

Classistant
Technical Report

Paul Reid | x14552067
paulreid96@gmail.com

Abstract
Classistant is a Real-time Responsive Web Application which aims to increase Student – Lecturer

engagement during classes by digitizing communications and offering anonymity options in order

to negate social anxiety experienced by students

Classistant | Paul Reid | x14552067

 2 | P a g e

1 Table of Contents

1 TABLE OF CONTENTS .. 2

EXECUTIVE SUMMARY... 5

1. INTRODUCTION ... 6
1.1 BACKGROUND ... 6
1.2 AIMS ... 7
1.3 TECHNOLOGIES ... 8
1.4 STRUCTURE .. 10

1.4.1 System ... 10
1.4.2 Design and Architecture ... 10
1.4.3 Viability Survey .. 10
1.4.4 Conclusion ... 10
1.4.5 Further Development / Research ... 10

2 SYSTEM.. 11
2.1 FUNCTIONAL REQUIREMENTS ... 11

2.1.1 Use Case Diagram ... 11
2.1.2 Requirement 1 <Classistant – Create Lecturer - Use Case 11
2.1.3 Requirement 1 <Classistant – Enroll in Class - Use Case 13
2.1.4 Requirement 1 <Classistant – Join a Session - Use Case 14

2.2 NON-FUNCTIONAL REQUIREMENTS ... 15
2.2.1 Data Requirements .. 15
2.2.2 User Requirements .. 16
2.2.3 Environmental Requirements ... 16
2.2.4 Usability Requirements .. 16

2.3 DESIGN AND ARCHITECTURE .. 18
2.3.1 Classistant Application Architecture ... 18
2.3.2 Classistant Application Entity Relationship Diagram................................... 19
2.3.3 Core Components .. 20

2.4 CODE SNIPPETS AND EXPLANATION .. 27
2.5 GRAPHICAL USER INTERFACE (GUI) LAYOUT .. 30
2.6 TESTING & EVALUATION ... 44

2.6.1 Iterative Testing ... 45
2.6.2 Usability Testing ... 45
2.6.3 Performance Testing .. 45
2.6.4 Browser Testing ... 45
2.6.5 Model Testing .. 46

3 VIABILITY SURVEY ... 47
3.1 INTRODUCTION .. 47
3.2 HAVE YOU EVER BEEN TOO AFRAID TO ASK A QUESTION IN A CLASS? 48
3.3 HAVE YOU EVER SAT THROUGH A CLASS WHERE YOU DIDN’T UNDERSTAND THE

TOPIC? 48
3.4 DO YOU FIND IT DIFFICULT TO SPEAK IN FRONT OF A CLASS OR LARGE GROUP OF

PEOPLE? .. 49
3.5 WOULD YOU USE A CLASSROOM ASSISTANT APP TO HELP GIVE REAL-TIME

FEEDBACK TO YOUR TEACHER / LECTURER (E.G SHOW YOU DON’T UNDERSTAND A TOPIC OR

ALLOW YOU TO ASK QUESTIONS, ANONYMOUSLY OR OTHERWISE)? 49
3.6 IF YES, WHAT PLATFORMS WOULD YOU USE THE APP ON? 50

Classistant | Paul Reid | x14552067

 3 | P a g e

3.7 FINALLY, ANY FUNCTIONALITY YOU’D LIKE TO SEE ADDED TO AN APPLICATION LIKE

THIS? 50
3.8 CONCLUSIONS ... 51

4 CONCLUSIONS .. 51

5 FURTHER DEVELOPMENT OR RESEARCH .. 52
5.1 MORE SOPHISTICATED EMAIL SYSTEM .. 52
5.2 MORE SOPHISTICATED BADGE SYSTEM .. 52
5.3 ADDITIONAL INTERACTIONS .. 53
5.4 IMPLEMENTATION OF MULTIPLE GRAPHS / CHARTS .. 53
5.5 CUSTOMISABLE DASHBOARD .. 53
5.6 UPLOAD CUSTOM CLASS ICONS .. 53
5.7 USER PROFILE PICTURE ... 53
5.8 MESSAGING SYSTEM .. 53
5.9 INTEGRATION TO 3RD PARTY SYSTEMS SUCH AS MOODLE 53
5.10 MOBILE APPLICATIONS ... 53
5.11 API IMPLEMENTATION .. 54
5.12 CLASS FORUMS ... 54

6 REFERENCES .. 54
6.1 WEBSITES USED.. 54
6.2 STACK OVERFLOW POSTS VIEWED ... 55

7 APPENDIX .. 57

OBJECTIVES ... 62

8 BACKGROUND .. 62

9 TECHNICAL APPROACH .. 63

10 SPECIAL RESOURCES REQUIRED .. 64

11 PROJECT PLAN ... 65

12 TECHNICAL DETAILS .. 66

13 EVALUATION ... 67

EXECUTIVE SUMMARY... 70

1 INTRODUCTION ... 71
1.1 BACKGROUND ... 71
1.2 AIMS ... 72
1.3 TECHNOLOGIES ... 72
1.4 APPROACH .. 73

2 SYSTEM.. 75
2.1 REQUIREMENTS ... 75

2.1.1 Use Case Diagram ... 75
2.1.2 Requirement 1 <Classistant - Login – Use Case> 76
2.1.3 Requirement 1 <Classistant - Profile – Use Case> 77
2.1.4 Requirement 1 <Classistant – Classroom View – Use Case> 78
2.1.5 Requirement 1 <Classistant - Dashboard – Use Case> 80

2.2 NON-FUNCTIONAL REQUIREMENTS ... 81
2.2.1 Performance/Response time requirement .. 81
2.2.2 Availability requirement .. 81

Classistant | Paul Reid | x14552067

 4 | P a g e

2.2.3 Recover requirement .. 81
2.2.4 Portability requirement ... 82
2.2.5 Extendibility requirement .. 82

2.3 DESIGN AND ARCHITECTURE .. 83
2.4 IMPLEMENTATION... 83
2.5 GRAPHICAL USER INTERFACE (GUI) LAYOUT .. 83
2.6 EVALUATION .. 86

3 CONCLUSIONS .. 87

4 FURTHER DEVELOPMENT OR RESEARCH .. 88

14 MONTHLY JOURNALS .. 88
14.1 SEPTEMBER MONTHLY REPORT ... 88
14.2 OCTOBER MONTHLY REPORT ... 88
15.1 NOVEMBER MONTHLY REPORT ... 89
15.2 DECEMBER MONTHLY REPORT ... 89
15.3 JANUARY MONTHLY REPORT .. 89
15.4 FEBRUARY MONTHLY REPORT.. 90
15.5 MARCH MONTHLY REPORT .. 90
15.6 APRIL MONTHLY REPORT ... 90
15.7 MAY MONTHLY REPORT ... 91

Classistant | Paul Reid | x14552067

 5 | P a g e

Executive Summary

The Purpose of this Executive Summary is to give you an insight into what
Classistant is and what it is trying to achieve.

Classistant is a Responsive Web Application which allows Students and
Lecturers digitally interact with each other during class time. The goal is to
digitise some of the typical social interaction in the classroom to remove social
anxiety from students and allow them to speak out and ask questions without
outing themselves to a large group of peers.

Classistant is light weight and portable and can be deployed on almost any cloud
application service such as Heroku.

The Project was conceived during my time Lecturing for the Computing Support
office at NCI. My experience made me realise how real the lack of questioning is,
and how many students slip through the cracks, scraping by hoping to get a
pass.

The application is developed using the Ruby on Rails framework and a number of
technologies and libraries. The application uses Web sockets and ActionCable to
create real-time environments in which students and lecturers can interact with
each other through a number of different channels.

The end result of the project is to hopefully increase Student – Lecturer
engagement and I hypothesise the average grade for any given class which
implements Classistant to rise too, as students will be encouraged to ask
questions and can do so Anonymously or otherwise.

Classistant in my view is the service Education doesn’t realise its missing.

Classistant | Paul Reid | x14552067

 6 | P a g e

1. Introduction

1.1 Background

Throughout my entire academic career, I have seen time and time again the
scenario of a Teacher or Lecturer delivering content when the class does not fully
understand. There is always the dreaded question asked, “Does everybody
understand?” or “Can I move on?”.

These questions are extremely difficult for students to answer and 9 times out of
10, a student will say nothing and allow the class to continue, despite their
difficulties or not fully understanding the topics covered.

During my time as a Student at NCI I joined the Computing Support office in the
College as part time staff. My work in the office largely consisted of teaching
large classes, both online and offline and supporting them in any topic they were
struggling with.

During my lectures, I noticed when I was teaching in person the participation from
the class would be next to non-existent. Apart from the one or two students who
were totally engrossed in the subject and loved their area of study, the majority of
students present in the class would remain silent.

This came as a total surprise to me as my online lectures light up with questions
and sometimes it became more of a question and answers session rather than a
lecture. This really interested me and I began to speculate the reasons behind
this occurring.

I believe students will not raise their hands and ask questions or say they don’t
understand due to social anxiety. Very few people will find it difficult to raise their
hand in front of a class of 20 or 30, never mind 70, 150 or more. This is because
students fear judgment from their peers, not knowing how others will react to their
questions. Students feel like they are admitting defeat or being stupid by asking a
lecturer to repeat content. This however, is absolutely not the case and chances
are if one student feels this way in the class, many others secretly do too.

Upon talking to peers and staff at NCI, my theory was in line with their own. In the
physical classroom, one student has to raise their hand and ask a question in
front of all their peers, thus grinding the whole class to a halt. However, online, a
student can simply type the question into a chat box from the comfort of their
home and it will be answered at the next most convenient moment.

I found this absolutely fascinating and it drove me to try to develop an idea which
could either prove or disprove the theory.

Classistant | Paul Reid | x14552067

 7 | P a g e

After thinking about the differences between teaching in person and digitally at
length I decided to try make my project, Classistant (Read: Class Assistant),
about trying to combine the best of both worlds. The concept is to create a virtual
link between students and lecturers during in person class time which will allow
students to interact with the lecturer delivering the content without drawing any
attention to themselves.

I firmly believe a scenario where Students and Lecturers can interact digitally will
increase the number of questions dramatically and as a direct result I would
expect the average grade for a given class to rise too.

1.2 Aims

The Goal of Classistant is to increase Student – Lecturer engagement in the
physical Classroom by digitising interaction in order to negate social anxiety as a
barrier to communication.

This goal is achieved by developing a fully functional Web Application, which
allows students and lecturers to log in and interact in real-time, using web
sockets to maintain a connection to each other. The application is fully
responsive to cater for the fact that almost every student today in Ireland carries
a smartphone with them.

I want the application to contain functionality such that a User can register an
account. All accounts will be made as a Student initially and one master account
which is an Administrator will be able to then easily promote them to Lecturer.
This adds a layer of security behind the application seeing as it is dealing with
User’s data.

The application will allow Lecturers to create classes which Students can enrol in
using a unique key. Each class in the system will be able to hold multiple
sessions. Each session will be a real-time environment which allows students
and lecturers to easily interact using a chat system, question system as well as
“interactions”

“Interactions” will be real-time prompts sent to Students to complete. This will
consist of two types of polls, one which is based on pictures, and another which
is based on text buttons. This will prompt the user to rate their understanding in
the class and provide real-time data back to the lecturer. The responses will be
graphed in real-time for the lecturer to see and gain a better understanding of the
class and their performance. All data from a session can later be looked back on.

Students will earn badges in the system through participation which will be
displayed on their profile.

Classistant | Paul Reid | x14552067

 8 | P a g e

Lecturers can see students who are struggling and send email notifications for
support.

1.3 Technologies

The goal for the development side of Classistant was to create a fully functioning
application in the most simple, light weight way possible. I am a firm believer that
less is more and a large, cumbersome web application with extensive amounts of
logic and scripts will simply not give the simple, premium experience Classistant
strives to deliver.

IDE
The development of Classistant started in the Cloud Based IDE cloud9 which
was unfortunately becoming phased out throughout the development of this
project. Unwilling to pay for AWS, I moved development to JetBrain’s RubyMine
IDE. This is locally installed on my 2015 MacBook pro and licensed with a free
student license.

Framework
The entire backend of the project is created using Ruby and the Ruby on Rails
(RoR) framework. In my view, this was the best approach as it allows me to
utilise my coding abilities in OOP languages like Java and mix it with Web
Development.

Languages & Libraries
The application is not just solely developed in Rails though, it makes use of
languages such as HTML, CSS, JavaScript, Coffeescript, SCSS as well as
technologies such as Active Record and PostgreSQL. In order to make the
application responsive I used Twitter’s Bootstrap framework to implement a
responsive grid system. Finally, I implemented a Gem called Chartkick which
allows me to use the HighCharts Graphing Library but through Ruby code

Deployment
The application is deployed using the Heroku Cloud Deployment Service and
deployment as well as development was done using Git & GitHub

Classistant | Paul Reid | x14552067

 9 | P a g e

Table of Technologies and Tools

Programming Languages

JQuery

Ruby

HTML5, CSS, SCSS, JavaScript

CoffeeScript

Development Environments / Tools

Cloud9

RubyMine

Mac Terminal

Git + GitHub

Heroku

Stylebot (Chrome Plugin)

Libraries / Gems

ChartKick

HighCharts

Twitter Bootstrap

Devise

Bootstrap Form For

Database Active Record running PostgreSQL

Platform Responsive Web Application

Classistant | Paul Reid | x14552067

 10 | P a g e

1.4 Structure

Below are short descriptions of the main chapters found in this Report

1.4.1 System

This section of the report gives a thorough breakdown of the requirements
specification. Some of the requirements specification has not changed and
therefore is not mentioned. This can be found in the Requirements Specification
in the Appendix.

1.4.2 Design and Architecture

This Section Details diagrams of the System’s Architecture. This shows both the
Higher-Level concept of the application as well as the Entity Relationship
Diagram for the database.

This section also explains the key parts of the Application as well as interesting
code snippets to further example the key parts.

1.4.3 Viability Survey

The Viability Survey was carried out before the project had begun. This was
simply an anonymous poll sent out to my peers, questioning them in the research
area of the project.

1.4.4 Conclusion

The Final Conclusion of the Report, detailing my findings and experiences

1.4.5 Further Development / Research

A brief list of future features that could be added in order to improve Classistant.

Classistant | Paul Reid | x14552067

 11 | P a g e

2 System

2.1 Functional Requirements

2.1.1 Use Case Diagram
Each requirement should be uniquely identified
with a sequence number or a meaningful tag of
some kind.

The Use Case Diagram provides an overview of
all functional requirements.

It is inferred that Lecturers have access to
everything a Student does and an admin has
access to everything a Lecturer has.

Note: Not all Use Cases fit on one Diagram so
the most important are shown.

2.1.2 Requirement 1 <Classistant – Create
Lecturer - Use Case

2.1.2.1 Description Priority

The Create Lecturer Use Case allows
more than one Lecturer to be added
into the System. Without this Use
Case, only one lecturer would ever
exist unless the seeds.rb is modified or
the Rails console for the Application
instance is used.

2.1.2.2 Use Case

Scope

The scope of this use case is to understand the Create Lecturer use case

Figure 1 – Use Case Diagram

Figure 2 – Create Lecturer Use Case

Classistant | Paul Reid | x14552067

 12 | P a g e

Description

This use case describes the process through which the User creates a new
Lecturer in the System using an existing Student

Flow Description

Precondition

The User logged in is an Administrator and the Lecturer being created already
has a student account.

Activation

This use case starts when the User selects the “Create Lecturer” button on the
dashboard.

Main Flow

1. The Application presents the User with the Create Lecturer Form
2. The User enters in the Student ID of the Lecturer they wish to Promote
3. The User enters in the Institute for the new Lecturer
4. The User selects the “Add Lecturer” button
5. The System accepts the variables and creates a new lecturer

a. The System also deletes the old Student

Alternate Flow

A1: Creation Error

1. The Application presents the User with the Create Lecturer Form
2. The User enters in the Student ID of the Lecturer they wish to Promote
3. The User enters in the Institute for the new Lecturer
4. The User selects the “Add Lecturer” button
5. The System rejects the data being passed from the form
6. The System redirects the user back to the form and displays any errors

a. The incorrect fields will be marked appropriately

Termination

The System accepts the Data from the Form, a new Lecturer User is created and
the old Student User for the Lecturer is destroyed.

Post Condition

The User is redirected to the Dashboard

Classistant | Paul Reid | x14552067

 13 | P a g e

2.1.3 Requirement 1 <Classistant – Enroll in Class - Use Case

2.1.3.1 Description Priority

The Enrol in Class Use Case allows a
Student to enrol in a Class. This means the
Student has access to the class and its data.
This also allows the student to join Sessions
related to the class.

2.1.3.2 Use Case

Scope

The scope of this use case is to understand the Enrol in Class Use Case

Description

This use case describes the process through which the user enrols in a Class

Flow Description

Precondition

The User logged in is a Student.

Activation

This use case starts when the User selects the “Enroll in Class” button on the
dashboard.

Main Flow

1. The Application presents the User with the Enroll in Class Form
2. The User enters in the Enrollment Key of the Class they wish to Join
3. The User selects the “Enroll” button
4. The System accepts the Enrollment Key and adds the Student to the

Group

Alternate Flow

A1: Join Error

1. The Application presents the User with the Enroll in Class Form
2. The User enters in an invalid Enrollment Key
3. The User selects the “Enroll” button
4. The System rejects the Enrollment Key

Figure 3 – Enroll in a Class Use Case

Classistant | Paul Reid | x14552067

 14 | P a g e

5. The System redirects the User to the Enroll in Class form
6. The Form inputs show validations and errors messages display detailing

the error

Termination

The System accepts the Enrollment Key from the Form and the Student joins the
Class

Post Condition

The User is redirected to the Dashboard

2.1.4 Requirement 1 <Classistant – Join a Session - Use Case

2.1.4.1 Description Priority

The Join a Session Use Case allows a
Student to join Sessions.

2.1.4.2 Use Case

Scope

The scope of this use case is to understand the Join Session Use Case

Description

This use case describes the process through which the user joins a Session

Flow Description

Precondition

The User logged in as a Student

Activation

This use case starts when the User selects the “Join Session” button on the
Dashboard.

Main Flow

1. The Application presents the User with the Join Session Form
2. The User enters in the Session Key of the Session they wish to Join
3. The User selects the “Join Session” button

Figure 4 – Join a Session Use Case

Classistant | Paul Reid | x14552067

 15 | P a g e

4. The System accepts the Session Key and adds the Student to the Session
5. The System redirects the User to the Session’s page for the Session they

tried to join

Alternate Flow

A1: Join Error

1. The Application presents the User with the Join Session Form
2. The User enters an invalid Session Key of the Session they wish to Join
3. The User selects the “Join Session” button
4. The System rejects the Session Key and redirects the User back to the

Form
5. The System displays error messages as well as highlights on the form any

invalid inputs in any input fields.

Termination

The System accepts the Session Key from the Form and the Student joins the
Session

Post Condition

The User is redirected to the ongoing Session

2.2 Non-Functional Requirements

2.2.1 Data Requirements

Data Requirements ended up being quite important for Classistant. Classistant is
a Web Application and this means there are a number of input fields throughout
the Application. Web Applications are highly susceptible to attacks due to the
lack of input validation on their inputs and forms and due to how browsers and
servers consume data.

As a result of this, Data input fields in the Application, where necessary, have
validations applied to ensure nothing goes wrong. Thankfully, some of this is
automagically handled by rails, but other unexpected inputs such as the lack of
input in a certain field may cause an issue with the Database and cause data to
not be saved.

This means, the Application will make sure all mandatory data will be provided
before it will save. Unsatisfactory input Data will be thrown away and the User will
be notified of the error using dynamic error handling and custom error forms that
have been implemented.

Classistant | Paul Reid | x14552067

 16 | P a g e

2.2.2 User Requirements

In order to have access to the application, a User must have an account. An
account can be obtained by following the registration link and filling out two short
forms. This will create a new account for the User, create their profile and store
their details in the database.

By default, one Master account is created. This is the Administration account and
this can be used to promote Users who have registered to Lecturers. The system
only allows Students to register to ensure a stricter security policy.

2.2.3 Environmental Requirements

2.2.3.1 Client Side

The User must have a device with an active internet connection which also
supports JavaScript.

2.2.3.2 Server Side

When deployed, it is recommended that the System is created and maintained
using a PostgreSQL Database. This is not mandatory unless the service you
deploy to has explicit requirements. Heroku is an example of a Cloud service
which enforces PostgreSQL.

The application must also have the database seed file executed after the
database is generated in order to have access to the default administrator
account.

The applications assets should be precompiled before deployment.

Finally, the application is dependent on a number of Gems, located in the
Gemfile. All of these Gems must be installed before operation.

2.2.4 Usability Requirements

2.2.4.1 Cross Platform

The application is designed to work on any device. This is to cater for Students
and Lecturers from all walks of life with access to varying devices, whether it be
their smartphone in their pocket or a computer in-front of them in a lab.

This requirement is fulfilled by using Twitter’s Bootstrap framework and CSS
Media Queries in some specific cases.

Classistant | Paul Reid | x14552067

 17 | P a g e

2.2.4.2 Modern Design Interface

The interface for the application is intentionally minimalistic and incredibly simple.
It is very rare in the application to have a bunch of data crammed into one box.
This makes the User Experience incredibly pleasing and actually streamlined as
it is clear where you can click buttons and navigate to.

The application follows Flat UI Design Principles and Colour Schemes. All the
colours used in the application are recommended by Flat UI Designers.
References to Flat UI websites can be found in the bibliography.

2.2.4.3 Intuitive

A big requirement in my eyes as was to have the System as intuitive as possibly.
Having gone through 4 years of college and taught numerous classes during my
time, it is clear not every Student / Lecturer is tech-savvy.

Thanks to the Modern Design and as a direct result of the implementation, the
application uses bright and clear colours to direct Users towards clickable
buttons. The application also Uses what I believe to be a simple navigation
System whereby instead of crowding pages with back buttons the User can
simply click their Dashboard button on the Navbar to go back home. This works
perfectly because there’s no large number of nested pages and each page is at
maximum 3 clicks from the dashboard.

2.2.4.4 Security

User emails and passwords are stored securely through the Devise gem. This
makes sure the data will not be easily exposed.

Access to certain pages is restricted. This means a Student cannot access the
Lecturer or Admin side of the application just by knowing the address for the
page.

Classistant | Paul Reid | x14552067

 18 | P a g e

2.3 Design and Architecture

2.3.1 Classistant Application Architecture

Figure 5 – Classistant Application Architecture

Classistant is designed using the Model View Controller (MVC) Principle. This is
implemented by using Ruby on Rails.

The application is intended to be run on any device with an active internet
connection and JavaScript support. As shown in the Architecture Diagram, PCs,
Laptops and Mobile Devices all support Classistant.

The flow of the application is actually really simple thanks to the MVC
implementation and it ended up working perfectly to implement the System I
wanted. Ruby on Rails operates based on a route file and exposes pages inside
the application based on the contents of this file. This actually allows for certain
pages to not be shown or accessible based on conditions. An example of this
would be to not expose any navigation unless the User is signed in.

Classistant | Paul Reid | x14552067

 19 | P a g e

2.3.2 Classistant Application Entity Relationship Diagram

Figure 6 - Classistant Domain Model

Classistant | Paul Reid | x14552067

 20 | P a g e

2.3.3 Core Components

2.3.3.1 Layouts

Layouts are essentially a template inside which your page is rendered. A good
way to conceptualise this concept is almost like a container or box but in our case
the contents is the page we want to render. This means generic styling can be
applied application wide.

Classistant Utilises three layouts, each with slight tweaks for the optimum
experience depending on the page. The layouts are called

application.html.erb
session.html.erb
landing.html.erb

Note: More layouts exist in the application due to the existence of a mailer but the
purpose is slightly different

A perfect example of why separate layouts would be used is the application
layout doesn’t load all of the JavaScript for the application. The real-time part of
the application uses special scripts to manage and maintain the live connection.

Therefore, a separate layout for the sessions is used (session.html.erb) which
loads in the necessary JavaScript on the sessions page in order to make the
session work.

2.3.3.2 Views

Views in Ruby on Rails are essentially the Web Pages you wish to render. This
concept is extremely confusing to develop with at first, especially when using
Twitter’s Bootstrap as you have to remember the code you are writing in a View
file is wrapped in the Layout file. Each view has a corresponding route and
controller which controls it.

2.3.3.3 Controllers

Controllers determine what page should be rendered based on the action that is
called. Controllers are typically mapped to a model but not always. By default,
controllers have basic Create, Read, Update, Delete (CRUD) functionality. This
however, is not mandatory and custom actions can be defined.

An example of a controller tied to a model would be the ClassSession Controller.
This Controller controls the classsession model and allows for sessions to be
created. Not only does the controller allow for CRUD functionality but it also

Classistant | Paul Reid | x14552067

 21 | P a g e

allows for sessions to be reviewed which is a custom action. This takes the route
classsessions/session_id/review

In Classistant, the Dashboard Controller only contains one method and is perfect
to show a small-scale example of what a controller can do and how it operates.

class DashboardController < ApplicationController
 def index
 if current_user.lecturer.nil?

 @student = current_user.student
 render 'student'
 else

 @lecturer = current_user.lecturer
 render 'lecturer'
 end

 end
end

The index method maps the view “index.html.erb” located inside the Dashboard
controller in “app/views” Therefore, when a User tries to access that page, the
method will execute.

2.3.3.4 Models

Models are essentially like Objects in OOP. A model is a representation of your
data structure for an object or table in the database. For example, a model can
have attributes and validations for the model as well as relationships.

Classistant uses models for everything in the System and they are incredibly
powerful. Thanks to the verbose use of models, Classistant is able to get the
number of questions a Student has asked by simply looking at a Student, getting
all the QuestionMessages associated with them and count the amount of
associations.

A small example of a model is a chat message model
class Chatmessage < ApplicationRecord

 belongs_to :classsession
 belongs_to :student, optional: true
 belongs_to :lecturer, optional: true

 validates :content, presence: true
end

2.3.3.5 Migrations

Migrations are used to create the tables which models map to. It is crucial that
migrations map to models (Models need to define their relationships inside the
class) or else the Application’s Database will not run. The filenames also need to

Classistant | Paul Reid | x14552067

 22 | P a g e

match which I unfortunately learned the hard way during the development of the
application.

The chatmessage migration is perfect for showing what a small migration looks
like.

class CreateChatMessages < ActiveRecord::Migration[5.1]
 def change
 create_table :chatmessages do |t|
 t.references :classsession, foreign_key: true
 t.references :student, foreign_key: true, null: true
 t.references :lecturer, foreign_key: true, null: true
 t.string :content
 t.boolean :is_anon
 t.timestamps
 end
 end
end

2.3.3.6 Gems

Gems are essentially plugins or libraries for your application. They are compiled
before the application is launched and they allow for extended functionality on top
of the Rails framework.

Gems are defined in the applications Gemfile. I used bundle to install my gems
and keep them up to date.

An example of a Gem I used is ChartKick. ChartKick implements a graphing
framework of your choice (Google Charts, Charts.js or HighCharts.js) and allows
you to use the library using Ruby code and variables instead. This was hugely
beneficial as it decreased the amount of code needed exponentially. To get an
idea of scale, roughly 100 lines of previously coded chart configuration in
JavaScript was replaced by 3 lines of embedded Ruby.

An example of gem declaration in the Gemfile is as follows

Charting Library for Real-time Charts

gem 'chartkick'

Note: The Comment is not essential but it is good practice.

2.3.3.7 Partials

Partials are essentially a snipped of HTML code you can render inside a view.
The idea of a partial is to help enforce the Don’t Repeat Yourself (DRY) principle

Classistant | Paul Reid | x14552067

 23 | P a g e

of programming. This means if you use the same code in multiple places for a
Web Page such as a Navbar or some kind of Title, you could save it in a partial
file and call it from anywhere in the application to be rendered. An example of a
partial file can be seen below.

<% @messages.each do |msg| %>
 <% if msg.lecturer.nil? %>
 <% if msg.is_anon %>

 <p><%= msg.created_at.strftime('%H:%M') %> Anonymous:
<%= msg.content %></p>
 <% else %>
 <p><%= msg.created_at.strftime('%H:%M') %> <%=
msg.student.full_name %>: <%= msg.content %></p>
 <% end %>
 <% else %>
 <p class="lecturer-message"><%= msg.created_at.strftime('%H:%M')
%> <%= msg.lecturer.full_name %>: <%= msg.content
%></p>
 <%end %>
<% end %>

This partial is rendered inside a Div in a Class Session View. The partial simply
builds / renders a list of all the messages that have been sent in the chat for the
class thus far.

2.3.3.8 Channels

Channels allow for real-time communication between browser sessions. A
channel works very similarly to MQTT Systems which I became extremely
familiar with during the Internet of Things Stream. Channels are extremely
complex to implement and definitely took the longest of all my features.

Sessions essentially work by first using CoffeeScript to establish a connection

#Subscribe to the Session
App.session = App.cable.subscriptions.create {channel: "SessionChannel", room: s_id},

 connected: ->
Called when the subscription is ready for use on the server

 disconnected: ->
Called when the subscription has been terminated by the server

 received: (data) ->
Called when there's incoming data on the websocket for this channel
 payload = data['message']

In the Header of the Subscription we can see “room: s_id”

This means we can subscribe to a specific room on the channel. This is fantastic
and incredibly useful as we can separate out each Class Session into a different
room. This mean messages will never accidentally get sent to the wrong Class
Session.

Classistant | Paul Reid | x14552067

 24 | P a g e

Finally, Methods can be called to the Session’s corresponding ruby file using the
following syntax

@perform 'send_chat_message', message: payload, room_id: s_id

The ‘send_chat_message’ directly maps to the name of a function in the Ruby
File. So this line of code would call the following method

class SessionChannel < ApplicationCable::Channel
 def subscribed
 stream_from "session_channel_#{params[:room]}"
 end

 def unsubscribed

 # Any cleanup needed when channel is unsubscribed
 end

 def send_chat_message(data)

 #Take in the Payload from the sent Message
 @payload = data['message']

 #Get the contents of the paylod

 @content = @payload['content']
 @uid = @payload['uid']
 @utp = @payload['utp']
 @sid = @payload['sid']
 @anon = @payload['anon']

 #Parse the User ID and User Type (Checks if they are somehow Strings, if so, cancel the rest of the
action)
 @uid = Integer(@uid) rescue -100
 @utp = Integer(@utp) rescue -100
 @sid = Integer(@sid) rescue -100

 #Cancelling in the case of String
 if @uid == -100 or @utp == -100 or @sid == -100

 else
 #This far means the message is A O K to send

 #Save the message to our DB

 @save_message = Chatmessage.new
 @save_message.content = @content

 #Get the Session for the Message and Associate them

 @session = Classsession.find(@sid)
 @save_message.classsession = @session

 #Get the User for the Message

 @user = User.find(@uid)

 if @utp == 191
 #lec

 @user = @user.lecturer
 @save_message.lecturer = @user

Classistant | Paul Reid | x14552067

 25 | P a g e

 elsif @utp == 4
 #stu

 @user = @user.student
 @save_message.student = @user
 end

 if @anon == "t"
 @save_message.is_anon = true
 else
 @save_message.is_anon = false
 end

 if @save_message.save

 @payload['timestamp'] = @save_message.created_at.strftime('%H:%M')
 @payload['name'] = @user.full_name
 @payload['type'] = 'chat'
 ActionCable.server.broadcast "session_channel_#{@sid}", message: @payload
 end

 #End of Message being authentic and sending code
 end
 end

2.3.3.9 Mailers

Mailers can be used to send Emails from the Rails Application. I implemented
Mailers to allow lecturers to notify students at the click of a button if they are not
doing well in their class. This is split into Poor Attendance and Poor
Understanding. Lecturers can see Students who are not doing well in their Class
on the page for that class and there, they have the option to fire off the emails.

In order to support this feature, I created two new custom routes for the student’s
controller

def send_support
 @student = Student.find(params[:student_id])
 @classgroup = Classgroup.find(params[:classgroup])

 ClassistantMailer.with(student: @student, classgroup: @classgroup).support_email.deliver_now
 redirect_to('/classgroups/' + @classgroup.id.to_s)
end

def send_attendance
 @student = Student.find(params[:student_id])
 @classgroup = Classgroup.find(params[:classgroup])
 ClassistantMailer.with(student: @student, classgroup: @classgroup).attendance_email.deliver_now
 redirect_to('/classgroups/' + @classgroup.id.to_s)
end

Next, I added the routes to accommodate this in my routes.rb file.

resources :students do
 get :send_support
 get :send_attendance
end

Classistant | Paul Reid | x14552067

 26 | P a g e

Finally, I added the code for the Mailer to support sending both emails.

class ClassistantMailer < ApplicationMailer
 default from: "classistant@protonmail.com"

 def support_email

 @student = params[:student]
 @classgroup = params[:classgroup]
 @lecturer = @classgroup.lecturer

 @user = @student.user

 mail(to: @user.email,

 subject: 'Classistant | Notice from Lecturer: ')
 end

 def attendance_email

 @student = params[:student]
 @classgroup = params[:classgroup]
 @lecturer = @classgroup.lecturer
 @user = @student.user

 mail(to: @user.email,
 subject: 'Classistant | Notice from Lecturer: ')
 end

end

These Methods are mapped directly to layouts with the same name. An example
is the following layout, support_email.html.erb

<!DOCTYPE html>
<html>
<head>
 <meta content='text/html; charset=UTF-8' http-equiv='Content-Type'/>
</head>
<body>
<h1>This is an Urgent Notice from Classistant</h1>
<p>
 Dear <%= @student.full_name %>,
</p>
<p>
 It appears that you are not performing so well in <%= @classgroup.class_name %>
</p>
<p>
 Would it be possible for you to come meet me and we can discuss your performance in person. I want to
ensure you are able to keep on top of things and don't fall behind
</p>
<p>
 Kind Regards,
</p>
<p>
 <%= @lecturer.full_name %>
</p>
</body>
</html>

Classistant | Paul Reid | x14552067

 27 | P a g e

2.4 Code Snippets and Explanation

2.4.1.1 Dashboard Controller

class DashboardController < ApplicationController
 def index
 if current_user.lecturer.nil?

 @student = current_user.student
 render 'student'
 else

 @lecturer = current_user.lecturer
 render 'lecturer'
 end

 end
end

The Dashboard Controller simply controls what Dashboard should be Displayed
to the user when they navigate to the Dashboard URL. Each User is associated
with a Student or Lecturer model, and this is how we can distinguish them.

The above code is an incredibly simple yet effective conditional statement which
reads

If the current user is not a lecturer, render the student view

Otherwise, render the lecturer view.

The line

@student = current_user.student

Just saves the instance of the Student into a variable called @student. We can
later access this from the Student’s Dashboard view if needs be. The same
applies for the @lecturer declaration in the Lecturer view.

It is worth noting at this point that current_user is a singleton which contains the
instance of the User signed in.

Classistant | Paul Reid | x14552067

 28 | P a g e

2.4.1.2 Enforcing Full User Registration

Sign Up Form (Step 1) - Classistant

When Registering, a User must complete two steps to Registration. First, the
User types in their email and password they wish to use.

Once the user clicks “Next Step”, the User model (If the inputs are valid) will be
created in the Database. Next, we need to create an instance of a Student to
associate to the Model.

Classistant | Paul Reid | x14552067

 29 | P a g e

Sign Up Form (Step 2) - Classistant

However, at this point, the User could technically navigate away from this page
and not create an instance of the Student to associate to a User, thus breaking
the application.

To solve this, there is a Controller that controls the whole Application through
which everything is routed. So I simply added a method which would check for
the association to exist, and if it didn’t, it would reroute the User back to this page

class ApplicationController < ActionController::Base
 protect_from_forgery with: :exception
 before_action :authenticate_user!, :check_user_has_identity

 def check_user_has_identity
 if user_signed_in? and current_user.lecturer.nil? and current_user.student.nil? and not request.fullpath

== '/students/new'
 redirect_to '/students/new' unless request.fullpath == '/students'
 end
 end

This code snippet is located in the ApplicationController class. It reads

Before the User changes page, authenticate the user and check that they have
an identity (Student / Lecturer)

Classistant | Paul Reid | x14552067

 30 | P a g e

Then there is a method below which checks if there is a User signed in (So you
don’t get caught out as a new User on the landing page) and if the user has no
Identity, if so, send them back to the form (Assuming they aren’t already going
there)

2.5 Graphical User Interface (GUI) Layout

This section contains various screenshots from the Classistant UI. The
screenshots range from Laptop Screens, to phones and tablets. Naturally, not
every single screen of the System is shown as it would simply be too much.
Instead, there’s a hand-picked number of important screens shown.

Figure 7 - Classistant Landing Page (Not Signed In, Laptop)

Classistant | Paul Reid | x14552067

 31 | P a g e

Figure 8 - Classistant Sign Up Page (Laptop)

Classistant | Paul Reid | x14552067

 32 | P a g e

Figure 9 - Classistant Sign Up Page (Laptop)

Classistant | Paul Reid | x14552067

 33 | P a g e

Figure 10 - Classistant Student Dashboard (Laptop)

Figure 11 - Classistant Admin Dashboard (Laptop)

Classistant | Paul Reid | x14552067

 34 | P a g e

Figure 12 - Classistant Settings Page (Laptop)

Classistant | Paul Reid | x14552067

 35 | P a g e

Figure 13 - Classistant Lecturer Class List (Laptop)

Figure 14 - Classistant Student Profile (Laptop)

Classistant | Paul Reid | x14552067

 36 | P a g e

Figure 15 - Classistant Enroll in a Class (Laptop)

Figure 16 - Classistant Lecturer Class Session (iPad)

Classistant | Paul Reid | x14552067

 37 | P a g e

Figure 17 - Classistant Lecturer Class Session View (Laptop)

Classistant | Paul Reid | x14552067

 38 | P a g e

Figure 18 - Classistant Lecturer Class View (Laptop)

Classistant | Paul Reid | x14552067

 39 | P a g e

Figure 19 - An older UI Page being Tested using Browser Stack

Classistant | Paul Reid | x14552067

 40 | P a g e

Figure 20 - Classistant Landing Page (Galaxy Note 8)

Classistant | Paul Reid | x14552067

 41 | P a g e

Figure 21 - Classistant Sign up Page (Galaxy Note 8)

Classistant | Paul Reid | x14552067

 42 | P a g e

Figure 22 - Classistant Login Page (Galaxy Note 8)

Classistant | Paul Reid | x14552067

 43 | P a g e

Figure 23 - Classistant Admin Dashboard Page (Galaxy Note 8)

Classistant | Paul Reid | x14552067

 44 | P a g e

Figure 24 - Classistant Lecturer Class Session Page (Galaxy Note 8)

2.6 Testing & Evaluation

Classistant is difficult in some respects to test due to it being a Web Application.
However, I did test the application in a number of different ways which will be
outlined below.

Classistant | Paul Reid | x14552067

 45 | P a g e

2.6.1 Iterative Testing

During the development of the Application I would start with a very small piece of
logic and test it to ensure it works doing sanity tests and just trying to break it. I
would then slowly build upon the logic piece by piece until I reached my final
goal. This was actually extremely useful and effective and allowed me to make
very few mistakes in my logic for the Application during Development

2.6.2 Usability Testing

During Development and post development, I had various people attempt to
navigate my Application and provide me with constructive feedback. Participants
ranged in technical ability from my mother who isn’t very tech-savvy, to my
girlfriend who can use a phone and computer right up to my brother who works in
the IT Industry as well as my peers in class.

Overall, this had a huge impact on UI design and helped me streamline the
application down to exactly what I need.

The process for this type of testing was simple. I would sit the User in-front of my
laptop with the Application landing screen and ask them to explore the
application and provide me with feedback. I would note down the feedback in a
copy book I have and later incorporate it into my design.

2.6.3 Performance Testing

Due to the Application being Web Based and having real time interactions, I was
curious to see if the Application would break or throttle with a large number of
Users. I opened numerous tabs and logged into the Application (Incognito so
sessions weren’t tracked) and got some peers from my class and previous
project groups to do the same and we registered and logged in multiple accounts.

We decided to try overload the messaging system by posting numerous posts at
the same time. This only showed us that the Application worked as expected and
I was thoroughly pleased that the way I implemented Web sockets worked
without difficulty.

2.6.4 Browser Testing

I tested the Application and its code across multiple browsers. I personally use a
mix between Google Chrome, Firefox and Safari depending on my device as well
as the default web app for my phone. All of these browsers worked perfectly with
no issues (Thanks to using some universal CSS) and all of my tests were
successful. I didn’t even attempt to try anything older like IE as I would have no
interest in supporting it fully. That said, the application doesn’t have a large
amount of browser specific code / rules.

Classistant | Paul Reid | x14552067

 46 | P a g e

Luckily, a previous job I had as a Web Developer left me with a BrowserStack
account which is a website that emulates devices through the browser and lets
you test your Websites on them. I tried the Galaxy Note 3, Note Tab, Various
iPhones as well as my own Phone, a Samsung Galaxy Note 8 and my iPad.

Again, all of the results were (surprisingly) positive and no browser had any main
issues. Even my main monitor for development which is a 2K 34” Ultra-wide
(LG34UC97C) Displays the website fine.

2.6.5 Model Testing

Using the Power of the seeds.rb file in Rails, I was able to write and attempt to
create a large quantity of instances for various models. Thankfully, certain ones
designed to fail, failed and did not persist, thus showing me that the models were
set up correctly.

Below is an example of a seeds file

@admin = User.new(id: 9999, email: "paulreid@mail.com", password: "123456", is_admin: true)
@paul = Lecturer.new(first_name: "Paul", last_name: "Reid", institute: "NCI", user_id: 9999)

@admin.lecturer = @paul

@paul.save
@admin.save

Creating Students to Populate the System

@student = User.new(id: 9090, email: "paulreid96@gmail.com", password: "123456", is_admin: false)
@aaron = Student.new(first_name: "Aaron", last_name: "Meaney", user_id: 9090)

@student.student = @aaron

@aaron.save
@student.save

Creating Classes to Populate the System

@itp = Classgroup.new(id: 0, class_name: "Intro to Programming", course_name: "BSHC",
 class_description: "Learn to Program using Java", enrollment_key: 9109, image_id: 1,

lecturer_id: 1)
@itp.students << @aaron
@itp.save

@iwd = Classgroup.new(id: 1, class_name: "Intro to Web Design", course_name: "BSHC",
 class_description: "Learn to make Basic Websites using HTML, CSS and JS",

enrollment_key: 9101, image_id: 2, lecturer_id: 1)
@iwd.save

@itc = Classgroup.new(id: 2, class_name: "Introduction to Computers", course_name: "BSHC",
 class_description: "Learning All about how to use a Computer", enrollment_key: 9102,

image_id: 3, lecturer_id: 1)
@itc.save

@iot = Classgroup.new(id: 3, class_name: "Internet of Things", course_name: "BSHC",
 class_description: "Solving the worlds problems 1 MQTT message at a time",

Classistant | Paul Reid | x14552067

 47 | P a g e

enrollment_key: 9103, image_id: 4, lecturer_id: 1)
@iot.save

@cad = Classgroup.new(id: 4, class_name: "Cloud Application Development", course_name: "BSHC",
 class_description: "Just know that Rails is never sorry", enrollment_key: 9104, image_id: 5,

lecturer_id: 1)
@cad.save

Creating a Example Session for the System

@ses = Classsession.new(id: 0, topic: "The Basics of Programming", classgroup_id: 0, session_key:

0000)
@ses.start_time = "2018-05-12 11:32:41"
@ses.end_time = "2018-05-12 12:32:41"

@ses.save

3 Viability Survey

3.1 Introduction

During the early stages of the projects conception, I ran an anonymous survey
amongst peers in my college to gauge where students stood in relation to my
theory. The results were shocking in some ways but to be totally honest, fairly in
line with what I expected overall. The survey was a huge success and really
helped when it came to motivation for the project.

The Survey was conducted using Google Forms and ended up with a total of 29
Responses, which is quite high for my class. Each response was Anonymously
revealed to me and all the results were aggregated into graphs for me to read.

Classistant | Paul Reid | x14552067

 48 | P a g e

3.2 Have you Ever been too afraid to ask a question in a class?

This question is fairly self-explanatory. It is worth noting almost ¾ of the class
have been too afraid to ask a question at some point in time. This is an extremely
disappointing figure to see from the perspective of someone who has taught
many classes. This should definitely be the exact opposite way around and this
needs to be formally addressed by education institutions.

3.3 Have you ever sat through a class where you didn’t understand
the topic?

Classistant | Paul Reid | x14552067

 49 | P a g e

This Question honestly came as a complete surprise. As we can see 100% of the
participants voted yes which is just crazy. The total lack of communication
between student and lecturers is outright ridiculous and no one benefits from this
situation. This is a disaster waiting to happen.

3.4 Do you find it difficult to speak in front of a class or large group
of people?

I think this is an important statistic to have as we can see the problem is not just
specific to Classes. This could mean Students perhaps need to be trained for
better presentation skills at an earlier stage in life. This would be interesting to try
and solve, looking back at primary school or at the very least secondary school.

3.5 Would you use a classroom assistant app to help give real-time
feedback to your teacher / lecturer (e.g show you don’t
understand a topic or allow you to ask questions, anonymously
or otherwise)?

Classistant | Paul Reid | x14552067

 50 | P a g e

Out of a total of 29 Students, only two students didn’t say yes. I think this is a fair
indicator to say there is a gap in the market or a need for an application like
Classistant to help optimise the learning experience for everyone involved.

3.6 If yes, what platforms would you use the app on?

This question was a huge surprise. I was absolutely shocked. In this day and age
I did not expect the divide so evenly split. I would’ve assumed it would be 75 / 25
mobile to web. This was a pleasant surprise as it showed that Web Applications
are still relevant in today’s market and encouraged me to make Classistant a
Web Application

3.7 Finally, any functionality you’d like to see added to an
application like this?

Classistant | Paul Reid | x14552067

 51 | P a g e

Above was an open-ended question left at the end. This question received 8
responses and was interesting to see the ideas other people had conceived
which could benefit my application. I will admit, most I didn’t even initially
consider so this was beneficial and eye opening.

3.8 Conclusions

The survey in my view was of huge benefit and helped me answer a number of
questions I had going into the project.

Q1 – Was there a requirement for an application like Classistant?

4 Conclusion

Classistant set out as a project to create a Web Application that would allow for
Students and Lecturers to interact in real-time. This was always the core goal
from the start. Naturally with any project, since conception the scope has grown
beyond reasonable achievement. However, having said that, I firmly believe
Classistant is a successful project and achieved what I initially set out to do.

Classistant | Paul Reid | x14552067

 52 | P a g e

The main goal as mentioned was real-time interactions and that feature is fully
implemented with no faults or errors. This to me marks it as a success.

I think over the course of the project though, there are many more hugely
beneficial features which could be implemented to improve the User
Experience and I feel almost disappointed in myself for not achieving all of these
stretch goals.

Although I say Classistant is a successful project, I am left questioning if it is a
complete product and honestly, I think the answer is no. Unfortunately, going into
my Final year as one of the top students, I was unable to perform to the best of
my abilities due to a number of factors, mostly to do with my personal life.

This left me at a huge disadvantage and quite literally months behind my peers. I
started the year in a traffic accident and ended it with a sold childhood home,
packed and ready to be left behind. The year has been quite frankly, emotional
and quite a difficult journey but I’m glad I at least showed perseverance and
pushed through to get it finished instead of deferring. I think it is unfortunate
however, that due to the weighting of the project, a first is realistically
unachievable, despite a peak average grade of 86%.

After putting the situation into context, I am happy to conclude my report by
saying the Classistant project was a success, a journey and a wonderful learning
experience. Although it didn’t quite reach its full potential, the experience I gained
on my journey to the end has been unrivalled. I managed to learn Ruby on Rails,
PostgreSQL, Coffeescript and a number of other languages in literally weeks and
develop a fully working application which is deployed to the cloud.

I have no doubt if Classistant was to go forward into the future as a live product, it
would grow and succeed in providing the sought-after experience/functionalities
and it would prove my initial theory which lead to the conception of the project.

5 Further Development or Research

5.1 More Sophisticated Email System

I would love to implement a more dynamic email system which is properly
implemented using the Observer pattern. This would listen out for events in the
system (Such as a class finishing)

5.2 More Sophisticated Badge System

I think creating custom badges for classes would be a fantastic idea. Lecturer
definable badges with custom triggers for achievement. I would also create
models for the badges to simplify the logic immensely

Classistant | Paul Reid | x14552067

 53 | P a g e

5.3 Additional Interactions

It would be interesting to try implement different interactions a Lecturer can have
with a student and potentially some reverse actions that a student can post to a
lecturer.

5.4 Implementation of multiple Graphs / Charts

Inclusion of more types of charts rather than the standard two in the system
would be a nice feature. The way I envisioned this working was to have a
bootstrap tabbed / pill view where you can click between the graphs in different
views.

5.5 Customisable Dashboard

The ability to dynamically rearrange your dashboard and have the layout save
would be fantastic. Customising the background image would be a nice touch as
well.

5.6 Upload custom class icons

An image upload field on a class form would be a nice addition so lecturers can
set their own class icons. I believe there are gems to make this incredibly simple.

5.7 User profile picture

Allow users to upload a profile picture in a similar manner to Class Icons

5.8 Messaging system

Implement an internal mail system for outside of class communications with
students and lecturers

5.9 Integration to 3rd party systems such as Moodle

Allow Classistant to be readily available and accessible through Moodle, perhaps
on a classes page, or automatically set up based on a Moodle classes
configuration.

5.10 Mobile Applications

Developing phone applications would probably increase the incentive to use the
Application instead of relying on users to go out of their way to open the website,
login and get started.

Classistant | Paul Reid | x14552067

 54 | P a g e

5.11 API Implementation

Given an appropriate authorisation key, an organisation, such as NCI, could
consume data from the application for reporting. This would include but not be
limited to

 Student attendance

 Student performance

 Data relates to Class Sessions

5.12 Class Forums

Forums would allow students to interact with not only the lecturer but with each
other outside of class and might be an interesting way for students to cooperate
and learn together.

6 References

6.1 Websites Used

Baimas, V. (2018). flatuicolorpicker : Best Flat Colors For UI Design. [online]

flatuicolorpicker : Best Flat Colors For UI Design. Available at:
http://www.flatuicolorpicker.com/ [Accessed 1 Jan. 2018].

Blog.heroku.com. (2018). Real-Time Rails: Implementing WebSockets in Rails 5
with Action Cable. [online] Available at:
https://blog.heroku.com/real_time_rails_implementing_websockets_in_rails_
5_with_action_cable [Accessed 4 Apr. 2018].

Chartkick.com. (2018). Chartkick - Create beautiful JavaScript charts with one
line of Ruby. [online] Available at: https://www.chartkick.com/ [Accessed 21
Apr. 2018].

Coffeescript.org. (2018). CoffeeScript. [online] Available at: http://coffeescript.org/
[Accessed 9 Apr. 2018].

CSS-Tricks. (2018). jQuery with CoffeeScript | CSS-Tricks. [online] Available at:
https://css-tricks.com/jquery-coffeescript/ [Accessed 8 May 2018].

Edgeguides.rubyonrails.org. (2018). Action Cable Overview — Ruby on Rails
Guides. [online] Available at:
http://edgeguides.rubyonrails.org/action_cable_overview.html#client-server-
interactions-subscriptions [Accessed 12 Apr. 2018].

Flaticon. (2018). Flaticon, the largest database of free vector icons. [online]
Available at: https://www.flaticon.com/ [Accessed 1 Jan. 2018].

Classistant | Paul Reid | x14552067

 55 | P a g e

Getbootstrap.com. (2018). Bootstrap · Content moved. [online] Available at:
https://getbootstrap.com/docs/4.0 [Accessed 1 Jan. 2018].

GitHub. (2018). Best method to update chart data dynamically · Issue #304 ·
ankane/chartkick. [online] Available at:
https://github.com/ankane/chartkick/issues/304 [Accessed 20 Apr. 2018].

Guides.rubyonrails.org. (2018). Active Record Query Interface — Ruby on Rails
Guides. [online] Available at:
http://guides.rubyonrails.org/active_record_querying.html [Accessed 3 Apr.
2018].

jquery.org, j. (2018). jQuery API Documentation. [online] Api.jquery.com.
Available at: http://api.jquery.com/ [Accessed 1 Jan. 2018].

June 13, 2. (2018). Make Easy Graphs and Charts on Rails with Chartkick —
SitePoint. [online] SitePoint. Available at: https://www.sitepoint.com/make-
easy-graphs-and-charts-on-rails-with-chartkick/ [Accessed 19 Apr. 2018].

Mark Otto, a. (2018). CSS · Bootstrap. [online] Getbootstrap.com. Available at:
https://getbootstrap.com/docs/3.3/css/ [Accessed 1 Jan. 2018].

Pluralsight.com. (2018). Creating a chat using Rails' Action Cable | Pluralsight.
[online] Available at: https://www.pluralsight.com/guides/creating-a-chat-
using-rails-action-cable [Accessed 4 Apr. 2018].

Ruby-for-beginners.rubymonstas.org. (2018). Instance variables | Ruby for
Beginners. [online] Available at: http://ruby-for-
beginners.rubymonstas.org/writing_classes/instance_variables.html
[Accessed 1 Apr. 2018].

W3schools.com. (2018). HTML Color Picker. [online] Available at:
https://www.w3schools.com/colors/colors_picker.asp [Accessed 1 Jan.
2018].

6.2 Stack Overflow Posts viewed

https://stackoverflow.com/questions/36455077/find-records-whose-attributes-
after-some-change-is-equal-to-something

https://stackoverflow.com/questions/13644562/dynamically-add-embedded-ruby-
with-jquery-html

https://stackoverflow.com/questions/36455077/find-records-whose-attributes-after-some-change-is-equal-to-something
https://stackoverflow.com/questions/36455077/find-records-whose-attributes-after-some-change-is-equal-to-something
https://stackoverflow.com/questions/13644562/dynamically-add-embedded-ruby-with-jquery-html
https://stackoverflow.com/questions/13644562/dynamically-add-embedded-ruby-with-jquery-html

Classistant | Paul Reid | x14552067

 56 | P a g e

https://stackoverflow.com/questions/13831601/disabling-and-enabling-a-html-
input-button/13831737

https://stackoverflow.com/questions/23610012/how-to-bind-an-jquery-onclick-
event-with-coffeescript-in-rails

https://stackoverflow.com/questions/16267577/change-content-of-a-p-tag-using-
jquery

https://stackoverflow.com/questions/3025784/rails-layouts-per-action

https://stackoverflow.com/questions/17765249/generate-migration-create-join-
table

https://stackoverflow.com/questions/36926816/actioncable-how-to-use-dynamic-
channel

https://stackoverflow.com/questions/8108511/how-to-access-instance-variables-
in-coffeescript-engine-inside-a-slim-templates

https://stackoverflow.com/questions/13831601/disabling-and-enabling-a-html-input-button/13831737
https://stackoverflow.com/questions/13831601/disabling-and-enabling-a-html-input-button/13831737
https://stackoverflow.com/questions/23610012/how-to-bind-an-jquery-onclick-event-with-coffeescript-in-rails
https://stackoverflow.com/questions/23610012/how-to-bind-an-jquery-onclick-event-with-coffeescript-in-rails
https://stackoverflow.com/questions/16267577/change-content-of-a-p-tag-using-jquery
https://stackoverflow.com/questions/16267577/change-content-of-a-p-tag-using-jquery
https://stackoverflow.com/questions/3025784/rails-layouts-per-action
https://stackoverflow.com/questions/17765249/generate-migration-create-join-table
https://stackoverflow.com/questions/17765249/generate-migration-create-join-table
https://stackoverflow.com/questions/36926816/actioncable-how-to-use-dynamic-channel
https://stackoverflow.com/questions/36926816/actioncable-how-to-use-dynamic-channel
https://stackoverflow.com/questions/8108511/how-to-access-instance-variables-in-coffeescript-engine-inside-a-slim-template
https://stackoverflow.com/questions/8108511/how-to-access-instance-variables-in-coffeescript-engine-inside-a-slim-template
https://stackoverflow.com/questions/36926816/actioncable-how-to-use-dynamic-channels

Classistant | Paul Reid | x14552067

 57 | P a g e

7 Appendix

In order of Appearance

1. Project Proposal & Project Plan
2. Project Requirements Specification
3. Monthly Journals

Classistant | Paul Reid | x14552067

 58 | P a g e

Classistant | Paul Reid | x14552067

 59 | P a g e

Classistant | Paul Reid | x14552067

 60 | P a g e

Classistant | Paul Reid | x14552067

 61 | P a g e

CLASSISTANT
Technical Report

Paul Reid | x14552067
paulreid96@gmail.com

Abstract
Classistant is a Real-time Responsive Web Application which aims to increase Student – Lecturer

engagement during classes by digitizing communications and offering anonymity options in order
to negate social anxiety experienced by students

BSc (Hons) in Computing

Internet of Things

2017/2018

Classistant | Paul Reid | x14552067

 62 | P a g e

Objectives

8 Background

Throughout my entire academic career, I have seen time and time again the
scenario of a Teacher or Lecturer teaching content when the class does not fully
understand. There is always the dreaded question asked, “Does everybody
understand?” or “Can I move on?”.

These questions are extremely difficult for students to answer and 9 times out of
10, a student will say nothing and allow the class to continue, despite their
difficulties or not fully understanding the topics covered.

I believe students will not raise their hands and ask questions or say they don’t
understand due to social anxiety. Very few people will find it difficult to raise their
hand in front of a class of 20 or 30, never mind 70, 150 or more. This is because
students fear judgment from their peers, not knowing how others will react to their
questions. Students feel like they are admitting defeat or being stupid by asking a
lecturer to repeat content. This however, is absolutely not the case and chances
are if one student feels this way in the class, many others secretly do too.

During my time studying as a Computing student in college, I have worked as a
Support Lecturer in the Colleges Computing Support Office. Some of my classes
and support sessions that I have had to give, have been online. This means my
screen is streamed live as well as my microphone, and I can deliver content to
anyone who logs into my class.

I have personally found that when I am delivering content online, I get a large
amount of questions from almost every student in the class. I believe this to be
because of the lack of any social anxiety of sitting in a physical room full of real
people. Students can simply hide behind their screen and type away and the only
thing anyone else will see is some text on a screen. Compare this to any in-
person classes I deliver and I would get very few questions, maybe 5 or 6 per
session as opposed to 30 or 40, sometimes even more.

To rectify this issue, I have come up with the idea of a Virtual Classroom (VC)
and Teaching Assistant. The idea of my project is to allow students to
anonymously (or otherwise, if chosen), can interact with the person delivering
content, in a real-time virtual environment.

The application will allow a Virtual Classroom (VC) to be created. The lecturer
who is delivering content to the class will be able to manage the room and the
students in their class will be able to join and interact with the lecturer. The virtual
room will allow students to provide real-time feedback on content, through the
use of “Yes/No” questions, quizzes, challenges, and many more features.

Classistant | Paul Reid | x14552067

 63 | P a g e

Creating such a scenario where every student has the chance to interact with the
lecturer anonymously or otherwise, without having to physically draw attention to
themselves, should increase the amount of student interaction and feedback
exponentially.

9 Technical Approach

Research
When I initially conceived the idea for my project, I carried out some research in
the area of my project. I examined existing systems and products that were
similar and worked out what I considered to be the pros and cons of each. I then
asked peers as well as colleagues (Lecturers) what their thoughts and
experiences were using 3rd party software to assist in the teachings of their
classes. I then ran a Survey amongst my peers in my class to how they would
react. The responses I received were extremely positive.

Requirements Definition
Upon concluding my research, I decided to formally lay out what my
requirements would be for the System. I also arranged formal meetings with the
Lecturer in charge of the Student Support Office who had been wanting to do a
similar style project for years. I made the decision to use him as a client for my
project and elicited some of my requirements through him.

Prototype Development & Technology Research
The application needs to be lightweight fast and run in real-time in a web based
environment. I intend to trial and error various implementations of this type of
functionality to see which is the most flexible, easy to use and stable as well as
scalable.

Once I have determined the approach I want to take, I will begin developing a
prototype which focuses on simple functionality, purely to convey the idea of my
project. The hope is to be able to instil the vision of the final product.

Milestones
I have set myself a series of Milestones / Deliverables that I will aim to achieve
during the development of my Project. This will help keep me on track for the
duration of the development of my project.

Once I begin prototyping and Developing my end solution, I will know the full
extent of what I need to achieve in order to deliver an end product.

Trials & Testing

Classistant | Paul Reid | x14552067

 64 | P a g e

The final stage of my project will be to test the full project, seeing if I can overload
and break the System, as well as perform simple testing to find basic bugs or
errors such as typos or flaws in logic.

I will then hopefully trial the System with a small group of students to see if they
find the System easy to use and beneficial.

10 Special resources required

I will be using Cloud9 to develop my project. However, this may severely limit my
features so I may need to purchase a domain or server to host my project on so I
can develop the full suite of functionality that I am aiming for.

I am also using the Service PubNub. As I get into the development of my project I
may need to consider getting a premium account.

Classistant | Paul Reid | x14552067

 65 | P a g e

11 Project Plan

Classistant | Paul Reid | x14552067

 66 | P a g e

12 Technical Details

Due to the nature of the project, the ability to consume and display information in
real-time is crucial. In order to implement real time data consumption on a web
page I have to create a program that uses sockets or an API.

I researched into the approaches and did some trials and I found using a
message based service was the best suited for what I want. This allows me to
rapidly develop new functionality by just changing the content of any messages I
send to the system.

The implementation uses HTML for the front end of my application. The back end
is written in JavaScript, JQuery. My database will be made using SQL and most
importantly, I am using a service called PubNub to handle my message system.

PubNub I found is a perfect fit for my needs as it operates in real-time, allows me
to integrate with multiple languages, gives me total control over the messages
and their format and contents and it also allows me to scale the system up.

The basic premise of the implementation is that a lecturer creates a virtual
classroom which the students then subscribe to. This subscription is allowing me
to send data between lecturers and students and allows them to interact.

The system will know what classes are on what “Channel” in the System and will
only send data relevant to classes on the classes channel. This basically means
there will never be an overlap of data or data being send to the wrong location.

This also allows me to just create more channels or codes for classes and I can
listen out for any messages being sent and only read messages relevant to the
subscription.

The front end of my application as mentioned, is developed in HTML. I am using
Twitter Bootstrap to create a responsive web application. This should allow for
the use of my application on mobile devices.

I also make use of JQuery to add some fluidity to my User Interface. The goal of
JQuery combined with Bootstrap is to create a simple, aesthetically pleasing
User Interface that is naturally intuitive to use no matter who the user is. This
means no training would be required to use the System.
The Application also uses Highcharts, a Graphing framework that allows for
dynamic charts and graphs to be displayed and updated on a Web Page.

Programming Languages JavaScript

Classistant | Paul Reid | x14552067

 67 | P a g e

JQuery

SQL

HTML, CSS

Development Environments

Cloud9

SQL Workbench

Notepad++

Database MySQL

Platform Responsive Web Application

13 Evaluation

I plan to perform unit tests on the back-end code, to ensure it works as expected.
These will be small tests of specific parts of functionality such as functions and
methods, to insure, given a specific input, a desired output / outcome is returned.

Once the back-end is reaching a point of completion, I will then run integration
tests to make sure PubNub is working fine with my framework as well as the
Database is connecting and adding / removing without any issues.

The majority of System Evaluation however, will be manual testing. Due to the
nature of the System it will require me to login as a Lecturer and Student and
simply test the interactions and functionality.

I also plan to stress test the System to see if I can overload or overwhelm it with
requests and see if I can find an upper limit of class size. I feel because I am
using a free service, it may not handle 100 simultaneous requests with ease,
although I may have found a workaround.

Finally, I plan to try run a test “Class” with some peers to see how the System
performs and if they actually find the System easy to use / Intuitive, if they would
actually use the System in a real-life scenario and elicit comments and feedback.

Classistant | Paul Reid | x14552067

 68 | P a g e

National College of Ireland

BSc in Computing

2017/2018

Paul Reid

14552067

paulreid96@gmail.com

Classistant

Technical Report

Table of Contents

1 TABLE OF CONTENTS .. 2

EXECUTIVE SUMMARY... 5

1. INTRODUCTION ... 6
1.1 BACKGROUND ... 6
1.2 AIMS ... 7
1.3 TECHNOLOGIES ... 8
1.4 STRUCTURE .. 10

2 SYSTEM.. 11
2.1 REQUIREMENTS ... 11

2.1.1 Functional Requirements Error! Bookmark not defined.
2.1.2 Data Requirements .. 15
2.1.3 User Requirements .. 16
2.1.4 Environmental Requirements ... 16
2.1.5 Usability Requirements .. 16

2.2 DESIGN AND ARCHITECTURE .. 18
2.2.1 Classistant Application Architecture ... 18
2.2.2 Classistant Application Entity Relationship Diagram................................... 19
2.2.3 Core Components .. 20

2.3 CODE SNIPPETS AND EXPLANATION .. 27
2.4 GRAPHICAL USER INTERFACE ... 30
2.5 TESTING ... 44
2.6 EVALUATION .. ERROR! BOOKMARK NOT DEFINED.

3 CONCLUSIONS .. 51

4 FURTHER DEVELOPMENT OR RESEARCH .. 52

5 REFERENCES .. 54
5.1 WEBSITES USED.. 54
5.2 STACK OVERFLOW POSTS VIEWED ... 55

6 APPENDIX .. 57

OBJECTIVES ... 62

7 BACKGROUND .. 62

8 TECHNICAL APPROACH .. 63

9 SPECIAL RESOURCES REQUIRED .. 64

10 PROJECT PLAN ... 65

11 TECHNICAL DETAILS .. 66

12 EVALUATION ... 67

EXECUTIVE SUMMARY... 70

1 INTRODUCTION ... 71
1.1 BACKGROUND ... 71
1.2 AIMS ... 72
1.3 TECHNOLOGIES ... 72
1.4 APPROACH .. 73

Classistant | Paul Reid | x14552067

 70 | P a g e

2 SYSTEM.. 75
2.1 REQUIREMENTS ... 75

2.1.1 Use Case Diagram ... 75
2.1.2 Requirement 1 <Classistant - Login – Use Case> 76
2.1.3 Requirement 1 <Classistant - Profile – Use Case> 77
2.1.4 Requirement 1 <Classistant – Classroom View – Use Case> 78
2.1.5 Requirement 1 <Classistant - Dashboard – Use Case> 80

2.2 NON-FUNCTIONAL REQUIREMENTS ... 81
2.2.1 Performance/Response time requirement .. 81
2.2.2 Availability requirement .. 81
2.2.3 Recover requirement .. 81
2.2.4 Portability requirement ... 82
2.2.5 Extendibility requirement .. 82

2.3 DESIGN AND ARCHITECTURE .. 83
2.4 IMPLEMENTATION... 83
2.5 GRAPHICAL USER INTERFACE (GUI) LAYOUT .. 83
2.6 EVALUATION .. 86

3 CONCLUSIONS .. 87

4 FURTHER DEVELOPMENT OR RESEARCH .. 88

Executive Summary
The Purpose of this Executive Summary is to give you an insight into what
Classistant is and what it is trying to achieve. Classistant is a Responsive Web
Application which allows Students and Lecturers digitally interact with each other
during class time as well as outside of class. The goal is to digitise some of the
typical social interaction in the classroom to remove social anxiety from students
and allow them to speak out and ask questions without outing themselves to a
large group of peers.

The reason for this is that Students are reportedly more likely to ask questions
when they don’t have to hold up their hand or bring a classroom to a total halt
while they ask a question. Students feel that by asking a question they are
admitting defeat or painting themselves as inferior than the rest but in reality, if
the student has a question, chances are they are not the only one with that
question.

The Application is developed to be a responsive Web Based Application. The
interactions between Students and Lecturers happen in real time and the
Lecturer can see feedback from the class as well as questions being asked,
responses to Polls or Quizzes they may be running and so much more.

This data is all collected so lecturers can later report on the data. Seeing a trend
of a student constantly voting they “Do not Understand” the content being
delivered is vital as it can allow the Institution to reach out to that student and
provide any help they need to bring them back up to speed.

1 Introduction

1.1 Background

Throughout my entire academic career, I have seen time and time again the
scenario of a Teacher or Lecturer teaching content when the class does not fully
understand. There is always the dreaded question asked, “Does everybody
understand?” or “Can I move on?”.

These questions are extremely difficult for students to answer and 9 times out of 10,
a student will say nothing and allow the class to continue, despite their difficulties or
not fully understanding the topics covered.

I believe students will not raise their hands and ask questions or say they don’t
understand due to social anxiety. Very few people will find it difficult to raise their
hand in front of a class of 20 or 30, never mind 70, 150 or more. This is because
students fear judgment from their peers, not knowing how others will react to their
questions. Students feel like they are admitting defeat or being stupid by asking a
lecturer to repeat content. This however, is absolutely not the case and chances are
if one student feels this way in the class, many others secretly do too.

During my time studying as a Computing student in college, I have worked as a
Support Lecturer in the Colleges Computing Support Office. Some of my classes and
support sessions that I have had to give, have been online. This means my screen is
streamed live as well as my microphone, and I can deliver content to anyone who
logs into my class.

I have personally found that when I am delivering content online, I get a large
amount of questions from almost every student in the class. I believe this to be
because of the lack of any social anxiety of sitting in a physical room full of real
people. Students can simply hide behind their screen and type away and the only
thing anyone else will see is some text on a screen. Compare this to any in-person
classes I deliver and I would get very few questions, maybe 5 or 6 per session as
opposed to 30 or 40, sometimes even more.

To rectify this issue, I have come up with the idea of a Virtual Classroom (VC) and
Teaching Assistant. The idea of my project is to allow students to anonymously (or
otherwise, if chosen), can interact with the person delivering content, in a real-time
virtual environment.

The application will allow a Virtual Classroom (VC) to be created. The lecturer who is
delivering content to the class will be able to manage the room and the students in
their class will be able to join and interact with the lecturer. The virtual room will allow
students to provide real-time feedback on content, through the use of “Yes/No”
questions, quizzes, challenges, and many more features.

Creating such a scenario where every student has the chance to interact with the
lecturer anonymously or otherwise, without having to physically draw attention to

Classistant | Paul Reid | x14552067

 72 | P a g e

themselves, should increase the amount of student interaction and feedback
exponentially.

1.2 Aims

The scope of the project is to develop a Web Application for the purposes and needs
outlined above.

The primary goal is to create an application that provides a Student with an outlet to
interact with the class he is currently sitting in without the fear or anxiety of raising
his hand or stopping the class to ask a question.

1.3 Technologies

Due to the nature of the project, the ability to consume and display information in
real-time is crucial. In order to implement real time data consumption on a web page
I have to create a program that uses sockets or an API.

I researched into the approaches and did some trials and I found using a message
based service was the best suited for what I want. This allows me to rapidly develop
new functionality by just changing the content of any messages I send to the system.

The implementation uses HTML for the front end of my application. The back end is
written in JavaScript, JQuery. My database will be made using SQL and most
importantly, I am using a service called PubNub to handle my message system.

PubNub I found is a perfect fit for my needs as it operates in real-time, allows me to
integrate with multiple languages, gives me total control over the messages and their
format and contents and it also allows me to scale the system up.

The basic premise of the implementation is that a lecturer creates a virtual classroom
which the students then subscribe to. This subscription is allowing me to send data
between lecturers and students and allows them to interact.

The system will know what classes are on what “Channel” in the System and will
only send data relevant to classes on the classes channel. This basically means
there will never be an overlap of data or data being send to the wrong location.

This also allows me to just create more channels or codes for classes and I can
listen out for any messages being sent and only read messages relevant to the
subscription.

The front end of my application as mentioned, is developed in HTML. I am using
Twitter Bootstrap to create a responsive web application. This should allow for the
use of my application on mobile devices.

I also make use of JQuery to add some fluidity to my User Interface. The goal of
JQuery combined with Bootstrap is to create a simple, aesthetically pleasing User

Classistant | Paul Reid | x14552067

 73 | P a g e

Interface that is naturally intuitive to use no matter who the user is. This means no
training would be required to use the System.

The Application also uses Highcharts, a Graphing framework that allows for dynamic
charts and graphs to be displayed and updated on a Web Page.

1.4 Approach

Research
When I initially conceived the idea for my project, I carried out some research in the
area of my project. I examined existing systems and products that were similar and
worked out what I considered to be the pros and cons of each. I then asked peers as
well as colleagues (Lecturers) what their thoughts and experiences were using 3rd
party software to assist in the teachings of their classes. I then ran a Survey amongst
my peers in my class to how they would react. The responses I received were
extremely positive.

Requirements Definition
Upon concluding my research, I decided to formally lay out what my requirements
would be for the System. I also arranged formal meetings with the Lecturer in charge
of the Student Support Office who had been wanting to do a similar style project for
years. I made the decision to use him as a client for my project and elicited some of
my requirements through him.

Prototype Development & Technology Research
The application needs to be lightweight fast and run in real-time in a web based
environment. I intend to trial and error various implementations of this type of
functionality to see which is the most flexible, easy to use and stable as well as
scalable.

Once I have determined the approach I want to take, I will begin developing a
prototype which focuses on simple functionality, purely to convey the idea of my
project. The hope is to be able to instil the vision of the final product.

Classistant | Paul Reid | x14552067

 74 | P a g e

Milestones
I have set myself a series of Milestones / Deliverables that I will aim to achieve
during the development of my Project. This will help keep me on track for the
duration of the development of my project.

Once I begin prototyping and Developing my end solution, I will know the full extent
of what I need to achieve in order to deliver an end product.

Trials & Testing
The final stage of my project will be to test the full project, seeing if I can overload
and break the System, as well as perform simple testing to find basic bugs or errors
such as typos or flaws in logic.

I will then hopefully trial the System with a small group of students to see if they find
the System easy to use and beneficial.

Classistant | Paul Reid | x14552067

 75 | P a g e

2 System

2.1 Requirements

2.1.1 Use Case Diagram

Each requirement should be uniquely identified with a sequence number or a
meaningful tag of some kind.
The Use Case Diagram provides an overview of all functional requirements.

Classistant | Paul Reid | x14552067

 76 | P a g e

2.1.2 Requirement 1 <Classistant - Login – Use Case>

2.1.2.1 Description & Priority

The Login use case covers the functionality of the main landing page of the
Classistant Application. This provides the means to authenticate a user’s details and
allow them access to the system and its core functionality. This is the only point of
access.

2.1.2.2 Use Case

Each requirement should be uniquely identified with a sequence number or a
meaningful tag of some kind.
Scope
The scope of this use case is to define the Login use case
Description
This use case describes the process of a user logging into the application.
Use Case Diagram

Flow Description

Precondition
The user is not logged in and needs to partake in a class.

Activation
This use case starts when the User opens the Classistant website
Main flow

1. The Web Application presents the User with the login page
2. The User puts in their Username
3. The User puts in their Password
4. The User clicks the Login Button
5. The System accepts the Users credentials as valid and authenticates

the user, progressing them to the correct screen
Alternate flow

Classistant | Paul Reid | x14552067

 77 | P a g e

A1 : Login Error – Invalid Credentials

1. The Web Application presents the User with the login page
2. The User puts in their Username
3. The User puts in their Password
4. The User clicks the Login Button
5. The System rejects the User credentials as they are invalid, and prompts

the user to re-enter their credentials and try again.
Termination
The system accepts the Users credentials and progresses the User to the
correct screen.

Post condition
The User Progresses to the next step of their requirement

2.1.3 Requirement 1 <Classistant - Profile – Use Case>

2.1.3.1 Description & Priority

The Profile Use Case describes the available options to the User upon successfully
logging into their Account (See Login Use Case).

2.1.3.2 Use Case

Each requirement should be uniquely identified with a sequence number or a
meaningful tag of some kind.

Scope
The scope of this use case is to elaborate on the options presented to the User
when they are looking at their Profile

Description
This use case describes the actions behind each option presented on the
profile

Use Case Diagram

Classistant | Paul Reid | x14552067

 78 | P a g e

Flow Description

Precondition
The User has successfully completed the Login Use Case

Activation
This use case starts when the User is presented with the Profile Page
Main flow

1. The System presents the User with the options for “Class List”, “Badges
Earned”, “Account Settings” and “Logout”

2. The user selects one of the presented options
3. The System redirects the user to the appropriate Page for that option

Alternate flow
A1 : Logout

1. The User decides they want to log out
2. The User clicks the Logout button
3. The user is Logged out of the System

Termination
The system responds correctly to the selection of the User and redirects them
accordingly to the respective page

Post condition
The User Progresses to the next Use Case relevant to their selection

2.1.4 Requirement 1 <Classistant – Classroom View – Use Case>

2.1.4.1 Description & Priority

Classistant | Paul Reid | x14552067

 79 | P a g e

The Classroom View Use Case describes the available options to the User upon
opening the Classroom View

2.1.4.2 Use Case

Each requirement should be uniquely identified with a sequence number or a
meaningful tag of some kind.

Scope
The scope of this use case is to elaborate on the options presented to the User
when they are looking at the Classroom View

Description
This use case describes the actions behind each option presented in the
Classroom View

Use Case Diagram

Flow Description

Precondition
The User has successfully completed the Login Use Case

Activation
This use case starts when the User is presented with the Classroom View
Main flow

1. The User is presented with a View of the Virtual Classroom created
by the Admin (Lecturer)

2. The User interacts with the Polls, Quizzes, Surveys, Races, Chat,
Questions

3. The User receives interactions and responses in real-time from
their Admin (Lecturer)

Alternate flow
A1 : Exiting

1. The User redirects themselves away from the Classroom View page

Classistant | Paul Reid | x14552067

 80 | P a g e

2. The page is closed

Termination
The system responds correctly to the actions of the User until the session is
ended by an Admin.

Post condition
The System waits for another Session to begin

2.1.5 Requirement 1 <Classistant - Dashboard – Use Case>

2.1.5.1 Description & Priority

The Dashboard Use Case describes the available options to the Admin upon
opening the Dashboard Page

2.1.5.2 Use Case

Each requirement should be uniquely identified with a sequence number or a
meaningful tag of some kind.

Scope
The scope of this use case is to elaborate on the options presented to the
Admin when they are looking at their Dashboard

Description
This use case describes the actions behind each option presented on the
Dashboard

Use Case Diagram

Flow Description

Classistant | Paul Reid | x14552067

 81 | P a g e

Precondition
The Admin has successfully completed the Login Use Case

Activation
This use case starts when the User is presented with the Dashboard Page
Main flow

1. The System presents the Admin with the options for “Class List”, “Manage
Students”, “Manage Modules”, “Account Settings” and “Logout”

2. The Admin selects one of the presented options
3. The System redirects the Admin to the appropriate Page for that option

Alternate flow
A1 : Logout

4. The Admin decides they want to log out
5. The Admin clicks the Logout button
6. The Admin is Logged out of the System

Termination
The system responds correctly to the selection of the Admin and redirects them
accordingly to the respective page

Post condition
The Admin Progresses to the next Use Case relevant to their selection

2.2 Non-Functional Requirements

Specifies any other particular non-functional attributes required by the system.
Examples are provided below. Remove the requirement headings that are not
appropriate to your project.

2.2.1 Performance/Response time requirement

It is important for the System to perform efficiently. The premise of the System is to
allow for real-time interaction between Students and their Lecturers / Teachers. This
means the System must have an incredibly fast response time in order to meet the
aforementioned needs.

2.2.2 Availability requirement

Ideally, the System should be available almost 24/7. However, this would be down to
the individual deployment of the System on an Institution by Institution basis. Due to
the nature of Education, classes could be running at any hour of the day so the
System must be online and available, ready to support any and all classes.

2.2.3 Recover requirement

The System should take redundancy into account and allow for backing up and
recovery of all Student data lost in the event of a disaster.

Classistant | Paul Reid | x14552067

 82 | P a g e

2.2.4 Portability requirement

The System is a light weight Web Based Application and Portability is essential in
order for the System to achieve its light weight goal as well as being easy to use.

2.2.5 Extendibility requirement

The System should be designed so any extensions of functionality are easy to
implement without having to refactor the whole System.

Classistant | Paul Reid | x14552067

 83 | P a g e

2.3 Design and Architecture

Above is a Diagram of the Systems Architecture. The reason I have chosen this
Architecture is because it is a lightweight, and simple Architecture. I have tried to
keep it as simple as possible so it can be deployed without a lot of exterior resources
required.

This Architecture also allows me to quickly and easily carry out the exact
functionality I have outlined, allowing the Web based Client to interact with the Web
Server in real time with little to no delay.

2.4 Implementation

Describe the main algorithms/classes/functions used in the code. Consider to show
and explain interesting code snippets where appropriate.

2.5 Graphical User Interface (GUI) Layout

Classistant | Paul Reid | x14552067

 84 | P a g e

Lecturer Dashboard View

Lecturer Classroom View – Pre Poll

Classistant | Paul Reid | x14552067

 85 | P a g e

Lecturer Classroom View – During Poll

Student Classroom View – Pre poll

Classistant | Paul Reid | x14552067

 86 | P a g e

Student Classroom View – During Poll

2.6 Evaluation

I plan to perform unit tests on the back-end code, to ensure it works as expected.
These will be small tests of specific parts of functionality such as functions and
methods, to insure, given a specific input, a desired output / outcome is returned.

Once the back-end is reaching a point of completion, I will then run integration tests
to make sure PubNub is working fine with my framework as well as the Database is
connecting and adding / removing without any issues.

The majority of System Evaluation however, will be manual testing. Due to the
nature of the System it will require me to login as a Lecturer and Student and simply
test the interactions and functionality.

I also plan to stress test the System to see if I can overload or overwhelm it with
requests and see if I can find an upper limit of class size. I feel because I am using a
free service, it may not handle 100 simultaneous requests with ease, although I may
have found a workaround.

Finally, I plan to try run a test “Class” with some peers to see how the System
performs and if they actually find the System easy to use / Intuitive, if they would
actually use the System in a real-life scenario and elicit comments and feedback.

Classistant | Paul Reid | x14552067

 87 | P a g e

3 Conclusions

The Project, like any other project, has many Advantages and Disadvantages.

Advantages

 Increase Student < - > Lecturer Interaction

 Web Based - Works on Phone, Tablet or PC

 Responsive

 Real Time – You can see how your class is performing in real-time

 Analytics on responses allows actions to be taken on struggling students and
provide extra help

Disadvantages

 No Mobile Application

 Inconvenient to some (Opening web page every time you need to use it)

 No API

 No Integrations with 3rd Party Systems (Moodle etc.)

Opportunities

 Ability to sell the System / Subscriptions as a product to Education Instruments

 Develop an API to Interface with 3rd Party Apps

 Integration into Services like Moodle

 Develop Mobile Applications for both Android and iOS

Limits

 Application is Web Based

 Majority of the Application is developed with JavaScript

 Class sizes of hundreds may slow System

Classistant | Paul Reid | x14552067

 88 | P a g e

4 Further development or research

With more Research, Time and Resources the Project has the scope to become
something far larger. The System could be sold on a Subscription model to any
Educational Institute.

The Project could be developed as a full Application for both Android and iOS. The
project could have a full-fledged Security System with Encryption. An API could be
developed to allow the Systems data to be consumed and outputted to other
services, as well as allow the application to consume data from other services.

The System could be integrated into a Service such as Moodle so all of the core
functionality could be accessed and used from the Moodle page of the class
Appendix

14 Monthly Journals

14.1 September Monthly Report

Unfortunately, this report is written retrospectively. The majority of September, for
me, was spent in hospital. I was travelling in a car as a passenger when another car
blindly pulled out in front. Thankfully, my father, a retired Garda of 30 years, had his
training kick in and he totally anticipated the situation and avoided a collision in a
safe and controller manner.

The unfortunate side effect however, was a severe case of Whiplash for me and a
damaged muscle all through my neck. I was taken by ambulance to Beaumont A&E
where I was treated and prescribed bed rest.

It wasn’t until late September I fully regained agility for the upper half of my body.
Even then, the pain from moving was substantial but life had to go on.

14.2 October Monthly Report

This month I actually regained movement to a tolerable extent and I was able to
attend college. It is unfortunate that despite continuous communication from people
on my behalf, the college labelled me as a “Dosser” and considered me a no show,
despite numerous emails sent from my student account detailing the situation. It is
nice to know how students with a consistently high grade average, achieving well
over a first class honours every year, are easily forgotten about and mistreated.

This month to be honest was incredibly stressful. No work has yet to be done on my
final project as projects are already due for my modules!

Classistant | Paul Reid | x14552067

 89 | P a g e

15.1 November Monthly Report

This month was my first month of productivity! I was able to finally get allocated an
informal slot to pitch my project presentation. Although this was unfair and left me at
a disadvantage as I didn’t have a panel to pitch to, Lisa, my project supervisor is an
absolute god send and she has really set me on track! She has motivated me to no
end and made me see light at the tunnel. I really am lucky to have been paired with
Lisa and dealing with her has been an absolute pleasure.

My Project has been approved and I will begin research into implementations
alongside catching up work from other modules. It is unfortunate that all my work has
just cascaded forward and it’s a near impossible balancing act. I will hopefully have
my prototype ready in time for the midpoint!

15.2 December Monthly Report

This year of college has been the absolute worst by far! I was coming into the
semester so excited and ready to work and I am just deflated, both by the lack of
understanding from NCIs Machine like Administration, at the best of times, and then
the sheer amount of deadlines.

I had to code a full AI for Chess, and Chess to play itself in a week, whereas my
peers were given over a month. I did it, but it’s just soul destroying.

Thankfully, I managed to get my Midpoint extended until after my Christmas Exams.
It looks like things may be doable. I just need to get through my currents CAs.

I researched into my implementation methods and have been weighing up my
options. It looks like I am going to use Pubnub’s JavaScript MQTT Library to handle
all of my real-time interactions.

15.3 January Monthly Report

I’m feeling good about this month. Lisa has been going above and beyond and has
my mind in a good place. I have a very basic prototype which in my view, is perfect
for demonstrating the exact concept and end goal I wish to achieve, which is the goal
of the Midpoint. It looks like I am ready to present.

The prototype is a simple website, built using just HTML, JS, CSS and Pubnub. All
development has been done in Cloud9. The application has a lecturer dashboard
and allows a lecturer to go into a classroom and publish data to students. Students
will see a poll being pushed to them in real-time, and can subsequently respond in
real-time. The lecturers Page has a graph which dynamically updates as poll
responses come in.

The presentation is closer to the end of the month. Wish me luck.

Classistant | Paul Reid | x14552067

 90 | P a g e

15.4 February Monthly Report

The midpoint went about how I expected, although the marks were disappointing to
say the least. This has left me with a lack of motivation as students with far less work
put in for their midpoint (read: no work) got a significantly higher mark.

However, life must go on. I must now balance my deliverables for my modules,
teaching support sessions part time to afford my commute to college and my final
year project. This is going to be a fun year.

15.5 March Monthly Report

This month I have made very little progress with my final year project. My aim is to
try finish all my deliverables for other modules to give myself a good enough run at
the software project.

It is unfortunate but my family must sell our home. This home has been my home
since I was a kid. Unfortunately, due to the health of my parents, a lot of work and
preparation will have to be carried out by me.

This leaves me with an unfortunate situation of now balancing Work to afford college,
Final Year Project, College Deliverables for modules and now packing up the house
and preparing for the sale of our home.

I am in good spirits though and I know Lisa has got my back and has total faith in
me, which is a boost. I have been reading into the implementation more and I
personally find thinking about a project at length and mapping the whole
implementation in my head overtime is hugely beneficial and will pay off
tremendously.

15.6 April Monthly Report

Wow, its April already! Time this year is absolutely flying. I have stopped teaching as
college is less frequent and I have saved enough to afford my remaining commutes.

I have totally scrapped the project. Yep, you read that right, in the bin.

I have been exposed to Ruby on Rails through my Cloud Application Development
module and it is a total eye opener and jaw dropper. I have never seen a framework
as powerful as Rails and I am so excited to get at it and develop the application.

I have decided although Pubnub is viable and adds complexity in so far as using
external services, I feel like using Sockets with Rails will be significantly better,
smoother, seamless and in my view, even more complex and you have to code a lot
of the functionality by hand that Pubnub would give for free. However, although
Pubnub offers real-time capabilities, it will not let me access application code behind
the scenes in real-time without the use of sockets anyway so it renders itself useless
for my purpose.

Classistant | Paul Reid | x14552067

 91 | P a g e

15.7 May Monthly Report

WOW. May. The final month. I never thought I’d see the day I’d be sitting down to
write my final Report to be honest.

First off, the house is sold!

The journey has been extremely tough but I am happy with myself for sticking true to
my guns and working through tough times. It has helped build me as a character,
both by adding my first grey hairs to my body, and by strengthening/toughening
when it comes to dealing with stress and focusing.

All of my projects are uploaded except for my Final Year Project. I cannot begin to
describe the adrenaline rush it gives me knowing I am almost at the finish line.

For my final sign off in my reports, would like to dedicate all my hard work and efforts
during these times to my family, who have supported me day in days out, morally,
emotionally and by bringing me endless amounts of cups of tea.

Finally, I don’t think I would’ve made it here today without the help and support of my
loving girlfriend of nearly 5 years, Bethany. Without Beth, the project would’ve simply
been an impossible mountain of work covered by stress and personal life. Beth has
stuck by my side through thick and thin and I owe her the world and more. She truly
has changed my life for the better. If you ever end up reading this Beth, I love you so
much and this is all for you.

Classistant | Paul Reid | x14552067

 92 | P a g e

16 Link to Project GitHub

https://github.com/x14552067/FinalYearProject

