

National College of Ireland

BSc in Computing

2017/2018

Aaron Meaney

14326016

14326016@student.ncirl.ie

Bus Stop!

Technical Report

Bus Stop! – Aaron Meaney – 14326016

 - 2 -

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name: Aaron Meaney

Student ID: 14326016

Supervisor: Dominic Carr

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

I confirm that I have read the College statement on plagiarism (summarised overleaf and printed in full in the Student

Handbook) and that the work I have submitted for assessment is entirely my own work.

Signature: Aaron Meaney Date: 13/05/2018

NB. If it is suspected that your assignment contains the work of others falsely represented as your own, it will be referred

to the College’s Disciplinary Committee. Should the Committee be satisfied that plagiarism has occurred this is likely to

lead to your failing the module and possibly to your being suspended or expelled from college.

Complete the sections above and attach it to the front of one of the copies of your assignment,

Table of Contents

Executive Summary .. 5

1 Introduction .. 6

1.1 Background .. 6

1.2 Aims ... 6

1.3 Technologies ... 9

1.3.1 Unity .. 9

1.3.2 Mapbox SDK for Unity ... 9

1.3.3 Visual Studio IDE .. 9

1.3.4 PubNub ... 9

1.3.5 Sinatra ... 9

1.3.6 PostgreSQL ... 9

1.3.7 Google Maps API .. 10

1.3.8 Android Studio ... 10

1.3.9 Heroku ... 10

2 System ... 11

2.1 Requirements .. 11

2.1.1 Functional Requirement 1: User Views Realtime Map 11

2.1.2 Functional Requirement 2: User Hails Bus 13

2.1.3 Functional Requirement 3: Bus Sends Bus Data 15

2.1.4 Data requirements ... 17

2.1.5 User requirements ... 18

2.1.6 Environmental requirements ... 19

2.1.7 Usability requirements ... 19

2.2 Design and Architecture... 20

2.3 Implementation .. 23

2.4 Graphical User Interface (GUI) Layout... 27

2.5 Testing ... 31

3 Conclusions ... 32

4 Further development or research ... 33

4.1 Predictive Analysis for Time Slots .. 33

Bus Stop! – Aaron Meaney – 14326016

 - 4 -

4.2 Full Traffic Simulation .. 33

4.3 Bus Alerts .. 33

4.4 Other Industries ... 33

5 References .. 34

6 Appendix .. 35

6.1 Survey Results ... 35

6.2 Project Proposal .. 38

6.3 Requirements Specification ... 46

6.4 Monthly Journals .. 84

6.4.1 September ... 84

6.4.2 October ... 85

6.4.3 November .. 86

6.4.4 February .. 86

6.4.5 March .. 87

6.4.6 April ... 87

6.4.7 May ... 87

Bus Stop! – Aaron Meaney – 14326016

 - 5 -

Executive Summary

 “Bus Stop!” is a proof-of-concept Android application that allows the user to view

the live position, capacity and miscellaneous information of busses in a public

transport network. The app also gives the user the ability to hail a bus remotely

through the use of the app, for situations where the user cannot hail the bus at a

stop. For example, the user is outside the line of sight of the bus or multiple

busses are pulling into a stop and the user needs to hail one.

This proof-of-concept prototype is powered by a simulation running on the Unity

game engine which provides the Android application with public transport data.

Short term data (such as bus position, name, assigned route, etc) is transmitted

between the Android app and Unity simulation by the PubNub networking

service, while long term data (such as bus routes, route waypoints, bus stops) is

stored on a PostgreSQL database running on a Sinatra server hosted by Heroku.

While the project was developed to a Minimum Viable Product, it was originally

intended to have a much larger scope. The project manages to communicate its

idea in its current form, however with more time it would have been able to do

this even more so. Nonetheless, great care was put into the design, development

and implementation of the project and despite the lack of time to finish it to the

original goal, I am very proud of what I accomplished with it.

1 Introduction

1.1 Background

For my whole life I’ve depended on public transport. Because of this, my only

way to reach the college is by bus. I’ve taken the same bus for the past four

years and many times I have missed the bus just as I turned the corner to the

bus stop. Having to wait for 30 minutes for the next bus, and by extension miss

classes and appointments, is extremely annoying. This made me consider the

development of a project that would improve the public transport experience.

During the process of considering what projects to develop, I liked the idea of

developing a project with the Unity game engine. I’m personally very passionate

about game development and I’ve used this engine in my spare time for hobbyist

game development. I wanted to become more familiar with the engine and to

improve my skills with using it. I also wanted to develop a project that had an IoT

application, and so the idea of creating a simulation of IoT connected busses was

conceived.

1.2 Aims

My goals for the development of this project are:

1. Develop a proof-of-concept Android app that:

1.1. Allows users to view real-time bus data on a Google Map interface

1.2. Allows users to hail a bus at a specified stop

1.3. Reads in data from the Unity simulation

2. Develop a backend Unity simulation that:

2.1. Simulates a public transport bus system composed of:

2.1.1. Busses

2.1.2. Bus Stops

2.1.3. Bus Routes

2.1.4. Bus Services

2.1.5. Bus Timetables

Bus Stop! – Aaron Meaney – 14326016

 - 7 -

2.1.6. Bus Time Slots

2.2. Sends real-time bus data to the Android app

2.3. Predictably responds to hail commands from the Android app

2.4. Allow the user to configure the simulation with different simulation

components, E.g. routes, stops, timetables, busses, etc

2.5. Allow the user to configure the bus timetables through a custom user

interface

3. Develop a backend web service (Sinatra + PostgreSQL) that:

3.1. Stores long-term important data for the application

4. Integrate a MQTT style network service (PubNub) that:

4.1. Transmits messages between the app and the simulation

The basic flow of the system will be:

The user will configure the Unity simulation by adding bus stops, waypoints, bus

routes, bus companies, and finally bus timetables to the main scene. The user

can use a custom-built Timetable UI (built as a Unity Editor Window) to modify

bus timetable data. The Timetable UI will mimic the display of a real bus

timetable with multiple routes and will display the busses in the correct order by

using a topological sort on the bus stops against the bus routes.

When the simulation is started, it will send the data that it has been configured

with to the web server. The web server will receive this JSON message and will

then encode the data as base64 to prevent any escape characters from

interfering with the language interpreter, causing unintended behaviour. The

Sinatra server will then save the data in a key-value-pair table in the PostgreSQL

database.

Once the Unity simulation is fully initialized, it will then check the timetables that

have been configured by the user. From this timetable data, the scheduler will

dispatch busses to the appropriate services/routes once the current time reaches

the time of these bus time slots.

Bus Stop! – Aaron Meaney – 14326016

 - 8 -

Once a bus begins a service, it will broadcast this event (over PubNub) and it will

service the first stop. For each stop that the bus stops at, it will let off any

passengers that want to get off at that stop and will then allow passengers to

embark if the bus isn’t full. Passengers will only embark on a bus if it is going to

their destination stop.

Once the bus gets close to a bus stop, if a passenger wants to get off at that stop

or a passenger is waiting at that stop and wants to get onto the bus, the bus will

be hailed. If a bus is hailed to a stop, it will service that stop once it reaches it.

Once a bus reaches the end of a bus route, it will let off everyone and will

despawn, sending an end service event to PubNub, and returning to the bus

companies’ pool of busses.

While the bus is in service, it will transmit its current state to PubNub. The

Android app will listen for this real-time data once it receives the simulation data

from the Sinatra server.

The Android app will render a map of the bus stops in the simulation, along with

markers representing the real-time position of the busses. If a user taps a bus

icon, they will see that bus’s visible route on the map represented by a line,

alongside a list of bus stops that the bus has yet to visit. The bus’s current

capacity and other miscellaneous information will also be shown.

Bus Stop! – Aaron Meaney – 14326016

 - 9 -

1.3 Technologies

1.3.1 Unity

The Unity Game Engine is the platform that the simulation is built on and is a

main technology for this project. The components that make up the “Bus Stop!”

simulation is built in C# and are put together in Unity.

1.3.2 Mapbox SDK for Unity

The Mapbox SDK adds Mapbox specific functionality to Unity. For example, the

map of Dublin is generated using this SDK, as well as coordinate conversions.

1.3.3 Visual Studio IDE

Visual Studio IDE was used to write the C# code for the simulation, used in Unity.

The VS debugger was also used, as Visual Studio can attach to the Unity

instance to read the call stack and read watched variables to improve the

debugging experience.

1.3.4 PubNub

PubNub was used to communicate fast, real-time messages between the

Android application and the Unity simulation. For example, bus data.

1.3.5 Sinatra

Sinatra was used as the web service platform as it exposes an easy to use REST

API with a low learning curve to develop on it. Sinatra was used to interface with

PostgreSQL.

1.3.6 PostgreSQL

PostgreSQL was used to store important data on the Sinatra server in a key-

value pair database. For example, bus stop and bus waypoint data.

Bus Stop! – Aaron Meaney – 14326016

 - 10 -

1.3.7 Google Maps API

The Google Maps API was used to render the Google Maps display on the

Android app.

1.3.8 Android Studio

Android Studio was used to develop the Android application.

1.3.9 Heroku

Heroku was used to deploy the Sinatra web server and to host the PostgreSQL

database.

Bus Stop! – Aaron Meaney – 14326016

 - 11 -

2 System

2.1 Requirements

Please see the appendix for previous functional requirements in the

Requirements Specification.

2.1.1 Functional Requirement 1: User Views Realtime Map

Description & Priority:

Priority: High

The user can view a Google Maps interface when they open the app. The app

should display all the Bus Stops and Busses once the API is ready. The app

should update the positions of Busses once the map receives that Bus’s

message from the API.

Use Case

Scope: The user should be able to navigate the populated map, and the bus

markers should update in real time.

Description: This use case describes the process of getting the bus stop, bus

route and live bus data from the Bus Stop API.

Bus Stop! – Aaron Meaney – 14326016

 - 12 -

Use Case Diagram:

Flow Description

Precondition: The app has a connection to the internet. Location Services are

Enabled.

Activation: The use case begins when the user opens the map.

Main Flow:

1. The Bus Stop App gets the Bus Data from PubNub.

2. The Bus Stop App gets the Bus Stop Data from the Bus Stop API.

3. The Bus Stop App populates the Map.

4. The User interacts with the Google Map.

5. The Main Flow returns to 1.

Termination: The use case terminates when the app closes.

Post Condition: The map contains up to date information.

Bus Stop! – Aaron Meaney – 14326016

 - 13 -

2.1.2 Functional Requirement 2: User Hails Bus

Description & Priority:

Priority: High

Once the map is initialized and the busses are being simulated, the user can hail

the bus through the mobile app.

Use Case

Scope: The user should be able to hail the bus through the mobile app.

Description: This use case describes the process of sending a hail bus

message to the Bus Stop Simulation through PubNub.

Use Case Diagram:

Flow Description

Precondition: The map is populated, and the user has selected a bus.

Activation: The use case is activated when the user presses the “Hail” button on

one of the bus stop lists.

Main Flow:

1. The User presses the Hail button

2. The Bus Stop App provides the User with the Bus Id and Bus Stop Id of the

hailed Bus

Bus Stop! – Aaron Meaney – 14326016

 - 14 -

3. PubNub sends the hail message with the Bus Id and Bus Stop Id.

Termination: The use case terminates after the hail message is sent.

Post Condition: The bus that the user selected is hailed.

Bus Stop! – Aaron Meaney – 14326016

 - 15 -

2.1.3 Functional Requirement 3: Bus Sends Bus Data

Description & Priority:

Priority: High

The Bus in the Unity Simulation can send Bus Data to PubNub.

Use Case

Scope: This use case considers an individual bus in the Unity simulation sending

data to PubNub.

Description: In this use case the Bus pushes data up to PubNub on a regular

interval for consumption by the Android app.

Use Case Diagram:

Flow Description

Precondition: The Unity Simulation is running and is connected to the internet.

The Bus Stop App is connected to the internet and Location Services are

enabled.

Activation: The use case begins when the Bus enters service.

Main Flow:

1. The Bus sends its data to the PubNub API

2. The PubNub API sends the Bus Data

Bus Stop! – Aaron Meaney – 14326016

 - 16 -

3. The Bus Stop App gets the Bus Data from PubNub

Termination: The use case ends when the Bus exits its service.

Post Condition: The Bus Stop App received the Bus Stop Data.

Bus Stop! – Aaron Meaney – 14326016

 - 17 -

2.1.4 Data requirements

The data model must exist on the Unity, and parts can be transferred to the

Android app.

The data model that describes the bus system must be composed of:

Bus Belongs to a Bus Company. Has a Bus

Service. Has many Bus Passengers.

Bus Passenger Belongs to a Bus or a Bus Stop.

Bus Stop Has many Bus Passengers. Belongs to

Bus Waypoint. Belongs to Bus Time

Slot.

Bus Waypoint Has a Bus Stop. Belongs to many Bus

Routes.

Bus Route Has many Bus Waypoints. Belongs to

Bus Company.

Bus Time Slot Has a Bus Stop. Has a Bus Service.

Belongs to a Timetable.

Bus Service Belongs to Bus. Belongs to Time Slots.

Bus Timetable Has many Time Slots. Belongs to a

Bus Company.

Bus Company Has many Busses. Has many Bus

Timetables. Has many Bus Routes.

Bus Stop! – Aaron Meaney – 14326016

 - 18 -

2.1.5 User requirements

Must Have

The User can Navigate the Map on the App

The User can see live bus information by tapping marker icons on the Map

The User can see the selected bus’s list of upcoming Bus Stops

The User can hail Busses using the App

The Busses can automatically route themselves in the Simulation

The Busses can follow timetable directions in the Simulation

The Unity User can configure the Simulation parameters

Should Have

The User can search for Bus Stops and Busses on the App

The User can see the Timetable data for each Bus Stop

The User can receive Predictive Analysis for Time Slots

Traffic is simulated by using a heatmap and by capping the bus speed

Could Have

Simulated Person system is implemented (See original Req Specification)

The User can get alerts when their Bus is near a stop

The Unity User can see Debug Information Panels in the Simulation

The Android App runs a security check to ensure it is not blacklisted

Busses deploy from and return to set Bus Depot locations in the Simulation

Traffic is fully simulated

Would Have

Detailed Simulated Person system (See original Req Specification)

Bus Stop! – Aaron Meaney – 14326016

 - 19 -

2.1.6 Environmental requirements

The Unity simulation needs to run on a machine that has the graphical

performance equivalent to or greater than a Nvidia GTX960m Graphics Card to

run smoothly and accurately. The machine also needs a stable internet

connection with ping less than 30ms, download speed greater than 10 Mbps,

upload speed greater than 2Mbps.

The Sinatra web service needs to run on a Heroku server with a dedicated

PostgreSQL database hosted and connected to the same account. A free Heroku

account is sufficient to run the server application

The Android App needs to run on an Android OS of version equal to or greater

than Android 7.0 Nougat (API Level 24). The user needs to allow the app to use

ACCESS_FINE_LOCATION, INTERNET and ACCESS_NETWORK_STATE

permission. The device needs a stable internet connection with less than 30ms

ping, download speed greater than 10 Mbps, upload speed greater than 2 Mbps.

2.1.7 Usability requirements

The Android application must only contain one activity to make sure the user

won’t get lost navigating the application. The Bottom Sheet must be responsive

to the user pressing it and the application UI state must be consistent to the

context of that application; for example, if a user has tapped a bus stop, don’t’

show a different bus’s list of upcoming bus stops. Instead, hide the bottom of the

Bottom Sheet to prevent confusion to the user.

The user interface should be easy to understand by just looking at the app view;

everything should be self-explanatory. Icons should be used instead of text

where applicable. For example, use a hand icon instead of the words “hail” to

represent a button to hail a bus.

Bus Stop! – Aaron Meaney – 14326016

 - 20 -

2.2 Design and Architecture

Figure 1 - Bus Stop Simulation System Architecture (Simplified Bus Stop API Interface)

In the above diagram (Figure 1) you can see the general architecture of the Unity

simulation. This diagram shows 3 things: the entity relationships between the bus

simulation objects (grey boxes), the relation between the bus system and the

Task Scheduler / Bus Stop API Managers, and the Unity Editor Window display

of the Timetable.

In the simulation, the Company is the root object for the rest of the entities that

run the simulation. The Route Waypoints define absolute positions on the road

that any other Route from any other Company can pass through, and Bus Stops

can be linked to these Route Waypoints. This allows for cases where multiple

Companies and Routes will share a bus stop. Routes are a list of Route

Waypoints (coordinate data) that belong to a company, but they don’t hold any

scheduling data. Routes, Waypoints, Timetables and Busses can all be directly

modified with the default Unity hierarchy and inspector (Figure 2).

Bus Stop! – Aaron Meaney – 14326016

 - 21 -

Figure 2 - Hierarchy of the Bus Company

Scheduling data is contained by the Timetable, Time Slot and Service objects.

Services hold the scheduling information for a Route, as Routes are just a list of

coordinates for a Bus to follow. A Timetable simply contains a list of Services,

which in turn contains a list of Time Slots. The Time Slots contain the time data

for each Bus Stop in the Service’s Route. In the context of rows and columns, the

Service would be considered a column and a Bus Stop would be considered a

row. The intersection is the Time Slot for that Bus Stop, on that Service/Route.

Bus Stop! – Aaron Meaney – 14326016

 - 22 -

Figure 3 - Timetable Example

The custom Timetable Editor (Figure 3) allows the user to modify the Time Slot

and Services of the Time Stamp, as they can’t be directly edited with the Unity

default inspector. Different routes can be displayed on the same timetable, just

like a real bus timetable! Since all the Bus Routes in the Timetable can be

logically represented as a digraph, a Topological Sort can be applied to them to

sort them in the same manner as a normal timetable. The Topological Sort is

applied dynamically as Routes are removed and added to the timetable.

Once the simulation starts, the Task Scheduler is invoked by all the Time Slots,

adding a callback to activate the calling Time Slot. Once a Time Slot is activated,

the Company dispatches a Bus to that service. The Time Slot is then scheduled

to be called again the next day it’s available. When the bus is dispatched, it

begins calling the Bus Stop API and it sends its data to PubNub.

Bus Stop! – Aaron Meaney – 14326016

 - 23 -

2.3 Implementation

There is no one main method in the Unity simulation. A combination of the Task

Scheduler and C# Delegates/Actions allowed for the development of an

asynchronous system that simulates the operation of a bus route.

The entry point for this behaviour is after Unity loads the map scene. Each

timetable waits for the map visualiser to loads. Once this occurs, the timetables

initialize their timeslots. See (Code Snippet 1).

private void Awake()
{
 taskRunner = FindObjectOfType<ScheduleTaskRunner>();
 dateTimeManager = FindObjectOfType<DateTimeManager>();

 // Initialize Time Slots when the Map is finished loading
 MapVisualizer.OnMapVisualizerStateChanged += (s) =>
 {
 if (s == ModuleState.Finished)
 {
 InitializeTimeSlots();
 }
 };
}

Code Snippet 1 - BusTimetable.cs (95-108)

“InitializeTimeSlots();” calls the Initialize method on each Time Slot. This sets the

Time Slot’s isInitialized = true and calls “ScheduleTimeSlot();” on that Time Slot.

This sets up the Time Slot to get activated once it reaches its scheduled time.

This works by passing “ActivateTimeSlot” as a delegate to a ScheduledTask and

then enqueuing that task to the Task Scheduler (a.k.a. ScheduledTaskRunner).

See (Code Snippet 2). The Task Scheduler queue is pre-sorted from soonest

callback time to latest callback time because every enqueue performs an ordered

insert.

Bus Stop! – Aaron Meaney – 14326016

 - 24 -

/// <summary>
/// Schedules this <see cref="BusTimeSlot"/>'s activation with the <see
cref="ScheduleTaskRunner"/>.
/// </summary>
private void ScheduleTimeSlot()
{
 DateTime currentDateTime = dateTimeManager.CurrentDateTime;
 List<DayOfWeek> runningDays = Service.ParentBusTimetable.DaysRunning();

 // Set scheduled date time
 DateTime scheduledDateTime = new DateTime(currentDateTime.Year,
currentDateTime.Month, currentDateTime.Day, scheduledHour, scheduledMinute, 0);

 // If the scheduled time is in the past or does not take place on a scheduled day,
advance day by 1 and check again
 while (DateTime.Compare(scheduledDateTime, currentDateTime) < 0 ||
!runningDays.Contains(scheduledDateTime.DayOfWeek))
 {
 scheduledDateTime = scheduledDateTime.AddDays(1);
 }

 // Create Scheduled Task
 ScheduledTask task = new ScheduledTask(ActivateTimeSlot, scheduledDateTime);
 taskRunner.AddTask(task);
}

Code Snippet 2 - BusTimeSlot.cs (106, 126)

Once the “ActivateTimeSlot” method is queued in the Task Scheduler, it is only a

matter of time before it is called back. The Task Scheduler will check the list at

each frame by calling “ExecuteReadyTasks” and when the front item is ready to

be called (by comparing its timestamp to now), the Task Scheduler will dequeue

and execute that Task Scheduler’s callback. The Task Scheduler will continue

executing and dequeuing from the queue during this frame until it reaches a Task

that is not ready to be scheduled. Once this happens, it stops and waits for the

next frame. Because the list is sorted, this results in a very small performance hit

as the loop will break very quickly. See (Code Snippet 3).

Bus Stop! – Aaron Meaney – 14326016

 - 25 -

private void ExecuteReadyTasks()
{
 while (taskList.Count > 0 && DateTime.Compare(taskList[0].ScheduledDateTime,
dateTimeManager.CurrentDateTime) < 0)
 {
 taskList[0].ExecuteTask();
 taskList.Remove(taskList[0]);
 }
}

Code Snippet 3 - ScheduleTaskRunner.cs (30, 40)

Once the Time Slot is activated, it sets its service’s “Scheduled Time Slot” to

itself. This runs code in a C# property that starts the Time Slot’s Service on this

Time Slot if the Service has not already been started. This is done by calling

DeployBus() on the Time Slot’s Company. This in turn sets the bus’s position,

places it in the scene and starts the Service. The bus will then drive along its

route until it gets hailed by other Bus Passengers waiting at a stop. They hail the

bus once the bus gets close enough to their bus stop, which is implemented as

an Action. See (Code Snippet 4).

public BusPassenger(BusStop originBusStop, BusStop destinationBusStop)
{
 …

 // Hail the bus once it approaches and it is going to the passenger's destination
 originBusStop.OnBusApproach += HailBus;
}

…

/// <summary>
/// The passenger will try to hail the bus.
/// </summary>
private void HailBus(Bus bus)
{
 Debug.Log("OnBusApproach called for " + bus.RegistrationNumber);
 if (bus.CurrentRoute.BusStops.Contains(destinationBusStop) &&
!bus.HailedStops.Contains(originBusStop))
 {
 Debug.Log(FullName + " hailed " + bus.RegistrationNumber + " to " +
originBusStop.BusStopIdInternal + " because it is going to " +
destinationBusStop.BusStopIdInternal);
 bus.Hail(originBusStop);
 originBusStop.OnBusApproach -= HailBus;
 }
}

Code Snippet 4 - BusPassenger.cs (60..76)

Bus Stop! – Aaron Meaney – 14326016

 - 26 -

The bus will continue driving on its route, picking up and dropping off passengers

until it reaches the final stop. At this point, the bus will drop off all the passengers

and will then remove itself from the scene, returning to the Bus Companies’ Bus

Pool.

Finally, this is the code for the Topological Sort that was used to sort the busses

in the timetable UI.

/// <summary>
/// Sorts the <see cref="BusStop"/>s in the list of <see cref="BusRoute"/>s by using
Topological Sort.
/// Adapted from Wikipedia: https://en.wikipedia.org/wiki/Topological_sorting#Depth-
first_search
/// </summary>
/// <param name="busRoutes">List of <see cref="BusRoute"/>s to sort</param>
/// <returns>An ordered topological list of <see cref="BusStop"/>s from each <see
cref="BusRoute"/></returns>
public static List<BusStop> TopologicalSort(List<BusRoute> busRoutes)
{
 // Sorted bus stops to return at end of method
 List<BusStop> sortedBusStops = new List<BusStop>();

 // Dict of Bus Stop edges for graph
 Dictionary<BusStop, List<BusStop>> busStopEdges = new Dictionary<BusStop,
List<BusStop>>();

 // List of unvisited Bus Stops for the sort
 List<BusStop> unvisitedBusStops = new List<BusStop>();

 // Create Graph of Bus Stops
 foreach (BusRoute route in busRoutes)
 {
 // Create Vertex for each pair of Bus Stops
 for (int busStopIndex = 1; busStopIndex < route.BusStops.Count; busStopIndex++)
 {
 BusStop stop = route.BusStops[busStopIndex - 1];
 BusStop nextStop = route.BusStops[busStopIndex];

 // Add Vertex if it doesn't already exist
 if (!busStopEdges.ContainsKey(stop))
 busStopEdges[stop] = new List<BusStop>();

 // Add next stop to Vertex if it doesn't already exist
 if (!busStopEdges[stop].Contains(nextStop))
 busStopEdges[stop].Add(nextStop);

 // Add stops list of unvisited Bus Stops for Topological Sort
 if (!unvisitedBusStops.Contains(stop))
 {
 unvisitedBusStops.Add(stop);
 }

 if (!unvisitedBusStops.Contains(nextStop))
 {
 unvisitedBusStops.Add(nextStop);
 }
 }
 }

 // Perform Topological Sort
 List<BusStop> beingVisitedBusStops = new List<BusStop>();

 while (unvisitedBusStops.Count != 0)
 {
 BusStop selectedStop = unvisitedBusStops[0];

 Visit(selectedStop, unvisitedBusStops, busStopEdges, sortedBusStops,
beingVisitedBusStops);
 }

 sortedBusStops.Reverse();
 return sortedBusStops;
}

Code Snippet 5 - Topological Sort Code

Bus Stop! – Aaron Meaney – 14326016

 - 27 -

2.4 Graphical User Interface (GUI) Layout

When the Android App (Figure 4) starts, the first view that the user will see will be

the map. The blue marker icons represent bus stops. The red marker icon

represents a bus. The bus marker will update in real time according to the update

messages being sent from the Unity Simulation.

Figure 4 - Map on App Start

Bus Stop! – Aaron Meaney – 14326016

 - 28 -

Figure 5 - Selected Bus with Stop List

When the user taps a bus marker, the camera will zoom into a marker position

and the top of the Bottom Sheet will appear. The sheet will contain the name of

the Bus and a live updating text view of the seat capacity in the bus. When the

user taps the name on the Bottom Sheet (in this case, Thundergun Express –

500), the Bottom Sheet will expand, displaying a list such as the one in (Figure

5).

From this list, the user can perform several different tasks:

• Center the Camera on the Selected Bus by tapping the “location” button

on the top-right section of the sheet.

• View a Bus Stop by tapping the “info” button inside one of the list entries.

• Hail a Bus at a Stop by tapping the “hand” button inside one of the list

entries. (A Tick Icon will appear if the bus is hailed for that stop)

• View Extra Information by tapping the “info” button beside the seat

indicator.

Bus Stop! – Aaron Meaney – 14326016

 - 29 -

Figure 6 - Selected Bus with Extra Info

Once the user presses the “info” button beside the seats indicator, the list will be

swapped out for the info panel seen in (Figure 6). If the user presses the “info”

button again, they will return to the list seen in (Figure 5).

The extra info panel displays the following information:

• Bus Registration Number

• Bus Model

• Bus Company

• Bus Position Latitude

• Bus Position Longitude

Bus Stop! – Aaron Meaney – 14326016

 - 30 -

Figure 7 - Timetable with Controls

When the user selects a timetable in the Unity inspector, and opens a Timetable

window, the timetable for that object will show up, naturally. This can be seen in

(Figure 7). The user can add new services by clicking the Add Service button.

Services can be moved left and right by clicking Edit Mode. Clicking Copy Mode

will copy a service to the end of the timetable. Remove Mode will remove

selected services from the timetable. The user can change Time Slot values by

typing in the Hour and Minute fields for each cell. The user can also select the

route for each service by clicking on the Dropdown Menu at the top of each

column. The timetable will auto-sort the bus stops by using a topological sort. If a

bus stop row and a route column intersect where that bus stop does not belong

to that route, the NULL symbol will be displayed instead, indicating that a Time

Slot does not exist there.

Bus Stop! – Aaron Meaney – 14326016

 - 31 -

2.5 Testing

I demonstrated an early version of this project on January 24th, 2018 at a game

development meetup called “The Games Co-Op”. I got some good feedback

regarding the future applications of the project, such as potential VR applications

or expanding the project to new industries, such as rail and airlines. I also used

JUnit testing on the Android application.

@Test
public void objectModel_isValid() {
 // Test to ensure that the object model is valid
 List<BusStop> busStopList = new ArrayList<>();
 busStopList.add(new BusStop("Yulin", "c_Yulin", 22.633333, 110.15));
 busStopList.add(new BusStop("Maoming West", "c_Maoming West", 21.65,
110.916667));
 BusRoute r = new BusRoute("100", "y_100", busStopList);
 List<TimeSlot> timeslots = new ArrayList<>();
 timeslots.add(new TimeSlot(busStopList.get(0), "0"));
 timeslots.add(new TimeSlot(busStopList.get(1), "5"));
 Bus b = new Bus("Guangxi Provincial Bus", 0, 0,
 "01-00-0000", "Guangdong Speedster",
 "China Transport Ltd", r, r.getBusStops().get(0), new
ArrayList<BusStop>(),
 timeslots, 20, 30, 0);
 assertEquals(b.getCurrentRoute(), r);
 assertEquals(b.getCurrentCapacity() <= b.getMaximumCapacity(), true);
 assertEquals(b.getCurrentStop(), r.getBusStops().get(0));
 assertEquals(b.getCurrentStop().getInternalId(), "c_Yulin");
}

Code Snippet 6 - Example Unit Test from Android (BusStopUnitTests)

Bus Stop! – Aaron Meaney – 14326016

 - 32 -

3 Conclusions

I found that this was a very interesting project to work on. As I mentioned before,

I enjoy working with the Unity Engine and I really wanted to work on a project that

would allow me to improve my skills with Unity and to learn more about the

engine. Simple for this reason I enjoyed working on the project.

I feel that the scope was far too big for what was possible to pull off with my

allotted time over the last two semesters. I could have made the scope smaller

but at the same time I was not aware of my total workload during Semester 8

when I determined the scope for this project. I feel losing the month of April to

working on other projects seriously limited the potential of this project.

I was able to implement the MVP of the project and for that I am very proud. I put

a lot of work into this project and despite what marks I get I can at least feel

assured that I tried my best to make this project what it is today.

Even if I had an extra month, I wouldn’t have hit my original target scope for the

project. I was overambitious, but I learned a lot during the development of this

project. I feel that my skills in Unity have improved significantly than they were 6

months ago and that’s the core of what I wanted out of the project.

As for the scope of the project itself, I feel that even though it hit MVP a lot more

could have been done with it. Since the conception of the idea there wasn’t a

clear end goal in sight for the project and this resulted in some features being

implemented that weren’t essential to the project succeeding at large.

Overall, I’m grateful for the opportunity to work on this project and for the

experience gained during the development cycle.

Bus Stop! – Aaron Meaney – 14326016

 - 33 -

4 Further development or research

4.1 Predictive Analysis for Time Slots

A type of predictive learning system would be a useful additional feature as it

would allow users to see predictions of traffic patterns and would make planning

their commute even more efficient and useful.

4.2 Full Traffic Simulation

With more time, a traffic simulation would be a good addition to the bus system

simulation as it would provide a more realistic environment for the busses to

traverse, generating more useful data for the predictive analysis.

4.3 Bus Alerts

A system to alert the user when to leave for their bus would be a very useful

addition to the application.

4.4 Other Industries

The application could be extended to be used in other industries such as aviation

and rail transport industries. There could be unexplored potential in using this

application and it’s predictive analysis systems in these other industries.

Bus Stop! – Aaron Meaney – 14326016

 - 34 -

5 References

Android Developers. (2018). Developer Guides | Android Developers. [online]

Available at: https://developer.android.com/guide/ [Accessed 7 Mar. 2018].

Postgresql.org. (2018). PostgreSQL: Documentation. [online] Available at:

https://www.postgresql.org/docs/ [Accessed 1 Feb. 2018].

Technologies, U. (2018). Unity - Manual: Unity User Manual (2018.1). [online]

Docs.unity3d.com. Available at: https://docs.unity3d.com/Manual/index.html

[Accessed 9 Mar. 2018].

Unity Forum. (2018). Follow Orbit Camera. [online] Available at:

https://forum.unity.com/threads/follow-orbit-camera.202490/ [Accessed 7 Jan.

2018].

Unity Forum. (2018). Handles.Label fail when point behind camera. [online]

Available at: https://forum.unity.com/threads/handles-label-fail-when-point-

behind-camera.79217/ [Accessed 21 Mar. 2018].

Unity Forum. (2018). Handles.Label fail when point behind camera. [online]

Available at: https://forum.unity.com/threads/handles-label-fail-when-point-

behind-camera.79217/ [Accessed 10 Feb. 2018].

Unity, S. (2018). Serialize and Deserialize Json and Json Array in Unity. [online]

Stack Overflow. Available at:

https://stackoverflow.com/questions/36239705/serialize-and-deserialize-json-

and-json-array-in-unity [Accessed 13 Feb. 2018].

Bus Stop! – Aaron Meaney – 14326016

 - 35 -

6 Appendix

6.1 Survey Results

Bus Stop! – Aaron Meaney – 14326016

 - 36 -

Bus Stop! – Aaron Meaney – 14326016

 - 37 -

Bus Stop! – Aaron Meaney – 14326016

 - 38 -

6.2 Project Proposal

InvisibleFormattingBecauseOtherwiseTheProjectProposalBreaks!

Bus Stop! – Aaron Meaney – 14326016

 - 39 -

Bus Stop! – Aaron Meaney – 14326016

 - 40 -

Bus Stop! – Aaron Meaney – 14326016

 - 41 -

Bus Stop! – Aaron Meaney – 14326016

 - 42 -

Bus Stop! – Aaron Meaney – 14326016

 - 43 -

Bus Stop! – Aaron Meaney – 14326016

 - 44 -

Bus Stop! – Aaron Meaney – 14326016

 - 45 -

Bus Stop! – Aaron Meaney – 14326016

 - 46 -

6.3 Requirements Specification

Bus Stop! – Aaron Meaney – 14326016

 - 47 -

Bus Stop! – Aaron Meaney – 14326016

 - 48 -

Bus Stop! – Aaron Meaney – 14326016

 - 49 -

Bus Stop! – Aaron Meaney – 14326016

 - 50 -

Bus Stop! – Aaron Meaney – 14326016

 - 51 -

Bus Stop! – Aaron Meaney – 14326016

 - 52 -

Bus Stop! – Aaron Meaney – 14326016

 - 53 -

Bus Stop! – Aaron Meaney – 14326016

 - 54 -

Bus Stop! – Aaron Meaney – 14326016

 - 55 -

Bus Stop! – Aaron Meaney – 14326016

 - 56 -

Bus Stop! – Aaron Meaney – 14326016

 - 57 -

Bus Stop! – Aaron Meaney – 14326016

 - 58 -

Bus Stop! – Aaron Meaney – 14326016

 - 59 -

Bus Stop! – Aaron Meaney – 14326016

 - 60 -

Bus Stop! – Aaron Meaney – 14326016

 - 61 -

Bus Stop! – Aaron Meaney – 14326016

 - 62 -

Bus Stop! – Aaron Meaney – 14326016

 - 63 -

Bus Stop! – Aaron Meaney – 14326016

 - 64 -

Bus Stop! – Aaron Meaney – 14326016

 - 65 -

Bus Stop! – Aaron Meaney – 14326016

 - 66 -

Bus Stop! – Aaron Meaney – 14326016

 - 67 -

Bus Stop! – Aaron Meaney – 14326016

 - 68 -

Bus Stop! – Aaron Meaney – 14326016

 - 69 -

Bus Stop! – Aaron Meaney – 14326016

 - 70 -

Bus Stop! – Aaron Meaney – 14326016

 - 71 -

Bus Stop! – Aaron Meaney – 14326016

 - 72 -

Bus Stop! – Aaron Meaney – 14326016

 - 73 -

Bus Stop! – Aaron Meaney – 14326016

 - 74 -

Bus Stop! – Aaron Meaney – 14326016

 - 75 -

Bus Stop! – Aaron Meaney – 14326016

 - 76 -

Bus Stop! – Aaron Meaney – 14326016

 - 77 -

Bus Stop! – Aaron Meaney – 14326016

 - 78 -

Bus Stop! – Aaron Meaney – 14326016

 - 79 -

Bus Stop! – Aaron Meaney – 14326016

 - 80 -

Bus Stop! – Aaron Meaney – 14326016

 - 81 -

Bus Stop! – Aaron Meaney – 14326016

 - 82 -

Bus Stop! – Aaron Meaney – 14326016

 - 83 -

Bus Stop! – Aaron Meaney – 14326016

 - 84 -

6.4 Monthly Journals

6.4.1 September

I spent most of this month coming up with an idea for my software project. While I

had a lot of time to come up with an idea over the course of my internship, I

hadn’t really given it much thought, as fourth year felt months away. Coming up

with a viable idea in a short amount of time was quite stressful. There were a few

moments where I regretted picking IoT, since I felt that choosing Software

Development would have given me a broader range of projects to come up with.

Since I have a keen interest in game development, I sometimes wanted to make

a game related project. In fact, specialising in game development was my plan

since before college. However, I heard a few people say that making a game for

your final year project is generally not a good idea since recruiters in normal

software companies use it as a filter for potential candidates. I wanted to keep my

options open, and specialising in software development sounded a bit too

familiar, so I opted to choose IoT. Game development didn’t run this year

anyway.

I spoke with some of my colleagues during my internship and they gave me some

great advice for choosing a final year project. Taking their advice into account, I

chose some criteria for my final year project:

• The project must be interesting enough to keep me working on it for the whole

year.

• The project scope must be scalable depending on the project schedule.

• The project must investigate solutions to a problem, or improve a service.

• The project must be marketable.

• The project must not include robotics, since they’re too hard to deal with.

• The project must not be a video game.

After a few weeks of thinking, it was the day before the pitch and I had two ideas

on my shortlist. One was a robot that links up with video services like YouTube,

Bus Stop! – Aaron Meaney – 14326016

 - 85 -

Twitch and Skype. Essentially a video camera on a remote-control car. The other

idea was a sensor platform in busses to give bus companies the ability to plan

their routes more efficiently and to give more information to their customers.

I spoke to my friend Dan about this idea and he helped me narrow it down to just

focusing on the passenger functionality of the app. My final idea included using

sensors on the bus to find out data like how many seats were available, the bus

location, etc. Using this data, users could automatically hail a bus based on their

distance to the bus stop, they could calculate their ETA based on multi-trip

journeys, and a lot more functionality could be extruded from this idea of putting

sensors on a bus. My project idea filled out all the criteria, except for one. I still

didn’t find it interesting enough, and my desire to do game development work

was still strong. There was another problem still, I don’t have a bus to develop

the app on. My solution was to build the ‘real world’ implementation of the project

in a simulation using the Unity3D game engine. It would be just like making a

game!

The next day, my project idea was accepted.

6.4.2 October

This month I spent my time working on the project proposal. At the start of the

month, I worked on the Objective and Background sections of the proposal. On

the 12th of October, I sent in my first draft of the proposal to Dominic and I had a

proper meeting with him on the 18th of October.

During the meeting on the 18th, Dominic gave me feedback regarding the

Objective and Background sections of the project proposal. I also got some

suggestions regarding the Requirements Specification document. I made some

changes over the next few days and I returned it for more feedback. On the 22nd

of October, I got the greenlight on my proposal and I uploaded it that day.

I haven’t started working on the Requirements Specification yet, I’ll begin that

once I take care of other module assignments.

Bus Stop! – Aaron Meaney – 14326016

 - 86 -

6.4.3 November

I began work on the Requirement Specification document on Thursday, 16th of

November as I was very busy with other modules this month. I spent the next few

days filling out the Requirements Specification document until I had a first draft

ready on the 18th of November. Once I had completed the first draft, I sent it

Dominic to get some feedback.

From the 19th of November to the 21st, I began working on my project prototype.

I set up a Unity simulation, a Sinatra web server and an Android test application

to begin the development of the prototype. By the 21st I had a basic prototype

working between the three systems, however a few minor changes had to be

made for it to be ready for the mid-point presentation.

Dominic replied to me on the 20th of November with good feedback. I was very

busy this week as well so I couldn’t make the changes to the document until

Wednesday the 22nd of November. I then uploaded the final version of the

Requirement Specification.

I’ll finish the prototype on the weekend of the 1st of December, in time for the

mid-point presentation.

6.4.4 February

I didn’t have a lot of time to work on the project this month as I was focusing on

other Continuous Assessments within the degree. I did manage to fix some minor

bugs and I also cleaned up some code after the prototype from December. I

managed to add in some small easy to implement features such as a random

name generator for bus passengers and a quick refactor of the API and Control

Input systems.

The main bulk of the work was attempting to set up the Travis CI service for my

project. This involved a lot of configuring and pushing to git to synchronise my

GitHub and Travis CI accounts. I couldn’t get the service working correctly by the

end of the month, so I abandoned the CI requirement as I needed to start

developing features as soon as possible.

Bus Stop! – Aaron Meaney – 14326016

 - 87 -

6.4.5 March

This month was spent focusing entirely on implementing the bulk of the project’s

functionality. In particular I designed and implemented the object model for the

simulation; for example, Busses, Bus Stops, Bus Routes, Timetables, Companies

etc. I also implemented a Scheduling System that allows the simulation to trigger

an event set at a certain time. For example, when a bus must start servicing a

stop according to the timetable, the Scheduling System will notify the Bus to

service this stop.

A large part of this month was also spent implementing the Timetable editor. This

allows the user to create and modify timetables using a custom build editor

window. The bus timetable can display multiple bus services/routes at once and

keeps the correct order of the bus stops by applying a topological sort to all of the

bus stops in the selected bus routes.

Passenger Boarding and Disembarking was also implemented, along with the

ability for the bus to drive along a route and stop at each stop once it’s hailed.

Without getting into too much extra detail in this entry, the foundation of the

simulation was implemented in this month; however, a lot more work has to be

done to implement the web server and Android application.

6.4.6 April

Unfortunately, I was too busy working on other Continuous Assessments and I

didn’t have time to work on this project.

6.4.7 May

This month I began work on finishing my project by designing my poster’s initial

design. Once the design was done, I immediately started working on

implementing the Android application section of the project. This required the

development of a web server using Sinatra to store any long-term information

(such as Route and Bus Stop data), and an MQTT service for real-time

information (such as Bus Position and Capacity). I decided against using AWS

IoT for this project as it is not supported by Unity.

Bus Stop! – Aaron Meaney – 14326016

 - 88 -

I instead decided to use PubNub as it has a similar Publish/Subscribe

functionality as AWS IoT, a more straightforward setup process, is supported by

Unity and I also had experience using it to build a messenger app in 2nd year.

Setting up PubNub was straightforward, however the servers went down on the

5th of May, which disrupted my plans to work on the app’s functionality. I then

decided to use this time to start work on the Sinatra web server. It took me a few

days to get this working as expected as I had to setup PostgreSQL on Heroku,

and to figure out a good way to store JSON in the database without it causing

any errors regarding character escapes. After some trial and error, I was able to

use base64 encoding to store the JSON.

While I was working on the web server, PubNub services were repaired and I

was able to start work on sending over the JSON data from the Unity simulation. I

also was able to start developing the Android app’s functionality. Not everything

went as expected, a lot of time was spent recoding the object model that was

present in the simulation. Due to time constraints, I had to make some sacrifices

in the design that would prevent some original features that were in the

requirements specification to be implemented in this project.

It’s now the final day of development. I couldn’t implement as many of the

features that I was hoping to implement at the project. However, a solid

groundwork was implemented and I’m proud of what I’ve accomplished within

this academic year. The project was ambitiously scoped and while I couldn’t

implement everything, I’m happy that I was able to implement an MVP version

that can communicate the concept of the project, while also improving my skills

with the Unity engine, Sinatra framework, and Android Studio.

