device_pass Yes

1 test_device_1@vehilytics.com TEST_1 device_pass Yes

2 test_device_2@vehilytics.com TEST_2 device_pass Yes

3 test_device_3@vehilytics.com TEST_3 device_pass Yes

4 test_device_4@vehilytics.com TEST_4 device_pass No

5 test_device_5@vehilytics.com TEST_5 device_pass No

Dan Downey - x14728599 - Vehilytics - Technical Report

74

Subsystems

The 3 subsystems that make up Vehilytics are:

● The diagnostic reader

● The web service

● The Android application

Diagnostic Reader

The diagnostic reader is written purely in Python and has a few different entry points due
to it being a forked library. The library was originally written with an extensive GUI but we
are interested in the obd_headless.py entry point. I have modified the system to allow it
to run without a UI so that it can be placed inside the users’ vehicle and allowed to
operate without interaction. The code should be placed on a Raspberry Pi with an active
internet connection. The system currently has 2 modes:

● Headless Reporter

● Dummy Reporter
Headless Reporter mode means that the system will attempt to connect to an OBD
reader, gather data from the vehicle ECU, and interact with the web service. For this
mode to function correctly, you must connect an OBD reader to the OBD port in a
vehicle and turn on the diagnostic reader. The device will login to the web service,
request user preferences and begin pulling data from the vehicle ECU before reporting it
to the web service.

The optional Dummy Reporter mode is a way of running the system independently of a
vehicle in the event that there is no vehicle close by or there are no working OBD
readers. This mode was built out of necessity as none of the 3 OBD readers I purchased
would actually work. The Dummy Reporter functions similarly to the Headless Reporter
but differs in that it generates fake data to publish to the web service. This mode does
not need to be run on a Raspberry Pi and can run on any machine with a Python
interpreter.

For either mode to function you must populate the file headless_device_config with
some configuration data. The first line is the API root URL, the second is the device
email, and the third is the device password. You can optionally place the word dummy
on the fourth line to enable Dummy Headless mode. Below is a sample of a
configuration setup for using device TEST_0 in dummy mode.

Dan Downey - x14728599 - Vehilytics - Technical Report

75

https://vehilytics-api.herokuapp.com/
device_test_0@vehilytics.com
device_pass
dummy

Once the configuration has been setup, the system can be run using the command
python obd_headless.py with an optional --debug to enable logging. For demonstration
purposes the system will publish every 10 seconds, but in a real system this timing
would be 5/10/15 minutes to reduce the computation and communication done by the
low power device.

Since this system is based on a forked code base I should clarify that the files written by
me in this system include:

● dummy_headless.py

● headless_device_config

● headless_reporter.py

● obd_data_generator.py

● obd_headless.py

● obd_utils.py

● Everything in /tests

● Minor modifications in other files such as obd_io.py to remove hard
dependencies on UI libraries

Testing

There is a set of unit tests written for my portion of the code in this system located in the
tests directory. These tests can be run using the command python -m unittest
tests/test_runner.py.

Web Service

The web service is a Ruby on Rails API meaning that it has no views, it only accepts and
produces JSON. It handles authentication for 2 client types as mentioned at the
beginning of the document, which restricts access to certain resources as appropriate.

Dan Downey - x14728599 - Vehilytics - Technical Report

76

There are a number of controllers for handling each of the resources and they can be
found in app/controllers/v1.

Device Registrations Controller

This controller is overriding the Devise gem registration controller so that I can fine tune
the creation of new devices for the system.

Device Sessions Controller

Handles authenticating a device login by providing a unique authentication token when a
login request is valid, a means of resetting the token when logging out, and a method for
validating a token.

Devices Controller

The devices controller allows a user to get information about their device, to attach a
new device to their account, or to detach their current device from their account.

Readings Controller

The readings controller allows a user to view diagnostic readings published by their
device and can be filtered by sensor.

Reports Controller

The reports controller allows a device to publish diagnostic readings to the web service
in the form of a report which consists of a time stamp, the device name, and a list of
values for each sensor requested by the user.

Sensors Controller

The sensors controller allows access to a list of sensors and the view varies based on
the client attempting access. A device will see the list of sensors requested by its user, a
user will see the list of sensors that have been reported by their device, and
unauthenticated clients will see a list of sensors supported by the system.

User Registrations Controller

This controller is overriding the Devise gem registration controller so that I can fine tune
the creation of new users for the system.

User Sessions Controller

Dan Downey - x14728599 - Vehilytics - Technical Report

77

Handles authenticating a user login by providing a unique authentication token when a
login request is valid, a means of resetting the token when logging out, and a method for
validating a token.

Testing

All of the tests for the web service can be located in ./spec. There are 2 types of tests
and a number of helpers within this directory. The folder factories contains factory
methods for creating models to populate the test database as the tests run. The models
directory contains tests for each of my ActiveRecord models, and tests them on their
relationships, and validators. The requests directory contains the bulk of the tests in the
form of request specifications which test the functionality of the endpoints.

All of the tests can be run using the command bundle exec rspec.

Android Application

The Android application is the entry point for users to manage their device, preferences,
reminders, and view vehicle diagnostics. All the information displayed in the application
is pulled directly from the web service so there is no need to hard code anything and
new data can be pushed to the device by updating the web service. There are a lot of
classes in this project so I will breakdown some of the more interesting ones.

Vehilytics.kt

This is a singleton object that holds onto the user credentials and preferences while the
application is open, and is responsible for adding or removing them from storage.

/storage/Storage.kt

This class handles reading/writing to and from SharedPreferences so I can persist some
small amounts of data on the device. Currently the only data that gets stored is user
authentication token so that the login screen can be skipped.

/activities/SplashActivity.kt

Splash screens are usually just a way for a developer to waste a few seconds of time for
no good reason or to get extra marks, but I used it instead momentarily distract the user

Dan Downey - x14728599 - Vehilytics - Technical Report

78

while I check local storage and validate any stored tokens to possibly skip the login
screen.

/adapters

This directory contains a number of custom adapters for RecylcerViews that allow me to
customise the contents of each list item to my liking so that I can nest TextViews, a
Checkbox, or some ImageViews.

/helpers/callbacks/VehilyticsCallback.kt

This is a special callback object for handling responses for any web requests I make. It
implements a nice feature where if any of the web requests return 401 to signify that the
user was unauthorised, it wipes the local storage and forces the user to login again.

/firebase

My web service handles authentication and data persistence so I didn’t have much use
for Firebase but it did allow me to implement push notifications so that when a potential
problem is detected with a sensor I can notify the user immediately.

/services/ServiceManager.kt

I used a library called Retrofit to expose the API endpoints as Kotlin interfaces. I created
the ServiceManager singleton object to manage the retrofit instance and act as the
single point of entry to all the available services.

Testing

The tests for this project can be run by right clicking on /app/src/test/java in the project
pane in Android Studio and selecting Run 'tests in 'java''.

Version Control

Dan Downey - x14728599 - Vehilytics - Technical Report

79

I have made each of the systems available publicly via Bitbucket in case there is any
issue with the uploaded code.

I will be continuing to work on the code leading up to the showcase so I will provide a
link to the last commit before this upload

Python code available at:
https://bitbucket.org/danthedrummer/vehilytics_reporter/src/cabb15d572c0eb1f33b834ba0a1e561
f61de83d0/

Web service code available at:
https://bitbucket.org/danthedrummer/vehilytics_api/src/61451c0ae20e2a2380e936d5273a119d7c
1e6717/

Android application code available at:
https://bitbucket.org/danthedrummer/vehilytics_android/src/f14469eddb2a809331921f03fe860e60
4493cd01/

https://bitbucket.org/danthedrummer/vehilytics_reporter/src/cabb15d572c0eb1f33b834ba0a1e561f61de83d0/
https://bitbucket.org/danthedrummer/vehilytics_reporter/src/cabb15d572c0eb1f33b834ba0a1e561f61de83d0/
https://bitbucket.org/danthedrummer/vehilytics_api/src/61451c0ae20e2a2380e936d5273a119d7c1e6717/
https://bitbucket.org/danthedrummer/vehilytics_api/src/61451c0ae20e2a2380e936d5273a119d7c1e6717/
https://bitbucket.org/danthedrummer/vehilytics_android/src/f14469eddb2a809331921f03fe860e604493cd01/
https://bitbucket.org/danthedrummer/vehilytics_android/src/f14469eddb2a809331921f03fe860e604493cd01/

