
1

Technical Report

Title: Web Warden

Student: Sean Brady

Number: x14715859

Email: x14715859@student.ncirl.ie

BSc (Hons) in Computing

Cyber Security

13 May 2018

2

Table of Contents
1 Introduction .. 3

1.1 Purpose .. 3

1.2 Project Scope .. 3

2 User Requirements Definition .. 3

3 Functional Requirements ... 4

3.1 User Class – Home network admin .. 4

3.2 User Class – Proxy ... 6

3.3 User Class – Home network user ... 6

4 Use cases ... 7

5 Abuse cases ... 21

6 Non-Functional Requirements .. 22

7 GUI .. 24

8 System Architecture .. 31

9 Interface Requirements ... 32

10 Implementation ... 32

10.1 Proxy .. 32

10.2 Main Menu .. 35

10.3 MyService & SiteControl .. 37

10.4 WebsiteAccess ... 39

10.5 Security ... 41

10.5.1 AES encryption and decryption .. 41

10.5.2 Hashes and Salts .. 41

10.5.3 Access Control .. 42

10.5.4 Prepared Statements ... 43

10.5.5 Weak Passwords ... 43

11 Testing .. 44

11.1 Stress Test .. 44

11.2 Static Analysis ... 47

11. 3 System Testing ... 47

12 Conclusion .. 48

13 References ... 49

14 Appendix ... 50

14.1 Monthly Journals .. 50

3

1 Introduction
1.1 Purpose
The purpose of this Technical document is to describe and depict how the WebWarden software is

expected to work. The main consumers the software will be aimed at are parents with children aged

between 4-15 years, whose children will have access to multiple web browsing devices including

the home network.

1.2 Project Scope
The scope of the project is to create a secure web filtering software for home network use that offers

real-time web access control. An AWS database server will be used to store all the information. A

Raspberry Pi 3 B will function as the proxy and contain the java code that will employ the web filtering

techniques. To configure and control the proxy, a companion app developed on Android, will be

created.

2 User Requirements Definition
To gather information on user requirements for this project, I released an anonymous survey through

various social media sites. The survey contained 9 multiple choice questions which all centred

around web content filters. I received a total of 28 responses. These highlighted the aspects of the

project that people valued and disliked. As you can see from Figure 1, I noted the opinion of the

survey takers regarding the real-time control of my web filtering software. The verdict, overall, was

extremely positive with 96% saying it was a valid feature. Figure 2 shows that 85% value the idea

of being able to monitor all web browsing devices. Finally, 93% thought the companion app was a

useful feature. These results helped validate the usefulness of the niche features my web filtering

software offered.

Figure 1

4

Figure 2

3 Functional Requirements
This part of the document specifies all the functional requirements in ranked order for the

WebWarden software.

3.1 User Class – Home network admin
ID – FR1

Title: Pairs with Raspberry Pi proxy.

Description: Admin user can pair the WebWarden app with the proxy.

ID – FR2

Title: Web access control in real-time.

Description: Admin user using the WebWarden app can block or allow access to unknown websites
in real-time.

ID – FR3

Title: Create account.

Description: The admin user can create an account for the WebWarden app.

ID – FR4

Title: Sign in.

Description: The admin user can log into their WebWarden account.

5

ID – FR5

Title: Sign-out

Description: The admin user can sign-out of their WebWarden account.

ID – FR6

Title: Generate access control password.

Description: Using the WebWarden app, the admin user can generate their unique access control
password.

ID – FR7

Title: Database communication

Description: The WebWarden app can connect and communicate with the database correctly.

ID – FR8

Title: Proxy password.

Description: The admin can set a secure pairing password for the proxy.

ID – FR9

Title: Configure pre-banned websites.

Description: The admin can create, edit and delete the pre-banned site list using the WebWarden
app.

ID – FR10

Title: Edit account.

Description: The admin user can edit their WebWarden account within the app.

6

3.2 User Class – Proxy
ID – FR11

Title: Block websites.

Description: The proxy will block banned sites from the pre-banned site list from being accessed
and if the content score reaches the maximum limit.

3.3 User Class – Home network user
ID – FR12

Title: Connect to proxy

Description: The user can easily connect to the proxy.

7

4 Use cases

Figure 3

Use case: Web access control in real-time

Brief description: This use case describes how the admin of the home network can block or allow
access to a website in real-time using the WebWarden app.

Actors: Home network administrator

Pre-conditions:

• The admin user is logged into their WebWarden account.

• The home network user is connected to the proxy.

• The admin user’s WebWarden app is paired with the proxy.

• The proxy is connected to the home router.

• Both the user and admin have a working internet connection.

Basic Flow:

8

1. The use case begins when the home network user clicks on a URL link.
2. The proxy verifies if the URL is banned. [E1]
3. The proxy scans content of webpage.
4. The proxy scores content of page.
5. The proxy sends information and notification to WebWarden app.
6. The admin user clicks on the notification.
7. The system displays the site name.
8. The system prompts the admin user to block or grant access to the site.
9. The admin user selects the allow button. [A1]
10. The system prompts the user to enter in their access control password.
11. The admin user enters in their access control password.
12. The system validates the password. [A2], [E4]
13. The system returns the result back to the proxy.
14. The proxy allows the website to load.
15. The use case ends successfully.

Alternate Flow:

A1. Selects Block

If in step 9, the user selects the block button then:

1. The system returns the result back to the proxy.
2. The proxy blocks the website from loading.
3. The proxy displays “site blocked” message to home network user.
4. The use case ends successfully.

A2: Incorrect access control password

If at basic flow step 12, the admin user enters in the password incorrectly then:

1. The system displays the message “Incorrect password”.
2. The use case continues from basic flow step 11.

Exceptional Flow:

E1. Site Banned

If in step 2, the site is already banned then:

1. The proxy will block access to the site.
2. The use case ends unsuccessfully.

E2. App Crash

If at any stage during the use case the app crashes, then:

1. The use case ends with a failure condition.

E3. App shutdown

If at any stage during the use case the admin user shutdowns the app then:

1. The use case ends unsuccessfully.

E4. Incorrect password limit

If at basic flow step 12, the admin user enters the password incorrectly for 5 times then:

1. The system displays message “Password attempts exceeded, site will be blocked”.
2. The system returns the result back to the proxy.
3. The proxy blocks the website from loading.

9

4. The use case ends with a failure condition.

E5. Proxy shutdown

If at any stage before the use case is complete, the proxy loses power then:

1. The system displays the message “Connection to proxy lost”.
2. The use case ends with a failure condition.

Post Conditions

Successful Completion:

The admin user has successfully blocked or allowed access to a website.

Failure Condition:

The error logs are updated accordingly.

Use case: Sign In

Brief description: The admin user is signing into their WebWarden app account.

Actors: Home network administrator

Pre-conditions:

• The admin user has a working internet connection.

• The admin user’s device is connected to proxy.

• The admin user’s WebWarden app is paired with the proxy.

Basic Flow:

1. The use case begins when the admin user launches the WebWarden App.
2. The system prompts the admin user to sign up or sign in.
3. The admin user selects sign in.
4. The system prompts the admin user to enter in their username and password.
5. The admin user enters in their username.
6. The admin user enters in their password.
7. The admin user selects the sign in button.
8. The system connects to the database.
9. The system verifies username and password. [A1]
10. The system signs the user into their account.
11. The system presents the main app screen.
12. The use case ends successfully.

Alternate Flow:

A1. Incorrect details.

If the admin user entered in the incorrect username or password, then:

1. System displays “incorrect password or username” message.
2. The use case continues from basic flow step 4.

Exceptional Flow:

E1. App Crash

If at any stage during the use case the app crashes, then:

1. The use case ends with a failure condition.

10

E2. App shutdown

If at any stage during the use case the admin user shutdowns the app then:

1. The use case ends unsuccessfully.

Post Conditions

Successful Completion:

The admin user has successfully signed into their WebWarden account.

Failure Condition:

The error logs are updated accordingly.

Use case: Generate access control password

Brief description: The admin user generates their unique access control password.

Actors: Home network administrator

Pre-conditions:

• The admin user is signed into their account.

• The admin user has a working internet connection.

• The admin user’s device is connected to the home router.

• The admin user’s WebWarden app is paired with the proxy.

Basic Flow:

1. This use case begins when the admin user is at the main screen of the WebWarden app.
2. The admin user clicks the “access control” button.
3. The system navigates to the access control screen.
4. The admin user clicks “generate access control password”. [A1]
5. The system generates a new access control password for the admin user.
6. The system connects to the database.
7. The system updates the database.
8. The use case ends successfully.

Alternate Flow:

A1: Overwrite access control password

If at step 4, the admin user already has an access control password then:

1. The system displays message “Overwrite access control password?”
2. The admin user selects yes button prompt.
3. The system prompts the admin user to enter in their old access control password and their

sign in password.
4. The admin user enters in their old access control password.
5. The admin user enters in their sign in password.
6. The use case continues at basic flow step 5.

Exceptional Flow:

11

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. Database connection lose

If at any stage during basic flow steps 6-7 the app loses connection to the database, then:

1. The system displays message “Error occurred connecting to database”.
2. The use case ends with a failure condition.

E3. App shutdown

If at any stage during the use case the admin user shutdowns the app then:

1. The use case ends unsuccessfully.

Post Conditions

Successful Completion:

The admin user has successfully created a new access control password.

Failure Condition:

The error logs are updated accordingly.

Use case: Proxy password

Brief description: The admin user using the WebWarden app sets the pairing password for the
proxy.

Actors: Home Network Administrator

Pre-conditions:

• The admin user is signed into their account.

• The admin user has a working internet connection.

• The admin user’s device is connected to home network.

• The admin user’s WebWarden app is paired with the proxy.

Basic Flow:

1. This use case begins when the admin user is at the main screen of the WebWarden app.
2. The admin user selects the “access control” button.
3. The system navigates to the access control screen.
4. The admin user selects the “Proxy configuration” button.
5. The system navigates to the Proxy configuration screen.
6. The admin selects the “create proxy password” button.
7. The user enters in a new proxy password.
8. The system prompts the user to enter in their access control password.
9. The user enters in their access control password.
10. The system validates password.
11. The system connects to database.
12. The system edits database and saves new proxy password.
13. The use case ends successfully.

12

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. Database connection loss

If at any stage during basic flow steps 11-12 the app loses connection to the database, then:

1. The system displays message “Error occurred connecting to database”
2. The use case ends with a failure condition.

E3. App shutdown

If at any stage during the use case the admin user shutdowns the app, then:

1. The use case ends unsuccessfully.

Post Conditions

Successful Completion:

The admin user successfully created a new pairing password for the proxy.

Failure Condition:

The error logs are updated accordingly.

Use case: Configure pre-banned websites

Brief description: This use case describes how the admin user, using the WebWarden app, can
configure pre-blocked websites for the proxy.

Actors: Home Network Administrator

Pre-conditions:

• The admin user is signed into their account.

• The admin user has a working internet connection.

• The admin user’s device is connected to home network.

• The admin user’s WebWarden app is paired with the proxy.

Basic Flow:

1. This use case begins when the admin user is at the main screen of the WebWarden app.
2. The admin user selects the “Web control” button.
3. The system navigates to the Web control screen.
4. The admin user selects the “Block Website” button. [A1]
5. The system navigates to the Block Website screen.
6. The admin user enters in a website URL in the blank field provided.
7. The admin user selects the “add” button.
8. The system connects to database.
9. The system edits the database.
10. The use case ends successfully.

Alternate Flow:

A1: Remove Banned Website

If at basic flow step 4, the admin user selects “Remove banned site” then:

13

1. The system prompts the admin user for their access control password.
2. The admin user enters in their access control password.
3. The system verifies password.
4. The system displays the banned site list.
5. The admin user selects the site to remove.
6. The use case continues at basic flow step 8.

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. Database connection lose

If at any stage during basic flow steps 8-9 the app loses connection to the database, then:

1. The system displays message “Error occurred connecting to database”.
2. The use case ends with a failure condition.

E3. App shutdown

If at any stage during the use case the admin user shutdowns the app then:

1. The use case ends unsuccessfully.

Post Conditions

Successful Completion:

The admin user successfully configured the pre-banned site list.

Failure Condition:

The error logs are updated accordingly

14

Use case: Block websites

Brief description: The proxy will block access to websites.

Actors: Proxy

Pre-conditions:

• Home network user connected to proxy.

• The proxy is connected to the home router.

• Home network user connected to the internet.

Basic Flow:

1. This use case begins when a home network user clicks on a URL link.
2. The proxy retains the website name and URL.
3. The proxy connects to the database.
4. The proxy searches banned website database for URL.
5. The proxy finds a match. [A1]
6. The proxy blocks the site from loading.
7. The proxy displays message “Website is blocked” to the home network user.
8. The use case ends successfully.

Alternate Flow:

A1: No match

If at basic flow step 5, the proxy does not find a match then:

1. The proxy will scan the content of the website.
2. The proxy will score inappropriate content on the site.
3. The proxy ends content search when maximum website score is reached. [E1]
4. The use case continues at basic flow step 6.

Exceptional Flow:

E1: Score to low

If at A1 step 3, the score is too low for the proxy to block automatically then:

1. The proxy will send notification to WebWarden app.
2. The use case ends unsuccessfully.

E2. Database connection lose

If at any stage during basic flow steps 3-4 the proxy loses connection to the database, then:

1. The use case ends with a failure condition.

Post Conditions

Successful Completion:

The app successfully blocks access to an inappropriate website.

Failure Condition:

The error logs are updated accordingly.

15

Use case: Create Account

Brief description: The user creates an account on the WebWarden app.

Actors: Home network administrator

Pre-conditions:

• The admin user has a working internet connection.

• The admin user’s device is connected to proxy.

• The admin user’s WebWarden app is paired with the proxy.

Basic Flow:

1. The use case begins when the admin user clicks into the WebWarden App.
2. The system prompts the admin user to sign up or sign in.
3. The admin user selects the sign-up button.
4. The system navigates to the sign-up screen.
5. The admin user enters in a unique username in the field provided.
6. The admin user enters in a unique sign-in password in the field provided.
7. The system validates password. [A1]
8. The system connects to the database.
9. The system validates the username.
10. The system adds the new admin account to the database.
11. The use case ends successfully.

Alternate Flow:

A1: Invalid password

If at basic flow step 7, the system verifies that the admin user has entered in an invalid password
then:

1. The system displays the message “Invalid password, password must contain more than 8
characters and at least one numeric value.”

2. The use case continues at basic flow 6.

A2: Insecure password

If at basic flow step 7, the system verifies that the admin use has entered their username as the
password then:

1. The displays the message “Insecure password, username may not be used as valid
password”.

2. The use case continues at basic flow 6.

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. App shutdown

If at any stage during the use case the admin user shutdowns the app, then:

1. The use case ends unsuccessfully.

E2. Database connection lose

16

If at any stage during basic flow steps 8-10 the app loses connection to the database, then:

1. The system displays message “Error occurred connecting to database”.
2. The use case ends with a failure condition.

Post Conditions

Successful Completion:

The admin user has successfully created a new account for the WebWarden app.

Failure Condition:

The error logs are updated accordingly.

Use case: Pairs with Raspberry Pi proxy.

Brief description: The admin user pairs their WebWarden app with the proxy.

Actors: Home network administrator

Pre-conditions:

• The admin user has a working internet connection.

Basic Flow:

1. The use case begins when the admin user launches the WebWarden app for the first time.
2. The system displays the Pair device screen.
3. The admin user selects the “Pair App” button.
4. The system communicates with the database.
5. The system prompts the admin user to enter in the proxy password.
6. The admin user enters in the unique proxy password. [A1]
7. The system pairs with the proxy.
8. The system connects to the database.
9. The system adds itself to the paired devices table.
10. The use case ends successfully.

Alternate Flow:

A1: Default password

If at basic flow step 6, the unique proxy password has not been configured then:

1. The admin user enters in the default pairing password set for the proxy.
2. The use case continues at basic flow step 7.

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. App shutdown

If at any stage during the use case the admin user shutdowns the app, then:

1. The use case ends unsuccessfully.

E2. Database connection lose

17

If at any stage during basic flow steps 8-9 the app loses connection to the database, then:

1. The system displays message “Error occurred connecting to database”.
2. The use case ends with a failure condition.

E3. Proxy shutdown

If at any stage before the use case is complete, the proxy loses power then:

1. The system displays the message “Connection to proxy lost”
2. The use case ends with a failure condition.

Post Conditions

Successful Completion:

The admin user successfully paired their WebWarden app with the proxy.

Failure Condition:

The error logs are updated accordingly.

Use case: Sign-out

Brief description: The admin user signs out of their WebWarden account.

Actors: Home network administrator

Pre-conditions:

• The admin user has a working internet connection.

• The admin user’s WebWarden app is paired with the home network.

• The admin user is already logged in.

Basic Flow:

1. The use case begins when the admin user is at main menu screen.
2. The user selects the “Sign Out” button.
3. The system displays the message “Are you sure you want to sign-out?”
4. The admin user selects the “Yes” button prompt.
5. The system signs the admin user out of their account.
6. The use case ends successfully.

Alternate Flow:

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. App shutdown

If at any stage during the use case the admin user shutdowns the app, then:

1. The use case ends unsuccessfully.

Post Conditions

Successful Completion:

18

The admin user has successfully signed out of their WebWarden account.

Failure Condition:

The error logs are updated accordingly.

Use case: Connect to database

Brief description: The WebWarden app and the proxy. can both create a connection with the
database.

Actors: Home network administrator, proxy.

Pre-conditions:

• The admin user has a working internet connection.

• The proxy. is connected to the home router.

Basic Flow:

1. The use case begins when the admin user selects a function of the WebWarden app that
requires a connection to the database. [A1]

2. The system gets the hostname of the database.
3. The system gets the port number of the database.
4. The system gets its username for the database.
5. The system gets its password for the database.
6. The system starts the connection to the database. [E1], [E4]
7. The system connects to the database.
8. The use case ends successfully.

Alternate Flow:

A1: Proxy. connection

If the device trying to connect to the database is the proxy, then:

1. The use case begins when the proxy is required to connect to the database.
2. The proxy gets the hostname of the database.
3. The proxy gets the port number of the database.
4. The proxy gets its username for the database.
5. The proxy gets its password for the database.
6. The proxy starts the connection to the database. [E2], [E4]
7. The proxy connects to the database.
8. The use case ends successfully

Exceptional Flow:

E1. App Crash

If at any stage during the basic flow the app crashes, then:

1. The use case ends with a failure condition.

E2. App shutdown

If at any stage during the basic flow the app is shutdown, then:

1. The use case ends unsuccessfully.

E2. Incorrect username

19

If at basic flow step 6 or A1 step 6, the username is incorrect:

1. The database will not allow the proxy or WebWarden app to connect.
2. The use case ends with a failure condition.

E.3 Incorrect password

If at basic flow step 6 or A1 step 6, the password is incorrect:

1. The database will not allow the proxy or WebWarden app to connect.
2. The use case ends with a failure condition.

Post Conditions

Successful Completion:

The WebWarden app or the proxy successfully connected to the database.

Failure Condition:

The error logs are updated accordingly.

The connection to the database was denied.

Use case: Edit profile

Brief description: The admin user using the WebWarden app edits their account.

Actors: Home network administrator

Pre-conditions:

• The admin user has a working internet connection.

• The admin user’s WebWarden app is paired with the home network.

• The admin is logged into their WebWarden account.

Basic Flow:

1. The use case begins when the admin user clicks on any profile button.
2. The system navigates to the profile screen.
3. The admin user clicks the edit username button. [A1]
4. The system displays an empty text field.
5. The admin user enters in their new username into the text field.
6. The admin user selects the “Edit” button prompt.
7. The system prompts the admin user for their sign in password.
8. The admin user enters in their sign in password.
9. The system validates the password.
10. The system connects to the database.
11. The system validates the new username. [A2]
12. The system edits the username on the database.
13. The system logs the admin user out.
14. The use ends successfully.

Alternate Flow:

A1: Edit password

If at basic flow step 3, the admin user selects the edit password button then:

1. The system prompts the admin user to enter in their current login password and the new
password.

20

2. The admin user enters in their current sign in password and their new password.
3. The system validates both passwords.
4. The system connects to the database.
5. The system edits the password on the database.
6. The system logs the admin user out.
7. The use case ends successfully.

A2: Username exists

If at basic flow step 11, the username already exists then:

1. The system displays message “Username already exists”.
2. The use case continues at basic flow step 5.

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. App shutdown

If at any stage during the use case the admin user shutdowns the app, then:

1. The use case ends unsuccessfully.

E2. Database connection lose

If at any stage during basic flow steps 10-12 or the A1 steps 4-5 the app loses connection to the
database, then:

1. The system displays message “Error occurred connecting to database”.
2. The use case ends with a failure condition.

Post Conditions

Successful Completion:

The admin user successfully edits their account credentials.

Failure Condition:

The error logs are updated accordingly.

21

5 Abuse cases

Figure 4

Abuse Case: Unauthorised use of admin device

Brief description: A malicious user takes the home network administrator’s personal device and
uses the WebWarden app to affect the system in a harmful way.

Actors: Malicious user, proxy.

Pre-conditions:

• Malicious user has obtained an admin device.

• Admin device connected to internet

Basic Flow:

1. This use case begins when the malicious user starts the WebWarden app.
2. The malicious user presses the “Web Control” button. [A1]
3. The system navigates to the Web Control screen.
4. The malicious user selects “Remove banned site” button.
5. The system displays the banned site list.
6. The malicious user selects the site to remove.
7. The system connects to database.
8. The system edits database.
9. The abuse case ends successfully.

Alternate Flow:

A1: Website Access notification

If at basic flow step 2, the malicious user gets a proxy. notification then:

1. The malicious user clicks the notification.
2. The system displays the site name and content score.
3. The system prompts the malicious user to block or grant access to the site.
4. The malicious user selects the grant button.
5. The system returns the result back to the proxy...
6. The proxy. allows the website to load.

22

7. The abuse case ends successfully.

Exceptional Flow:

E1. App Crash

If at any stage during the use the app crashes, then:

1. The use case ends with a failure condition.

E2. Database connection lose

If at any stage during basic flow the app loses connection to the database, then:

1. The system displays message “Error occurred connecting to database”.
2. The abuse case ends with a failure condition.

E3. App shutdown

If at any stage during the abuse case the malicious user shutdowns the app then:

1. The abuse case ends unsuccessfully.

Post Conditions:

 Successful Completion:

The malicious user gained access to the system using the administrator’s personal device
and harmfully misused the system in the following way:

Basic Flow:

• The malicious user successfully removed a banned site from pre-banned list.
Home network users could potentially have access to the website.

A1:

• The malicious user successfully whitelisted a device. This device will now not
be monitored.

A2:

• The malicious user successfully allowed access to a website using a real-time
notification. A home network user has just gained access to a potentially
inappropriate site.

Failure Condition:

The error logs are updated accordingly.

6 Non-Functional Requirements

6.1 Performance and Response Time:

A Raspberry Pi 3 B will be configured as web-filtering proxy. for the home network. Although the
WIFI adapter on the Raspberry Pi is equipped with a 2.4 GHz WIFI 802.11n wireless adapter which
can get download speeds of 150Mbps, the 10/100 ethernet port will be plugged into the home router
thus, capping the maximum download speed a user can theoretically get to 100 Mbps. The

23

maximum download speed is also subject to the user’s internet provider. With the addition of the
web filtering software and the companion app I am expecting the proxy. to be slower at serving the
webpages to the user. The reason being is that my software will be doing work in the background
to see if the site needs to be blocked. If the proxy needs to contact the WebWarden app this will add
further latency to website loading. The user’s download speed will also be affected by the number
of devices connected to the proxy at any given time. Although the software will ultimately hinder
some areas of performance, this is a quantified payoff for the added security and protection my
software will offer. These performance metrics may go up or down as I begin testing my software.

6.2 Availability:

The proxy will be the only gateway onto the home network for non-admin users. This means it must
be constantly available even if the administrators of the home network are not present. The web
filtering software on the proxy will constantly and automatically run whenever the proxy is powered
on or left running. This ensures that non-admin users will always be monitored and protected while
web browsing on their devices. The AWS database will be required to run continuously as the
WebWarden app and the proxy depend on if for important functionality.

6.3 Operating System Requirements:

The current implementation for the WebWarden app is designed for the Android OS. Unfortunately,
any users who do not own an Android device will not be able to avail of the WebWarden software.
The Raspberry Pi will be running Raspbian OS which is built on the Linux kernel.

6.4 Security:

Because this project is deeply rooted in security it has become my number one priority. My project
intends to transfer sensitive information over local home networks. To ensure this information is kept
secure, all sensitive information passed across the local network will be encrypted. The current
encryption I am considering is AES. The reason for this is that AES is known to have better
performance and can encrypt larger file sizes than asymmetric encryption methods. I plan to
implement access control measures for the AWS database using SSH protocol 2 authentication. To
ensure that a malicious user won’t just download a WebWarden app and change filtering settings
for the proxy, the proxy will be configured with a pairing password set up by the home network
admins. This password will have to be entered each time a new WebWarden app tries to pair with
the proxy application. The admin user will have a unique access control password. It will be used
for altering filtering settings of the proxy and allowing unknown sites to be accessed. The access
control password is mainly there to protect from a malicious user taking an admin’s personal device
and changing the proxy filtering settings. The proxy will have WPA2 security with a 25-character
long password and an extremely unique network name.

Interoperability:

The interoperability of my software was extremely important. I had to ensure each system
component would be able to communicate. The java.sql interface can be used by both my Android
and java application. It allows both applications to read and alter the database. The communication
between both my Android device and the java application present on the proxy is achieved using
the java.net interface, specifically the Socket class. The proxy using the java.net interface will be
able to send notifications and then receive the response from the WebWarden app.

24

7 GUI
The design for WebWarden will follow the current design trends for Android apps being used today.
I aim to make the user interface extremely seamless and aesthetically pleasing for the user. This
will ensure that the app is not awkward or frustrating to navigate through.

Figure 5. Main Menu

25

Figure 6.Sign In

26

Figure 7.Website Access

27

Figure 8.Profile Screen

28

Figure 9.WebWarden Alert

29

Figure 10. Access Control

30

Figure 11.Create Account

31

8 System Architecture

Figure 12

The three main components of the system architecture are the MySQL database, the WebWarden
app and the proxy. Both the proxy and WebWarden app can communicate with the database. Only
the WebWarden app has the privilege to read, write and delete to the database. The proxy will only
have the privilege to read the database. I designed the architecture this way to help enforce the
principle of least privilege. The database can send information back to both applications. The proxy
java application and the WebWarden app will both employ the java RMI interface to communicate.
This will allow the proxy to send the real-time notifications to the WebWarden app and for the
WebWarden app to send back its response.

32

9 Interface Requirements
To allow both the Android app and the Java application on the proxy to communicate with the
MySQL database I will be implementing the JDBC API used in Java. This will allow for the reading
and writing to the MySQL databases. Both the Android app and the Java application on the proxy
will need to communicate. To facilitate this communication, I will be employing the Java RMI. The
Java Socket API allows communication between a server and clients.

10 Implementation
10.1 Proxy
To code the proxy in Java I had to make use of the Java Sockets API. The main method of the
ProxyMain application sets up the ServerSocket on port 8080. I then created a ProxyInfo class that
contained static variables. These variables would hold the values for the word list, blocked sites list
and the warden IP address. Before I create the ServerSocket I connect to the database and retrieve
the values for the variables in the ProxyInfo class. Details on the code used to connect to the
database will be provided later in the technical report. Once the static variables are obtained, the
ProxyMain class will kick off the UpdateThread. The UpdateThread is used to ensure that the proxy
is getting the most up to date blocked site list. If a WebWarden app user updates the blocked site
list, the UpdateThread will be notified and added or removed to the new site to the list. The
UpdateThread will then alter the static variable that contains the blocked site. The updated variable
will then be passed to any incoming web requests. After the ProxyMain has completed this initial
setup it will create a while loop and whenever a client connects it will start a new ProxyThread. I
used a “while true” loop to ensure that the proxy would run indefinitely and would stop incoming
requests from being blocked.

Figure 13. ProxyMain class creating new request thread.

The core web filtering code is stored in the ProxyThread class. The class is implemented to filter

both HTTPS and HTTP requests. Each request must be handled differently. For HTTPS requests,

my application will forward data between the server and client. To do this I created a pattern variable.

This pattern will match a “CONNECT” request. The reason for matching a CONNECT request is

because any browser set up with a proxy, when they try access a HTTPS website, will begin the

request with a CONNECT. After this I parse out the website URL from the CONNECT request and

open a new Socket to that website. I then run two threads which use the forwardData () method. By

creating two threads I can have the client passing data to the server and the server passing data

back to the client all asynchronously.

If the request is a standard HTTP request I first parse the website out. I then use the Java

HttpURLConnection connect to the website and forward all the data back to the original client socket.

33

Figure 14. ForwardData method used for HTTPS requests

Figure 15. Http code for the proxy

34

Before any sites are loaded to the user I execute my web filtering code. To verify that the site is not

on the banned list I iterate over the blocked site arraylist and do a check to see if it is equal to any

of the banned sites. If it is, I return a “403 Forbidden” response and close the thread. This will stop

the site from loading on the client side. Once the request clears the blocked site verification, I then

start my content search. To help with the website scraping I implemented the Jsoup library. By using

Jsoup I get all the text from the website declared in the client request. I then parse all this text into

a string variable. Once this is completed, I use an advanced FOR loop to iterate over the bad words

arraylist. I created a pattern and matcher variable and then tried to find any matches. When a word

is found it increments an int value which I created earlier. After the word search is done, I do a check

to see if that incremented value is over 20, if it is, the site will be automatically banned. Another

alternative that can happen is that if the site contains more than 4 bad words but less than 20, a

notification will be sent to the current warden of companion app. The notification is sent using a

Socket and specifies the site that its trying to access. The Socket will then wait for a response from

the ServerSocket. The Socket will then either block or allow the website to load based on the

response it receives.

Figure 16. Code used to block sites that match a listed bad site.

35

Figure 17. Code used to search a website for bad or offensive words

10.2 Main Menu
When the main menu first starts in the android application it will launch three methods deviceSync,

checkWardenStatus and getAccessControl each running a new thread. Each thread must connect

to the database and to ensure that only one thread is connecting to the database at one time, I

incorporated a synchronised statement. This synchronised statement is locked by a static object

called lock.2. Once each method has completed, they will call the notify () method to release the

lock and allow the other threads to continue. The reason for running these threads is that android

does not allow a network operation to run on its main thread (UI thread) so I must run network

functions on background threads.

The first method deviceSync () will check if the user is synced with the proxy. The thread will run

and connect to the database and get value of the users sync status. If the user is not synced with

the proxy, an alert dialog will be displayed. If the user enters in the correct password the thread will

update its status in the database and exit. On the other hand, if an incorrect password is entered

the main menu will become locked and a re-sync button will appear. All threads will be told not to

run and will not execute their code. This stops the service from being started and any user

preferences being saved. To unlock the main menu the user will have to click on the re-sync button

and enter in the correct password.

36

Figure 18. Start of deviceSync method.

The next method checkWardenStatus will verify if the user is the current WebWarden. The method

will start off by querying the database to check the user’s current warden status. If the user is not

the warden an alert dialog will be displayed asking if they would like to become the WebWarden.

Becoming the WebWarden means that all website access control notifications will be delivered to

their phone only. If the user accepts the request, the method will update their value in the database.

Figure 19.Start of checkWardenStatus method

37

The final method getAccessControl will retrieve the user’s encoded access control password and

the encoded salt used for the password. The reason I store these values in the user preference is

to help with optimization. The access control password is used a lot throughout this application and

by storing the hashed password and its salt decreases the number of database connection needed.

The password is never stored as plain text. Like the other methods, this one connects to the

database and retrieves the access control password and salt for the current user. At the end of the

method there is a check to see if the notification service is running. If the service is on it will be

stopped and restarted. Once this method has finished that’s the complete execution of the main

menu.

Figure 20. getAccessControl method

10.3 MyService & SiteControl
The MyService class provides the functionality for the warden user to receive real time notifications.

The service contains a ServerSocket listening on port 5000. When it receives a connection from the

proxy server it reads the input stream to obtain the name of the website trying to be accessed. After

getting the name of the website it starts a new SiteControl activity. This activity is the page that will

appear to the application user when an unknown website is trying to be accessed. Once the

SiteControl activity has started the service will only wait 25 seconds before replying to the proxy

socket with automatic block response. This feature is built in to ensure that if a warden misses the

notification, a deadlock won’t occur and there will be no authorised access of potentially harmful

websites. To receive the warden’s choice from the SiteControl activity, I created broadcast receiver

on the SiteControl buttons. When one of these buttons is selected in the timeframe the service will

be able to get this selection. This selection will be written to the output stream and sent to the proxy.

When a user terminates the app, the service will get restarted, but with a different service ID. When

38

the service ID is equal to one this means that the user is still in the app and the SiteControl activity

can be displayed directly to the user. If the service ID is not equal to one, there is a check that will

instead phone notifications to the user which will appear in their toolbar. The time that the notification

is sent is passed to the SiteControl and every time the application sends one, the notification ID is

incremented by one. By incrementing the ID, it means that every new notification sent will get its

own alert space in the user’s toolbar.

Figure 21 MyService code to display notification

The SiteControl activity will only be triggered by the service class. When the activity is opened, it

checks its current time versus the time that the notification was sent to the user. If more than thirty

seconds has elapsed between the two, then the activity will close and a “Notification Expired”

message will be displayed to the user. After this check the SiteControl will get the website that the

service sent to it. The website will then be displayed in the WebView that is located on the activity.

To display any website in a WebView you must create a new WebView Client and override the URL

loading. There is an allow and block button on the activity. When a user selects the allow button

they will be prompted to enter in their access control password. The user has one attempt to get the

password right. If its incorrect, a blocked response will be sent back to the service automatically.

39

Figure 22 Code used to verify if the notification is still valid

Figure 23. This code launches an alert dialog asking for the user’s access control password.

 10.4 WebsiteAccess
On the WebsiteAccess activity the user can add a website to the blocked list. To ensure that a user

adds a valid website, I see if the application can make a connection with that address. If the

connection is unsuccessful a message will be displayed to the user. When a valid address is entered

the application will take the address and remove either the https:// or http:// heading and then

connect to the database and add the website. After this a new Socket will be created and a message

will be sent to the proxy with the website value.

40

Figure 24. Code to verify valid website.

Figure 25. Socket sending new website.

41

10.5 Security

10.5.1 AES encryption and decryption

Both the proxy server and the android application must connect to a database at some point during

their execution. To protect the data base credentials, I stored them in a config.properties file. Prior

to saving the database password in the config file, I created an AES encryption program and passed

the plain text password through this application. The program implemented a 128-bit AES algorithm.

After the password was encrypted I placed it into the config file. To connect to the database both

applications would get the values from the config file and a decrypt method I created would be used

to decipher the encrypted database password. The code for this is depicted in Figure 23.

Figure 26. This method is used to obtain the encrypted database password

10.5.2 Hashes and Salts

After a user has created an account or altered a password within the application these passwords

must be stored in the database. All passwords stored in the database are hashed beforehand and

then both their encoded hash and encoded salt will be stored in the database. I used the Java

PBKDF2WithHmacSHA1 hash along with a key length of 256 and a 32-byte salt. All these features

are outlined and recommended by OWASP in their tutorial on how to hash in Java (Owasp.org,

nd). I could not use the Java PBKDF2WithHmacSHA512 hash as android does not have access to

it. The password salts were also used with the SecureRandom generator to make the salt much

harder to predict and crack.

When a user enters a password into any field, I would always ensure to keep that password stored

in a char array. When a password is stored as a String in java it is extremely insecure. Strings are

42

stored as plaintext and are also stored in the JVM string pool for easy reuse. Until the garage

collector comes along and destroys the String it will be visible and if a malicious user attacked the

system and got access to random parts of the applications memory all the passwords stored in

Strings could become compromised. After I am finished with the password I can reset the char

array to null and the password will be wiped from the memory. You cannot edit a String because

they are immutable variables. Figure 24 shows the code I used to create the salt and hash user

inputted data.

Figure 27 Hash and salt code

10.5.3 Access Control

I created separate database users for both the proxy server and android application. Each user

was granted different access rights to enforce the rule of least privilege. The proxy user for the

database was granted very limited access to the database and some privileges granted at the field

level to ensure maximum access control. The other database user had higher privileges, but were

all justified as they were functional for the application. No database user had the ability to drop any

tables or delete the database. I also never give out the root level access to the database at point in

the either applications. Figure 25 displays the MySQL queries I used to grant the user their

privileges.

Figure 28. Database user privileges

43

10.5.4 Prepared Statements

There are numerous sections throughout this application where the system retrieves user inputted

data and then queries the database based on the data. This opens a huge risk for the application

as you should never trust user inputted data. To counter the threat of an SQL injection attack, I

used java prepared statements. OWASP surmises that prepared statements are one of the best

defences against injection attacks (Wichers et al., 2018). Figure 26 illustrates an example of some

of the prepared statements used throughout the app.

Figure 29.Prepared Statement

10.5.5 Weak Passwords

OWASP states in their Authentication Cheat Sheet that when a user creates a password that

certain complexity rules should be enforced. These rules are that there should be at least one

digit, one upper case and one lower case letter within the password (Keary et al., 2017). To

enforce these rules, I created a method that would take a password created by a user and verify

that everyone one of these conditions was met. Eugene describes this as a valid method for

making sure weak passwords are not created (H. Spafford, 1991, p. 4). My method will also look

at the length of the user sign in password to verify that it is over nine characters long. Figure 27

shows how I coded the password check method.

44

Figure 30.passwordCheck method

11 Testing
11.1 Stress Test
Using a server tool called Webserver Stress Tool 8, I wanted to get details on how my proxy

server would work under high user traffic. My test had the same conditions apart from the number

of users I specified. Each test would run for 2 minutes and a user would click on a link every

second. The scope of the test was limited to only HTTP websites. By stress testing the proxy, it

gives me a rough indication of how many users at a time it can support. I did 5 tests - the number

of users would increase for each test. The highest number of users I tested was 100. The proxy

did not crash for any of the tests, but CPU usage started to spike for the 50 and 100 user limit

tests. While each stress test was running I continued to surf the web while connected to the proxy

and didn’t notice any delays in page response time. For the 100 users test, the page response

time did become slightly slower, but it was almost negligible. The WebWarden companion app

continued to receive requests for the 5 and 10 user tests, but for the other higher limit test the

WebWarden started missing some notifications. This is since WebWarden only uses one listening

thread to accept a notification. The results of the test are displayed in the graph below.

Figure 31.Stress test 5 users

45

Figure 32.Stress test 10 users.

Figure 33 Stress test 10 users

Figure 34.Stress test 20 users.

46

Figure 35. Stress test 50 users.

Figure 36. Stress test 100 users.

47

11.2 Static Analysis
To catch any code vulnerabilities which I might have missed, I used a static analysis tool called

VisualCodeGrepper. This tool will scan through both my android and proxy server applications and

display any errors. The tool produced a few false positives, but did manage to catch two java classes

that I had not set final in my android project. It also notified me that I was implementing the

java.Util.Random library, but upon verification I actually was transforming the Random variable into

a SecureRandom object later on in the class. The results of the scans are displayed below.

Figure 37. Util class not declared final.

Figure 38. Notification class nor declared final

 11. 3 System Testing
Throughout the production lifecycle of the app I would constantly test all the functionality on different

android systems. By doing this, it ensured that the app would work on most android APIs with less

bugs and errors occurring. This testing helped me solve a very important functionality. Android owns

Base64 library and all its methods are only available to android phones that are running on API

version 26 or higher. I use the Base64 libraries to decode and encode all user hashes. By testing

the hashing functions on a phone that was running API version 23, I noticed that an error occurred.

To solve this issue, I imported the Apache commons-codec jar that contains its own Base64

methods that can be implemented. When this jar was added I could then use the hashing function

with lower level android APIs.

48

12 Conclusion
My primary goal for this project was to allow a user to control their home network access in real

time. After all my planning and implementation, I can conclude that this goal was achieved. A

person using this app in conjunction with my proxy server will have an elevated control over what

sites people are browsing. The fluid and easy controls of the android application validate my

decision of choosing to make a phone app rather than a computer program for the real time

filtering. By also implementing the blocked site check and the word filtering, it ensures that a user

is not getting constantly bombarded with website requests. Developing on Android app was an

extremely new experience. It took me a while to grasp the fundamental way threads are handled in

android compared to a normal java development environment. By the end of the development I

feel I am thoroughly educated in android multi-threading.

 Another reason I undertook this project was to improve my limited network skills. The core of this

project was deeply rooted in network programming and it forced me to research and understand

the basic concepts behind it. After conducting intensive research I was able to piece together

working code and slowly started to get a grasp on how socket programming worked. This new-

found confidence in socket programming allowed me to implement features I thought were out of

scope or beyond my skill level.

One of the biggest aspects I take away from this project is the secure coding fundamentals and

principles I learned. I noticed myself becoming almost obsessed with trying to implement

everything securely. These hardened habits will be carried on to future projects. I am extremely

happy with the result of the project. For me this project represents an accumulation of everything I

have learned throughout my four years of college and I look forward, with much enthusiasm, to

creating similar projects soon.

49

13 References
Owasp.org. (n.d.). Hashing Java - OWASP. [online] Available at:

https://www.owasp.org/index.php/Hashing_Java [Accessed 6 Apr. 2018].

H. Spafford, E. (1991). Preventing Weak Password Choices. [online] West Lafayette: Purdue

University, pp.1-4. Available at:

https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1874&context=cstech [Accessed 25 Mar.

2018].

Keary, E., Timo, J., Goosen, M., Krawczyk, P., Neuhaus, S. and Aude Morales, M. (2017).

Authentication Cheat Sheet - OWASP. [online] Owasp.org. Available at:

https://www.owasp.org/index.php/Authentication_Cheat_Sheet [Accessed 3 Apr. 2018].

Wichers, D., Manico, J., Seil, M. and Mishra, D. (2018). SQL Injection Prevention Cheat Sheet -

OWASP. [online] Owasp.org. Available at:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet [Accessed 3 Apr. 2018].

Ahmad, T. (2018). Replacing spinner with drop down alert in android application. [online]
Androidtrainningcenter.blogspot.ie. Available at:
http://androidtrainningcenter.blogspot.ie/2012/07/how-to-create-custom-and-default-alert.html
[Accessed 6 May 2018].

Android Developers. (2018). Communicate with the UI thread | Android Developers. [online]
Available at: https://developer.android.com/training/multiple-threads/communicate-ui
[Accessed 11 Apr. 2018].

Android?, H. (2018). How do we use runOnUiThread in Android?. [online] Stack Overflow. Available
at: https://stackoverflow.com/questions/11140285/how-do-we-use-runonuithread-in-android
[Accessed 13 May 2018].

Javarevisited.blogspot.ie. (2018). How to create HTTP Server in Java - ServerSocket Example.
[online] Available at: https://javarevisited.blogspot.ie/2015/06/how-to-create-http-server-in-java-
serversocket-example.html [Accessed 8 Feb. 2018].

McMahon, K. (2018). Android Check if Service is Running. [online] Gist. Available at:
https://gist.github.com/kevinmcmahon/2988931 [Accessed 1 May 2018].

Melton, J. (2018). A Simple Multi-Threaded Java HTTP Proxy Server – John Melton's Weblog.
[online] Jtmelton.com. Available at: https://www.jtmelton.com/2007/11/27/a-simple-multi-
threaded-java-http-proxy-server/ [Accessed 3 Jan. 2018].

Stack Overflow. (2018). creating a Java Proxy Server that accepts HTTPS. [online] Available at:
https://stackoverflow.com/questions/9357585/creating-a-java-proxy-server-that-accepts-https
[Accessed 8 Apr. 2018].

White, J. (2018). Android Non-UI to UI Thread Communications (Part 1 of 5) - Intertech Blog. [online]
Intertech Blog. Available at: https://www.intertech.com/Blog/android-non-ui-to-ui-thread-
communications-part-1-of-5/ [Accessed 13 May 2018].]]

50

14 Appendix
14.1 Monthly Journals

Reflective Journal

Student name: Sean Brady x14715859

Programme: BSc in Computing

Month: September

My Achievements

This month I barely got an idea ready for the project proposal. I honestly was so stressed! The weekend before I was

just sitting in my room trying to come up with an idea that was somewhat decent. The hardest part is coming up with

a project that’s complex enough for fourth year, but not too complex that you won’t get it done in time. I came up

with the idea while lying on the floor outside my room. It was my “Eureka!!” moment. My idea was to create a web

filtering device that will send notifications to an app when a suspected dodgy website was being viewed. The person

in control of the app could then either block or allow the site to be viewed in real-time. I then relayed this idea to a

friend in my course to get their opinion on it. I was really relieved when they said they liked it. I now just had to get it

past the judges.

The Sunday before the presentation I quickly looked over the technologies I hoped to implement. After much

researching, I decided I would go for the raspberry 3 B. While waiting outside the judge’s door, it dawned on me that

perhaps I hadn’t prepared enough and had a little moment of panic. When I began my speech I could see the confusion

on the judge’s faces. This threw me off a little as I’m generally a confident public speaker. The confidence began to

fade and I started to spew word vomit everywhere. Luckily, they could somehow discern my project from the mumble

jumble mess that was my proposal. They passed me, but they had concerns. I left feeling pretty deflated and almost

afraid because now I had to try and attempt this project.

My Reflection

Looking back, I should have practiced my proposal speech on someone. It doesn’t matter if it was my Mom, the dogs

or even the kitchen sink I should have practiced. I felt I didn’t really get my idea across as well as I should have. This is

something that I will change in the future for sure! Having just a little practice for a big speech makes the world of

difference and helps you formulate what you’re going to say.

Intended Changes

My time management has to improve. This is the first year I have ever had to implement a time management program

cause I’m the type of guy that leaves everything for the last minute. You the know the old saying “Diamonds are

formed under pressure ” I sort of applied that saying to most of my projects and reports throughout my college life.

That technique will not serve me well this year. I’m aiming for 1:1 and I need to be finishing projects at least a week

before they are due, just so I can keep on top of everything this semester.

Supervisor Meetings

Date of Meeting: N/A

51

Items discussed: N/A

Action Items: N/A

Reflective Journal

Student name: Sean Brady

Programme: BSc in Computing

Month: October

My Achievements

This month I created my project proposal. This really helped paint a complete picture of how I was going to create my

project. I had a few issues with it at the beginning especially with the background part of the project proposal. I was a

little too informal, so it didn’t read well. With a few tips from my supervisor I completely changed that part and just

focused on the research I put in and how this helped me formulate my idea. After two more drafts I was finally ready

to upload. Overall, I was quite pleased with my project proposal and how it turned out.

My Reflection

I feel my writing needs to improve. When I would read over my drafts I was quite surprised at how bad some parts

read. This is just mainly down to practice, but it is something that I will look to improve upon.

I feel my time management has improved since September. I have delivered all my assignments at least a week early.

It is still early days though, so I will see how well it transitions into November because that is the most time-consuming

month.

Intended Changes

In November I’m going to try and manage my projects a bit better. At the current moment I just do one project at a

time. It is working but I feel in November I’m going need to work on multiple projects simultaneously. This is very

important because the requirement spec is due on the 10th week but I have four other projects due. Trying to chip

away at each project simultaneously is going to be extremely important.

Supervisor Meetings

Date of Meeting: 20th and 17th of October.

Items discussed: Project Proposal.

Action Items: I was appointed Irina as my supervisor. Over the course of October Irina would help me with my Project

Proposal. I sent her two drafts and she would point out parts that needed improving or changing.

Reflective Journal

52

Student name: Sean Brady

Programme: BSc in Computing

Month: November

My Achievements

I started creating my requirement this month. I manged to get a large portion of the AI down this month as well, so I

was quite pleased. I finally understand how API work as well and don’t feel like I’m letting my team down anymore.

My Reflection

A lot of anxiety has occurred this month because I feel I might not have the skills to carry out this project. Just

researching everything about HTTPS and HTTP I almost regret choosing this project. I wish I had chosen something a

bit closer to what I know how to create.

Intended Changes

I need to start studying more when I get home. I also need to stop letting projects block me from working on other

assignments. I have an awful habit of just focusing on one project and forgetting the rest.

Supervisor Meetings

Date of Meeting: 24th November.

Items discussed: Requirement Spec.

Action Items: Irina just gave me some helpful tips on how I could improve my requirement spec.

Reflective Journal

Student name: Sean Brady

Programme: BSc in Computing

Month: December

My Achievements

I finally have all my projects done and feel very happy with all the work I uploaded. I managed to achieve quite a high

grade in my Midterm presentation which came as a huge surprise!

My Reflection

I was really burned out after this semester. I wish I could have studied a bit more for my exams. I feel I messed up on

the AI exam, but I honestly was not motivated to study it. I hope this does not happen in the summer time.

Intended Changes

Get motivated again for the coming semester. Just need the final push for the last few months and then I’m done.

53

Supervisor Meetings

Date of Meeting: 5th December.

Items discussed: Just discussed the midterm presentation.

Action Items: Irina gave me feedback on all the comments that Paul Stynes mentions during my midterm presentation.

Reflective Journal

Student name: Sean Brady

Programme: BSc in Computing

Month: January

My Achievements

I was very pleased with my module results! I finally managed to get the HTTP proxy working somewhat for my software

project. I just need to tackle the HTTPS now.

My Reflection

I was looking forward to my next lectures, but both pen testing and forensic analysis have extremely bad lab rooms

that don’t allow us to do work so this is extremely frustrating.

Intended Changes

I will need to get on track with my studying.

Supervisor Meetings

Date of Meeting: 20th January.

Items discussed: Just talked about some key parts of my software project.

Action Items: I will now implement a proxy instead of an access point.

54

Reflective Journal

Student name: Sean Brady

Programme: BSc in Computing

Month: February

My Achievements

Finally got the HTTPS working for my software project.

My Reflection

I need to apply more time to my software project.

Intended Changes

I hope to stay after college and start studying more. Hopefully this will give me the motivation to start some of my

assignments.

Supervisor Meetings

Date of Meeting: NA.

Items discussed: NA.

Action Items: NA

Reflective Journal

Student name: Sean Brady

Programme: BSc in Computing

Month: March

My Achievements

Got my first penetration testing report done. I really enjoyed doing it and it was very interesting and I learned loads.

My Reflection

Still not studying when I get home as I’m feel a little demotivated, so I feel I’m getting into bad habits.

Intended Changes

I’m going to try to make it to more forensic classes, but I feel I’m falling a bit behind in that class.

Supervisor Meetings

Date of Meeting: 23rd March

55

Items discussed: How the software project was going.

Action Items: I must implement proper referencing in my software project.

Reflective Journal

Student name: Sean Brady

Programme: BSc in Computing

Month: April

My Achievements

Didn’t achieve much this month!

My Reflection

I completely messed up. I didn’t do enough work over the two weeks break and I ended up falling behind with all my

assignments. I most likely will end up doing my forensic assignment during the week that I am meant to be studying.

Intended Changes

Try becoming more motivated because the final push is just around the corner.

Supervisor Meetings

Date of Meeting: 2nd April

Items discussed: Discussed how much I have completed of the software project.

Action Items: Irina gave me a little tip about using the Secure Random library in java to implement salts for each user.

