

13/04/2018

Technical Report
Kryptium

Aaron Healy
X14532757

National College of Ireland

BSc in Computing

2017/2018

 1

Table of Contents

1 Introduction 4

1.1 Background 4

1.2 Aims 5

1.3 Technologies 5

2 System 6

2.1 Purpose 6

2.2 Project Scope 6

2.3 Definitions, Acronyms, and Abbreviations 7

2.4 User Requirements Definition 8

2.5 Requirement Specification 11

2.5.1 Functional requirements 11

2.5.2 Use Case Diagram 11

2.5.3 Requirement 1 <Register/Login > 12

2.5.4 Requirement 2 < Add Password > 14

2.5.5 Requirement 3 < Add Text Block > 17

2.5.6 Requirement 4 < Add File > 19

2.5.7 Requirement 5 < Add Image > 22

2.5.8 Requirement 6 < Decrypt/Delete Image > 24

2.5.9 Requirement 7 < Decrypt/Delete File > 27

2.5.10 Requirement 8 < Decrypt/Delete Password> 29

2.5.11 Requirement 9 < Decrypt/Delete Text Block > 32

2.6 Data Requirements 35

2.7 Environmental Requirements 37

2.8 User Requirements 38

 2

2.9 Usability Requirements 38

2.10 Non-Functional Requirements 39

2.10.1 Performance/Response time requirement 39

2.10.2 Availability requirement 39

2.10.3 Recover requirement 39

2.10.4 Security requirement 40

2.10.5 Reliability requirement 41

2.10.6 Maintainability requirement 41

2.10.7 Reusability requirement 41

2.11 Interface Requirements 42

2.11.1 GUI 42

2.11.2 Application Programming Interfaces (API) 53

2.12 System Architecture 55

2.14 Design and Architecture 57

2.13 Logical Architecture 58

2.15 Implementation 61

2.16 Testing 90

3 Further Development 105

4 Conclusion 105

5 References 106

6 Appendix 107

6.1 Project Proposal 107

6.1.1 Objectives 107

6.1.2 Background 108

6.1.3 Technical Approach 109

 3

6.1.4 Special Resources Needed 111

6.1.5 Technical Details 111

6.1.6 Evaluation 113

6.2 Project Plan 113

Executive Summary

From the research conducted at the beginning of the project development I found

there was a severe lack of android applications that allowed users to encrypt varies

file types and store them securely in a database of any type. Most applications on

the Google Play Store that allow encryption of some sort are mostly messenger

like applications or focus on one type of file to encrypt such as images. I also found

applications using unsecure encryption algorithms such as MD5 as well have a

basic or unappealing user interface.

The Kryptium android application will allow users to encrypt and safely store

passwords, text blocks, images and files, such as word, pdf and excel files. These

will be encrypted using currently secure encryption algorithms such as AES 256

and TwoFish as well as steganography techniques. The user interface will be as

simple as possible to allow users of all experience levels to use the application

with ease.

A web application will also contain all the functionality of the android application

and allow users to encrypt or decrypt their data on either the android application

or on a laptop, or anything with a browser.

The android applications database is a Google Firebase Realtime Database which

allows users to access their data on both platforms as the database is hosted

online not physically on either device.

 4

1 Introduction

The aim of this document is to provide all the technical details of the mobile and

web application being developed, named Kryptium. This application will provide

multiple encryption features described in the document below. This section also

gives a scope description and overview of everything included in the requirement

specification document. Also, a list of abbreviations and definitions are provided.

1.1 Background

In my research I found there were very few encryption applications on the Google

Play Store that could be considered up to par and usable. I found that most apps

were old and had UI that didn't have usability in mind, as well as some apps using

non-secure encryption algorithms. While there were one or two good apps in terms

of features they had outdated UI and were over complicated with too many options

and buttons which probably left some users confused and wanting to uninstall the

app. So, I wanted to make an app that had usability, good UI design as well as

secure encryption features in mind.

As I am in the Cyber Security stream I wanted to double down on this idea and

include as many security and encryption algorithms as possible without making it

too complex. In the end I settled for 5 different ways of encrypting data, including

the login and register. The user will be able to encrypt passwords, text blocks, files

and images so each of these sections in the application will be encrypted using

different algorithms. My android phone also has a fingerprint scanner, so I wanted

to include that somehow, so I decided it would be used as a method of decrypting

a file the user had previously encrypted.

Although this seemed like a good idea I didn't feel like the complexity was there,

so I decided I would make it cross platform by building a web application that

registered users could log into to view their encrypted files that way and decrypt

them on their PC or laptop. I would use the Google Firebase databases for this as

it would allow data to be accessed by both mobile devices and PC’s over the

internet.

 5

1.2 Aims

The aims of this project are to develop an application which will allow them to

encrypt their personal or sensitive data using safe and effective encryption

algorithms. Their data will then be stored in a Firebase Database or in Firebase

Storage. The user’s data can then be decrypted and viewed or downloaded on

either an android device or using the web application. The application, on both the

web and android devices, will allow users to create a Kryptium account and login

at any time. Strong passwords and sessions will keep the user’s activity and data

safe, also the system will only allow one account per email address. The logged in

user can encrypt and decrypt passwords, text blocks, images and files using the

application. Each section of the application will use a different encryption algorithm,

but all algorithms will create secure ciphertexts and mitigate any attacks, such as

dictionary attacks. Both the android and web application will be security tested

before it is ever released.

1.3 Technologies

The mobile application will be built for devices using Java for the backend and XML

for the user interface. I will be using Android Studio to develop the application as

it allows me to test the app on my phone but also run emulators to test features.

The web application will be developed in Visual Studios using HTML, CSS, C# and

JavaScript.

All the user’s data will be stored in a Google Firebase Realtime Database and will

be accessed through the Firebase API’s. The user’s images and files will be stored

in Google Firebase Storage and the account creation and login functionality will be

created and handled by the Google Firebase Authentication API.

 6

2 System

2.1 Purpose

The purpose of this document is to give a detailed description of all the

requirements for the Kryptium cross-platform application. It will illustrate the

purpose and need for the development of the application. It will also explain the

interface and interactions with external applications and systems. This document

is primarily intended to breakdown and showcase the application.

2.2 Project Scope

Kryptium is an encryption-based android and web application which allows people

to easily and securely encrypt and save private information or files, such as

passwords, addresses, personal images or private files. The android application

should be close to completion while the web application being closer to a prototype

application.

Users will have to first create an account using either email and password or the

Google sign in API, as only authenticated users can access the application and

use it. The authenticated users can then encrypt private information, this

information is stored in a Google Firebase Database and Google Firebase

Storage.

The application will need an internet connection to be able to upload data to the

database but also to fetch and display the data in the application. All system

information is maintained in a database, which is a Google Firebase Database,

while all images and files will be stored in Google Firebase Storage. The android

application will also need permission to use the fingerprint-scanner, if the mobile

device has one, this allows users to delete or decrypt data with their fingerprint.

The web application and android application will essentially be copies of each other

allowing users to log in and encrypt or decrypt data on both platforms.

 7

2.3 Definitions, Acronyms, and Abbreviations

Term Definition

User Someone who interacts with the web/mobile application

Firebase

Authentication

System used to verify users as well as Login/Register

functionality.

Firebase Database System used to store all the user data (Strings, int)

Firebase Storage System used to store files (pdf, png, jpg)

AES 256 Advanced Encryption Standard using 256-bit key, used

to encrypt the user’s passwords.

Twofish Encryption algorithm to encrypt files

Steganography Used to hide text in an image which is uploaded to

database.

3DES Encryption algorithm to encrypt images

GUI Graphical User Interface, the applications front-end.

API Application Programming Interface.

 8

2.4 User Requirements Definition

To get a better understanding of what customers need or want in this application I

conducted a short survey containing questions I felt were important. I created the

survey using Google Forms. Google Forms allowed me to create a survey online

and then share the survey with people on Facebook or by email. This platform also

generates the pie charts you see below and updates them every time a survey is

complete. Below is a breakdown of the results of this survey along with all the

questions that were asked.

Have you ever used an encryption application before?

I felt this was important because it shows only 33 percent of the survey applicants

have used an encryption application or service at some stage.

 9

Would you consider using one to store private or sensitive data?

From this graph and the one above we can see that most people haven’t used an

encryption application but would consider using one, whether it be for personal

data or company data they hold.

The application will need an internet connection to access your data. Does

this affect your decision to use this application?

Although more people said it doesn’t affect their decision to possibly use my

application the high number of people that said it would has made me consider

some sort of offline capabilities.

 10

What features would you want to be in this application?

From this graph we can see that most people are interested in keeping their

passwords and files safe and secure.

What would make you use this application over a competitor?

The biggest attraction for users is that their data is in fact secure and encrypted

properly. But also, users like unique features, the one I mentioned in the survey

was the fact that I would be incorporating the fingerprint scanner on their mobile

devices.

 11

2.5 Requirement Specification

This section contains all the functional requirements of the system. It gives a

detailed description of the system and all the features as well as how a user

interacts with these features.

2.5.1 Functional requirements

This section lists the functional requirements in ranked order. Functional

requirements describe the possible effects of a software system, in other words,

what the system must accomplish.

2.5.2 Use Case Diagram

 12

2.5.3 Requirement 1 <Register/Login >

2.5.3.1 Description & Priority

This requirement is essential because only authenticated users can login and use

the features in the application. Users must first be able to register an account and

then login. The user’s information must be saved to Firebase Auth and the

Firebase Database.

2.5.3.2 Use Case

 Identification Code

 FR1

Scope

The scope of this use case is to show the interactions between the user and

the application as well as key parts of the application interacting with each

other.

Description

This use case describes the user registering an account and then logging in,

if the user is already registered they can skip straight the login.

Use Case Diagram

 13

Flow Description

Precondition

The system is in initialization mode, user brought to login screen.

Activation

This use case starts when a user selects register and is brought to the

register screen.

Main flow

1. The user clicks the register button, the system identifies the register
button has been selected.

2. The user fills in the text boxes on the screen, all must be filled.
3. The user clicks the register button.
4. The system encrypts the user’s credentials and details using AES.
5. The system connected to Firebase Authentication and Database.
6. The system saves the users credentials.
7. The user is brought to the login screen.
8. The user can enter their email and password and brought to the home

screen where they can use the features of the application.
Alternate flow

A1: <Passwords don’t match >

1. The system compares password and confirm password textboxes.
2. The system notifies user passwords don’t match
3. The use case continues at position 2 of the main flow

A2: <Email check >

1. The system checks the email address isn’t already in use.
2. If email already in use, the system notifies user the email is already

taken so must either use another email address or recover the
account.

3. The use case continues at position 2 of the main flow
A3: <Textbox check >

1. The system checks all textboxes are filled correctly
2. The system notifies if a textbox is empty or not filled in correctly.
3. The use case continues at position 2 of the main flow

A4: <User already has an account >

1. The use case continues at position 6 of the main flow
Termination

 14

If register is successful user is brought to the login page, if the user logs in

the login/register process terminates.

Post condition

Success Conditions:

1. User creates an account.
2. User can login to application.
3. User details uploaded to Database and Authentication.

Failure conditions:

1. User cannot create an account.
2. User cannot login to application.
3. User details not uploaded to Database and/or Authentication.

2.5.4 Requirement 2 < Add Password >

2.5.4.1 Description & Priority

This use case describes a user adding a new password to the database, being

able to view all passwords in the database and can add passwords. The user’s

passwords must be saved to the Firebase Database as well as be read from this

database.

2.5.4.2 Use Case

 Identification Code

 FR2

Scope

The scope of this use case is to show how a user views and adds a password

to the database

Description

This use case describes how a user views and can add a new password to

the database.

 15

Use Case Diagram

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view passwords. The system shows all

passwords in the database in a list.

Activation

This use case starts when a user clicks “create new password” button.

Main flow

1. The system identifies the “create new password” button has been
clicked by the user.

2. The system brings the user to the page where the user can create
a new password

3. The user fills in all textboxes on the page (name, password, pin).

 16

4. The user clicks “upload” button.
5. The system connected with the Firebase Database.
6. The data from the textboxes is encrypted and saved to the

database.
7. The system goes back to the View Passwords page.

Alternate flow

A1: <Textboxes empty/not filled correctly >

1. The system checks all textboxes are filled correctly.
2. The system notifies the user to fill the textboxes correctly.
3. The use case continues at position 3 of the main flow

A2: <Password name already exists >

1. The system checks password name does not already exist.
2. The system notifies the user create a new password name.
3. The use case continues at position 3 of the main flow

A3: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully saves the password and user is brought back to

view passwords page.

Post condition

Success Conditions:

1. Password is encrypted.
2. Password is uploaded to Database.

Failure conditions:

1. Password fails to encrypt.
2. Password fails to upload to Database.

 17

2.5.5 Requirement 3 < Add Text Block >

2.5.5.1 Description & Priority

This use case describes a user adding a new text block to the database, being

able to view all new text blocks in the database. The user’s new text blocks must

be saved to the Firebase Database as well as be read from this database.

2.5.5.2 Use Case

 Identification Code

 FR3

Scope

The scope of this use case is to show how a user views and adds a new text

block.

Description

This use case describes how a user views and adds a new text block to the

database.

Use Case Diagram

 18

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view new text blocks. The system shows all

passwords in the database in a list.

Activation

This use case starts when a user clicks “create new password” button

Main flow

1. The system identifies the “create new text block” button has been
clicked by the user.

2. The system brings the user to the page where the user can create a
new text block.

3. The user fills in all textboxes on the page (name, text, pin).
4. The user clicks “upload” button.
5. The system connected with the Firebase Database.
6. The data from the textboxes is encrypted and saved to the database.
7. The system goes back to the View Passwords page.

Alternate flow

A1: <Textboxes empty/not filled correctly >

1. The system checks all textboxes are filled correctly.
2. The system notifies the user to fill the textboxes correctly.
3. The use case continues at position 3 of the main flow

A2: < new text block name already exists >

1. The system checks new text block name does not already exists.
2. The system notifies the user create a new password name.
3. The use case continues at position 3 of the main flow

A1: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully saves the text and user is brought back to view

passwords page.

 19

Post condition

Success Conditions:

1. Text Block is encrypted.
2. Text Block is uploaded to Database.

Failure conditions:

1. Text Block fails to encrypt.
2. Text Block fails to upload to Database.

2.5.6 Requirement 4 < Add File >

2.5.6.1 Description & Priority

This use case describes a user adding a new file to the database and storage,

being able to view all files in the database. The user’s files must be saved to the

Firebase Database as well as be read from this database.

2.5.6.2 Use Case

Identification Code

FR4

Scope

The scope of this use case is to show how a user views and adds a file.

Description

This use case describes how a user views and adds a file to the database

 20

Use Case Diagram

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view files. The system shows all files in the

database in a list.

Activation

This use case starts when a user clicks “create new file” button

Main flow

1. The system identifies the “create new file” button has been clicked
by the user.

2. The system brings the user to the page where the user can create a
new file upload.

3. The user fills in all textboxes on the page (name, file description, pin).
4. The user clicks the “select file” button.
5. The user clicks “upload” button.

 21

6. The system connected with the Firebase Database.
7. The data from the textboxes and the file is encrypted and saved to

the database.
8. The system goes back to the View files page.

Alternate flow

A1: <Textboxes empty/not filled correctly >

1. The system checks all textboxes are filled correctly.
2. The system notifies the user to fill the textboxes correctly.
3. The use case continues at position 3 of the main flow

A2: < file name already exists >

1. The system checks file name already exists.
2. The system notifies the user create a new file name.
3. The use case continues at position 3 of the main flow

A3: <No file selected >

1. The user hasn’t selected a file.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

A4: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully saves the file and user is brought back to view files

page.

Post condition

Success Conditions:

1. File is encrypted.
2. File is upload to Storage.
3. File data is uploaded to Database.

Failure conditions:

4. File fails to encrypt.
5. File fails to upload to Storage.
6. File data fails to upload to Database.

 22

2.5.7 Requirement 5 < Add Image >

2.5.7.1 Description & Priority

This use case describes a user adding a new image to the database and storage,

being able to view all images in the database. The user’s images must be saved

to the Firebase Database as well as be read from this database.

2.5.7.2 Use Case

 Identification Code

 FR5

Scope

The scope of this use case is to show how a user views and adds an image.

Description

This use case describes how a user views and adds an image to the

database.

Use Case Diagram

Flow Description

 23

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view images. The system shows all images in

the database in a list.

Activation

This use case starts when a user clicks “create new image” button

Main flow

1. The system identifies the “create new image” button has been clicked
by the user.

2. The system brings the user to the page where the user can create a
new image upload.

3. The user fills in all textboxes on the page (name, image description,
pin).

4. The user clicks the “select image” button.
5. The user clicks “upload” button.
6. The system connected with the Firebase Database.
7. The data from the textboxes and the image is encrypted and saved

to the database.
8. The system goes back to the View Images page.

Alternate flow

A1: <Textboxes empty/not filled correctly >

1. The system checks all textboxes are filled correctly.
2. The system notifies the user to fill the textboxes correctly.
3. The use case continues at position 3 of the main flow

A2: < Image name already exists >

1. The system checks file name already exists.
2. The system notifies the user create a new file name.
3. The use case continues at position 3 of the main flow

A3: <No Image selected >

1. The user hasn’t selected an image.
2. The system notifies the user with error message.
3. The use case continues at position 4 of the main flow.

A4: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

 24

Termination

The system successfully saves the image and user is brought back to view

images page.

Post condition

Success Conditions:

1. Image is encrypted.
2. Image is upload to Storage.
3. Image data is uploaded to Database.

Failure conditions:

1. Image fails to encrypt.
2. Image fails to upload to Storage.
3. Image data fails to upload to Database.

2.5.8 Requirement 6 < Decrypt/Delete Image >

2.5.8.1 Description & Priority

This use case describes a user decrypting or deleting an image from the database

and storage. The user’s images must be read or deleted from the Firebase

Database and Storage as well as be read from this database.

2.5.8.2 Use Case

 Identification Code

 FR6

Scope

The scope of this use case is to show how a user views and either decrypts

or deletes images.

Description

This use case describes how a user views and delete or decrypt an image to

the database.

Use Case Diagram

 25

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view images. The system shows all images in

the database in a list.

Activation

This use case starts when a user clicks on one of the items in the list.

Main flow

1. The system identifies an item in the list has been clicked
2. The system brings the user to the page where the user can decrypt

or delete an image from the database.
3. The user can select to use a pin code or their fingerprint.
4. Pin Code Alternate Flow<A1>.
5. Fingerprint Alternate Flow<A2>.
6. The user selects the delete or decrypt button.
7. The system connected with the Firebase Database.
8. The image is deleted or downloaded after being decrypted.
9. The system goes back to the View Images page.

Alternate flow

 26

A1: <User Selects to enter a pin code >

1. The pin code textbox appears.
2. The user enters a pin code.
3. The use case continues at position 6 of the main flow

A2: < User Selects to use their fingerprint>

1. Fingerprint dialog appears.
2. User places finger on scanner.
3. The use case continues at position 6 of the main flow

A3: <Pin code is incorrect >

1. The user enters a pin code.
2. The system notifies the user with error message as pin code is

not correct.
3. The use case continues at position 4 of the main flow.

A4: <Fingerprint doesn’t match stored fingerprint >

1. The user places their finger on the scanner.
2. The system notifies the user with error message as fingerprint

is not the same as stored fingerprint.
3. The use case continues at position 5 of the main flow.

A5: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully deletes or decrypts the image and user is brought

back to view images page.

Post condition

Success Conditions:

1. Image is deleted from the database.
2. Image is decrypted.
3. Image is downloaded.

Failure conditions:

1. Image fails to delete.
2. Image fails to decrypt.
3. Image fails to download.

 27

2.5.9 Requirement 7 < Decrypt/Delete File >

2.5.9.1 Description & Priority

This use case describes a user decrypting or deleting a file from the database and

storage. The user’s files must be decrypted or deleted from the Firebase Database

and Storage as well as be read from this database.

2.5.9.2 Use Case

 Identification Code

 FR7

Scope

The scope of this use case is to show how a user views and either decrypts

or deletes files.

Description

This use case describes how a user views and delete or decrypt a file to the

database.

Use Case Diagram

 28

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view files. The system shows all files in the

database in a list.

Activation

This use case starts when a user clicks on one of the items in the list.

Main flow

1. The system identifies an item in the list has been clicked
2. The system brings the user to the page where the user can

decrypt or delete a file from the database.
3. The user can select to use a pin code or their fingerprint.
4. Pin Code Alternate Flow<A1>.
5. Fingerprint Alternate Flow<A2>.
6. The user selects the delete or decrypt button.
7. The system connected with the Firebase Database.
8. The file is deleted or downloaded after being decrypted.
9. The system goes back to the View Files page.

Alternate flow

A1: <User Selects to enter a pin code >

1. The pin code textbox appears.
2. The user enters a pin code.
3. The use case continues at position 6 of the main flow

A2: < User Selects to use their fingerprint>

1. Fingerprint dialog appears.
2. User places finger on scanner.
3. The use case continues at position 6 of the main flow

A3: <Pin code is incorrect >

1. The user enters a pin code.
2. The system notifies the user with error message as pin code is

not correct.
3. The use case continues at position 4 of the main flow.

A4: <Fingerprint doesn’t match stored fingerprint >

1. The user places their finger on the scanner.
2. The system notifies the user with error message as fingerprint

is not the same as stored fingerprint.

 29

3. The use case continues at position 5 of the main flow.
A5: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully deletes or decrypts the file and user is brought back

to view files page.

Post condition

Success Conditions:

1. File is deleted from the database.
2. File is decrypted.
3. File is downloaded.

Failure conditions:

1. File fails to delete.
2. File fails to decrypt.
3. File fails to download.

2.5.10 Requirement 8 < Decrypt/Delete Password>

2.5.10.1 Description & Priority

This use case describes a user decrypting or deleting a password from the

database. The user’s passwords must be decrypted or deleted from the Firebase

Database as well as be read from this database.

2.5.10.2 Use Case

 Identification Code

 FR8

Scope

The scope of this use case is to show how a user views and either decrypts

or deletes passwords.

Description

This use case describes how a user views and delete or decrypt a password

from the database.

 30

Use Case Diagram

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view passwords. The system shows all

passwords in the database in a list.

Activation

This use case starts when a user clicks on one of the items in the list.

Main flow

1. The system identifies an item in the list has been clicked
2. The system brings the user to the page where the user can decrypt

or delete a password from the database.
3. The user can select to use a pin code or their fingerprint.
4. Pin Code Alternate Flow<A1>.
5. Fingerprint Alternate Flow<A2>.
6. The user selects the delete or decrypt button.
7. The system connected with the Firebase Database.
8. The password is deleted or shown after being decrypted.

 31

9. The system goes back to the View Password page.
Alternate flow

A1: <User Selects to enter a pin code >

1. The pin code textbox appears.
2. The user enters a pin code.
3. The use case continues at position 6 of the main flow

A2: < User Selects to use their fingerprint>

1. Fingerprint dialog appears.
2. User places finger on scanner.
3. The use case continues at position 6 of the main flow

A3: <Pin code is incorrect >

1. The user enters a pin code.
2. The system notifies the user with error message as pin code is not

correct.
3. The use case continues at position 4 of the main flow.

A4: <Fingerprint doesn’t match stored fingerprint >

1. The user places their finger on the scanner.
2. The system notifies the user with error message as fingerprint is

not the same as stored fingerprint.
3. The use case continues at position 5 of the main flow.

A5: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully deletes or decrypts the password and user is

brought back to view passwords page.

Post condition

Success Conditions:

1. Password is deleted from the database.
2. Password is decrypted.
3. Password is displayed in application.

Failure conditions:

1. Password fails to delete.
2. Password fails to decrypt.
3. Password is displayed in application.

 32

2.5.11 Requirement 9 < Decrypt/Delete Text Block >

2.5.11.1 Description & Priority

This use case describes a user decrypting or deleting a text block from the

database. The user’s text blocks must be decrypted or deleted from the Firebase

Database as well as be read from this database.

2.5.11.2 Use Case

 Identification Code

 FR9

Scope

The scope of this use case is to show how a user views and either decrypts

or deletes text blocks.

Description

This use case describes how a user views and delete or decrypt a text block

from the database.

Use Case Diagram

 33

Flow Description

Precondition

The system is in initialization mode when the user clicks the button on the

applications home screen to view text blocks. The system shows all text

blocks in the database in a list.

Activation

This use case starts when a user clicks on one of the items in the list.

Main flow

1. The system identifies an item in the list has been clicked
2. The system brings the user to the page where the user can decrypt

or delete a text block from the database.
3. The user can select to use a pin code or their fingerprint.
4. Pin Code Alternate Flow<A1>.
5. Fingerprint Alternate Flow<A2>.
6. The user selects the delete or decrypt button.
7. The system connected with the Firebase Database.
8. The text block is deleted or shown after being decrypted.
9. The system goes back to the View text block page.

Alternate flow

A1: <User Selects to enter a pin code >

1. The pin code textbox appears.
2. The user enters a pin code.
3. The use case continues at position 6 of the main flow

A2: < User Selects to use their fingerprint>

1. Fingerprint dialog appears.
2. User places finger on scanner.
3. The use case continues at position 6 of the main flow

A3: <Pin code is incorrect >

1. The user enters a pin code.
2. The system notifies the user with error message as pin code is not

correct.
3. The use case continues at position 4 of the main flow.

A4: <Fingerprint doesn’t match stored fingerprint >

1. The user places their finger on the scanner.

 34

2. The system notifies the user with error message as fingerprint is
not the same as stored fingerprint.

3. The use case continues at position 5 of the main flow.
A5: <Failed to connect to Database >

1. The system can’t create a connection to the database.
2. The system notifies the user with error message.
3. The use case continues at position 3 of the main flow.

Termination

The system successfully deletes or decrypts the text block and user is

brought back to view text block page.

Post condition

Success Conditions:

1. Text Block is deleted from the database.
2. Text Block is decrypted.
3. Text Block is displayed in application.

Failure conditions:

1. Text Block fails to delete.
2. Text Block fails to decrypt.
3. Text Block is displayed in application.

 35

2.6 Data Requirements

In this section I will explain and describe the data requirements of the application

which are essential to the applications features mentioned above.

Firebase Realtime Database

The applications database is a Firebase Realtime Database which is a cloud-

hosted NoSQL database. It stores and syncs data between the database and the

user’s device. All the user’s details will be stored here as well as all the users

encrypted passwords, text blocks, files and images. The database contains five

tables Users, Passwords, Text Blocks, Files and Images. The user must be able

to add data to the database and the application must be able to sync with the

database to show all the users data in the application, as well as allow for the

decryption or the deletion of the user’s data. The structure of the database along

with the rules of the database allow the user to only see their own data and no one

else’s. Part of the database and its structure can be seen below in figure1.

Figure 1 - Firebase Database

 36

Firebase Authentication

Firebase Authentication is used to allow the user to create an account and allow

the user to then login. The Auth API handles the creation of the account and the

login functionality. Firebase Auth creates the accounts User UID which is a unique

identification code for each account. Auth is also important and must always work

because the database rules allow only authenticated accounts to read and write to

the database.

Figure 2 - User Credentials

Firebase Authentications handles the user’s password by hashing and salting it

using scrypt as seen in figure 3.

Figure 3 - Firebase Password Hashing

 37

Firebase Storage

Firebase Storage is used to store the actual images and files encrypted and

uploaded by the user. A link, the image or files downloadURL, is stored along with

the image or files corresponding data in the database. The three folders used to

store the different files can be seen in figure 4.

Figure 4 - Firebase Storage

2.7 Environmental Requirements

In this section I will explain the environmental requirements that are essential when

developing the application.

● Laptop/PC

A laptop and/or PC with an internet browser, like Chrome or Firefox.

● Android Mobile Device
An android device is needed to run the android application and perform testing.

● Android Studio
Used to develop the android application.

● Visual Studio
Used to develop the web application.

● Internet Access:
Needed to use the android and web application as the Firebase Database,

Storage and Authentication can only be accessed through an internet

connection.

 38

2.8 User Requirements

In this section I will explain the user requirements. If a user wants to use this

application, he must meet the following requirements:

● Android Device
The android application will only run on devices running on Android OS.

● Android 8.0 - Oreo
The user should preferably have Android 8.0 installed, but the application is not

limited to devices with Android 8.0. The application will also run on Android 7.0

Nougat and Android 6.0 Marshmallow.

● Laptop/PC
Needed to access the web application, the laptop or PC must have a browser

which allows them to search for the web application as well as use it.

● Internet Access:
Needed to use the android and web application as the Firebase Database,

Storage and Authentication can only be accessed through an internet

connection.

2.9 Usability Requirements

To use the android and/or web application the user must have an account set up.

The user must also be able to complete forms on either or both the web application

and android application. The user’s device must also be connected to the internet

either by mobile data (3G, 4G, etc.) or WIFI.

 39

2.10 Non-Functional Requirements

2.10.1 Performance/Response time requirement

Performance will be a major aspect in the overall application. The application is

connected to a Firebase Database which requires an internet connection, so all

features in the application will require the device be connected to the internet. The

speed of the application uploading and downloading the user’s data will be quick

in some parts of the application, such as password and text blocks, as the size of

the data will be small. The image and file sections will be slower but only

marginally, depending on the size of the image or file. The speed of the internet

the device is connected will also affect performance with slower connections

making the features of the application function slower, however the users will be

shown an upload or download progress bar. Unhandled network errors could result

in uploads being stopped. Downloads however will continue when the device

reconnects to an internet source.

Overall, the features of the application will function normally with only slow internet

connections affecting the speed of uploads or downloads.

2.10.2 Availability requirement

The application must be available constantly as the user will use the application to

store private or personal information and may need it at any moment. Once a user

has installed the application on their android device or used the web application

the application should be fully functional and accessible to the user. The

application should have as little downtime as possible, if at all. Any bugs or errors

will be recorded in Firebase Crashlytics and Analytics, so they can be repaired or

removed.

2.10.3 Recover requirement

If a user forgets their password to their account the user should have an option to

reset the password to a new one, this new password will allow them to login again.

 40

2.10.4 Security requirement

The security of both applications will be to make sure that unwanted people will

not be able to access the application without authentication and not be able to

access any of the user’s data.

The android and web application will follow best coding practices as well as follow

the following security guidelines on how applications are attacked and exploited

and trying to mitigate against them:

● Android Testing Cheat Sheet

○ https://www.owasp.org/index.php/Android_Testing_Cheat_Sheet

● Web Application Security Testing Cheat Sheet

○ https://www.owasp.org/index.php/Web_Application_Security_Testin

g_Cheat_Sheet

● 12 Best Practices for user account, Auth and password management

○ https://cloudplatform.googleblog.com/2018/01/12-best-practices-for-

user-account.html

● Firebase Realtime Database Rules

○ https://firebase.google.com/docs/database/security/

● Firebase – Secure Your Data

○ https://firebase.google.com/docs/database/security/

When creating an account, the password section will only accept a strong

password (At least 8 characters, contain a number and a special character). This

password is then encrypted using salted and password hashing, which is provided

by Firebase Authentication. Only authenticated accounts can log into the

application. The user’s data that has been uploaded to the database is also

encrypted but can only be decrypted using a pin code or by the user’s fingerprint.

The application will also not allow the “remember me” functionality so the

application will not be constantly logged in to. The application will also be security

tested to discover any threats to both the android and web application. The user’s

personal information which is required when creating an account is encrypted

 41

using AES 256. Only secure encryption algorithms will be used for encrypting the

user’s passwords, images or files.

2.10.5 Reliability requirement

The reliability of the application has been taken seriously during its development

as if the system keeps crashing or the code contains numerous bugs then these

will affect the overall usability of the application. Using Firebase Crashlytics and

Analytics I can see what are causing crashes and begin to fix or remove the cause

of the crashes. The application should be able to handle smaller minor errors and

function normally still. Testing will be carried out to find and root any problems that

may lead to serious issues or inevitably lead to crashes.

2.10.6 Maintainability requirement

I plan on writing code that is easy to read, as well as commenting all my code, but

also code that is easily extendable so that any changes big or small are easy to

implement. Each section of the application will be separate from the others allowing

me to maintain or change code without affecting other classes or features in the

application. Also, the Firebase Database is a NoSQL database which will allow me

to make changes to the databases schema easily without affecting data that is

already there, this also allows me to change my code used to upload or download

data with ease.

2.10.7 Reusability requirement

A large portion of the applications code will be reused across multiple sections of

the application, this is to keep everything functioning and looking similar. It also

dramatically reduces the development time as I will be using code I know is secure

and works as intended.

 42

2.11 Interface Requirements

2.11.1 GUI

The android and web application GUI screenshots below show only some of the

application as there are many different screens but they all follow the same

template and all function the same way with respect to how the data is shown in a

list and how the user would encrypt, decrypt or delete their data.

User Home Page GUI - Android

This screen is the android home screen, the UI the user sees after logging in. This

screen allows navigation to the various sections of the android application

 43

Login GUI - Android

The screen is the login view where the user can enter their login credentials and

log in. The view also contains buttons which allow the user to create an account or

recover their account if they have forgot their password.

 44

Register GUI - Android

This is the screen where the user will create a new account. All inputs must be

filled, and the email and password inputs are validated before the user can register.

 45

View Data GUI - Android

When the user clicks the view passwords button on the home screen they are

brought here where they can view a list of already encrypted passwords. They can,

from this screen, decrypt a password or encrypt a new one.

 46

Add New Data GUI - Android

This view is where the user will encrypt a new password, the password input is the

field that gets encrypted. The password name is what you see in the GUI

screenshot above this one.

 47

Decrypt Data GUI - Android

This is the screen the user is brought to after clicking on a password in the list.

Here they can choose to decrypt a password using the set pin code or their

fingerprint.

 48

Decrypt with pin code GUI - Android

If the user selected decrypt with pin code the UI changes to show the decrypt and

delete buttons as well as the pin code input.

 49

Decrypt with Fingerprint GUI - Android

If the user selects to proceed with fingerprint authentication they see this popup. If

the fingerprint matches the one stored by the android fingerprint manager, then

they can decrypt or delete a password.

 50

User Home Page GUI - Web

This screenshot shows the layout of the user’s home page on the web application

from which they can navigate through the different areas of the website. It is similar

to the android application.

Login GUI - Web

The screen above shows the login UI of the web application

 51

Register GUI - Web

View Data GUI - Web

This screenshot shows the UI for displaying the user data in a table. In the screen

the users encrypted passwords are in the table.

 52

Add New Data GUI - Web

To encrypt a new password, or any data, the user must correctly fill each input.

First the inputs are encrypted then uploaded to the database.

Decrypt Data GUI - Web

This screenshot shows the UI of the web application where users can decrypt their

data. They must provide the correct pin code, stored in the database, to decrypt

the data.

 53

2.11.2 Application Programming Interfaces (API)

My application will be using several API’s with most of the them being Google

API’s.

Google Firebase Authentication is used to authenticate users who are attempting

to login to the application. When a user creates an account the user’s data is stored

in Google Firebase Authentication where the user’s password is encrypted, and

the account is assigned a user ID, W6QDouOYFgNTmlq UgBPYR7n3Mvk1 is an

example of a user ID. When a user tries to login the credentials the user entered

is compared in Firebase Authentication, if they match then user can login.

The user will also have other methods of creating an account and logging in. Users

can choose to use an email and password to login, mentioned above, or they can

use the Google Sign-In API which uses their Gmail account to create an account

and login. It is much faster as once you are authenticated you can log in with a

single button click.

Google Firebase Realtime Database will also be used to store the user’s

information, passwords, text blocks as well as the images and files metadata. The

Firebase Database is a NoSQL database which allows me to change the schema

and structure of the data if I need to simply by changing a line of code. Also,

because it is a real-time database the data which is displayed in the application

updates almost instantly and is constantly synced to show the user the data in real

time.

Google Firebase Storage is used to store the actual image and file. In the Database

where the image or file metadata is stored, it also contains a download URL, a link

to the image in Storage which allows me to call the data stored in the database as

well as the actual image or file.

To add Firebase in your application includes creating a class which allows Firebase

to be in a persistent state and to check it is functioning properly as well as including

Firebase maven artifacts in the gradle file, these maven files can be seen in figure

5.

 54

Figure 5 - Firebase Gradle

SpongyCastle and BouncyCastle APIs which provide cryptography support in

android applications as well as C# applications. The Legion of the Bouncy Castle

created and maintain these APIs as well as provide documentation on what

encryption, hashing and ciphers are supported by it. Using these APIs involved

adding the maven artifacts, seen in figure 6, in the gradle file of the android

application and also creating a new security provider on the classes where these

APIs will be used.

Figure 6 - SpongyCastle Gradle

 55

2.12 System Architecture

The system architecture diagram above shows how a user can use either an

android mobile device or a PC client to gain access to the android or web

application. The android and web application are only accessible from the internet

as the data is stored in a Google Firebase Database, Storage and Authentication.

The android or PC clients can now access the server which the Database, Storage

and Authentication are hosted on.

Below is a more detailed view of the software design of the application which is

presented by a class diagram.

 56

2.13 Logical View Architecture

The logical view of both applications can be split into three parts.

The frontend which creates the user interface of both applications, the backend

which implements the functionality of the applications and the Google Firebase

which is a cloud service. The backend connects to Google Firebase which provides

authentication as well as data storage.

 57

2.14 Design and Architecture

The Android application is built using Java and XML, the application consists of

multiple activities which contain the UI and functionality of the application. The

web application will be created using HTML5, Bootstrap, CSS, JavaScript and C#.

Both the android and web application will essentially be carbon copies of each

other just developed for different platforms and using different programming

languages, but the functionality and features will be the same nonetheless.

I will be creating the UI of the android application myself but will be using Bootstrap

in the web application to help me create the UI, I will also be using a theme from

Bootswatch called LUX to help me create a web UI that is both easy to navigate

but also appealing to look at.

 58

A Firebase Database and Storage is used to store the user’s information and

encrypted data. Firebase Authentication is used to create the user accounts but

also provide the login functionality by accessing the Auth API. A user session will

also be created when the user logs in successfully and is stored until the user logs

out or the application is closed.

Register Class

Before a user can access the application they first must create an account, the

register class handles the creation of a new account as well as adding the user

details to the database.

User Class

The user class is used when the user is creating an account but also used by the

array adapter class when the user is viewing their account information in the

application.

Login Class

The login class allows a user to login using the email and password they set in the

register page. The class accesses the Firebase Auth API which handles comparing

the user’s inputs to what is stored in the Firebase Auth Database.

Password Class

The password class is used when the user is creating a new password but also

used by the array adapter class when the user is viewing their passwords already

in the database in the application.

Text Class

The text class is used when the user is creating a new text block but also used by

the array adapter class when the user is viewing their text blocks already in the

database in the application.

 59

Image Class

The image class is used when the user is creating a new image but also used by

the array adapter class when the user is viewing their images already in the

database in the application.

File Class

The file class is used when the user is creating a new file but also used by the

array adapter class when the user is viewing their files already in the database in

the application.

View Passwords/Text/Files/Images Class

These classes are essentially all the same, they use an Array Adapter to get the

data from the database and show the data in a list view, the list view only shows

the title of each row in the database, such as password name, text name, file name

and image name. The items in the list view are clickable, when the user clicks on

an item they are brought to the decrypt and delete activity where the data from the

list view is passed to this activity.

Delete/Decrypt Data Class

The delete/decrypt class handles the decryption or/and the deletion of the user’s

data. The user can choose between using a pin code or their fingerprint. The

fingerprint button allows the user to use the devices fingerprint scanner while the

pin code button allows a user to enter a pin code to decrypt or delete the data.

For the password and text block decryption the decrypted text is outputted on the

activity screen while the image and file decryption the file is decrypted and

downloaded to the user’s device.

Add Password Class

The add password class handles the creation of a new password which is

encrypted using AES 256 and is uploaded to the Firebase Database.

 60

Add Text Class

The add text class handles the creation of a new text block which is hidden inside

an image file using steganography techniques. The text block info is uploaded to

the Firebase Database along with a link to the image which is stored in Firebase

Storage.

Add File/Image Class

The add File class handles the creation of a new file which is encrypted using

TwoFish, the file information is uploaded to the Firebase Database along with a

link to the actual file which is stored in Firebase Storage. This class also allows the

user to open the devices local memory and allow them to choose a file to upload.

The add Image class handles the creation of a new image which is encrypted using

TripleDES, the file information is uploaded to the Firebase Database along with a

link to the actual file which is stored in Firebase Storage. This class also allows the

user to open the devices local memory and allow them to choose a file to upload.

AES/Twofish/TripleDES Class

These classes contain the code needed to allow the users data to be encrypted

and decrypted using the methods and algorithms in these classes.

 61

2.15 Implementation

The purpose of this section is to describe the technologies used in the

implementation of the Android and Web application.

2.15.1 Technology Overview

The android application was created using Java and XML and developed on

Android Studio, the web application was created using HTML, CSS, JavaScript

and C# and developed on Visual Studio. Google Firebase because of the number

of features it had such as authentication, database and storage as well as analytics

and Crashlytics. Google Firebase is a cloud service which meant the data stored

there could be access on both platforms in real time.

2.15.2 Security

2.15.2.1 Google Firebase - SSL

Firebase supports SSL1 (Secure Socket Layer), this means that the Firebase

JavaScript include and the packets that are sent between the Firebase server and

the users browser will be encrypted. To include this in the application it required

adding one line of JavaScript to the Firebase JavaScript File in the web application

this can be seen in figure 7 below.

Figure 7 - JavaScript Firebase SSL

1 https://firebase.googleblog.com/2012/07/firebase-databases-now-support-ssl.html

 62

2.15.2.2 Firebase Authentication

Firebase authentication2 is a backend service which is implemented in the

application to provide login and register functionality as well as create the user’s

session in the applications. When a user logs in to the application that user

becomes the current user of the Auth instance, the Auth instance functions similar

to a session. The Firebase Auth instance persists the users state, logged in, even

when refreshing the page or closing the application.

When a user logs out, the Auth instance stops and there is no current user, so the

application closes or redirects the user.

The credentials that user will need to have when creating an account or logging in

are an email address and a strong password. These are used to create the account

in Firebase Authentication and create the User UID. The password is hashed and

salted using scrypt, a strong and secure hashing algorithm, which can be seen in

figure 8 below.

Figure 8 - Firebase Authentication SCRYPT Hashing

Firebase Authentication also allowed me to create rules such as only one email

address can be used per account, this can be seen in figure 9 below, which means

users cannot create multiple accounts with the same email address.

Figure 9 - Authentication Rules

2https://firebase.google.com/docs/auth/?gclid=CjwKCAjw_tTXBRBsEiwArqXyMv3j1mVd3mNqyWiDLpDtWk
RWRHS_N9boaBQtsMsH__HIc_07j2bmPRoCUYUQAvD_BwE

 63

2.15.2.3 Firebase Database Rules

Firebase Database allows the creation of rules for the database, that means data

being read or written must abide by these rules or no data is transferred. Below in

figure 10 are the basic rules I used in the database which requires the user be

logged in and authenticated before any data is read from or wrote to the database.

Rules can also be used to validate or transform data, a lot of this is done in the

backend of the applications.

Figure 10 - Firebase Database Rules

2.15.2.4 Android Permission Checks

The purpose of the permissions is to protect the privacy of Android users. Android

applications above SDK version 5.0 must request permission from the user to

access potentially private or sensitive information such as contacts, SMS, and in

the case of Kryptium the user’s local storage. To use the image and file encryption

features in the Android application, the application must first have permission to

access the user’s storage. When a user first tries to encrypt a new image or file,

the dialog as seen in the screenshot below pops up asking for the correct

permissions. If the user gives the permissions then they can encrypt and decrypt

images and files, but if they deny giving the permissions they are brought back to

the home screen. Every time the user tried to encrypt an image or file the dialog

pops up again.

 64

This method is in each class that need permissions to function properly. If the

permission is not granted it displays the popup, but if the permission is given then

the feature is usable. The method used can be seen in figure 11.

Figure 11 - Android Permission Request

When a user first logs in they are also prompted with a permission check but this

time for the permission to use the fingerprint scanner on their phone. Below is a

screenshot of the phone asking for permission as well as the code used.

 65

2.15.2.5 Fingerprint Authentication

Most modern android mobile phones have a fingerprint scanner on them which

allow users to unlock their phone with their fingerprint. Android applications can

use the fingerprint scanner as a way of authenticating users for in-app purchases,

login or in this case the decryption of private information. Kryptium allows users to

choose between decrypting their data using a pin code or their fingerprint. To use

the mobile devices fingerprint scanner requires adding permissions to the manifest

and creating two classes which access the devices fingerprint manager and allow

the fingerprint scanner to be used by the application. When the user logs in for the

first time they are asked to give the application the permissions needed to use this

feature, if the device doesn’t have a fingerprint scanner or if they don’t want to use

it they can deny the request and still be able to use the pin code functionality.

The code below is used to check if the application has the permission needed to

use the fingerprint scanner.

The screenshot shows the dialog which is shown when the user selects to decrypt

using the fingerprint scanner.

 66

If the fingerprint does not match the one stored in the android fingerprint manager

the user cannot decrypt the data, after three failed attempts the user cannot use

the fingerprint again for a certain amount of time.

 67

2.15.2.6 Strong Passwords

The method below is used to make sure that the user always enters a strong

password when creating an account on the application (NIST, SP 800-63)3.

The password must:

● be at least 12 characters long

● Password must match confirm password input

● Contain an uppercase letter

● Contain a number

● Contain a special character (@, #, £, $)

On the web application this is created using regular expression validators, seen in

the figure 12 below, which validate an input, in this case the password input, to

make sure it contains a special character, a number and be at least 12 characters

long.

Figure 12 - Regular Expression Validators

JavaScript is used to compare the password and the confirm password inputs as

well as makes sure the password is at least 12 characters. This happens before

any account is registered.

3 https://www.nist.gov/itl/tig/projects/special-publication-800-63

 68

On android the method in the screenshot below is used to enforce the strong

password requirements.

 69

2.15.2.7 Input Validation - NoSQL Injections

Firebase Database is a NoSQL database, so no SQL is used when reading and

writing to the database, but injections are still possible. NoSQL database calls are

written in the application's programming language, in this case Java and

JavaScript. Before any user submitted inputs are written to the database, input

validation is used to filter the user’s inputs so that no < > & ; / { } : characters are

allowed to be written to the database4. These special characters are needed to

write a NoSQL injection. The screenshot below shows the android application

filtering for these characters.

4 https://www.owasp.org/index.php/Testing_for_NoSQL_injection

 70

The method below is used to filter and validate all users input which do not allow

any special characters.

This method is called on each class that handle any of the user’s data being written

to the database. The method, as well as other validation, checks to see if special

characters are present before the upload method is reached, if one is found the

error message shows and no upload or encryption occurs.

The Web Browser XSS Protection was enabled, this turns on the XSS filter

provided by web browsers, if any scripts from user inputs are detected the browser

will sanitize the page as well as block the render of the webpage. This is done to

prevent any scripts being submitted or rendered on the web application. Figure 13

below shows the http protocol which is added to the Web.config file.

Figure 13 - XSS Protection

 71

2.15.2.8 User ID Checks

On both the web and android application a Firebase method is used, figure 14 and

15 below show the methods used on each platform, which checks to see if there

is currently a user logged in if there is an Auth instance. If there is a user then the

data on the page will be shown or the user can write to the database but if there is

no Auth instance that the method can find then UI will change, no data from the

database will the read and no data can be written to the database. On the android

app the user is redirected to the login page, on the web application the UI changes

to a message saying, “Please Login”.

Android

Figure 14 - Android User Checks

Web

Figure 15 - Web User Checks

 72

2.15.3 Encryption

2.15.3.1 AES

AES is a FIPS approved cryptographic symmetric block cipher that encrypts data

into to unreadable ciphertext, then can decrypt the data back to plaintext. The AES

algorithm can use crypto key lengths of 128, 192 and 256 bits to encrypt and

decrypt data in blocks of 128 bits5 (NIST FIPS 197).

The features of AES in Kryptium are:

● 256-bit cryptographic key

● 128-bit data blocks

● PKCS5Padding

● CBC Mode, Cipher Block Chaining

● PBKDF2 Hashing

● 128-bit random IV

CBC mode makes it more difficult to perform known-plaintext attacks on your

ciphertext as well as leaks less information compared to ECB mode (Jeff Nelson,

2014). PKCS5Padding causes the cipher to pad the data, making it more difficult

to attack the ciphertext directly, but also so the data being encrypted is in 8-byte

block sizes. If the data is not in 8-byte blocks when trying to decrypt a bad padding

exception will be thrown and the ciphertext will not be decrypted.

The method below, figure 16, is used to generate a new random IV.

Figure 16 - Random IV Method

5 https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf

https://www.quora.com/profile/Jeff-Nelson-32

 73

Figure 17 shows the AES instance being used, the key size and the IV size.

Figure 17 – Android AES

The code in figure 18 below is part of the AES method used to combine the

cryptographic key, the IV and the plaintext password together to create the

ciphertext. The IV is combined to the ciphertext so it can be used again for the

decryption.

Figure 18 – Android AES

 74

Below figure 19 and 20 shows the C# implementation of AES in the web

application. Figure 13 shows the AES parameters being created which matches

the Java AES parameters, this is so passwords encrypted on either platform can

be decrypted on both.

Figure 19 - AES C#

The method of combining the key, plaintext and IV is very similar to the Java

version with the IV being combined with the ciphertext so it can be decrypted later.

This is seen in Figure 20.

Figure 20 - AES C#

 75

AES comprises of a series of linked operations and performs all its computations

on bytes rather than bits, this means that 128 bits of plaintext is treated as 16 bytes.

The key will be 256-bit length which uses 14 rounds. Each of these rounds uses a

different 256-bit key which is calculated from the original AES key (Advanced

Encryption Standard, Tutorialspoint.com).

Figure 21 - AES Method Diagram https://www.tutorialspoint.com/cryptography/advancedencryptionstandard.

htm

The encryption process is as follows:

● Byte Substitution

○ The 16 bytes are substituted by looking up a fixed table. The result

is a matrix of four rows and four columns each representing a byte.

● ShiftRows

○ Each of the four rows are shifted to the left and entries that fall off

are inserted on the right of the row and mixed to create a new matrix.

● MixColumns

https://www.tutorialspoint.com/cryptography/advancedencryptionstandard.%20htm
https://www.tutorialspoint.com/cryptography/advancedencryptionstandard.%20htm

 76

○ Each column of four bytes is now transformed using the AES

mathematical function. The result is now a new matrix different from

the previous matrixes in the first two steps.

● AddRoundKey

○ The 16 bytes of the matrix are now the 128 bits round key.

Figure 13 above shows the process of AES with the decryption process of the

ciphertext back to plaintext is the same number of steps but in reverse.

2.15.3.2 Twofish

To use Twofish in my application required the use of the SpongyCastle API.

SpongyCastle is a collection of APIs which contains cryptography libraries which

support numerous encryption types, one of which is Twofish6. To use

SpongyCastle, all I needed was to include SpongyCastle as a security provider in

my application which can be seen in Figure 22.

Figure 22 - Spongy Provider

Twofish is a symmetric block cipher, has a block size of 128 bits, and supports

crypto key lengths of 128, 192 and 256 bits to encrypt and decrypt data in blocks

of 128 bits. Twofish is an improvement on the Blowfish encryption algorithm.

The Twofish cipher I chose to implement is:

● 256-bit key

● 128-bit random IV

● Cipher Block Chaining (CBC)

● PKCS5Padding

● PBKDF2 Hashing

6 https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.html

 77

The reason for this implementation choice is that CBC makes it more difficult to

perform known-plaintext attacks on your ciphertext (Jeff Nelson, 2014). Moreover,

PKCS5Padding causes the cipher to pad the data, making it more difficult to attack

the ciphertext directly. Figure 23 shows the Twofish parameters such as the

algorithm used, the key size and the IV size.

Figure 23 - Twofish

The method below is used to generate a new random IV.

Figure 24 - Random IV

The encryption method, seen in figure 25, takes both a file in byte format and a

string pin code, so the file which is user selected is converted to a byte array before

being passed to the method, the method handles the string pin code being

converted to bytes, which is used to create the key. Before the pin code is

converted to a byte array is it hashed and salted using PBKDF2 to a length of 256

bits.

https://www.quora.com/profile/Jeff-Nelson-32

 78

The encrypted bytes are then uploaded to Firebase Storage with the pin code

needed to decrypted being stored in the Firebase Database.

In Firebase Storage, uploaded bytes that are not encrypted can be seen as

whatever content type they are, such as .png or .pdf. The encrypted bytes content

type is “application/octet-stream”, this is because Firebase does not know what

content-type it is, because the bytes are encrypted.

Figure 25 - Twofish Algorithm

 79

2.15.3.3 Triple DES

Triple DES is used to encrypt the user’s images in the application. Triple DES is

another mode of the DES operation. It uses three 64-bit keys for an overall key

length of 192 bits. Triple DES breaks the original key into three separate keys and

then pads these three keys to a 64-bit length which are then combined. Triple DES

is a slow encryption algorithm but is still considered secure and more secure than

the standard DES when implemented properly. Figure 26 shows the algorithm

used and the methods used. It uses CBC mode, Cipher Block Chaining and is

padded using PKCS5Padding7.

CBC makes it more difficult to perform known-plaintext attacks on your ciphertext

(Jeff Nelson, 2014). PKCS5Padding causes the cipher to pad the data, making it

more difficult to attack the ciphertext directly.

Figure 26 - 3DES

Figure 27 shows the main part of the Triple DES process, the image is converted

to a byte array before being passed to the method, the key is converted to bytes

and a new IV is created each time. The key, image bytes and IV are combined to

create the ciphertext, the encrypted byte array.

Figure 27 - 3DES Encryption

7 https://www.tutorialspoint.com/cryptography/triple_des.htm

https://www.quora.com/profile/Jeff-Nelson-32

 80

The key is hashed and salted using PBKDF2, the PBK method used can be seen

in figure 28, from which a key is generated. This implementation of PBKDF2 is

different to others in the application as it creates a 192-bit long hash instead of a

256-bit hash.

Figure 28 - 3DES & PBKDF2

The TripleDES encryption in C# can be seen below in figure 29, this

implementation of Triple DES is the exact same as the Java one. This method

allows users to encrypt images on the web application and then decrypt that image

on the android application.

Figure 29 - C# Triple DES

 81

2.15.3.4 Steganography

Steganography is the art of hiding information in plain sight, unlike encryption,

where it is obvious that the information is encrypted and hidden. In the android

application steganography is used to hide the users text blocks inside a generated

bitmap which is 200x200 and will be a random colour. This image with the text

hidden in it is uploaded to Firebase Storage, the user can then get the text back.

The steganography class uses LSB, Least Significant Bit, this technique changes

the last few bits in a byte to hide the message. If the last two bits of a red or blue

pixel are changed to hide the text, the change in the colour is not noticeable in any

way to the human eye. Figure 30 shows an example of the LSB operation8.

Figure 30 - Steg colour operation example

Source: https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-

seconds-0180936/

8https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-
seconds-0180936/

https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-seconds-0180936/
https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-seconds-0180936/

 82

The method testBitmapEncoder uses the Bitmap Helper class to create a bitmap

seen in figure 31, the class Steg is then used to combine the new bitmap and the

users inputted text together. This new bitmap is then converted to a byte array and

these bytes are returned.

Figure 31 - Steg Method

Figure 32 below shows the method which is used to create the bitmap which the

text will be hidden in.

Figure 32 - Bitmap Creator

 83

2.15.3.5 PBKDF2

The hashing algorithm I will be using in the android and web application is

PBKDF2, PBKDF2WithHmacSHA1 to be exact. The input, a six-digit pin code, is

salted and hashed which is used as the key for other encryption algorithms, such

as AES, Twofish and Triple DES, but is also so used so that the pin code the user

sets is not stored in the database in plaintext.

The reason for choosing this hashing algorithm is because it is one of the

recommended password based key derivation algorithms to use according to the

NIST SP800-132, this is because it is slower than any of the older hashing

techniques, can have a high number of iterations as well as a large bit length. All

of these things make brute forcing attacks much slower and require more

computing power to crack9.

The number of iterations, 10000, is also a high iteration count and is the

recommended number from the OWASP Password Storage Cheat Sheet10 and

NIST SP800-132 recommending a minimum of 1000. NIST SP800-132 also state

that the salt should use an approved random bit generator, in this case secure

random, and be at least 128 bits. The get salt method in figure 33 adheres to these

guidelines and creates a cryptographic random 16-byte array which is used as the

salt.

9 https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
10 https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

 84

The method below in figure 33 is the Java implementation of the hashing algorithm

PBKDF2 which takes the user supplied pin code, generates a secure random salt

which is then used to generate the pin code hash. The salt is appended to the start

of the hash, so it can be used again when validating the hash.

Figure 33 - PBKDF2

 85

The method below in figure 34 is the C# implementation of the hashing algorithm

PBKDF2 which takes the user supplied pin code, generates a secure random salt

which is then used to generate the pin code hash. This hashing algorithm

generates the same hash text as the Java implementation, this is so that the user

data can be decrypted on both platforms.

Figure 34 - PBKDF2 C#

 86

The hashes are validated using a hash validation method, which can be seen

below in figure 35 and 36, when a user tries to decrypt a password or other data.

If the hashes match, then the data can be decrypted. The reason for this method

is because each hash is unique because of the random salt.

Figure 35 shows the Java implementation of the hash validation. The salt and the

hash are separated by a “:” character so the salt is part 0 of the string and the

actual hash is part 1. The method creates a new hash using the same salt as well

as the user inputted pin code. If the pin code is correct it will create the same hash

as all the variables are the exact same. If the hashes match the user can decrypt

the data, if they don’t match the user has to enter the pin code again.

Figure 35 - Hash Validation Java

 87

Figure 36 shows the C# implementation of the hash validation method, it has to

operate the exact same way as the Java version so that the users pin codes can

be authenticated on both platforms.

Figure 36 - Hash Validation C#

2.15.4 Technologies

2.15.4.1 HTML5, Bootstrap & JavaScript

HTML is a markup language that describes the structuring of the content seen on

web pages. I used HTML and custom CSS for developing the frontend of the web

application in order to create a clean, highly usable and professional looking UI.

Bootstrap is an open source toolkit for developing applications in HTML, CSS and

JavaScript, it allowed me to create a highly responsive and professional looking

website using the various CSS classes. I also used a Bootstrap theme from

bootswatch.com called LUX which gave the site a flat, simplistic but more modern

look.

To use Firebase in the web application the Firebase methods had to be coded in

JavaScript, JavaScript is a cross platform, object-oriented scripting language used

 88

to make web pages interactive. I used client-side JavaScript throughout the web

application to communicate with the database and storage, to provide the login

and register functionality and to change the way the webpages(DOM) look11.

2.15.4.2 Google Firebase

Google Firebase is a cloud service which gives you functionality such as analytics,

databases, crash reporting and authentication as well as many others. Firebase is

built on Google Infrastructure and scales automatically to accommodate a growing

user base. Firebase supports android, iOS, web, Unity and C++, this is the reason

I choose it as it allowed me to share functionality and data across two platforms12.

For my project I used Firebase Authentication, Database and Storage. The

Firebase database is a cloud hosted NoSQL Realtime database that lets users

read and write data in Realtime, even across different platforms. The database

also integrates with Firebase Authentication to provide security features such as

the database rules. Because the database is a NoSQL database it allowed me to

redesign my database layout with ease while not altering the data already there,

also I don't need to worry about SQL injections

Firebase Storage allowed me to quickly and easily store and serve the users data,

such as files, images and bitmaps. The user’s files and images are stored in

buckets with the Firebase SDK allowing me to design the layout of each bucket

Firebase Authentication is a user authentication system which provides end to end

identification. It supports email and password, phone Auth, Google, Twitter,

Facebook and GitHub login and sign-up functionality. In my application I used the

email and password sign-up methods on both applications as well as the Google

11 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
12 firebase.google.com

 89

2.15.4.3 Java & C#

Java is a high level object-oriented programming language. Java programs contain

classes which are used to define objects and methods. Android applications are

developed in Java and it is used to create methods and interact with the apps

frontend. Java allowed me to implement a huge amount of functionality and

interactive features in the application. Firebase also supports Android, so I could

set up the Firebase SDK in my application and implement the login and register

functionality, the encryption algorithms and the methods which were used to read

and write data to the database. Using Java and Firebase allowed me to implement

Auth instances, sessions, which provided some security by making users log in to

use the features in the application13.

C# is also a high level object-oriented programming language used to develop

secure and robust applications that run on the .NET Framework. The C# syntax is

very similar to the Java syntax so if a developer knows one they can pick up the

other in a short amount of time. The web application will use C#, as well as

JavaScript, to create the methods and functionality of the application. The reason

I chose C# is because most encryption algorithms are interoperable which means

I can code an AES or PBKDF2 method in Java and then code the same methods

in C# and produce the same output, which is the key to my cross-platform

application14.

13 https://www.w3schools.in/java-tutorial/intro/
14https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-
language-and-the-net-framework

 90

2.16 Testing

Testing was carried out on both the Android and web application. Testing included

security testing, UI testing and usability testing.

2.16.1 Code Analysis

Android Studio allows the developer to inspect the code in the application which

will provide the developer with an overview of all issues and warnings in the code,

seen in figure 37. It also allows you to quickly and easily remedy these warnings

which makes the code much more streamline, readable and helps mitigate against

errors or bugs in the future.

Figure 37 - Android Studio Code Analysis

Some of errors and warnings that were fixed using this were methods not being

declared private, classes that could be declared as package-private and variables

that could be local or declared as final.

 91

2.16.2 Unit Testing

Unit tests were created to test the features and functionality of the android

application. The tests mainly included encryption unit tests, authentication unit

tests as well as others. Some of the unit tests where designed to fail.

Validate Password Unit Test

The unit test shown in figure 38 was designed to verify that the hash validation

method works as intended and only passed if the pin code entered matched the

stored hash. The unit tests passed.

Figure 38 - Hash Validation Unit Test

Changing the hash or the pin code causes the unit test to fail, which is how it should

work.

 92

PBKDF2 Hashing Unit Test

This unit test shown in figure 39 was created to fail. I hashed the pin code “085085”

which was stored in the database, then created a unit test to hash the same pin

code multiple times. The same hash shouldn’t be created.

Figure 39 - PBKDF2 Hash Unit Test

The test fails each time you run the test which shows each hash is unique even

when hashing the same pin code.

 93

Special Characters Input validation

These unit tests where created to verify the input validation method created to

make sure that no characters needed for NoSQL injections were allowed. Both

tests where created to pass with one containing special characters and one

containing no special characters. Figure 40 shows the unit tests created to test the

input validation methods.

Figure 40 - Input Validation Unit Test

Both of the tests in figure 40 passed which can be seen in the result screenshots

below.

 94

2.16.3 Usability Testing

The usability testing is done by getting users to use the application to learn how

user friendly the GUI is and how easily the users can navigate and use the features

in the application. The testing used falls under the method of black box testing,

where the user only sees the GUI and the internal structure and design of the

application is unknown to the tester. The tests can be functional or non-functional,

the test I will create will be functional tests such as a tester using the login,

encrypting data and decrypting data functionality. I chose two users to test

application, these testers were ones I could sit down with and go through the test

with in person, this allowed me to get some extra feedback as well. I created a

small questionnaire which they had to fill out and then asked them to move through

the application using the features and I documented whether the features and

functionalities passed, failed or crashed. The questions for both the android and

web application are very similar, the questions and the answers from the survey

are seen in figure 41 and figure 42 below.

Questionnaire - Android

What is your first impression of the application?

Tester 1 - It looks very professional.

Tester 2 - Splash screen is a nice touch, well designed.

Do you like the design of the application? (Colours, Layout)

Tester 1 - Colour scheme is very good, consistent colour scheme. Layout is very
clear and features clearly laid out.

Tester 2 - Yes, colours are bright and vibrant, all the features are clearly laid out
and easy to understand.

Is it easy to navigate through the application?

Tester 1 - Yes

Tester 2 - Yes

 95

How easy is it encrypt and decrypt data?

Tester 1 - Very Easy

Tester 2 - Very Easy

Would you use this application to keep your data safe?

Tester 1 - Yes

Tester 2 - Yes

Figure 41 - Android Questionnaire

Questionnaire - Web

What is your first impression of the application?

Tester 1 - Consistent with the android app colour scheme, has a very
business/industrial feel, professional.

Tester 2 - Sleek and Minimalistic.

Do you like the design of the application? (Colours, Layout)

Tester 1 - Yes, the colour scheme is very easy on the eyes, the layout is very
easy to understand, and the landing page contains all relevant information about
features and contact information.

Tester 2 - Yes, the colour scheme is very coordinated with the app, webpages
laid out very well.

Is it easy to navigate through the application?

Tester 1 - Yes

Tester 2 - Yes

How easy is it encrypt and decrypt data?

Tester 1 - Very Easy

Tester 2 - Easy

Would you use this application to keep your data safe?

Tester 1 - Yes

Tester 2 - Yes

Figure 42 - Web Questionnaire

 96

User Application Testing

I asked both testers to go through the steps lined out below and document whether

the tasks passed or failed, or if something unintended happened such as a crash

or a bug. The android application test which can be seen in figure 43 details the

steps, expected results, actual result and whether the step passed or failed. Both

the user’s tests where combined as all steps on both tests passed.

Figure 43 - Android Tests

The web application passed all tests except the last one, for some reason when

the user clicked the logout button they were still logged in, but if logged out again

then they would be logged out properly. I didn't get this error before, so I later found

the cause and fixed it. The cause appeared to be when the web application was

running on Microsoft Edge, this error didn't occur in Google Chrome. The error was

caused by a popup that told the user they were logged out, this seemed to interrupt

the logout process, removing it solved the issue. The details of each step expected

result, actual result and whether the step passed or failed can be seen in figure 44.

 97

Figure 44 - Web Tests

2.16.4 GUI Testing

GUI testing is the task of testing the systems user interface of the application. This

involves checking each screen that contain menus, icons, lists, buttons etc. for GUI

bugs. The GUI determines how user friendly the application is, so testing was

conducted on both the android and web application to ensure that the UI behaved

how it is meant to and that the user can move seamlessly through the applications

screens. I performed testing on each screen making sure that the various buttons

performed their tasks effectively and that all lists of data and intents functioned

correctly. The GUI was also tested after each new view was created on both

platforms. All GUI’s of the applications function correctly and as intended.

Robo Test

Robo test is a tool integrated into Firebase Test Labs for Android. Robo tests

analyze the structure of the applications UI and moves through the application

simulating user’s activities. Robo test captures log files, screenshots and creates

an activity map, these can be used to help determine causes of application crashes

or where GUI bugs occur. I ran multiple tests using the Kryptium APK on SDK

versions 23 and 26.

 98

SDK version 23 is the minimum SDK version while 26 is the target SDK version.

Both Robo tests passed and the results can be seen below in figure 45.

Figure 45 - Robo Test Result

2.16.5 Security Testing

ImmuniWeb - Android

High-Tech Bridge, a web security company, which provide several free and

premium services, one of which is ImmuniWeb. ImmuniWeb allows you to upload

an APK file which it will perform a security audit on. It tests the security and privacy

of mobile applications as well as detects OWASP Mobile Top 10 weaknesses.

Below is a summary of the results of the test.

Figure 46 - Android Security Test Overview Source: https://www.htbridge.com/mobile/?id=2DD4UonF

 99

The one potentially high-risk security flaw, figure 47, is that my application is writing

data to the devices public storage, internal memory or SD card, which could then

be accessed by other applications or by other users. This flaw was found in the

decrypt files class of the application, but it is nothing to worry about as the “flaw” is

the class downloading the decrypted file (pdf, word) to the downloads folder on the

device. This must occur if the user is to use the file again.

Figure 47 - High Risk

The next potential flaw was deemed a medium security risk, seen below in figure

48. It was that my application gradle file included some third-party libraries. I went

through my gradle file and removed some of the libraries I was no longer using or

no longer needed. The rest of the gradle file consisted of the Google Firebase,

SpongyCastle, BouncyCastle and android libraries which are all fine as well as

needed for the application to function correctly.

Figure 48 - Medium Risk 1

 100

The next medium flaw was in one of my steganography classes I was using

Random, which is a predictable random number generator, instead of

SecureRandom. This was fixed by changing it to SecureRandom instead.

Figure 49 - Medium Risk 2

Another flaw introduced a possible exploit an attacker could use to create

unintended touch activities on the android application called Tap jacking.

Tap jacking is when a user touches the screen, the application may pass the touch

event to another application below its user interface layer that the user does not

see. To mitigate against this potential attack involved adding a line code, seen in

figure 50, below each button that could have an overlay above it, such as the

fingerprint authentication overlay.

Figure 50 - Tap Jacking Fix

Another low threat vulnerability was that the application was still in debug mode.

Debug mode can be set from true to false easily if the application was moved from

development to production.

Figure 51 - Low Risk

 101

The remainder of the low threat flaws and warnings were mainly due to the fact the

application was still in its development configuration as seen in figure 52. It also

showed some android libraries and code as vulnerable. Below is a screenshot of

the low threat vulnerabilities, two of which are addressed above.

Figure 52 – Additional Issues

To be sure these were the only flaws and vulnerabilities I also used two other

mobile application vulnerability tools hosted on the internet. One being Osterlab

and Quixxi. Both security scans returned more or less the same results.

 102

Quixxi- Android

The Quixxi results shown in figure 53 show that that the app is debuggable and

the only high-risk vulnerability being that the app is signed with a ‘Android Debug’

certificate. These issues can be easily solved if I moved the application to a

production phase. I also noticed that I was still logging sensitive information, a

medium risk vulnerability, from when I was testing the encryption methods, so I

went through the classes and removed logging from these methods that were not

needed. The risks and issues produced by the Quixxi scan were remedied mostly

by what I had done to remedy the issues introduced by the ImmuniWeb Scan.

Figure 53 - Quixxi Results

 103

OWASP ZAP - Web

I used OWASP ZAP15, version 2.7.0, to conduct a vulnerability scan of the web

application. I set ZAP to attack mode, so it would automatically fill any input fields

with random strings and do a full scan of the web application. In figure 54 below

you can see five potential vulnerabilities returned, one medium and four low risk

threats with no high-risk threats found.

Figure 54 - OWASP ZAP Overview

The Web Browser XSS Protection Not Enabled warning is an alert to tell the

developer that there is no XSS protection enabled on the web application. So, to

fix this I had to modify the Web.config to including the code seen the in figure 55

below. This turns on the XSS filter provided by web browsers, if any scripts from

user inputs are detected the browser will sanitize the page as well as block the

render of the webpage.

Figure 55 – XSS Protection

15 OWASP ZAP Software - https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

 104

The potential Cross-Domain JavaScript Source File Inclusion vulnerability is a

warning from OWASP ZAP saying that I have third party JavaScript on the web

application, all of which are the required Google Firebase JavaScript files needed

to use Google Firebase on the web application. This warning was ignored as I

made sure to only use what was needed for the functionality of each page.

The last warning, X-Content-Type-Options Header Missing, is because the web

application is vulnerable to drive by downloads and MIME type sniffing. To fix this

issue also required adding the code seen in figure 56 below to the Web.config file

and declaring all content types used by the web application as “no sniff”.

Figure 56 - No Sniff

The highest warning from OWASP ZAP was that X-Frame-Options Header Not

Set. Ignoring this warning means the web application is vulnerable to clickjacking

attacks but can be mitigated against by adding the code in figure 57 to the

Web.config file. Sites can use this to avoid clickjacking attacks, by ensuring that

their content is not embedded into other sites (X-Frame-Options, MDN web docs).

Figure 57 - Click Jacking

After testing the web application and scanning it a number of times I was satisfied

I had addressed all the issues presented by OWASP ZAP.

 105

3 Further Development

While the android application is completed and the web application being in a beta

stage further development can still be made in both.

Web

One of the further developments that could be made is the completion of the web

application including all its features.

More Encryption

The system could evolve to include more features on both the android application

and the web application. Features such as more encryption options, allowing the

user to decide what to encrypt with, and more types of data to encrypt such as

video or audio.

Language

For a further development, the application could include multiple languages

allowing users all over the world to select their own language to view the app in.

4 Conclusion

The application Kryptium allows users on both android and web platforms to

encrypt personal information safely, overall the android application was completed

with the web application being a beta stage and not containing all but two

encryption algorithms. The design and technologies chosen for implementation,

such as Google Firebase, allowed for the development of cross platform

authentication and data storage as user credentials and the users data was stored

in the cloud. Using HTML5, JavaScript and C# allowed me to create a professional

looking and usable web application while Java and XML allowing me to create a

native android application.

 106

5 References

• Brijesh Thumar. 2017. Firebase Firestore Database for Android Application.
[ONLINE] Available at: http://androidkt.com/firebase-firestore/. [Accessed 11
October 2017].

• Kryptotel. 2017. Encryption Algorithms. [ONLINE] Available at:
http://learning.kryptotel.net/encryption-algorithms/. [Accessed 9 October
2017].

• B. Schneier. 1998. The Twofish Encryption Algorithm. [ONLINE] Available at:
https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.ht
ml. [Accessed 16 October 2017].

• tutorialspoint. 2018. Advanced Encryption Standard. [ONLINE] Available at:
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.
htm. [Accessed 16 January 2018].

• BLACK SLASH. 2017. How to Hide Secret Data Inside an Image or Audio File
in Seconds. [ONLINE] Available at: https://null-byte.wonderhowto.com/how-
to/steganography-hide-secret-data-inside-image-audio-file-seconds-
0180936/. [Accessed 31 January 2018].

• Microsoft. 2015. Introduction to the C# Language and the .NET Framework.
[ONLINE] Available at: https://docs.microsoft.com/en-
us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-
net-framework. [Accessed 22 February 2018].

• Google. 2018. Cloud Storage for Firebase. [ONLINE] Available at:
https://firebase.google.com/products/storage/. [Accessed 2 May 2018].

• Google. 2018. Firebase Realtime Database. [ONLINE] Available at:
https://firebase.google.com/products/realtime-database/. [Accessed 2 May
2018].

• Google. 2018. Firebase Authentication. [ONLINE] Available at:
https://firebase.google.com/products/auth/. [Accessed 2 May 2018].

• TechTerms. 2012. Java. [ONLINE] Available at:
https://techterms.com/definition/java. [Accessed 9 April 2018].

• MDN web docs. 2018. What is JavaScript?. [ONLINE] Available at:
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction.
[Accessed 17 April 2018].

• ImmuniWeb® Platform. 2018. Mobile App Scanner. [ONLINE] Available at:
https://www.htbridge.com/mobile/?id=t8W7ZSL2. [Accessed 2 April 2018].

• Software Testing Fundamentals. 2018. Black Box Testing. [ONLINE] Available
at: http://softwaretestingfundamentals.com/black-box-testing/. [Accessed 28
March 2018].

• OWASP.org. 2017. Testing for NoSQL injection. [ONLINE] Available at:
https://www.owasp.org/index.php/Testing_for_NoSQL_injection. [Accessed 9
April 2018].

• Android Developers. 2017. Permissions Overview. [ONLINE] Available at:
https://developer.android.com/guide/topics/permissions/overview.html.
[Accessed 13 March 2018].

http://androidkt.com/firebase-firestore/
http://learning.kryptotel.net/encryption-algorithms/
https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.html
https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.html
https://www.schneier.com/academic/archives/1998/12/the_twofish_encrypti.html
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm
https://www.tutorialspoint.com/cryptography/advanced_encryption_standard.htm
https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-seconds-0180936/
https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-seconds-0180936/
https://null-byte.wonderhowto.com/how-to/steganography-hide-secret-data-inside-image-audio-file-seconds-0180936/
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework
https://firebase.google.com/products/storage/
https://firebase.google.com/products/realtime-database/
https://firebase.google.com/products/auth/
https://techterms.com/definition/java
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Introduction
https://www.htbridge.com/mobile/?id=t8W7ZSL2
http://softwaretestingfundamentals.com/black-box-testing/
https://www.owasp.org/index.php/Testing_for_NoSQL_injection
https://developer.android.com/guide/topics/permissions/overview.html

 107

• IT FREEDOM. 2017. The New NIST SP 800-63 Password Guidelines.
[ONLINE] Available at: https://www.itfreedom.com/nist-sp-800-63-password-
guidelines/. [Accessed 30 March 2018].

• keycdn. 2017. X-XSS-Protection – Preventing Cross-Site Scripting Attacks.
[ONLINE] Available at: https://www.keycdn.com/blog/x-xss-protection/.
[Accessed 17 April 2018].

• MDN web docs. 2018. X-Content-Type-Options. [ONLINE] Available at:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-
Type-Options. [Accessed 17 April 2018].

6 Appendix

6.1 Project Proposal

6.1.1 Objectives

I will be developing an android and web application that will have a login and

register and allow users to encrypt sensitive information or just content they want

to make more secure.

The user must be able to register an account and login, from there they must be

able to easily navigate the applications and encrypt and decrypt data with ease.

The user will also can decrypt data using their fingerprint should their device have

a fingerprint scanner. The user must also be able to view, encrypt and decrypt files

on both the android application and web application.

https://www.itfreedom.com/nist-sp-800-63-password-guidelines/
https://www.itfreedom.com/nist-sp-800-63-password-guidelines/
https://www.keycdn.com/blog/x-xss-protection/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

 108

The android application will allow the user to encrypt and save passwords, text

blocks, entire files and images using secure encryption algorithms. This data will

be saved in Google Firebase database and storage. To decrypt the data a user

must enter a pin code they entered when they first encrypt the data, this acts as

an extra safety feature. The user will also have the option of decrypting data user

their fingerprint should their mobile device have a fingerprint scanner.

The web application will be a carbon copy of the android application and will have

the same features and functionality as it. The web application will allow the user to

login and see all the encrypted data they have in the database and if they wish to

use the file on their PC or laptop they can decrypt and download it using the same

pin code they set when they encrypted it on their mobile device and vice versa.

The web application will only be a prototype not encompassing all features

depending on how long the android application takes.

I will also be using different encryption algorithms for each section in the

application, so the passwords won't be encrypted the same as the images, files or

the text blocks. The objective of this is to show how different encryption algorithms

can be used in the same application. I will also be using the Google Firebase

Database and Firebase storage to save the text or files that have been encrypted

as well as using Google Authentication for login and register.

The android application will be developed in Android Studio using Java, xml and

Firebase. The web application will be developed in Visual Studio using HTML,

CSS, jQuery C# and Firebase. The database I will be using is the Google Firebase

Database.

6.1.2 Background

In my research I found there were very few encryption applications on the Google

Play Store that could be considered up to par and usable. I found that most apps

were old and had UI that didn't have usability in mind as well as some apps using

non-secure encryption algorithms. While there were one or two good apps in terms

of features they had outdated UI and were over complicated with too many options

and buttons which probably left some users confused and wanting to uninstall the

app. So, I wanted to make an app that had usability, good UI design as well secure

encryption features in mind.

As I am in the Cyber Security stream I wanted to double down on this idea and

include as many security and encryption algorithms as possible without making it

too complex. In the end I settled for 5 different ways of encrypting data, including

 109

the login and register. The user will be able to encrypt passwords, text blocks, files

and images so each of these sections in the application will be encrypted using

different algorithms. My android phone also has a fingerprint scanner, so I wanted

to include that somehow, so I decided it would be used as a method of decrypting

a file the user had previously encrypted.

Although this seemed like a good idea I didn't feel like the complexity was there,

so I decided I would make it cross platform by building a web application that

registered users could log into to view their encrypted files that way and decrypt

them on their PC or laptop. I would use the Google Firebase databases for this as

it would allow data to be accessed by both mobile devices and PC’s over the

internet.

6.1.3 Technical Approach

My approach to this project will be to do as much research as possible on the

secure implementations of the encryption algorithms I will use in the application. I

will research secure encryption algorithms some of which I have named below as

well as secure programming methods.

I will then move onto creating low-fidelity mockups of the android application to

help with creating the design of the application. I will create class diagrams and

use cases and over time adding relevant and new information to them keeping

them up to date, these diagrams will help me keep track of where I am in the project

but also help me visualize the functionality of the application. The diagram below

is a very basic model of the android application which helps me map out how it will

work.

 110

I will create a simple UI spending no more than a day or two on it leaving the proper

design of the UI and other features till the end, from there I will implement the

functionality of the main features of the application starting with getting the

database connected and implementing the login and register features. This will

allow me to test the connection to the database as well as my java code. From this

stage I will move onto the rest of the application and implement the encryption

algorithms leaving the UI design till later in the project lifecycle.

The web application will not be started till later in the lifecycle of this project as I

am much better at web design than I am at android development. I will be able to

create a well-designed web application in a short period of time leaving more time

for the implementation of the backend of the web application. Use cases and class

diagrams will also be created for this part of the project as it is separate from the

android application.

I will break the development of this project into phases with tasks to completed

within these phases. After each phase of the project I will test to make sure that

each encryption method or feature is working correctly and to make sure the files,

text or image are truly encrypted and secure.

 111

Throughout this project I will be meeting with my project supervisor to review the

project as it develops and make any changes to it if my supervisor suggests any

changes or improvements. When my supervisor and I feel the project is finished

and all goals of the project met the application will be published online.

6.1.4 Special Resources Needed

I currently have good knowledge on building a web application, but android

application development is new to me, so I will still need to use resources to

enhance my skills in that area such as:

1. Tutorials on encryption algorithms, Java and C#

2. Tutorials on Android backend and UI development.

3. Tutorials on cross-platform applications

4. Google Firebase tutorials.

I will also require the following resources:

1. Laptop and/or PC.

2. Android mobile phone/s.

3. Google Drive to backup project files.

4. Android Java tutorials

5. Web application C# tutorials.

6. Icon creator tool for android application.

7. Android Studio

8. Visual Studio

9. Google Firebase Database Project.

6.1.5 Technical Details

I will be using Android Studio to code the android application, the backend and UI

will be created using Android Studio. I will be using Java to code the backend of

the application and xml to code the front end of the application. I will be using

Visual Studios to create the web application using HTML, CSS and C#. I will be

using a Google Firebase Database, Storage and Authentication to save the user's

information when they create an account and all encrypted data and files will be

stored here.

The android application and web application will both be using and linked to the

Firebase database.

 112

Both applications will encrypt files for mobile users and web users, the user can

store and encrypt anything they feel needs to be more secure. It will be able to

store passwords, text blocks (email addresses, names, bank details or other

sensitive information), picture as well as word, PDF and excel files. It will also

contain information on how to keep your files and personal information as safe as

possible with help sections.

The user will have to register an account and login to access the application, only

authenticated users can access the application with the correct credentials and

have read and write permissions to the database. The user can encrypt

appropriate files but will need to enter a six-digit code to decrypt anything as an

extra safety feature or if the mobile phone has a fingerprint scanner, which a lot of

phones now have, your fingerprint could be used instead of a pin to decrypt files,

but the user will have the choice in case the device doesn't have fingerprint

scanner. I believe that fingerprint scanner is good idea to implement as a user

cannot forget their fingerprint and no one else can access it with their finger. All

the user’s information will be encrypted, and all the users encrypted files will be

kept on a Google Firebase database. This allows the user to delete the original file

on the phone only keeping the encrypted version which can be decrypted

whenever needed.

The user interface of the application will be as user friendly as possible, able to

navigate the app easily, easy to use the features in the app and look aesthetically

pleasing using nice colours and well laid out pages.

I will be using as many different encryption methods for each of the types of files

that can be encrypted without compromising security.

Encryption

● Login and Register: Salted Password Hashing

● Password Vault: AES 256

● Text: Steganography

● File: Twofish

● Pictures: TBD

Decryption

● Pin Code

● Fingerprint

Database

 113

● Google Firebase Database

The features of the android application will also be implemented in a web

application. The web application's functionality will be very similar to the android

application except for the fingerprint scanner.

6.1.6 Evaluation

I will be using a variety of requirement elicitation techniques as a basis for the final

requirements specification document. These techniques will most likely consist of

surveys, brainstorming, interviews and interface analysis. These are the main

techniques I will use but others may be used if they are needed. Implementing

these techniques properly will create a great foundation for developing and writing

a highly detailed and accurate requirements specification document.

The requirements specification document will be written in conjunction with the

development of the android application which will allow me to amend any details

in it, this allows it to be completed with the highest attention to detail and accuracy.

After the midpoint and prototype presentation information will continue to be added

to the document this time based around the web applications, allowing me to make

it more accurate and of a higher standard. I will continue to meet with my project

supervisor to make sure the project and documentation is on the right track and

progressing well. Any feedback from the meeting will be noted and changes made

to the project in time. Ideally, I hope my supervisor and myself will be entirely

satisfied with the project's progression with the final product when it is completed

on the 18th of May 2018.

6.2 Project Plan

As you can see in the Gantt chart below I have given myself enough time to

complete each part of the project but also enough time that should I fall behind or

become stuck on the implementation of a part I have enough time to push other

parts back. I have a plan on how I will move through the project and in which order

I implement features which I have simplified below but there is a chance I will

 114

become stuck, so I have allowed myself time to push back other parts of the

project.

6.3 Monthly Journals

6.3.1 September 2017

Thursday 21st

Today I actually decided on an idea, an encryption android application. This is
basically all I have so I will need to do my research and see what I can do to make
mine stand apart from the others out there or cool features I can add to it.

Monday 25th

So, done some research and found that most apps like mine on the Google Play
Store are garbage or look horrendous so that give warrant to my idea as I’ll make

 115

my app look great. Also, I have decided to implement 4 different things you can
encrypt, passwords, text blocks, files and images. Also, a login and register feature
of course.

When files are encrypted they are saved to a Firebase database.

Other apps on the play store focus on one type of thing to encrypt while mine will
encrypt a variety of things.

Wednesday 27th
So, I’ve gotten the general idea of what the app will do in my head, so I used Visio

to make a basic model of the android app just to help me visualize what I need to

do a little better.

Also, when decrypting files so you can see them again you have to enter a pin

code which you enter when you encrypt it, my phone has a fingerprint scanner and

so do a lot of newer phones. So, my girlfriend said why don't you use the fingerprint

to authorize the decryption of the files? So that's what I am going to do. Phones

without fingerprint scanners can use a pin code, phones with them can decrypt

files with their thumb. I think this is a good idea as it's not on any of the apps I’ve

researched, and you generally can't forget your finger were as you can forget a pin

code.

I have also decided to use different encryption algorithms and methods for each

thing that can be encrypted so that should be fun.

 116

Saturday 30th

So today I have finalized my idea for the android application, all its features and

functionality.

I’ve also decided that if I was to complete the application in a shorter time frame I

would attempt to make it cross platform, so create a web application in Visual

Studios that is the same as the android application and has the same functionality.

The android application is the priority and will be completed where the web

application could still be a prototype by the end of it all.

 117

6.3.2 October 2017

Monday 2nd

Today I had my project pitch at 10.10 am. I felt prepared and hoped I wouldn't

freeze up or get too nervous as I usually do with presentations, it also didn't help

that I have the flu but whatever.

I explained my idea and got asked lots of questions but were very happy I was

including different encryption algorithms in the application, I explained I wanted to

showcase that I could implement different encryption types, that I was using the

fingerprint scanner and that it was cross-platform, I explained the web application

may end up being in its prototype stages. So, I got the go ahead on the project

with a few recommendations. So now I know my idea is good and have the go

ahead I can finally start project proposal and begin designing my application.

Tuesday 3rd

Today I have gotten a start on my project proposal which will describe the project,

what it will do, how I will do it, what I will need to do it and all that stuff.

Thursday 5th

The project proposal is mostly done just need to add some finishing touches. I also

started my research based around Google Firebase by reading through the

documentation for it and looking at tutorials. I also created an android application

to test the code and see if it works and basically learn by trial and error.

Sunday 8th

So, I learned that you can add Firebase through Android Studio easily and it adds

all the gradle dependencies and files you need to use Firebase. I also managed to

figure out Google Authentication and create a simple login and register which

worked, I plan on adding google and Facebook login options as well.

Tuesday 10th

 118

I got a simple feature working where the user, only if logged in and authenticated

in Firebase, can add a password, not encrypted, and the name of the password,

like Facebook or whatever they want, to the Firebase database. Most of the code

is handled by Firebase API but I had done a lot of research to find out to do it

properly.

Thursday 12th

I broke the entire app, so I had to delete the project on Google and make a new

android project. It’s probably for the best as the first one was a mess of random

code, this one will be everything I learned and the code I wrote to make the app

properly.

The login and register using email and password authentication now works fully. A

simple home screen Ui was made and I made the classes and UI for adding

passwords and text blocks to the database.

Sunday 15th

So, for Firebase Database is a real-time database best used for just strings or ints,

but Firebase Storage is mainly for files, images, videos and audio which is perfect

for my app as well. So, implemented adding an image to the Firebase Storage

which didn't take too long as it was similar to the other parts. I found to allow the

user to access their images the image is stored in storage and a reference to the

image saved in the database.

Also found a nice colour scheme I want to use throughout the application.

Monday 16th

Made more changes to the code in the application such as form validation and

capturing the Firebase User ID when uploading data to the database.

I also got the passwords to output in a simple list view, but it shows all the

passwords in the database, which I don't want, but it’s a start.

Tuesday 17th

 119

The data the user upload to the database is now sorted by the user’s firebase ID,

this means the users data is all stored together, where before all user’s data was

stored together and there was no structure to the database. This means the users

can now only see their own data when login which is a big step and makes

outputting the data for the users to see a lot easier as they will be grouped by their

ID’s. I hope that makes sense.

I also implemented a splash screen and created the icon and logo for the

application using a free online icon creator and I am going to call it Kryptium.

Friday 20th

I started my research into the encryption algorithms mainly AES 256 for the

moment.

So far, I have login and register using Firebase Auth. The user can add passwords,

text, images and files to the database, I used a Firebase List Adapter to show the

users data as a list on each activity.

Sunday 22nd

I began implementing the AES 256 algorithm on the passwords section of the

android app.

I also began creating the pages which allow the user to delete or decrypt

passwords, this is done by making the list view clickable and when the user clicks

a password name the intent grabs the data from the list view and passes it to the

new activity where the information is displayed. The user can enter the pin code to

delete or decrypt the password.

Wednesday 25th

Following various online resources, I managed, after many attempts and coffee

breaks, to get the password to encrypt using and AES/CBC 256 algorithm. I

decided to put the algorithm up on stack overflow to ask if the algorithm had any

problems or if it could be improved.

Sunday 29th

 120

Today I got the password to delete if the right pin code is entered, my only concern

is the way that I got it too work isn't secure, and the pin code is not encrypted so it

may be a temporary solution.

My next thing is to get the data, from when a user creates a new password, is

pushed to the database to be encrypted and get the password decrypt and delete

functions working properly.

6.3.3 November 2017

Friday 3rd

I began some research into android fingerprint manager and found its simple to

use as there are loads of tutorials on it, I tried to implement it in my delete a

password feature in the app and it didn't work and I just ended up more confused.

So, I added the Gmail login instead, so the user can now login with their Gmail

account or their email and password.

Began my research on steganography.

Monday 6th

I found a good tutorial on the fingerprint scanner and how to implement the way I

need to use it, so I will be implementing that over the next week or so.

I also have a few CA’s and uploads due this week, so I don’t think I’ll be getting

much done this week at all.

Friday 10th

I have implemented the fingerprint scanner functionality on the password decrypt

section, it took me two days to get working as there is a lot of code to use. But now

when the user goes to the decrypt page they see a pin code or fingerprint button.

If they select pin code the pin code edit-text shows but if they press fingerprint a

dialog popup appears, and they are asked to scan their finger, if it is recognized

the user can delete or decrypt the data. If it's not an error message shows, and

they can try again

 121

Monday 13th

I have exams and other projects starting to pile up, so I only got to change the UI

of some the pages in the application and done some more research on

steganography. Long four weeks ahead.

Friday 17th

I’ve been working on the requirement specification the last two weeks, more so

this week doing a bit every day. I have the bulk of the content in it already just have

to clean it up and make sure it all makes sense and so on.

I also met with Irina as I had a few questions about the system architecture, my

use cases and the functional requirements. Most of the questions were just

concerns I had, making sure I was doing it right. I just have to change some of the

functional requirements and I should be fine.

Sunday 19th

Today I implemented the fingerprint scanner functionality in all the other sections

of the application. Took a while as the code as it needs two classes to work for

each section.

Tuesday 21st

I found a AES library on GitHub and decided to try use it just to see what happens

because the one I currently have doesn't work correctly, to my surprise it worked

and allows you to create a new AES builder, so I am able to code the AES how I

want it to function, number of iterations, key length etc. This a big step as AES is

what I will be using to encrypt the passwords as well as the user's details.

Friday 24th

Submitted the requirement spec and now to do the technical report in a week.

6.3.4 January 2018

December was a bit of a messy month as most of the CAs and projects were due

as well as various presentations on various things, so I didn't get much done on

 122

the project. The start of January was the same as I had my exams up until the

13th. I took a break for Christmas and new year’s mostly and just chilled out until I

started studying again.

Wednesday 17th

Today I created the web application in Visual Studio and created the pages I will

need, or think I’ll need, as well as add a few files and code segments needed for it

to work with my Firebase Project.

Thursday 18th

Today I tried implementing the login functionality on the web app using the google

documents and their GitHub documents as well.

It worked but also didn't at the same time so.

Saturday 20th

The way firebase is configured to operate on a web application is different than a

standard login page, it creates the session and you have to set the page to change

its UI rather than bringing you to another page. This was confirmed on their GitHub

page, that's why it wasn’t working so the login and register part of the web

application works now.

Monday 22nd

The last few days I’ve spent getting the basics of the web application working.

When the user logs in they can go to their home page and select what they want

to see or add. I have the password data downloading and displaying in a list. Now

I need to find a way to decrypt an aes ciphertext in C#.

Tuesday 23rd

One of the problems I was having was how to keep the pin code safe because I

was saving it as plaintext in the database, so I am hashing it then using the hashed

pin code as the key in the AES algorithm. I started using SHA but its not really

secure enough so I changed it to PBKDF2 as it is slower making brute forcing

much more tedious to do. Now I had to make sure that the hash created in java

 123

was the same created in C#. After some research and finding some good tutorials

I was able to create the same hash on both platforms.

Thursday 25th

The next problem was creating the same C# AES cipher in java and C#. I found a

great GitHub library which had the aes algorithm in java and C#. After

implementing which took a while...it didn't work.

Saturday 27th

Tried to get the AES to be cross platform again today……. didn’t work.

Sunday 28th

I am sick of AES, so I did more research on steganography which is when I found

a GitHub library which had to code I need to finish what I already had. Before I was

following very disjointed tutorials on what I need to make this work but could never

get it to work. Also, there actually isn't that much information on it.

I spend the day implementing what I needed from the GitHub and changing it to

do what I wanted it to do.

I had to change it because I couldn't upload the bitmap as bytes to the database,

I had to use a firebase function to upload the bitmap as bytes to firebase storage

instead, the get the download URL and store that in the database instead.

Wednesday 31st

I am a idiot...the AES was not working because I had the variables in the wrong

order in the C# algorithm so it was trying to get the key from the IV instead of the

other way around……...it works now.

Now I can encrypt a password on the android app and decrypt it on the web

application.

6.3.5 February 2018

Friday 2nd

 124

After more trying with the Steganography i got it work, instead of using an image I

used the method from the GitHub which creates a 200*200 bitmap of random

colour, convert the bitmap to bytes, get the text which the user wants to hide and

convert that to bytes, then use the steg method to combine them. The new bitmap

created from this had the text in it and it is also converted to bytes…..these bytes

are uploaded to storage. I spend the rest of the day doing the same method but in

reverse for the getting the text back out. It all works. Thank you to the GitHub user

who created this which helped me finish this part of my project.

Wednesday 7th

I spend the last few days just doing some more work on the web application such

as UI stuff and getting some more of the session features working. The module

projects are starting to be released so I will be focusing on them for a while.

Wednesday 14th

I finished the overall UI design of the web application such as the theme and

colours I will use. I also, using JavaScript, managed to get the login and register

working on the web application.

Wednesday 21st

I created the user sections of the web application and using the google

documentation got the user data displaying in a table on the webpage. I only have

this working on the passwords section, but the code can be reused in the other

parts by just changing the path of the database.

Friday 23rd

Spend the day redesigning the UI for the android application, I didn't like the old

one but the new one looks much cleaner and has better colour coordination.

6.3.6 March 2018

Saturday 3rd

 125

Spend the last few days implementing AES in C# on the web application, if

successful it should decrypt the passwords which were encrypted on the android

app. It didn't work.

Sunday 4th

I’m an idiot I had the variables the wrong way in the decrypt method, it works now.

Wednesday 7th

I have the image encryption working, encrypting and decrypting, using 3DES. It

took a while to do simply because of all the conversions that needed to happen

during the encryption and decryption phases.

Sunday 11th

I have started doing the Twofish encryption implementation on the android app and

I have added a few more features to the web application.

Thursday 15th

Twofish is now working on the android application, the implementation is very close

to the AES one, so I was able to do it much quicker. I also did a lot of research

prior to coding it so i had a lot of resources to use which I had found over the last

few weeks.

Saturday 17th

Twofish now works fully and is encrypting and decrypting files.

Wednesday 21st

I spent the last few days doing the document and catching up on what needs to be

in the document such as documenting the encryption algorithms now working in

the applications.

Tuesday 27th

 126

I have begun testing the android application, creating unit tests, security tests and

UI tests.

The security scans revealed a few issues which I will try to fix, and the first UI test

failed because of the splash screen but after removing it passed the Robo UI test.

I put the splash screen back in because I like it.

Saturday 31st

After spending two days on this I managed to get the web application to encrypt

and decrypt the images using C# triple DES. It doesn't work fully and i don't think

it will but for the most part it does.

So now the application uses all four encryption algorithms and the website uses

two of them, which I am happy with.

The UI of the android app is done, and website still needs some work.

6.3.7 April 2018

Saturday 7th

I haven't done much the last week because of the other projects but I have started

writing the rest of the unit tests for the android app.

6.3.8 May 2018

Tuesday 1st

For the past month I just done bits and bobs on both the android application and

web application mainly because of the module CAs and then the end of year

 127

exams. I then took a few days of to just chill out but today I spent going over

everything that still needs to be done and surprisingly it's a small list.

I spend the day doing vulnerability scans of the web application and fixed any

issues I could and wrote about it in the report so.

I also planned on what needs to be done on the website itself but overall, I am

happy with it as it is kind of a beta website, a proof of concept for a cross platform

application.

Thursday 10th

Making the final touched to the technical report.

