National College of Ireland
BSc in Computing
2017/2018

Lee Murray
X14538387
X14538387@student.ncirl.ie

Heads-Up Hold’em

Technical Report

"-"l
\ National
Collegeof

Ireland

Declaration Cover Sheet for Project Submission

Name: Lee Murray

Student Number: x14538387

Supervisor: Vikas Sahni

Section 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following
declaration: | confirm that | have read the College statement on plagiarism
(summarized overleaf and printed in full in the Student Handbook) and that the

work | have submitted for assessment is entirely my own work.

Signature: Lee Murray Date: 13/05/2018

Table of Contents

EXECULIVE SUMIMAIY ...ttt e e e e e e e e e aaan e e e e e 6
N 01 1o To [0 [£ o ISR 7
I A = = Yod (o | £0] ¥ o PSRRI 7
O N 2 R 11
1.3 TECNNOIOGIES ... 12
) (o1 11 | PP 13
T) V1 (= 1 o U 13
I G (=T [V 1T 7=T 0 0 T=] £ 13
1.6.1 Functional reqUIrEMENTSccooeiiieiieeeeeeeeeeeeee e 13
1.6.2 USE CasSE DIagramcccoeieeieeeee oo 14
1.6.3 Requirement 1 <User Registration>...........ccccceeeeiiiiiiii e, 14
1.6.4 Requirement 2 KUSEr LOGIN>cooooiiiiiiiieeeeeeeeeeeeeeeeeeeeeee e 17
1.6.5 Requirement 3 <Betting Poker Configuration>....................ccoeeee. 19
1.6.6 Requirement 3 <Appearance Poker Configuration>........................ 21
1.6.7 Requirement 3 <Play Poker Menu>cccooeiiiiiieeee 23
1.6.8 Requirement 3 <Play Versus Al>ccccoiii 25
1.7 USEr REQUIFEIMENTScoiiiiiiiiii et e e 27
1.7.1 USEr reQUITEMENTSoii i 27
1.7.2 Environmental reqUIrEMENLSueiiiiieeiiiieeiice e 27
1.7.3 Usability requUIremMentS..........ccoorriiiiiiiiii e 28
1.8 Non-Functional REQUIFEMENTSuuuuimiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeaeeees 28
1.8.1 Performance/Response time requirement..............cccceevvvvvvviiieeeeennn. 28
1.8.2 Availability reqUIremMentcoovviiiiiiie e 29
1.8.3 Data reqUIrEMENTS.....cccoieeeeeeee e 29
1.8.4 SeCUrity reQUIrEMENTcieiieeeieeeecce e 29
1.8.5 Reliability reqUIremMent...........ccoeeeiiiiiii i 29
1.8.6 Maintainability requUIremMent ... 30
1.8.7 Portability requIirementccoooeiiiiii i, 30
1.8.8 Extendibility reqUIremMeNnt...........ccoovuiiiiiiiiiii e 30
1.9 Design and ArChitECIUIE.uuuuiiiiiiiiiiiiiiiiiiii e 32

1.10 IMPIEemMENtationccouuiiiiiii e 33

1.11 Graphical User Interface (GUI) LayOuUL.........ccoovvveiiiiiiiiieiiieeeeiiiiee e 44

I 5 = 1 o 52
I R B V- 0= 1T o ISR 56
1.14 Definitions, Acronyms, and Abbreviations............cccccoovviiiiiiiiiiiiineee, 57
CONCIUSIONS ... 60
Further development Or reSEarCh.............cuvviiiiii e e 62
2]] [oTe] =1 o]) 2P 63
AADPEINITIX e 68
5.1 Project Proposal ... 68
A = - 11 (o | (o 11] o 1R 69
5.3 Technical DetailSooieieiiiiiiiiiiiii e e e e e eeeees 73
I A e (o] [Tt = = o PPN 75
5.5 Monthly JOUMAIS.........cooiiiiiiiiiiii e 75

Executive Summary

In today’s world, Artificial Intelligence exists in every game we play. It was a
challenge for computer scientists to beat the professional players since computers
were invented. Many games are deterministic perfect information games like chess
or checkers where there is no chance and there is no any hidden information from
the opponent. This thesis investigates non-deterministic imperfect information
games like poker that are very popular in real world. There exists a technique that
calculates the strategies over time to win the player by reaching the Nash

equilibrium.

Poker is currently the world’s most played card game. Hundreds of thousands of
people play poker every day, and can play in a real-life environment or over the
internet using a distributed application running a simulation of the game. One of
the biggest reasons for poker’s recent success is its fundamental dynamics. The
‘hidden’ elements of the game means players must observe their opponent’s
characteristics to be able to arrive at good decisions, given their options. A very
good poker player will consistently dominate a sub-optimal opponent, although
stochastic elements apply heavy statistical variation to the game, allowing weak

players to win occasionally.

The game of poker offers a well-defined domain in which to investigate some
fundamental issues in computing science, such as how to handle deliberate
misinformation, and how to make intelligent guesses based on partial knowledge.
This project will aim to investigate what Atrtificial Intelligence techniques can be
applied to the domain in order to play up to a human standard of decision making.

The findings of the research have application beyond the realm of poker, and can
be applied to financial, weather and military domains, or more generally, any

domain with a nondeterministic outcome that incorporates stochastic elements.

1

Introduction

1.1 Background

In the domain of Artificial Intelligence there has been a plethora of games
that have been solved to date. Some examples of these agents are, IBM’s
“‘Deep Blue” for chess, The University of Alberta’s “Chinook” for checkers

and Michael Buro’s “Logistello” for Othello.

These agents have effectively solved those games and have beaten the
best human minds in the world, demonstrating the power of computational
processing. However, what all these games have in common is, they are all
“perfect information” games. Perfect information games refer to the game
in which each player, at any point in the game has complete knowledge of
the current game state. Games like Chess, Checkers and Backgammon are
“‘perfect information” games. Players who play these have perfect
knowledge of the game state as they can see all remaining pieces on the

game board.

Well known game-search trees, such as alpha-beta search can be used to
explore deep into the game tree to find and choose the worse-case action
the opponent cannot compete against.

In contrast to this, Poker is a “imperfect information” game, this means that
certain information within the game is private, in terms of poker, each player
receives private cards. As a result, no player can know the current position
in the game tree.

Poker is a non-deterministic game. A player’s actions within the poker

domain can never guarantee the same outcome.

Poker has stochastic outcomes. This element of change through random
shuffling of the cards creates uncertainty, and adds a great deal of variance

to the results.

Texas Hold’em is a poker variation that uses community cards. This variant
of Poker was chosen because its rules have specific characteristics that
allow new developed methodologies to be adapted to other Poker variations
with reduced effort.

Rules

At the beginning of every game, two cards are dealt to each player. The
dealer player is assigned and marked with a dealer button. The dealer
position rotates clockwise from game to game. After that, the two players
to the left of dealer post the blind bets. The first player is called small blind,
and the other one is called big blind. They respectively post half of
minimum and the minimum bet. The player that starts the game is the one
on the left of the big blind. One example of an initial table configuration is
shown in Figure 2. The dealer is the player at seat F and the small and big
blind players are respectively the A and B seats.

® O©

®
O

O,

O ® Figure 1: Table Structure

Table Layout

The first player to act is the player to the left of the big blind (Player C)
And the next player is the closest one to the left of the current player. Each
player can choose one of the following actions

e Call: Match the current highest bet
e Raise: Bet higher than the current highest bet
e Fold: Forfeit the hand, thus give up the pot

There are four betting rounds in Texas Hold’em, where each round new

community cards are revealed.

e Pre-Flop: No community cards
e Flop: three community cards revealed

-8-

e Turn: The fourth community card is revealed
e River: The fifth community card is revealed

After the river, if at least 2 players agree to call the pot, the showdown round
comes. This is when all players may show their cards and the one with the
best hand wins the pot. If players have similar ranked hands, there is a tie

and the pot is divided. This is otherwise known as a “chop-pot”

Hand Rankings

A poker hand is a set of five cards that identifies the score of a player in
poker. The hand is made by combing the player's personal cards with the
community cards. The table below presents the ranking of each

combination with a short description.

Hand Description Hand Example

Royal Flush: this is the best possible hand in

standard five-card Poker. Ace, King, Queen,

Jack and 10, all of the same suit.

Straight Flush: Any five-card sequence in the

same suit.

Four of a Kind: Any set with four cards with

the same rank.

Full House: Three cards with the same rank

plus two cards with the same rank. al
Flush: Any set with five cards of the same suit, - "" e v
but not in sequence. o adl &3
‘-l- -

+ 1-,

Straight: Five cards in sequence, but with

different suit.

Three of a kind: three cards with the same

rank.

Two Pair: Two separate pairs, and one kicker

:.‘*.; 3... fe o |[2a & |2
of different value. The kicker is used to decide e (e e | s ES
L I 3

upon a tie of the same two pairs.

One Pair: Two cards with the same rank and

three kicker cards.

High Card: Any hand that does not qualify as

one of the better hands above. Ranked by top

card, then the second card and so on.

Figure 2: Hand Examples

Hand Evaluation Algorithms

The algorithm in which that is used to quantify the agent’s Hand Strength,
regardless of all cards being dealt. This algorithm is key, as it considers all

the possible better hands the agent could have, the same, and all the worse

-9-

hands at the point of calculation. The algorithm iterates through all possible

starting hands and returns a percentage as a result.

Function HandRank (Hand) |
Sort (Hand) ;
If IsStraightFlush (Hand) Return 9;
If IsIsFourOfAKind (Hand) Return 3;
If IsFullHouse (Hand) Return 7;
If IsFlush(Hand) Return &;
If IsStraight (Hand) Return 5;
If IsThree0Of2Kind(Hand) Return 4;
If IsTwoPairs (Hand) Return 3;
If IsOnePair (Hand) Return 2;
Return 1;

}

Figure 3: Hank Ranks

Hand Potential

Hand Potential is an algorithm that calculates the possible evolution of the
hand quality throughout the game. In Texas Hold’em, when the game
reaches the Flop round, there are still two more community cards to be
revealed. This means that the current hand rank may improve, since the
hand is composed of the set of five available cards that has the highest rank
among all available cards. This is an extension of the hand evaluation, but
instead of only considering the current available cards, it considers the
possible community cards that have not been revealed yet. This also

considers that the opponent’s hands might improve as well.

Non-Deterministic Game

Non-deterministic games are often described as games with an element of
chance. These games do not result in predictable outcome. Examples of
such games are Backgammon and Poker (their source of chance is dice
and card respectively). What makes these games different from
deterministic games are the additional nodes called ‘Chance’ or ‘Nature’ in

their game trees.

-10 -

Imperfect Information

Imperfect information game corresponds to the game in which certain
information is private, meaning that other players cannot see it. For
example, in Poker each player 10 | P a g e receives private cards. As a
result of this, no player can clearly know the current position in the game

tree.

The utility or payoff

The utility in the game is the expected value when a round of a game is
played. In the poker game, it is the number of chips that was acquired or

lost at the end of the hand (round).

Nash Equilibrium

Nash equilibrium is a strategy profile c where no player can increase their
utility by unilaterally changing their strategy (Johanson, 2007): This means
that for player 1, there is no other strategy in 21 that would produce more
utility against 02 than its strategy in 0. The same is true of player 2.
(Johanson, 2007)

1.2 Aims

The game of poker sets the stage for a well-defined domain that allows for the

investigation of various fundamental issues in computer science and artificial

intelligence, such as how to handle misinformation and how to develop an

intelligent agent to process Reponses based on this partial knowledge.

This project will aim to investigate what Artificial Intelligence techniques can be

applied in order to,

Create an agent that will perform on a human standard of decision making that is
capable of playing strong no-limit Texas Holdem

Investigate the characteristics of strong poker playing and compare these results to the
agent solution.

-11 -

e Measure the performance of the agent against human opposition over many hands, and
document the results

e Create a fun an interactive experience for the user

e Design an agent to play the no-limit poker variant

1.3 Technologies

Implementation

This application will be developed using an Agile software development process.
The specific agile practice | intend to adopt for this project is Iterative Development.
The main idea behind Iterative Development is to break down the whole project
into smaller parts or iterations. This was chosen with the goal of completing
significant parts of the project at the end of each iteration. | believe this will be
proving to be beneficial as it allows for the development of the more basic aspects
of the project such as implementing the Counterfactual Regret Minimization

algorithm before jumping straight into Poker Al development.
Java

Java is the programming language that will be used to develop the application.
This is because Java allows applications to be easily integrated with web
application using Java Applet, another reason behind using Java was for future
extension of the application to be ported to mobile, using Android application
development which uses Java. The object orientated nature of Java, helps in

separating the features of the application for easier management and debugging.

MigLayout — Java Layout Manager

MigLayout is a grid based layout that allows for designing complex GUI layouts for

Swing applications with ease.

-12 -

MySQL

MySQL was the primary relational database management system taught to this
year’s 4th Year NCI computing students during their time at college. Thus, it made
sense to use MySQL for this project rather than having to learn an entire new

database system.

1.4 Structure

The structure of this document is as follows, Requirement which contain functional and
non-functional requirements. Design and Architecture, which include UML diagrams,
use cases, system architecture, hardware and software architecture diagrams.
Implementation, Testing, GUI layout, Customer testing, Evaluation and Conclusion

1.5 System

1.6 Requirements

The requirements were among the first things to be considered at the outset of the
Poker Al project. To produce these requirements, | posted on various Poker forums
to ask them various questions as what they would like to see in a Poker Bot
application. | also read comments reviews of different types of Poker applications
seen on the Google Play Store that incorporated an Al agent and took their

opinions on what they valued into account.

1.6.1 Functional requirements

e The Al should function as intended
o This requirement at its most basic level is the core functionality. The
Al agent must be able to respond accordingly to the user’s turns
e Hand Evaluation
o Assessing the probability of a hand improving as more community
cards appear
e Better Strategy
o Determine whether to fold, call/check, or bet/raise in any given
situation
e Bluffing
o Allow the Al to make a profit from a weak hand and to create a false
impression about your play
e Unpredictability

-13 -

o Make it difficult for your opponent to form an accurate model of the
Al’s strategy
e Opponent Modelling
o Used to determine a likely probability distribution for the opponents
hidden cards.
e Registration
o A new user must be able to sign up to the system
e Login
o An already registered user must be able to log into the system
e Customise Appearance
o Choose the style of both the cards and playing table
e Select Al type
o Choosing between the three types of Al, chump, conservative and
optimal play.

e The Poker-Al application must work on mobile devices

o From market research, the majority of Poker applications are
developed for mobile devices

1.6.2 Use Case Diagram
1.6.3 Requirement 1 <User Registration>

1.6.3.1 Description & Priority
This requirement relates to an “unregistered” user who is required to create a new

account to become an active “registered” user. This process is crucial as it is

required to be a “registered” user to have access to the application.

-14 -

1.6.3.2 Use Case

<<include s> ﬁ

<<include>=

Register New
Account
<<include>=
Password
New User . Database

<<includes=

Email Address

Scope
The scope of this use case is to register a new user to the system
Description

This use case describes the registering of a new user to the system, the user
is required to make an account to become an active or “Registered User”.
This process is crucial as without it, no users can have accounts on the

system and thus cannot access the functionality of the application
Flow Description

Precondition

User has not registered an account

Activation

“‘New User” accesses the application and clicks on the “Registration” button

-15 -

Main flow
e The user enters all requested information i.e name, email etc

o Application displays a confirmation message that the user has successfully created
an account

Alternate flow

Fields not completed

e User has not completed all relevant fields, so the application will
highlight all required fields and wait for the user to re-submit with
the correct information

Username Already exists
e User supplies a “username” that is already registered. The
application will inform the user the username is taken.

Termination
Main flow

e User successfully registers an account

Alternative flow

e User must attempt to register again

Post condition
Main flow

e Useris directed to the menu page

Alternative flow

e User must attempt to register again

-16 -

1.6.4 Requirement 2 <User Login>

1.6.4.1 Description & Priority

This use case describes the “Registered User” logging into the system. This

requirement is key to the system in terms of allowing the user access to

functionality as well as their own profile.

1.6.4.2 Use Case

Poker Al System

Authentication
Successful

Authentication
Unsuccessful

Registered User

Scope/Description

User Database

The scope of this use case is to log an existing user into the application,

gaining access to the functionality and their own profile.

Flow Description

-17 -

Precondition

User holds a valid account but has not yet authenticated onto the application

during their session
Activation

This use case starts when a “Registered User” enters their credentials and

presses the “Sign in” button
Main flow
e “Registered User” enters their correct credentials and presses the

“Sign in” button

e System validates their credentials and provides the user access to the
application
e User can now access their profile and play against the poker agent

Alternate flow

e “Registered User” enters invalid credentials and presses the
“Sign in” button

e Application displays an error message, stating the user needs to
re-enter their credentials and attempts to authenticate again

Termination
Main Flow

e Credentials authenticated

Alternate flow

e Credentials unauthenticated

Post condition
Main Flow

e User can access application and functionality

Alternate flow

e User returned to the sign in screen

-18 -

1.6.5 Requirement 3 <Betting Poker Configuration>

1.6.5.1 Description & Priority
This requirement presents the ability for the ‘Registered User’ to view and change

the betting value options of the poker game, this includes the amount of raises and

the value of blinds and antes

1.6.5.2 Use Case
Heads-Up Hold'em System

Max Raises
Options

<<include>>

Q Poker v Big Blind
— Betting :
/K Configuratio

<<extend>>

Registered User <<include>>
' . 4 Small Blind
‘ <<extend>>
y Forced Bets :
<<extend>> E

The scope of this use case is to allow an existing user to alter the playstyle

Scope

of their game by adjusting how many raises are available and how big the

blinds consist of

Description

-19-

This use case describes the “Registered User” can adjust
Flow Description
Precondition

User holds a registered account, i.e. the account is validated through the

system
Activation

This use case starts when a “Registered User” presses the “Appearance”

button
Main flow

o “Reqgistered User” presses the “Appearance” button
e User is presented a multiple of front and back card styles
e User is presented with a choice of table background colour

Alternate flow

e “Registered User” enters invalid credentials and presses the
“Sign in” button

e Application displays an error message, stating the user needs to
re-enter their credentials and attempts to authenticate again

Termination
Main Flow

e User navigates back to the main menu

Alternate flow

e User navigates back to the main menu

Post condition
Main Flow

Alternate flow

-20 -

1.6.6 Requirement 3 <Appearance Poker Configuration>

1.6.6.1 Description & Priority
This requirement presents the ability for the ‘Registered User’ to view and change

the appearance of their playing cards and background table.

1.6.6.2 Use Case

Choose Card : Preview
<<include>>
Style Card Style

<<include>>

Poker
Apperance
Configuratio

<<include>>

Shooe Preview
<<include>>
Batc::lz)gkr:::nd : A Background

Registered User

Scope

The scope of this use case is to allow an existing user to change the

appearance of their game before playing
Description

This use case describes the “Registered User” changing the appearance

style of their cards and background.

-21 -

Flow Description
Precondition

User holds a registered account, i.e. the account is validated through the

system

Activation

This use case starts when a “Registered User’ presses the “Appearance’

button
Main flow

o “Reqgistered User” presses the “Appearance” button
e User is presented a multiple of front and back card styles
e User is presented with a choice of table background colour

Alternate flow

e “Registered User” enters invalid credentials and presses the
“Sign in” button

e Application displays an error message, stating the user needs to
re-enter their credentials and attempts to authenticate again

Termination
Main Flow

e User navigates back to the main menu

Alternate flow

e User navigates back to the main menu

Post condition
Main Flow

Alternate flow

-22 -

1.6.7 Requirement 3 <Play Poker Menu>

1.6.7.1 Description & Priority
This requirement relates to the user accessing the core aspect of the application,

playing Texas Hold’em, the user is presented with either learning the rules of Texas

Hold’em or getting the option to choose three different Al types to play against.
1.6.7.2 Use Case

Poker Al System

<<jnclude>:=

Play Texas
Hold'em

<<jnclude>:=

i <<jnclude== _ . .
Registered User <<include=> <<include>=

Chump Bot Conservative
Bot

Pro Bot

Scope

The scope of this use case is to allow the user to learn about Texas Hold’em

if they are new, then choose to play versus an Al agent type.

-23-

Description

This use case describes the “Registered User” accessing the Play Texas

Hold’em section of the application.
Flow Description
Precondition

User holds a registered account, i.e. the account is validated through the

system
Activation

This use case starts when a “Registered User’ presses the “Play Texas

Hold’em” button
Main flow

e “Registered User” presses the “Play Texas Hold’em” button
e User is presented with Instructions menu or Choose Al type
Alternate flow

e User remains on the original page
Termination
Main Flow

e User navigates back to the main menu

Alternate flow

e User navigates back to the main menu

Post condition
Main Flow

e User can access application and functionality

Alternate flow

e User returned to the sign in screen

=24 -

1.6.8 Requirement 3 <Play Versus Al>

1.6.8.1 Description & Priority
This requirement is the core aspect of the application. The “Registered User” plays

Texas Hold’em against the Al agent type of their choice.

1.6.8.2 Use Case

Poker Al System

Shuffle

Pre-Flop Deck

Burn One %

Dealer

~ Card

A

Al Agent

A

Registered User

Scope/Description

The scope of this use case is the “Registered User” plays Texas Hold’em

against the Al agent type of their choice.
Flow Description

Precondition

-25-

User holds a registered account, i.e. the account is validated through the

system and has chosen the Al agent type they wish to play against
Activation

This use case starts when a “Registered User” chooses the Al agent type
they wish to play against

Main flow

e “Registered User” choose the Al agent type they wish to play
against
e Useris putinto a heads up or one on one Texas Hold’em game
against the Al agent they chose
Alternate flow

e User remains on the “Play Poker Menu”
Termination
Main Flow

e User Win’s versus the Al agent by taking all the agent’s chips
e User Loses versus the Al agent by losing all their chips to the agent

Alternate flow

e User navigates back to the “Play Poker Manu”

Post condition
Main Flow

Alternate flow

-26 -

1.7 User Requirements

The user requirement of Poker Al is to incorporate an application to allow Poker
and Al enthusiasts to enjoy fun and simple Poker.

Internet access: The device will need Internet access to use the application
because it must connect to a server to retrieve information. The faster the
internet the faster the server get and post requests Invalid source specified..

1.7.1 User requirements

This section describes the set of objectives and requirements for the system from

the customer’s perspective. What are the clients saying they want?

A new user must be able to sign up to the system

An already registered user must be able to log into the system

A user should be able to check the rules on Texas Hold’em through the
application

Should be able to play Texas Hold’em

A user should be able refill their play money chips that is capped to a certain
amount every few hours

A user should be able to purchase play money chips if they so choose to
A user should be able to view the leader boards through the application

1.7.2 Environmental requirements

These are the vital requirements that must be present when developing the
application.

Internet Access: Internet access is required to test functions in application
and connecting to database.

Laptop(Window): This application will be developed Windows laptop with
android studio as the Android development IDE.

-27-

e Photoshop/Paint: Photoshop was used to customize any images and
graphical assets used during the development of my application.

1.7.3 Usability requirements

This requirement will cover and evaluate the usability requirements for the
system application. This outline the standards and objectives to be met
regarding the systems.

e Ease of use: The application must be user friendly and easy to use.

e Understandability: The system should be understandable to the use.
Easy to follow the functionates.

e Operability: The system should perform as mentioned in the requirement.
The app should be consistent in terms of functionality.

e Attractiveness: The application should be appealing to users (GUI,
Design and layout). The app should use colours that is easy to for the eye.

1.8 Non-Functional Requirements

The divergence between Functional Requirement and Non-Functional
Requirement is Functional Requirement deal with what the system shall and
much do, while Non-Functional Requirement focuses on, How the system
operate.

1.8.1 Performance/Response time requirement
The Al agent should play their turn in a timely manner, to maintain the flow of the

game although play in an efficient way to not reveal information. Taking your time

in Texas Hold’em is a key aspect of the game to not reveal information to your

-28 -

opponent, although if the Al takes too long to act every hand, the user will get

frustrated and possibly stop playing.

1.8.2 Availability requirement
The application should be available to be used at any given time. Once a user has

accessed the application it should be fully functional and accessible to the user.
The application should be free from downtime and if any bugs or errors appear
they must immediately be repaired or removed to insure the application services

remain up and running to the users.

1.8.3 Datarequirements

User's data is stored within a MySQL database. This data will be secure and
encrypted using an encryption library. As this application will be free and include
Nno monetary aspects, this reduces the impact of storing sensitive payment

1.8.4 Security requirement
The application should include a robust level of security that ensures users

personal information they provided is secured and encrypted on the server. The
application files must be secure to avoid any attacks or information leakage. The
application should be designed to only accept passwords that contain the strong

password criteria.

1.8.5 Reliability requirement
In many systems reliabilities are a big consideration during the development stage.

If a system keeps crashing or has a lot of software bugs this will affect the overall
reliability of the application and affect the user’s use of the application services. |
will take a range of measures into account ensuring that all software bugs have be
eliminated through varies testing methods such as verification, validation,
integration testing, functional testing, system testing and. Logical errors will be
removed where possible. The system should be able to cope with minor issues

that may arise because of internal factors therefore making it reliable.

-29 -

1.8.6 Maintainability requirement
The application should maintain updated, with the leader boards showcasing the

correct information in real time. The Poker Al’'s will be constantly reviewed to asses
any weaknesses they may have and address them. This will allow for future

improvement of the Al's as time goes on.

From a security prospective there are many black hat hackers in the current time.
One of the goal is to develop an application that not only completes its intended
functionality with ease but also impresses and exceeds users' expectations.
Where the application happens to fall in terms of performance, functionality or it
needs to be updated, several key aspects will be taking to help maintain the
application and to help security:

e Defects/Vulnerability

This involves as a developer that reviewing the area of concern for
possible abnormalities and addressing them appropriately.

e Code Quality
Looking over the existing code where there lies a potential problem and
either patch or improve it.

e Reducing Redundancy
To make the application easy to understand and to make sure that two
pieces of code are not doing the same thing, the aim is to eliminate
redundancy altogether, assisting in maintaining the steadiness of the
overall system.

1.8.7 Portability requirement
The application and website must be accessible from any device which can use

an internet browser. The application must work as smooth as possible across all

modern browsers such as Edge, Safari, Chrome and Firefox.

1.8.8 Extendibility requirement
The system shall be extensible enough so that during future development there

can added additional functionalities such as various types of Al agents or expand

further on the art style of the application

1.8.9 Recover requirement:

The recovery is the area of security that have to be put In place if there were a
significant negative events.

-30 -

In the case of system shutdown and no response to the user. The system
should be down and shouldn’t take no more than one to two working day for the
system to be back. Also, Information will be send to the user to let them know
when the system is back working.

1.9.0 Reusability requirement:

Reusability is a valid requirement for all projects that involve software
development. The application will aim to have multiple functions and other code
that can be re-used and implemented into further or new developments going
forward or indeed when creating something new.

Reusability is an important factor and requirement as applications in the real
world are based hugely on re-used code. The goal is to develop unique code that
can be understand and that am comfortable implementing into new
environments.

The login/registration system is a prime example of this, the vast majority of
mobile application with user interaction require user login. The database which
will be implemented and connected should be flexible and reusable with other
applications where some type of information is being stored.

-31-

1.9 Design and Architecture

Card

+ face: String
+ suit: String

— 52

+ getFacel): return
+ getSuit(): return

2

plays

contains,manages

] —

Player

1 —

- name : String

- chips : int

- bet:int

-hand : Hand
-isinPlay : boolean
-isDealer : boolean

+bet (amount : int)
+checkl) : int
+call) : int

+old() : int
+raisefamount : int)

1

HumanPlayer

=

[

Deck

+ cards: Cards[52]

+ deall)

+ reset()

+ shuffle()
+topCard(): Card

Al Agent

-AlType @ int

+makeDecision()

-32-

deals,manages

I_|

S

PokerGame

-players : Player[1,2]
-currentPlayer : int
-deck: Deck

-round : int

+ startGame() : void
+ endGame() : void
+ shuffleDeck() : int

1.10Implementation

StandardHand

StandardHand, checks all available hands that can be made during a poker game
ranging from a StraightFlush to High Card. The decision to leave out a royal flush
is to confine the decision making of the Al to a more strict bases revoling around
the hands that are more likely to happen. The probabilty of a royal flush is
0.000154% or 649,739:1. Due to the unlikelness of achieveing the hand, | felt it
was more beneficial for the Al to not have it within it's hand range and focus on

achieving hands which are more likely to occur.

pubklic StandardHand (final Deck cards) {
this.cards = cards;

if (isStraightFlush(cards)) {

bestRank = StandardHand.Ranking.STRAIGHT FLUSH;
} else if (isFourOCfAKind(cards)) {

bestRank = Standardﬁand.Ranking.F:UR_SF;A KIND;
} else if (isFullHouse (cards)) {
bestRank = StandardHand.Ranking.FULL HOUSE:
} else if (isFlush(caxds)) {
bestRank = StandardHand.Ranking.FLUSH;
} else if (isStraight (cards)) {
bestRank = StandardHand.Ranking.STRAIGHT:
} else if (isThreeQOfAKind(cards)) {
bestRank = Standardﬁand.Ranking.THREE;SF;A_HIN:;
} else if (isTwoPairs(cards)) {
bestRank = StandardHand.Ranking.TWO PAIR;
} else if (isOnePair(cards)) {
bestRank = Standardﬁand.Ranking.SNE;EQIR;
} {
false;
kickers = new Deck(cards):
kickers.limitTo(5);
bestRank = Standardﬂand.Ranking.N?_PAIR;
}
} Figure 4: Hand Ranks

-33-

HandDetails

HandDetails makes boolean checks to see if a hand from StandardHand has been
made, such as a Flush. The isFlush method showcases that a boolean check is
being made within the HandDetalils class, to ensure that a player must make use
of all of their cards and must be equal to 5 aswell as be of the same suit.
protected boolean isFlush(final Deck deck) {

w = false;

3A11Cards = true;

for (Suit suit : Suit.values()) {
Deck myDeck = deck.getSuit (suit);

if (myDeck.size() >= 5) {
Collections.sort (myDeck) ;

nmyDeck.get (0) .getRank () ;
cers.clear ()

myDeck.limitTo (5);
deck.clear():
deck.addall (myDeck) ;

return true;

-
[o—

Figure 5: isFlush Method

Card

Represents a play card from a set of cards {0, 51} which map to cards having a

suit {0, 3} clubs, diamonds, hearts, spades and a face valu {0, 12} 2, Ace
pubklic Card(final Suit suit, final Rank rank) {

this.suit = suit;

this.rank = rank;
} Figure 6: Card method

Rank

Defines the standard ranks in a pack of cards.

-34 -

Deck

A deck of 52 Cards which can be dealt and shuffled

DealCard

Deals a single card to each active player, starting with the specified player and

working clockwise.
The boolean “isPublic” checks to see whether the card is a public card or not

protected void dealCard(final Player start, final boolean isPublic) {
int i = players.indexOf (start):

for (int x = 0; x < numplayers; x++) {
final Player player = players.get((i + x) % numplaye

-
[0}

’S)

if (!player.isCut () && !playver.hasFolded()) {
final Card card = deck.deal():;
card.setPublic(isPublic);

playver.dealCard(caxrd):
notifyCardDealt (player, card);
notifyPlayerCardsUpdated():

Player

This class creates intances of the player which enables quicker access and
efficient storage of the information, regardless of which player it is for. The
PokerGame class creatss new instances of player at every new interation. The

player instance stores information such as history and actions.
Calls on the functions doOpenCheck and doCallRaiseFold.

e doCallRaiseFold
o Determines whether the Al can call, raise or fold

e doOpenCheck
o Determines whether the Al will open or check

-35 -

public Player(final GameInterface game, final String name, final int cash,

this.name = name;
this.cash cash;
this.game = game;

this.controller = controller;
controller.setPlayer (this);

controller.setGame (game) ;

public Deck getCards() {

return cards;

public Deck getBestDeck() {
calculateBestDeck();

return bestDeck;

public void calculateBestDeck() {
bestDeck = game.getBestDeck(cards);

public OpenCheck doOpenCheck () {
OpenCheck res = controller.doOpenCheck():

if (cash <= 0 && res OpenCheck.COPEN) {

res = OpenCheck.CHECK;

return res;

public CallRaiseFold doCallRaiseFold(final int callZmount,

CallRaiseFold res = controller.doCallRaiseFold(callfmount, canRaise);

if (cash - callBmount <= 0 && res CallRaiseFold.RAISE) {

res = Player.CallRaiseFold.CALL;

return res;

Figure 7: Player class

Suit

final PlayerController controller)

boolean canRaise) {

Defines the four suits contained within a deck of playing cards

pubklic enum Suit {

CTIIRS
uLJ}BJ,
CPADES
~J£’:=;/£L.;,
DTAMONDS
DIAMONDS,

HEARTS;

Figure 8: Suit class

-36 -

{

ChumpBot

This is the initial Al developed for testing the application and GUI is ensure
everything is fully functional. ChumpBot consists of random moves with no

decision making based on a hand evalution.

puklic class ChumpBot implements PlayerController {

The player that we're contro

protected Player player;

Jame tTthat We ' Tre

protected GameInterface game;

@Override
public CallRaiseFold doCallRaiseFold(final int callZmount, final boolean canRaise) {
if (Math.random() < 0.3) {

if (player.getCash() - callAmount < game.getBigBlind() || !canRaise) {
return CallRaiseFold.FOLD;
} else {

return CallRaiseFold.RAISE;
}
} else {
return CallRaiseFold.CALL;

Sy

@Override
pubklic OpenCheck doOpenCheck () {
if (Math.random() < 0.5 || player.getCash() < game.getBigBlind()) {
} else {
return OpenCheck.OPEN;

Figure 9: ChumpBot class

-37 -

Conservative Bot

The conversative Al extends from the ChumpBot, the decision making ability prior
to the flop is based on ranking both cards in the agents starting hand. The Al agent
compares it's starting hand based on their rank and decides whether to call, raise

or fold.

Post starting hand, the conservative agent will act in the same manner as the
Chump agent, making randomly based decisions with no information of community
cards taking impact.

public class ConservativeBot extends ChumpBot {

@Override
] public CallRaiseFold doCallRaiseFold(int callAmount, bkoolean canRaise) {

Card cl = pl =r.getCards () .get (0);
Card c2 = rer .getCards () .get (1)
if (cl.getSuit() == c2.getSuit() || Math.abs(cl.getRank() .compareTo(c2.getRank())) < 2) {

return super.doCallRaiseFold(callAmount, canRaise):;

} else {

return CallRaiseFold.FCLD;

Figure 9: ConserativeBot Class

ProBot

The ProBot agent extends from the Conversative agent, although the contrast
between the two is present during the flop, turn and river. As the ProBot makes
use of HashMap values, that allows for logical decision making based on the

agent’s current hand based on the assigned values.

-38 -

puklic ProBot (final GameInterface game) {
game.registexrObserver (this);

handRanks.put (StandardHand.Ranking.FLUSH, 4047644):;
handRanks.put(Standardﬂand.Ranking.FCUR_?F;A;KIND, 224848);
ha:dRanks.put(Standardﬁand.Ranking.FULL_HSUJL, 3473184);
handRanks.put (StandardHand.Ranking.NO PAIR, 23294460);
nhandRanks.put (StandardHand.Ranking.ONE PAIR, 58627800);

N
STRAIGHT, 6180020);

handRanks.put (StandardHand.Ranking. S IG
handRanks.put(Standardﬁand.Ranking.3¢RAIS'¢_FIU5H, 41584);
handRanks.put (StandardHand.Ranking. THREE OF A KIND, 6461620);

ha:dRa:ks.put(StandardHand.Ranking.*fi_?A R, 31433400);

Figure 10: ProBot

HashMap values

The ProBot agent also can make bluffs based on it’s current hand and chip amount.

e callRaiseFoldBluff
o Once the ProBot has reached endGame, which means all community cards have
been dealt. It can make a bluff depending on if the agent is able to raise

if (endGame) {
if (canRaise && (shouldBluff || (!shouldFold && Math.random() > 0.5))) {
return CallRaiseFold.RAISE;
} else if (shouldFold) {
return CallRaiseFold.FOLD;
} else {
return CallRaiseFold.CALL;
}
} else {
return super.doCallRaiseFold(call2mount, canRaise):;

Figure 11: callRaiseFoldBluff Method

e getRaiseBluff
e When bluffing the agent will take into account it’s cash stack and make a raise accordii

if (endGame) {
if (shouldBluff) {
return minimum + (int) (Math.random() * (playe
} else {
return minimum + (int) (Math.random() * (player.getCash() - minimum)):;

.getCash() - minimum)/2);

o]

}
} else {
return super.getRaise (minimum) ;

Figure 12: getRaiseBluff Method

-39-

Hand Details

The HandDetails abstract class contains boolean checks for all available hands in
poker. These methods range from One Pair, to a Straight Flush, the class also

contains relevant checks for kickers and high/low cards.

e The isFlush methid within the HandDetails class, is a simple check for all cards must be
used and that the 5 cards must be of all relevant suit
e The method will dismiss kickers in this case, as it requires 5 cards to make a flush
protected boolean isFlush(final Deck deck) {
ow = false;

Cards = true;

for (Suit suit : Suit.values()) {
Deck myDeck = deck.getSuit (suit);

if (myDeck.size() >= 5) {
Collections.sort (myDeck) ;

= myDeck.get (0) .getRank();

kickers.clear():
myDeck.limitTo (5);
deck.clear():

deck.addall (myDeck) ;

return true;

-
[o—

Figure 13: isFlush Method

o The isThreeOfAKind methid is another example within the HandDetails class,
e Checks for the highest ranking 3 cards of the same value
e Kickers are used in this case but limited to 2

=40 -

protected koolean isThreeOfARind(final Deck deck) {

usesLow = false;
usesAllCards = false;
for (Rank rank : Rank.values()) {

if (deck.getRank(rank).size() == 3) {
high = rank;

rs = new Deck(deck):

rs.removeByRank (high, 3);

return true;

Figure 14: isThreeOfAKind Method

Game Details

In comparision to the Hand Details abstract class, the Game Details class contains
all relevant information in regards to how an Heads-Up No Limit Poker game

operates.

This is limited too implementations such as , the number of players and their
specified properties, such as the player is currently still in play, if they have folded
or if they are all in. The size of both the big and small blind, the antes, the number
of raises that are allowed, as well as keeping track of the cards that have been

dealt to ensure they won’t be duplicated.

public int countPlayers (final boolean mustBeln,
final boolean mustNotFolded, final boolean mustNotAllIn) {

int count = 0;
for (Player player : players) {
if ((!mustBeIn || !player.isOut())
&& (!'mustNotFolded || !player.hasFolded())
&& (!'mustNotAllIn || !player.isaAlllIn())) {
count++;

tes

return count;

[

-4] -

Figure 15: countPlayers Method

protected void doSmallBlind(final Player player) {
player.forceBet (bigblind / 2);

notifyPlaceBlind (player, bigblind / 2, "small blind");

protected wvoid doBigBlind(final Player player) {
player.forceBet (bigblind);

notifyPlaceBlind (player, bkigbklind, "big blind"):;

il L2110 r Mig il

Figure 16: doSmallBlind/doBigBlind Methods

The GameDetails class also contains the method for dealing cards to each
player. The variable start, deals a single card to the specific player working
clockwise. The isPublic variable is a boolean check to see whether the card is a
public card or not.

protected void dealCard(final Player start, final boolean isPublic) {
int i = players.indexOf (start):;
for (int x = 0; X < numplayers; x++) {

S 4 r
final Player player = players.get((i + x) % numplayers)

if (!player.isCOut() && !plaver.hasFolded()) {
final Card card = deck.deal():
card.setPublic(isPublic):

player.dealCard(card):
notifyCardDealt (playex, card):;
notifyPlayerCardsUpdated() ;

e

Figure 17: dealCard Method

-42 -

SaveSettings

After the user chooses what settings they which to play with, such as their chip
amount, forced bets and aesthetics of their game. The application will save their
settings to a config file using the saveSettings method.

public void saveSettings (final String name) {
try {
final CbjectCutputStream o0o0sS
= new ObjectOutputStream(new FileCutputStream|
new File (getConfigDir(), name + ".conficg"))):
oos.writeObject (new ConfigVersioner()):
oos.writeCbject (game) ;
oos.writeObject (playexrPansl.getData()):
oos.writeObject (bettingPanel.getData()):
oos.writeObject (apperancePanel.getData())
} catch (ICException ex) {
System.err.println("Unable to save settings to " + name);
ex.printStackTrace():

LoadSettings

The loadSettings method will grab the information from the saved settings config

file after the application is closed, and will load their exact previous settings.

public void loadSettings(final String name) {
try {
final ObjectInputStream ois
= new ObjectInputStream(new FileInputStream|
new File (getConfigDir(), name + ".config"))):

ois.readObject():
final GameInfo gameInfo = (GameInfo) ois.readObject():
final List<Object[]> playerData = (List<Object[]>) ois.readObject():

final Object[] bettingData = (Object[]) ois.readObject():
final Object[] styleData = (Object[]) ois.readObject():

-43 -

1.11 Graphical User Interface (GUI) Layout

Provide screenshots of key screens and explain.

Reqistration Form

Registation Form

First name
Last name
Username:

Password:

Click here to Login

This design allows the user to create an account for identity authentication
It takes the following input:

e Username as a unique identifier to recognise the user
e Full Name of the User
e Password to authorise the user

Security

-44 -

The registration form attempts to register a user’s account to the database and

hashes the user’s password within the database using an MD5 Hash

public static String md5(String msg) {
try {
MessageDigest md = MessageDigest.getInstance ("MDS");
md.update (msg.getBytes ())
byte byteData[] = md.digest():

StringBuffer sb = new StringBuffexr():
for (int i = 0; i < byteData.length; i++) {
sb.append (Integer. toString((byteData[i] & Oxff) + 0x100, 16).substring(l)):
}
return sb.toString():
} catch (Exception ex) {
repurn, *v;
}

Figure 18: Database Hash

CT * FROM “register’

Show all | Number of rows 25 v Filter rows: | Search this table
+ Options
—— v ID FirstName SurName UserName Password
& Edit 3c Copy @ Delete 14 TestUser Murray Lee 5f4dcc3b5aa765d61d8327deb882cf99

1 Check all With selected: 7 Edit @ Delete 5] Export

Lyt

mns+

(@]
=)
o
<

Figure 19: User’s information logged

The registration forum also contains a log file that will handle any form of invalid

login entries which includes a timestamp of the error.

=45 -

public class Log {

public static void main(String[] args) throws IOException {

Logger logger = Logger.getLogger("My
FileHandler fh;

try {

s block conf

fh = new FileHandler ("

logger.addHandler (fh) ;
SimpleFormatter formatter = new SimpleFormatter():
fh.setFormatter (formatter);

the fol

logger.info ("Lo

} catch (SecurityException e) {
e.printStackTrace():

} catch (ICException &) {
e.printStackTrace()

logger.info ("Test");

Figure 19: Log File

- 46 -

Login Form

Login Form

Password: |

click here to create a new account

-47 -

Poker Player Configuration

The Heads-Up Hold’em player configuration menu allows the user to choose what
type of Al agent they wish to play against, which include the ChumpBot,

ConservativeBot and the ProBot.

The player also has the ability to alter the amount of chips counts of each players,

this allows for the type of pace that the player can play at.

*% Heads-Up Holdem: Game Configuration ped

_[Players,!, TBetting ¥ TAppearance'!A'T Rules’ & 1

Human Player 5,000 B Human Player v

ProBot 5,000B Al: Pro Bot v

Start Game |

-48 -

Appearance Confiquration Menu

The appearance configuration menu offers the user to alter the style of their playing

cards and background colour of the table.

*'¢ Heads-Up Holdem: Game Configuration X

[Players;i, TBettingf# TLF Appearance‘!l:[Rules’ ¢]

Card style
f N
Front: | Classic small |¥| Back |Red Suits 2 v

Background colour

r -
Red: 100 |5 Green: 100 |5 Blue: 100 |2

Preview

f ™

Start Game '

-49 -

Betting Configuration Menu

The betting configuration allows the user to change the number raises allowed

during each hand and forced bets amounts paid before starting their game.

*% Heads-Up Holdem: Game Configuration X

-50 -

Poker Table

This design is the main aspect of the application, this showcases the user playing
No-Limit Texas Holdem versus the Al agent. The user can begin the game by
clicking the “Let’s Play!” button, this will shuffle the deck and give both players two

cards.

"% Heads-Up Hold'em — (m} X

@ Human Player (4950)

| checkscan |

POT: 150
BET: 100

ProBot (4900)

-51 -

1.12 Testing

Testing

Since the application will be heavily fragmented, it will be needed to
constantly be tested to ensure the algorithm is working correctly.

Unit Testing

Manual testing will be done to ensure the calculations are correct, i.e they

give the predicted results.

All created objects will be tested to ensure that the expected data is
assigned to them and consequently used in game class. The card shuffling
which forms a crucial aspect of the system will need to be exhaustively

tested.

The program will also need to be tested to ensure the randomness of its

actions are maintained.

User Testing

This method of testing will be used during every stage of the development.
During User testing, information such as the player’s cards or amount of

chips they hold will need to be correct.

The program’s actions must be heavily tested to prevent as little as much
bugs as appearing, such as a user may be able to press the bet button twice
during their hand. This could cause unexpected and unstable behavior in

the application and could never be detected without user testing.

Artificial Intelligence Testing

-52 -

Once an environment for the agents to act in was established, experiments
provide the simplest way to determine the effectiveness of changes, or to
identify potential problems and shortcomings of the agents. The primary
method, although difficult to interpret but presented as anecdotal evidence,
involved playing agents playing against one another.

The self-play simulation offers a convenient method for the comparison of
various versions of the agent. One simple application would be to play five
10 hands with a newer version of the agent against 10 hands of an older
version of the agent. The likelihood of the new components should has
improved the program against itself, then the newer version will win against
the older version.

This process was continued to successfully increase the correct decision

making of the agent.
Over the course of self-play experiments, there was 5 variations of the

ProBot agent that was tested, using different components of hand ranking

values and betting strategies.

Pre-Flop Simulated Results

-B3 -

Pocketra
Pockets
Pocketa
Pockets
Pockets
Pocketrs
Pockets
Pocketa
Pockets
Pockets
Pocketa
Pockets
Pockets
Pocketa
Pockets
Pocketa
Pocketa
Pockets
Pockets
Pockets
Pocketsa
Pocketrs
Pockets
Pocketa
Pocketrs
Pockets
Pockets
Pockets
Pockets
Pocketa
Pockets
Pocketa
Pockets
Pockets
Pocketa
Pockets
Pockets
Pocketrs
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pocketrs
Pockets
Pocketa
Pockets
Fockets
Pockets
Pockets
Pockets
Pockets
Pockets

e as ae 4a 4i as es be

e 34 b6 ve ss ae en ss 66 sa 44 aa s b _as e be en 44 e

da 44 es

AR
KKo
QQo
JJo
TTe
99
BEo
AKs
AQ=
AKo
770
A=
AQo
ATs
Ao
KQs
KJs
A9s
ATc
ABs
660
KTs
KQo
KJo
ATs
A%
QJs
KTo
ABo
Abs
K9s
QTs
AbSs
S50
ATo
Ads
QJe

: A3s

se e e e as e

.

v

“e se 4s 4s eb e ss

K%
K8s
JTs
QTeo
K73
Q9s
ASo
Abo
Kés
Ado
KBo
d4do
J9s
QBs
Q9%
JTe
A2s

85.14%
82.22%
79.63%
77.2%
74,57%
71.06%
68.24%
67.67%
66.41%
663
65.74%
65.72%
64,79%
64.79%
63.B5%
653,84%
63.22%
63.04%
62.73%
62.51%
62.35%
61.72%
61.42%
61.05%
60.92%
60.B8%
60.82%
60.13%
59.95%
59.92%
59.89%
59.7%
5%.51%
59.15%
5%.08%
58.36%
58.34%
58.21%
58.17%
58.02%
57.99%
57.69%
57.62%
57.59%
57.44%
57.23%
56.41%
56.31%
56.24%
55.98%
55.86%
55.75%
95.75%
55.67%
55.67%

Pockets
Fockets
Fockets
Pockets
Pockets
Pockets
Pockets
Fockets
Pockets
Fockets
Fockets
Pockets
Fockets
Pockets
Pockets
Fockets
Pockets
Pockets
Pockets
Pockets
Fockets
Pockers
Pockets
FPockets
Pockers
Pockets
Pockets
Pockets
FPockets
Pockets
Pockets
Fockets
Pockets
Pockets
Fockets
Pockets
Pockets
Pockers
Pockets
Pockets
Pockets
Fockets
Pockets
Pockets
Pockets
Pockets
Pockets
Fockets
Pockets
Pockets
Focksts
Pockets
Pockets
Pockets
Pockets
Pockets

KSs
Ko
Ado
Kds
Qs
Tde
Ko
JBs
Kis
Q80
J%
K30
Qés
k20
Jis
¥4o
330
T3s
Q5e
Q%
Q4s
K2s
Jao
%8s
Kio
T%0
Q3s
Qéo
Jés
T7s
Q50
J70
Jas
T80
Q4o
J5s
97s
Tes
K2o
%80
T
37s
Q3o
Jéo
Jis
TS5s
J50
S6s
Q2s
96s
T4s
Téo
J4o
970
Tis
Tés

[L R T TR T PR PR PR

e s

55.55%
55.33%
55.28%
54.71%
54.57%
54.438%
54.47%
54.45%
54.03%
53.6%
53.58%
53.33%
53.21%
52.489%
52.87%
52.65%
52.4%

52.34%
52.22%
51.83%
51.63%
51.48%
51.46%
51.45%
51.44%
51.36%
51.2%

50.73%
50.56%
50.5%

50.1%

50.05%
49.42%
49.41%
49.41%
49._36%
49.16%
48.58%
48.36%
48.08%
48.08%
47.92%
47.65%
47.63%
47.5%

47.29%
47.22%
47.05%
47.02%
46.47%
46.45%
46.32%
46,263
46.21%
45.36%
45.91%

Pockers
Pockets
Pocketa
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets

aa 44 an ee. ss

953
B70
J3o0
J2s
220
B5s
Q2c
960

: TSe

Pockets :

Pockets
Pocketrs
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pocketa
Pockets
Pockets
Pocketa
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockets
Pockete
Pockets
Pockets
Pockets

Pockets :

Pocketa
Pockets
Pockets
Pocketa
Pockets
Pocketa
Pockets
Pockets
Pockets
Pockets
Pocketa
Pocketa

Pockets :

75s
860
94=
655
Tdo
93s
B4a
Tho
950
T30
T2s
743
J2c
BS5o
543
940
750
648
B3s
925
T3a
650
930
Bdo
635
533
T2eo
T4o
433
B2s
640
54¢
830
730
920
630
52s
53c
623
728
430
B2o
42s
32s
T20
620
520
420
32c

45.63%
45,45%
45,264
45.09%
44 ,98%
44.79%
44.79%
44 .,6%
44.11%
43.88%
43.57%
43 .4%
43,35%
43.17%
42 .E6R
42 ,B6Y
42.69%
42 ,58B%
42 .54%
42 .4B%
41.8%
41.52%
41.29%
41.07%
40 .92%
40,91%
40.5%
40 .5B%
40,14%
39 .66%
39,79%
39.71%
39 .4%
39,15%
39.07%
33.69%
39,47%
33 .21%
37.92%
37.65%
37.49¢
37.12%
36.,44%
36.12%
35.9%
35.69%
35.25%
39.74%
34.72%
34.65%
33.67%
33.65%
32.,44%
31.4%
30 .89%
30.61%
29.98%
28,98%

Security Testing

-54 -

The application was tested using Visual Code Grepper distributed by the
NCC Group. The Visual Code Grepper is an automated code security
review tool that handles a multitude of languages, including Java.

After testing Heads-Up Hold’em initially there was over 1000 Potentially
dangerous code that was found during the testing, mainly associated with

string modifiers.

After rectifying the potential risks found. The application’s potentially
dangerous code risk was reduced from 1395 to 615. The majority of the
potential dangerous code left was located within the Grid class associated
with the MigLayout. The consensuses of these findings can be chalked
down to false positives from the Visual Code Grepper.

85 Code Breakdown - [m} X
File Export

N Overall code (10634 lines)
Overall whitespace (2430
Ll lines)
B Overall comments (4014 comments)
- Potentially broken/unfinished
flags (1 Counts)
Potentially dangerous code
M (615 Counts)

Double click on an item below to view an individual code bre
17822 Lines:
4014 Comments (~22.5%) Fitter.

2430 Lines of Whitespace (~13.6%)
11378 Lines of Code (including comment-appended code) (~63.9%)

Name Total Lines [F;r:lentage of Lines Of Code ﬁf\r::\ented Whitespace E?:a’;‘eiag!yags ijzt:;‘eiagde 2
» N [o.707 E3 s 20 0 3
Deck java [139 lo78 |6 s |3 o B
Logjava |67 [0376 |23 24 7 o o
Loginjava 369 [207 253 55 5 0 [2
Mainjava |23 o1z 9 & 7 o 1
[Playerjava |17 |0.988 122 | |46 lo 4
| RaiseOption java 106 0555 |64 |7 |29 o [1
Rarkjava |66 [037 o 13 [s 0 B
RegFom java 399 |2239 271 |63 E3 [o |2
Suitjava |16 |0.09 |7 3 5 0 0
:ﬂpperanceCnrﬂig.java :221 : 124 | 146 18 .45 .0 12
BetingCorfig java [120 |0673 7 [11 |32 0 [1
CofigScreen ava 331 1857 169 |74) o [13
|Gameconajava |83 [0.266 50 [|25 lo [1
PlayerCorfigjava B |1.032 [124 2o BES o B
CardStyle java |20 lo112 s s 3 0 0
ClassicBackjava [18 [0101 [10 1 s o [1
ClassicBack2java |17 [0.095 [10 1 4 o [1 v
< >

-55-

The main classes utilized within the Heads-Up Hold’em application was
found to have very low to none Potentially Unsafe lines of Code. The result
of the security testing was very successful in ensuring the integrity of the
application.

1.13Evaluation

The final evaluation of the project can be summed up in various limitations that

have been met throughout the application’s development lifecycle.

Limitations of Software usage

Throughout the development of the software project, the references to the work of
the “University of Alberta’s Computer Poker Research Group” was paramount in
reaching what was achieved, although the attempt in trying to adapt or simulate
the classes they provided into my application was not the best course of action, as
their artificial intelligent agent “Poki” was vastly more complex than what | could

achieve within the limited timeframe.

Although time was wasted in trying to understand their class implementations, it
was beneficial towards the continued development, once | decided to create my
own classes. The end result being a program that works reasonably well, but which

encounters a number of limitations.

Limitations of GUI

Initially 1 had high hopes for the creation of the applications GUI, attempting to
mirror styles from other forms of poker application GUIs, such as Pokerstars,
Paradise Poker and Full Tilt poker. But after understanding my restricted
knowledge on the use of Java GUI widgets, such as Swing. | came to the

realisation that it was more of an idealistic scenario rather than a realistic scenario.

-56 -

After extensive research, and recommendations from various sources. | stumbled
across MigLayout, which is a grid-based layout manager which uses Java Swing.
Fortunately, with the use of MigLayout | was able to muster a very simplistic GUI,
that works and although it doesn’t essentially immerse the user, | am content with

the outcome.

Limitations of Al Agent

Although the name of the Agent is “ProBot”, which implies that it functions on high
level of play, there are glaring issues in how the agent acts. Firstly, the agent will
only bet the amount of the big blind when acting post-flop, ideally when betting |
would have liked if | was able to implement a type of bet that varies in chip amounts.
There is still a degree of randomness provided by the probability of how much the
agent will raise by, once it has reached the river.

1.14 Definitions, Acronyms, and Abbreviations

Action. Refers to a player’s action on the poker table. Actions may include folding,

checking, calling, betting or raising.
All-in. When a player commits his entire stack of chips or money to the pot.

Big-Blind. In Heads-Up Texas Hold'em, the player who is not the dealer posts a
forced bet called the big blind. This amount is set depending on the stakes being
played. The amount of the big blind is usually twice that of the small blind, and

equal to a small bet.

Small-Blind. In Heads-Up Texas Hold’em, the player who is holds the dealer
button posts a forced bet called the small blind. This amount is set depending on
the stakes being played. The amount of the small blind is usually half that of the
big blind.

Bluff. Making a bet when holding a weak hand that has little chance to win if called.

-57-

Button. Also referred to as the ‘Dealer marker’. The player with the button is the
player just before the small-blind and has positional advantage over the entire table

for the duration of the hand.

Community cards. Refers to the open cards dealt to the table in which players

can all observe to make their hands.

Check-raise. A trap play in which a player checks in an attempt to encourage the

opponent player to bet, and then raising at the next opportunity.

Flop. (a) The first three community cards dealt in Texas Hold'em. (b) The betting

round that commences after the first three community cards have been dealt.

Turn. (a) The fourth community card dealt in Texas Hold'em. (b) The betting round

after the fourth community card is dealt.

River. (a) The fifth community card dealt in Texas Hold'em. (b) The final betting

round after the fifth community card is dealt.

Range. A collection of hands usually consisting of one or more hole-cards. This
term is commonly used when an oppositions hands are not known, and can only

be estimated.
Pot. The collection of all the betting amounts on the table at that point in time
Pre-flop. Refers to the betting round before the flop has been dealt.

Post-flop. Refers to the betting’s rounds that extend during and after the flop has
been dealt. This includes the flop, turn and river.

Hole Card. A player's private card in poker, unknown to the opponents.

used in balance with bets that are intended to be for value to create uncertainty

about the
strength of their hand. If a player does

Aggressive. Refers to a player’s style of play. An aggressive player will tend to
raise and re-raise instead of calling. These players predominately raise or fold

rather than flat calling.

- 58 -

Conservative. Refers to a player’s style. A tight player plays comparatively fewer

hands than a Loose player.

Loose. Refers to a player’s style of play. A loose player plays comparatively more

hands than the average player.

Limp. Refers to when a player chooses to simply flat call the pre-flop big blind

amount.

Starting Hand. In Texas Hold’em, the first two-hole cards a player is dealt is known
as the starting hand.

Straight. A poker hand ranked higher than three of a kind, but lower than a flush.
Consists of five cards of differing suits in sequential order, e.g. 10, Jack, Queen,

King, Ace

Straight Flush. The highest-ranking poker rank utilized by the ProBot agent,
Consists of five cards of the same suit in sequential order, e.g. 10, Jack, Queen,

King, Ace all hearts.

-59 -

2 Conclusions

In conclusion, throughout the development of the project, there has been multiple

positives and negatives encountered.

Even though the project involved understanding complex learnings and different
aspects of Java | have never developed with. | managed to implement some form
of agent that acts with some variations of logical decision making, which I initially
intended prior to development.

Positive Observations

| thoroughly enjoyed researching the surrounding literature available on the topic
of artificial intelligence poker domain is very extensive. The University of Alberta
controls a strong foothold in leading the advancement of Al poker research, taking
the time to observe the relevant academic throughout the project development was
a great insight into the current state of Artificial Intelligence and Game Theory. A
great amount of background theory from previous research was extracted and

applied to the solution of this project.

Concepts such as hand evaluation algorithms were implemented into the no-limit
variant of Texas Hold’em, were little research has been extensively done, so this

gives me a great deal of satisfaction.

Although, the entire solution to the project was a large-scale operation, revolving
around various complex areas of software, within the area of Artificial Intelligence.
When reflecting on the outcome of the application | am genuinely happy with the

result.

Most importantly, the project has improved my software development and
programming skills. It has also improved my awareness of the importance of
researching academic literature, continuous delivery such as including new

features, configurations and bug fixes

Negative Observations

-60 -

As previously stated above, the outcome of the Artificial Agent was satisfactory,
although the main negative observation when reflecting on the outcome of the
project falls on the effectiveness of some of agent’s decisions are not as optimal
as | would have liked.

The entire solution would have benefited if the agent acted with a fully optimised
Hand Evaluator, unfortunately | was unable to implement an efficient Hand
Evaluator for the agent, instead a HashMap was used for assigning values, which

does not carry the same results as proficient hand evaluator would.

-61 -

3 Further development or research

The application has multiple ways in which it could evolve over time. Some of
which include, expanding to other variations of Texas Hold’em, such as six and
nine table Texas Holdem, which would just see an influx of different Al agent
types on the tables. Accomplishing this would definitely be harder to achieve, but

| am confident that with enough time and research, | could implement these.

The application could also expand to different Poker games, such as Pot limit
Omaha or Limit Poker, which are less popular games, but still carry a big

following of players.

The agent’s bet function does not work in the manner, that | would have liked.
The agent will only bet a static amount that correlates to the value of the Big
Blind. Unfortunately, | could not manage to get the agent to orchestrate a bet that
differs at every hand. This will be a major improvement that | intend on changing

for the future for the agent to act in a more sophisticated and interesting manner.

-62-

4 Bibliography

AB, M. I. (2009). MiG Layout Quick Start Guide . Retrieved from MiG Layout Quick
Start Guide : http://www.miglayout.com/QuickStart.pdf

Baghirov, Z. (2018, May 13). Creating a state of the art based poker player.
Retrieved from studentnet:
http://studentnet.cs.manchester.ac.uk/resources/library/3rd-year-

projects/2016/zakir.baghirov.pdf

Cantero, P. (2016, Octobher 09). javapokertexasholdem. Retrieved from Github:
https://github.com/phstc/javapokertexasholdem

Cappallo, T. (2017, Novemeber 30). Development of a Heads-Up Autonomous
Poker-Playing Agent. Retrieved from Development of a Heads-Up
Autonomous Poker-Playing Agent:

http://by.tc/assets/cappallo_poker_project.pdf

Colleges, H. a. (n.d.). PokerRank. Retrieved from Hobart and William Smith
Education:
http://math.hws.edu/javanotes/source/chapterl2/netgame/fivecarddraw/Po

kerRank.java
crazyjugglerdrumme, .. (n.d.). #1 crazyjugglerdrumme.

crazyjugglerdrummer. (2009, July 26). How To Make A Poker Game In Java.
Retrieved from dreamincode:
http://www.dreamincode.net/forums/topic/116864-how-to-make-a-poker-

game-in-java/

Darse Billings, Denis Papp, Jonathan Schaeffer, Duane Szafron. (1998). Retrieved
from Opponent Modeling in Poker:
http://www.cs.virginia.edu/~evans/poker/wp-

content/uploads/2011/02/opponent_modeling_in_poker_billings.pdf

-63 -

Darse Billings, L. P. (1999). Using Probabilistic Knowledge and Simulation to Play
Poker. Retrieved from Using Probabilistic Knowledge and Simulation to
Play Poker: http://webdocs.cs.ualberta.ca/~darse/Papers/AAAI99.html

Davidson, A. (2002, July 24). Package ca.ualberta.cs.poker. Retrieved from Class
Summary: http://spaz.ca/poker/doc/ca/ualberta/cs/poker/package-

summary.html

Davidson, A. (2002, July 24). Poker Bot Artificial Intelligence Resources. Retrieved
from University of Alberta Computer Poker Research Group:

http://spaz.ca/poker/

Follek, R. 1. (2003, May). A Rule-Based System For Playing Poker . Retrieved from
CiteSeerX:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.2982&rep=r
epl&type=pdf

Gabai, D. (2014). PokerHand.java. Retrieved from Princeton Education:
http://lwww.cs.princeton.edu/courses/archive/fall14/cos126/docs/PokerHan

d.java.html

Games, T. A. (2015). Discussions: Texas Hold ‘'em. Retrieved from The Al Games:

http://theaigames.com/discussions/texas-hold-em

Genuis, P. (2002, January 15). Poker Genuis Forum. Retrieved from Poker Genuis

Forum: http://poker-genius.com/forum/forum-10.html

Grom. (2009, Febuary 03). Building a Texas Hold'em playing Al..from scratch .
Retrieved from Stack Overflow:
https://stackoverflow.com/questions/506167/building-a-texas-holdem-

playing-ai-from-scratch

Harvey, D. (2009, April). An Environment to Develop a 6-handed No Limit Texas.
Retrieved from An Environment to Develop a 6-handed No Limit Texas:
http://lwww.cs.bath.ac.uk/~mdv/courses/CM30082/projects.bho/2008-
9/Harvey-DB-Dissertation-2008-9.pdf

-64 -

Immanuel Schweizer, K. P.-H. (2009, Feburary). An Exploitative Monte-Carlo.
Retrieved from An Exploitative Monte-Carlo: https://www.ke.tu-
darmstadt.de/publications/reports/tud-ke-2009-02.pdf

Kendall, G. (2002, May). Texas Hold ‘Em. Retrieved from “Texas Hold ‘Em:
http://lwww.cs.nott.ac.uk/~pszgxk/ugyear2/projects/2001-
02/dissertations/gp-gxk2.pdf

Kullmann, O. (2009, November 05). java Poker N. Retrieved from Swansea
University
http://www.cs.swan.ac.uk/~csoliver/ProgrammingJava201011/CS-

M41 Programs/Courseworks/200910/One/Poker.java

Kumar. (2012). Creating a NL Texas Hold’em Bot. Retrieved from Creating a NL
Texas Hold’em Bot: http://cs229.stanford.edu/proj2012/Kumar-
CreatingTexasHold%27EmBot.pdf

Mccurley, P. (2009, May 08). An Artifical Intelligence Agent For Texas Hold'em
Poker. Retrieved from Poker-Al: http://poker-
ai.org/archive/pokerai.org/public/aith.pdf

McLeod, J. (12013, July 15). Ranking of Poker Hands. Retrieved from Pagat:

https://www.pagat.com/poker/rules/ranking.htmi

McLeod, J. (2013, July 15). Rules of Poker. Retrieved from Pagat:
https://www.pagat.com/poker/rules/#Basics

Mendes, P. D. (2008, July). High-Level Language to build Poker Agents . Retrieved
from High-Level Language to build Poker Agents
https://pdfs.semanticscholar.org/f165/b5608f0f0a71206ff9dd83c6cchb6167
966fb.pdf

Michael Bowling, N. B. (n.d.). Heads-up Limit Hold’em Poker is Solved. Retrieved
from Heads-up Limit Hold’'em Poker is Solved:
https://webdocs.cs.ualberta.ca/~bowling/papers/15science.pdf

- 65 -

Nick Abou Risk, D. S. (2010, May). Using Counterfactual Regret Minimization to
Create. Retrieved from Computer Poker Research Group:
http://poker.cs.ualberta.ca/publications/AAMAS10.pdf

Papp, D. R. (1998). Dealing with Imperfect Information in Poker. Retrieved from
University of Alberta: http://poker.cs.ualberta.ca/publications/papp.msc.pdf

PokerHand. (n.d.). Retrieved from University of Georgia:

http://cobweb.cs.uga.edu/~gtb/1302/Projectl/PokerHand.java

Robert Sedgewick, K. W. (2018). Hash Tables. Retrieved from Princeton

Education:
https://www.cs.princeton.edu/courses/archive/spring18/cos226/lectures/34

HashTables.pdf

Schuijtviot, E. (2011, June). Application of Al in poker. Retrieved from BMI paper:
https://beta.vu.nl/nl/images/werkstuk-schuijtviot_tcm235-225501.pdf

Science, C. C. (2002, July 30). PokerHand. Retrieved from Cornell Computer

Science:
http://www.cs.cornell.edu/courses/cs100/2003su/assignment5/solution/Po

kerHand.java

Stigter, O. (2016, August 12). texasholdem-java. Retrieved from Github:

https://github.com/ostigter/texasholdem-java

Stigter, O. (2016, August 12). texasholdem-java. Retrieved from Google Code

Archive: https://code.google.com/archive/p/texasholdem-java/

The Computer Poker Research Group, U. 0. (2017). Computer Poker Research
Group. Retrieved from Computer Poker Research Group:

https://webdocs.cs.ualberta.ca/~games/poker/

West, M. (2007, January 04). Programming Poker Al. Retrieved from Cowboy
Programming: http://cowboyprogramming.com/2007/01/04/programming-

poker-ai/

- 66 -

Wiki, L. (2015, May 07). LWJGL library. Retrieved from LWJGL library.:
http://wiki.lwjgl.org/index.html

-67 -

5 Appendix

5.1 Project Proposal

The main objective is to develop an Atrtificial Intelligence agent that is capable

of good decision making when playing Texas Hold’em poker.
In doing this, the objectives are comprised of 5 points.

e To investigate the characteristics strong poker players, possess
and compare these results with the agent solution.

e To measure the performance of the agent against human
opposition over a multitude of hands, and document these results.

e Design an efficient Hand Evaluation program

e Design the agent to play no-limit poker variant of Texas Hold’em

e To produce a finalized agent, that produces positive results over a
certain number of hands.

The game of poker offers a well-defined domain in which to investigate some
fundamental issues in Artificial Intelligence, such as how to handle a game tree
that presents Imperfect Knowledge, through the means of concealed

opponent’s cards.

This project will aim to investigate what Artificial Intelligence technigues can be
applied to the domain in order to play up to a human standard of decision
making. This will hopefully result in creating a bot that plays Texas Hold’em in

a profitable manner.

To simplify the problem, some limitations to the game are made. Firstly, though
this is No-Limit Hold’em, the bot’s bets will be fixed. A common raise made by
many players is 3 times the bet made in front of them. If the bot is leading out,
the bet will be 2/3 of the pot. Lastly, there will be no concept of bankroll,

however | will aim to track the winnings and losses of the bot.

-68 -

5.2 Background

In the domain of Artificial Intelligence there has been a plethora of games
that have been solved to date. Some examples of these agents are, IBM’s
“‘Deep Blue” for chess, The University of Alberta’s “Chinook” for checkers

and Michael Buro’s “Logistello” for Othello.

These agents have effectively solved those games and have beaten the
best human minds in the world, demonstrating the power of computational
processing. However, what all these games have in common is, they are all
“perfect information” games. Perfect information games refer to the game
in which each player, at any point in the game has complete knowledge of
the current game state. Games like Chess, Checkers and Backgammon are
“‘perfect information” games. Players who play these have perfect
knowledge of the game state as they can see all remaining pieces on the

game board.

Well known game-search trees, such as alpha-beta search can be used to
explore deep into the game tree to find and choose the worse-case action

the opponent cannot compete against.

In contrast to this, Poker is a “imperfect information” game, this means that
certain information within the game is private, in terms of poker, each player
receives private cards. As a result, no player can know the current position
in the game tree.

Poker is a non-deterministic game. A player’s actions within the poker

domain can never guarantee the same outcome.

Poker has stochastic outcomes. This element of change through random
shuffling of the cards creates uncertainty and adds a great deal of variance

to the results.

Texas Hold’em is a poker variation that uses community cards. This variant

of Poker was chosen because its rules have specific characteristics that

-69 -

allow new developed methodologies to be adapted to other Poker variations

with reduced effort.

Rules

At the beginning of every game, two cards are dealt to each player. The
dealer player is assigned and marked with a dealer button. The dealer
position rotates clockwise from game to game. After that, the two players
to the left of dealer post the blind bets. The first player is called small blind,
and the other one is called big blind. They respectively post half of
minimum and the minimum bet. The player that starts the game is the one
on the left of the big blind. One example of an initial table configuration is
shown in Figure 2. The dealer is the player at seat F and the small and big
blind players are respectively the A and B seats.

® ©

®
O

©
®

O ©

Table Layout

The first player to act is the player to the left of the big blind (Player C)
And the next player is the closest one to the left of the current player. Each
player can choose one of the following actions

e Call: Match the current highest bet
e Raise: Bet higher than the current highest bet
e Fold: Forfeit the hand, thus give up the pot

There are four betting rounds in Texas Hold’em, where each round new
community cards are revealed.

e Pre-Flop: No community cards

e Flop: three community cards revealed

e Turn: The fourth community card is revealed
¢ River: The fifth community card is revealed

-70 -

After the river, if at least 2 players agree to call the pot, the showdown round
comes. This is when all players may show their cards and the one with the
best hand wins the pot. If players have similar ranked hands, there is a tie
and the pot is divided. This is otherwise known as a “chop-pot”

Hand Rankings

A poker hand is a set of five cards that identifies the score of a player in
poker. The hand is made by combing the player’s personal cards with the
community cards. The table below presents the ranking of each

combination with a short description.

Hand Description Hand Example

Royal Flush: this is the best possible hand in

standard five-card Poker. Ace, King, Queen,

Jack and 10, all of the same suit.

Straight Flush: Any five-card sequence in the R 5-‘ * |[ie =

a ' | a%a
same suit. - *3| v 7 * -rs * *i
Four of a Kind: Any set with four cards with "* *pq [FEEE
the same rank. — L‘,C e -
Full House: Three cards with the same rank = d

- .

plus two cards with the same rank. 2 2
Flush: Any set with five cards of the same suit, e "" v v
but not in sequence. a syl a2

Straight: Five cards in sequence, but with

+|
kS

different suit

Three of a kind: three cards with the same

rank.

Two Pair: Two separate pairs, and one kicker

"-ﬁ +
of different value. The kicker is used to decide .
. * +3

upon a tie of the same two pairs.

One Pair: Two cards with the same rank and

three kicker cards.

High Card: Any hand that does not qualify as

one of the better hands above. Ranked by top

card, then the second card and so on.

Hand Evaluation Algorithms

The algorithm in which that is used to quantify the agent’s Hand Strength,
regardless of all cards being dealt. This algorithm is key, as it considers all
the possible better hands the agent could have, the same, and all the worse
hands at the point of calculation. The algorithm iterates through all possible

starting hands and returns a percentage as a result.

-71-

Function HandRank (Hand) |
Sort (Hand) ;
If IsStraightFlush(Hand) Return 9;
If IsIsFourOfAKind (Hand) Return 8;
If IsFullHouse (Hand) Return 7;
If IsFlush(Hand) Return 6;
If IsStraight (Hand) Return 5;
If IsThreeQfAKind (Hand) Return 4;
If IsTwoPairs (Hand) Return 3;
If IsOnePair (Hand) Return 2;
Return 1;

Hand Potential

Hand Potential is an algorithm that calculates the possible evolution of the
hand quality throughout the game. In Texas Hold’em, when the game
reaches the Flop round, there are still two more community cards to be
revealed. This means that the current hand rank may improve, since the
hand is composed of the set of five available cards that has the highest rank
among all available cards. This is an extension of the hand evaluation, but
instead of only considering the current available cards, it considers the
possible community cards that have not been revealed yet. This also

considers that the opponent’s hands might improve as well.

Non-Deterministic Game

Non-deterministic games are often described as games with an element of
chance. These games do not result in predictable outcome. Examples of
such games are Backgammon and Poker (their source of chance is dice
and card respectively). What makes these games different from
deterministic games are the additional nodes called ‘Chance’ or ‘Nature’ in

their game trees.

Imperfect Information

-72-

Imperfect information game corresponds to the game in which certain
information is private, meaning that other players cannot see it. For
example, in Poker each player 10 | P a g e receives private cards. As a
result of this, no player can clearly know the current position in the game

tree.

The utility or payoff

The utility in the game is the expected value when a round of a game is
played. In the poker game, it is the number of chips that was acquired or

lost at the end of the hand (round).

Nash Equilibrium

Nash equilibrium is a strategy profile o where no player can increase their
utility by unilaterally changing their strategy (Johanson, 2007): This means
that for player 1, there is no other strategy in 21 that would produce more
utility against 02 than its strategy in o. The same is true of player 2.
(Johanson, 2007)

5.3 Technical Details

Implementation

This application will be developed using an Agile software development
process. The specific agile practice | intend to adopt for this project is
Iterative Development. The main idea behind Iterative Development is to
break down the whole project into smaller parts or iterations. This was
chosen with the goal of completing significant parts of the project at the end
of each iteration. | believe this will be proving to be beneficial as it allows for

the development of the more

Java

-73-

Java is the programming language that will be used to develop the
application. This is because Java allows applications to be easily integrated
with web application using Java Applet, another reason behind using Java
was for future extension of the application to be ported to mobile, using
Android application development which uses Java. The object orientated
nature of Java, helps in separating the features of the application for easier

management and debugging.

MigLayout — Java Layout Manager

MigLayout is a grid-based layout that allows for designing complex GUI

layouts for Swing applications with ease.

MySOQL

MySQL was the primary relational database management system taught to
this year’s 4th Year NCI computing students during their time at college.
Thus, it made sense to use MySQL for this project rather than having to

learn an entire new database system.

-74 -

5.4 Project Plan

& ik Ne Durntien San Firig
O Moo Auguit Septewbier |Ocloter [Movember |Decomsber fanusy Februsy [March Apal oy

% oa Iune

mlelpimielpimielp/mielpm g 8 'mig 8 imieBimieE Bimlelsivie|s(mle
Project Proposal

Requirements Specification

csal Sdays
16 days

Project Prototype
Mid Paint Presentation

ect Frototype 14 doys
11 doys

Showcase Materials
Hard Copy Documentation

Software & Doc Uploads

B % %Y BB %M

Project Presentation

5.5 Monthly Journals

September Journal

Student Name: Lee Murray
Programme: BSc Computing
Month: September 2017

When attempting to come up with an idea for my final year project, | wanted to do
something aligning to my cyber security stream, although | was unable to come up
with a solid idea in time for the pitch so instead of going in and saying | don’t have
an idea, | pitched a Poker application which included an Artificial Intelligent agent,
which | presumed would get rejected. To my surprise it got accepted. | have a keen
interest in Poker and have played it for a couple of years, although developing an

Al agent seems as an ambition task, I’'m positive it will also be very interesting.
Supervisor Meetings

| didn’t have a supervisor meeting during the month of September

October Journal

-75 -

Student Name: Lee Murray
Programme: BSc Computing
Month: October 2017

| am very glad to say that, my project idea was approved by the college committee,
who queried me about the application that | want to build. So, this month my
achievements were: First, | prepared for the presentation Pitch and then |
presented my project idea in front of the college committee. Second, | started and
completed the project proposal and then | have uploaded it to Moodle on time.
Thirdly | began working on my Requirements specifications. | also did some

research on the topic of Game Theory in Artificial Intelligence and Bots in Poker
Supervisor Meetings

| didn’t have a supervisor meeting during the month of October

November Journal

Student Name: Lee Murray
Programme: BSc Computing
Month: November 2017

During October, | met with my Supervisor Vikas, whom pointed in a direction to
find the best programming language | can use to develop the algorithm for the Al
agent, with the use of document surveys. As | already have previous knowledge of
Java from using it in college, | decided to stick with what | know, rather than take
on a new language in this already difficult enough task. We also discussed about
the platform of the project, whether to develop it as a NetBeans application or on
Android. Vikas recommended doing it as a NetBeans application to keep it as
simple as possible as | have not worked with Android studio before. Although he
offered a good suggestion to include on the extensibility of the application that as

further development takes place, using Android studio is a possibility.

-76 -

My Achievements
Finished the Requirements Specification
Supervisor Meetings

Date of Meeting: 14th November Items discussed: Discussing Project Idea, what

language and platform to use.

December Journal

Student Name: Lee Murray
Programme: BSc Computing
Month: December 2017

December was an extremely busy month for all modules, unfortunately my
software project needed to be pushed back on my priority list, in order to finish off

other projects for other modules.

My main focus in regard to the software project is on the mid-point presentation.
Although | was happy with the slides | provided and how | articulated them, my
prototype did concern me as | could only manage to provide a small amount of

functionality which comprised of a deck shuffling method and a mock-up GUI.

| did hope to have some form of GUI developed in Java Swing by this time, but the
decision to simply have a mock up to show what I'm trying to do would be best |

could achieve at this moment in time.

| believe the presentation went well, there were little questions asked which | took

as a positive to my presentation showing in full the current and future

development which | aim to achieve.

Supervisor Meetings

| had a meeting with Vikas prior to my mid-point presentation, he offered me

excellent advice and what | should be focusing on to gain the maximum marks.

-77 -

He also instructed me to explicitly focus on my exams after the presentation, which
gave me a sense of relief and reassurance, as | was unsure if | should be still giving

excess time to my software project during my exam time to not fall behind.
Items Discussed:

e Project Prototype

e GUI

o Deck Shuffling method
e Slide preparation

My Achievements

The midpoint presentation went very well from my perspective. | received helpful
feedback from the supervisors regarding the development of the Poker agent
which | gladly took on board.

January Journal

Student Name: Lee Murray
Programme: BSc Computing
Month: January 2018

After the completion of my exams, | made a decent head start on the development
of the GUI for the user’s configurations of the application. | came across a grid-
based layout called MigLayout library which utilises Java Swing. MigLayout offers
a vast number of tutorials and examples, which aided me in developing the Ul of

the application.

Solid progress was made on the core classes of the application, such as the card,

player, deck and suit classes.

Supervisor Meetings

No meetings scheduled during the month of January.

-78 -

February Journal

Student Name: Lee Murray
Programme: BSc Computing
Month: February 2018

February brought with it a great deal of progress on the development of the Atrtificial
Intelligent agent. From the previous GUI work in January, | was able to set up an
environment for the agent to act in, this allowed me to further enhance the
algorithm and methods it follows, and thus improve its actions and decision

making.

The initial development of the applications controllers for a game such as Texas
Hold’em were started this month, these included abstract classes that contained
all relevant information that are required to simulate a game of Texas Hold’em,
such as the players involved, the big and small blind amounts and how the betting

occurs in a sequential order.

Supervisor Meetings

Date of Meeting: 22" Feb
Items discussed:

e Hand Evaluator implementation
e GUI Improvements
e Required Agent methods

March Journal

Student Name: Lee Murray

Programme: BSc Computing

-79-

Month: March 2018

During the month of March, | took a break from working on Agent methods and
focused more on Ul development and User registration and login forms, along with
the security related features.

With continued research of experimenting with using the MigLayout grid, |
developed a test Ul for user configuration, including the Player Menu, Betting menu

and an Appearance menu.

The player menu is aimed to allow users to choose from different types of agents
| intend on allowing the player to play against and choose how many chips they
wish to play with, this will ultimately decide on the pace of the game they would
like to play.

The betting menu will give the user the ability to change the number of raises

allowed by each player during every hand.

The user should also be able to change the amount of chips the big and small blind

are, as well as implement antes during the game.

Creating secure registration and login form for the user is very important for the
integrity of the application as well as being a cyber security student, | felt it was
important for the application to have some element of security related feature

contained within it.

The associated security element with the registration form made use of a MD5

hash of the user’s password that is stored within the database.

| also included a log file that will handle errors that occur in the registration and

login form.

Supervisor Meetings

Date of Meeting: 12" March

ltems Discussed:

-80 -

Final Preparation
Project progress on basic functionality

-81-

