

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Daniel Gilbert

Student ID:

X13516403

Supervisor:

Adriana Chris

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following

declaration:

 2

I confirm that I have read the College statement on plagiarism (summarised

overleaf and printed in full in the Student Handbook) and that the work I have

submitted for assessment is entirely my own work.

Signature:DANIEL GILBERT___

Date:__13/05/2018__________

NB. If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the College’s Disciplinary

Committee. Should the Committee be satisfied that plagiarism has occurred this

is likely to lead to your failing the module and possibly to your being suspended

or expelled from college.

Complete the sections above and attach it to the front of one of the copies

of your assignment,

 3

What constitutes plagiarism or cheating?

The following is extracted from the college’s formal statement on plagiarism as

quoted in the Student Handbooks. References to “assignments” should be taken

to include any piece of work submitted for assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into

your own words and crediting the source. This is acceptable academic practice

provided you ensure that credit is given to the author. Plagiarism refers to

copying the ideas and work of another and misrepresenting it as your own. This

is completely unacceptable and is prohibited in all academic institutions. It is a

serious offence and may result in a fail grade and/or disciplinary action. All

sources that you use in your writing must be acknowledged and included in the

reference or bibliography section. If a particular piece of writing proves difficult to

paraphrase, or you want to include it in its original form, it must be enclosed in

quotation marks

and credit given to the author.

When referring to the work of another author within the text of your project you

must give the author’s surname and the date the work was published. Full details

for each source must then be given in the bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely

represented as your own, it will be referred to the college’s Disciplinary

Committee. Where the Disciplinary Committee makes a finding that there has

been plagiarism, the Disciplinary Committee may recommend

• that a student’s marks shall be reduced

 4

• that the student be deemed not to have passed the assignment

• that other forms of assessment undertaken in that academic year by the
same student be declared void

• that other examinations sat by the same student at the same sitting be
declared void

Further penalties are also possible including

• suspending a student college for a specified time,

• expelling a student from college,

• prohibiting a student from sitting any examination or assessment.,

• the imposition of a fine and

• the requirement that a student to attend additional or other lectures or
courses or undertake additional academic work.

 5

National College of Ireland

BSc in Computing

2017/2018

Daniel Gilbert

X13516403

Daniel.Gilbert@student.ncirl.ie

Total Fishing Web Application

Technical Report

 6

Executive Summary 7

Introduction 8

Background 8

Aims 9

Technologies 9

System 11

Requirements 11

Functional requirements 11

Non-Functional Requirements 20

Performance/Response time requirement 20

Security requirement 20

Data requirements 20

Data requirements 21

Database Design 21

User requirements 24

Environmental requirements 24

Usability requirements 24

Functional Requirements 24

Non-Functional Requirements 27

Design and Architecture 29

Implementation 30

Back-End Development 30

Graphical User Interface (GUI) Layout 37

Testing 46

Think Aloud Test 46

Think aloud test results analysis 47

Heuristic Evaluation 48

Conclusions 51

Further development or research 51

References 51

Appendix 53

Project Proposal 53

 7

Executive Summary

Fishing is one of the biggest recreational activities in the world, and although the

older generation enjoys that little technology is needed to fish, that does not

mean it should be so far behind in IT compared to other hobbies. I have grown

up fishing, and I am included in the new generation of which believe technology

and community could advance how people fish.

The older generation believes that fishing spots should be kept secret, so they

can enjoy fishing there for as long as possible, as there is a big problem in

Ireland with poaching for fish. I believe this application will provide more

awareness and highlight the safety of the fish stocks in our countries.

Total Fishing will target Freshwater anglers, generally from the age group of 10-

40. The application will provide a community to all fishermen where they can

share all sorts of information about their catches. For inexperienced users, there

will be a section of the app that will use an image recognition system to detect

what species of fish they have caught.

There will be a section that all users will get use from, which will be the best

fishing day predictor. This page will use a weighted score model that was based

off multiple datasets containing over 100 values. The user will select a location

on the map where they would like to fish; this will automatically retrieve a 5-day

forecast of weather information on that current location. This data will be stored in

arrays and scored accordingly.

 8

1 Introduction

Fishing is a favourite hobby of mine, I have been fishing for many years, and one

thing I noticed in the fishing community is a lack of technology and community. I

believe that some of the older fishing generations like to keep things secret and

may not like the use of technology currently, but a new generation of people are

starting to fish that are more technology friendly. I believe that this could be a big

gap in the market to take advantage of, as fishing is one of the biggest

recreational sports in the world. I believe that a community where users can

share there catches along with the location, weather information, date and

method used. With this information the weighted score model will get very smart

over time as the user's information is logged everytime they catch, a dataset can

be generated from the database and can be used to generate a linear regression

graph to highlight at what value of the particular data the fish is caught at. The

image recognition system will be based off a dataset of images which have been

ran through a training model with 8000 training steps. The result of the species

will only be displayed if the accuracy of the image recognition system is over

60%.

1.1 Background

During my time of fishing, I have come to notice that there were certain patterns

in weather conditions that would help me catch fish and some weather conditions

that didn’t allow me to catch fish. So, I started to log conditions manually of when

I caught fish, where what weather conditions, how I caught it etc. I came to notice

that some fish were easily caught when the atmospheric pressure was low, and

when the light was low. That is when I came up with this application idea

somewhere online that I could store data and finds trends in fish. It would be

much easier having structured data than taking down information in a notepad. I

discussed this idea with some fishing colleagues, and they agreed that there

were certain conditions that made it easier to catch fish. This was when I came

up with the idea of creating a community to gather a mass of data and recognise

 9

patterns. The patterns would be recognised by running the dataset through a

python analysis tool which could generate the linear regression between the

variables. Upon recognition of the patterns, a weighted score model would be

built updated and compared to a forecast thus producing what the best day to go

fishing would be. This would be a great way to save time for all fishermen who

would like to go out with a better chance of catching.

1.2 Aims

● The application should be able to create a fishing community where users

can share pictures and other details about the catches.

● Users should be able to interact with other users.

● The application will be aimed at freshwater fishing only.

● A user should be able to use an image recognition artificial intelligent

algorithm to name the species of the fish.

● The application will use a weighted score model to recommend users the

best time/day to go fishing, the best method to use and the best fish to fish

for. The application should be capable of becoming smarter over time as it

will progress from each user’s input. This input will consist of the date,

time, temperature, atmospheric pressure, wind, rain and clouds.

1.3 Technologies

● Node.js will be used as the backend and also used to generate the front

end of the web app. Node.js is an open-source JavaScript run-time

environment for executing JavaScript server side. This will help connect

with MongoDB and feed data to the web page using ‘Express’, which is a

node.js framework.

● MongoDB/Mongoose will be used to store all the information from the

application. MongoDB is a NoSQL database. It works well with node.js

and can be implemented via node package manager. Mongoose is the

 10

node package associated with connecting and communicating with

MongoDB. Mongoose provides a vast amount of documentation on how to

set up, and create methods such as find a user.

● Python is a high-level programming language, Ran server side. This

language will be the easiest to implement the Artificial intelligent algorithm;

it will be done through the use of TensorFlow which is an open-source

software library for machine learning across a range of tasks. It is a

symbolic math library and used as a system for building and training

neural networks to detect and decipher patterns and correlations,

analogous to human learning and reasoning.

● ExpressJS (express) is a web framework for node.js. This helps to create

the front end, and to route around the application, it can also help with

requesting and responding with information to the user.

● HandleBarsJS is a view templating engine to be used with express. With

this templating engine, it will be easy to display variable and objects sent

from the node.js server to the front end.

● Tensorflow is a machine learning framework created by Google. It will be

used to create the image recognition system for my application.

● Flask is a minimalistic framework for python. It was perfect to create an

API that implemented methods to run tensorflow functions from the

node.js server.

● Amazon Web Services(AWS) is a cloud service platform that offers

computational power with their servers. This was needed to process the

image recognition methods.

● Heroku is a cloud service similar to AWS but without the computational

power. It is free to host small scaled applications which fit perfectly for my

node.js application.

 11

2 System

2.1 Requirements

2.1.1 Functional requirements

2.1.2 Requirement 1: User Registration

Description & Priority

The scope of this use case is to describe how a user can register to

the application.

Use Case

Scope

The scope of this use case is to describe how a user can register to

the application.

Description

This use case describes the process of registering from a user’s

point of view

Use Case Diagram

 12

Flow Description

Precondition

No precondition

Activation

This use case starts when a new user visits the website

Main flow

1. The user enters in the correct information

2. The user clicks the register button

3. The registration has been successful

4. The user is brought to the login page

Alternate flow

1. The user enters incorrect information to the form

2. The user clicks the register button

3. The registration has been unsuccessful

4. The user remains at the registration page

Termination

The system stores user information to the database and user is

directed to login screen

Post condition

The user can now login with their details.

2.1.2.1 Requirement 2: User Login

Description & Priority

The Login Use Case is essential to the application’s. All functionality requires a

user to be logged into their account.

Use Case

Scope

The scope of this use case is to describe how a user can login to

the application.

 13

Description

This use case describes the process of login from a user’s point of

view

Use Case Diagram

Flow Description

Precondition

Requirement 1: User Registration

Activation

This use case starts when a user visits the website or has just been

registered

Main flow

1. The user enters correct username

2. The user enters correct password

3. The user clicks the login button

4. The login has been successful

5. The user is brought to the dashboard

Alternate flow

 14

1. The user enters incorrect information to the form

2. The user clicks the login button

3. The login has been unsuccessful

4. The user remains at the login page

Termination

The system matches the correct username and password and the

user is brought to the dashboard

Post condition

The user can now use all functionality of the application.

2.1.2.2 Requirement 3: User Post

Description & Priority

The posting Use Case is an essential function to the application.

Use Case

Scope

The scope of this use case is to describe how a user can post a

catch to the application.

Description

This use case describes the process of posting from a user’s point

of view.

Use Case Diagram

 15

Flow Description

Precondition

Requirement 2: User Login

Activation

This use case starts when a user has logged in and selects the

create post button.

Main flow

1. The user enters information about fish

2. The user uploads picture of fish

3. The user enters location of catch

4. The user enters weather information

5. The user selects whether it is to be kept private or public.

6. The user hits submit button.

7. Information is saved to database and user is redirected to

 home screen where the information shall appear

Alternate flow

1. The user does not enter all the required information

2. The user clicks the submit button

3. The submission has been unsuccessful

4. The user remains at this page

Termination

The system successfully submits the users post and he is brought

back to the dashboard where his new information will be shown.

Post condition

 16

The user has now logged information of his catch.

2.1.2.3 Requirement 4: Image Recognition

Description & Priority

Image recognition will be an important part of the application for

beginning anglers

Use Case

Scope

The scope of this use case is to describe how a user can use

image recognition to identify the species of a fish.

Description

This use case describes the process of using the image recognition

function.

Use Case Diagram

Flow Description

Precondition

Requirement 2: User Login

Activation

 17

This use case starts when a user has logged in and select the

Specie Recognition tab

Main flow

1. The user uploads a picture of fish.

2. The user hits submit button.

3. The system responds with the species of the fish.

Alternate flow

1. The user uploads a picture that does not fit requirements.

2. The user clicks the submit button

3. The submission has been unsuccessful

4. The user is asked to follow the requirements of the picture.

Termination

The system successfully submits the users image and gets a

response of the correct species of fish.

Post condition

The user now knows the species of fish

2.1.2.4 Requirement 5: Best Fishing Date

Description & Priority

Pattern recognition will be an essential part of the application the all

users.

Use Case

Scope

The scope of this use case is to describe how a user can use

pattern recognition to find the best day to go fishing.

 18

Description

This use case describes the process of using the pattern

recognition function.

Use Case Diagram

Flow Description

Precondition

Requirement 2: User Login

Activation

This use case starts when a user has logged in and selects the

Best Fishing Date tab.

Main flow

1. The user selects a location

2. The user hits submit button

3. The system responds with forecast data and best day.

Alternate flow

1. The user selects a location

2. The user hits submit button

3. The system responds with error message such as could not

find location.

Termination

 19

The system successfully submits, and the user is told what the best

day is to go fishing along with all other information needed.

Post condition

The user knows when to go fishing.

2.1.2.5 Requirement 6: User Dashboard

Description & Priority

The user dashboard will be essential for users to navigate through

the web application.

Use Case

Scope

The scope of this use case is to describe the User Dashboard

Description

This use case describes the process of landing on the user

dashboard

Use Case Diagram

Flow Description

Precondition

Requirement: User Login

Activation

This use case starts when a new user visits the website

Main flow

1. The user has logged in successfully.

2. The user lands at the dashboard.

Alternate flow

1. The user enters incorrect login information

 20

2. The user remains at login screen

Termination

The dashboard loads correctly.

Post condition

The user will now be able to navigate through the web application

with ease.

2.1.3 Non-Functional Requirements

2.1.3.1 Performance/Response time requirement

This requirement defines the performance of the system. To ensure that the user

is happy with the system the image recognition algorithm must be trained to the

greatest extent possible. This will create a quicker response from the server. The

processing power of the ec2 instance could also affect the loading times.

2.1.3.2 Security requirement

This requirement defines the security requirements. User information will need to

be encrypted when passing from the node.js server to our mongo database for

users to trust the system. Read permissions will also have to be created if a user

wants to keep his catch’s private.

2.1.3.3 Data requirements

Data from users will be sent from the web page to the node.js server which will

then send and store the information in the MongoDB database. All data will be

sent and received as JSON.

 21

2.1.4 Data requirements

2.1.4.1 Database Design

For this project, I have chosen to use MongoDB a NoSQL database. I will host

the on mlab.com. This database will contain a decent amount of information as it

will contain users login information and users posts which can contain high-

quality images.

Database Details:

Database provider: mLab cloud hosted MongoDB

Name of the database: Total_Fishing

Location of database: mongodb://<dangil>:<12345qwerty>@
ds119160.mlab.com:19160/total-
fishing

Database style: NoSQL

Data Format: JSON

MongoDB is a NoSQL database as such all data is stored as JSON object

documents. There are no tables, columns, rows or records like SQL databases.

There can be some advantages to NoSQL databases such as faster searching,

easier to upgrade, Object-oriented language that is easy to understand.

I have created two main schema models for my database a User and a Post

User Schema:

varUserSchema = mongoose.Schema({

 username: {

 type: String,

 index:true

 },

 password: {

 type: String

https://mlab.com/databases/total-fishing
https://mlab.com/databases/total-fishing
https://mlab.com/databases/total-fishing
https://mlab.com/databases/total-fishing
https://mlab.com/databases/total-fishing
https://mlab.com/databases/total-fishing
https://mlab.com/databases/total-fishing

 22

 },

 email: {

 type: String

 },

 name: {

 type: String

 }

});

An example of the JSON stored in database for users:

{

 "_id": {

 "$oid": "5af43d2a2bf1440014729f97"

 },

 "name": "Admim",

 "email": "admin@admin.com",

 "username": "Admin",

 "password": "$2a$10$wgZzwM67lMYX3QyPvR.qYeqPY9CLRgAe.SS1gTOSgY9UlLiKHtWEa",

 "__v": 0

}

As you can see each user is stored with a unique id which is automatically

generated for us thanks to mongoose. The rest of the object is pretty ordinary

with the name, email and username being stored in strings and the password

being stored as a hash by using the bcrypt node package.

Post Schema:

var PostSchema = mongoose.Schema({

 creator: {

 type: String

 },

 species: {

 type: String

 },

 weight: {

 type: Number

 },

 method: {

 type: String

 },

 description: {

 type: String

 23

 },

 img_name: {

 type: String

 },

 location: {

 type: String

 },

 privacy: {

 type: Boolean

 },

 likes: {

 type: Number

 },

 comments: [{

 body: String,

 user: String,

 date: Date

 }]

});

an example of the JSON is stored in the database:

{

 "_id": {

 "$oid": "5af392c34eb050442068a345"

 },

 "creator": "DanGil96",

 "specie": "Roach",

 "weight": 15,

 "method": "Bait",

 "description": "Caught on spinnerbait",

 "img_name": "219e0e85818fba6e2deadde56c93292f.jpg",

 "location": "Ballynakill, Mornington, Co. Westmeath, Ireland",

 "privacy": true,

 "likes": 0,

 "comments": [

 {

 "_id": {

 "$oid": "5af45fca5501a20014e1e7e7"

 },

 "body": "Nice catch man",

 "user": "Admin"

 }

],

 "__v": 0

}

 24

The post schema is somewhat more complex than the user schema. The creator

value is the username of the user which is grabbed upon submitting the form.

The img_name is the new name of the image after it is stored in the database,

this makes it easy to retrieve the images for the front end. As we can see

comments is stored as an array of objects with two strings inside. The unique id

is used to find and update/delete comments.

2.1.5 User requirements

● Users should be able to register through any browser.

● Usability, users should be able to navigate through the website easily on

any device.

● Users should be able to post to the community or decide to keep it private.

● Users should be able to identify the species of a fish by using the image

recognition functionality.

● Users will have access to a simple maps API to import their location

● Users will have access to a simple weather API to import current weather

from the location.

● Users should be able to use the predict what day will be best to go on their

next fishing trip.

2.1.6 Environmental requirements

● Internet Access: This web application requires internet to access the

system. The image recognition requires fast upload speed to have good

loading times.

2.1.7 Usability requirements

2.1.7.1 Functional Requirements

 25

Requirement

View Dashboard

Number

1

Description

Users should be able to view their dashboard with all users posts

up to date

Rationale

Users should be able to have a dashboard with the most up to

date “news feed” to achieve a community.

Success criteria

The data gathered should be summarized and displayed in a

well-structured manner, should provide vital information on the

user's posts.

Level of Importance

5 High, this is a basic requirement

Requirement

Post Catch

Number

2

Description

Users should be able to post a catch to the dashboard or their

private dashboard.

Rationale

Users should be able to post to a dashboard to view the catches

at another time.

 26

Success criteria

A user should find it very easy and quick to post. They should

also be able to add an optional description to their post.

Level of Importance

5 High, this is a basic requirement

Requirement

Image Recognition

Number

3

Description

The user can post an image to the image recognition system and

receive a response.

Rationale

Users should be able to verify the species of a fish using the

image recognition system.

Success criteria

A user should find it very easy and quick to use the image

recognition system. It should have a high accuracy rate and

display information about the species.

Level of Importance

5 High, this is a basic requirement

Requirement

Best Fishing Date

Number

4

Description

The user can find out what day is best to go fishing.

 27

Rationale

Users should be able to use the best fishing date section to plan

a day to go fishing.

Success criteria

A user should find it very easy and quick to use the best fishing

date system. It should display the 5-day forecast in an easy to

view, well-summarized manner.

Level of Importance

5 High, this is a basic requirement

Requirement

Error Handling

Number

5

Description

Users should be notified of errors instead of being brought a 500

or 404 page.

Rationale

Errors in-app should be user-friendly.

Success criteria

A user should be redirected to a page with a flash error message

if an error is received in the application. It should describe the

error and how to fix it if possible.

Level of Importance

5 High, this is a basic requirement

2.1.8 Non-Functional Requirements

Performance/Response time

The system should be designed with user experience in mind, page loading and

response time should be optimal saving Users from unnecessary frustration and

 28

when wait times are expected they should be clearly and correctly communicated to

users.

Responsiveness Requirement

The system should be designed with responsiveness as the main priority. Users

should find this system easy to achieve their task when using their mobile devices.

Security Requirement

The system should be designed with access controls measures in place, as users

should not be able to edit/delete other users posts, or comments.

Concurrency Requirement

This system should incorporate concurrency as an essential requirement. Users

should be able to create posts or post comments at the same time without being

hindered by errors. This will prevent users from being in deadlock when performing

multiple actions.

Scalability

The system should be scalable, as the number of users and posts increases the

system should scale with it to ensure fast loading times.

Internationalization

Thankfully because this is a web application and most current browsers have an

automatic translate function built in. Although this application will be targeting users

in Ireland, there will still be a chance of a user that does not speak English.

 29

2.2 Design and Architecture

Web UI implements the MVC model. I choose to use handlebars as my view

templating engine as it was the most relatable engine for me. Other engines like

jade and pug do not resemble HTML enough for me. Handlebars can be sent

variables from the backend. This makes it easy to check if a user is logged in or

not and what to display if they are. I created a helper method for handlebars to

check if statements as it was not implemented in the original functionality. This

helped me check if a post was set to private or if the logged on user was the

creator of the post etc. I used ajax to communicate with the Openweathermap

API and javascript for Google maps API.

Node.js was chosen as it is a fairly new and up and coming technology which I

had experience with from my work placement. Node.js has a very big

development community with millions of node packages available to install.

Express was the framework I used with node.js which made it easy to route

through the application and display the frontend while communicating with it.

MongoDB was used as the database as it is well adapted for use with node.js

with the node package mongoose. Mongoose contains documentation on how to

 30

set up the schemas and model methods which were very helpful for me. It is also

a NoSQL database which has some advantages such as easier to upgrade and

object-oriented programming which is easier to use.

At the time Tensorflow was mainly only implemented for use with Python

although some time through development TensorFlowjs was released which was

able to perform actions on the client side which would have been interesting to

see the results. I used tensorflow to train my data which contained over 80

pictures of each species. I then created an API and implemented tensorflow to be

able to call it from my node.js server. This API was created using Flask

minimalist framework.

2.3 Implementation

The web application was developed using Node.js, Handlebarsjs, MongoDB,

Javascript, JQuery, CSS and Python. Python was used to train the image

recognition system and create the API which is pure backend. Node.js acts as a

backend but produces the front end as well.

2.3.1 Back-End Development

Node.js:

Firstly I will go through the core of the server. The app.js which makes everything

tick. Firstly we import all of the node packages that we need. We then create a

connection to the database initialize a stream to retrieve images and create a

storage engine:

//MongoDB Connection

mongourl = 'mongodb://dangil:12345qwerty@ds119160.mlab.com:19160/total-fishing';

mongoose.connect(mongourl);

var db = mongoose.connection;

// Create mongo connection

const conn = mongoose.createConnection(mongourl);

// Init gfs

let gfs;

 31

// Init stream

conn.once('open', () => {

 gfs = Grid(conn.db, mongoose.mongo);

 gfs.collection('uploads');

})

// Create storage engine

const storage = new GridFsStorage({

 url: mongourl,

 file: (req, file) => {

 return new Promise((resolve, reject) => {

 crypto.randomBytes(16, (err, buf) => {

 if (err) {

 return reject(err);

 }

 const filename = buf.toString('hex') + path.extname(file.originalname);

 const fileInfo = {

 filename: filename,

 bucketName: 'uploads'

 };

 resolve(fileInfo);

 });

 });

 }

});

const upload = multer({

 storage

});

const type = upload.single('file')

Express makes it very easy for application to receive any type of request. For an

example I will show you a section of the image recognition request. I will explain

the code throughout the comments

// Upload Image and send binary post request to image classification API

app.post('/upload', type, function(req, res, next) {

//in the req we receive the file and information about it from the user from the

//user. We save the name of the file to a variable

 var file = req.file.filename;

//findOne a predifined method from grid-fs. This will search for the filename

//matching and create a readstream to pipe it to tensorflow flask api url.

 gfs.files.findOne({ filename: req.file.filename}, function (err, file) {

 console.log(file);

 if (err) {

 console.log(err);

 32

 }

 var readstream = gfs.createReadStream(file.filename);

 readstream.pipe(request

 .post("http://35.164.132.68/classify")

 .on('response', function(response) {

//On the response we set some headers and we save the response data to a string and

we parse the string to a json object.

 response.setEncoding("UTF-8");

 response.on('data', function(data) {

 console.log(data);

 var jsonString = data.toString('utf8');

//If the string contains the word tench in it then continue

//change accuracy to get a percentage

//It will then check if the accuracy is higher than 60% if so render the tench page

//else reload the image recognition page with an error message

 if (jsonString.includes("tench")) {

 var json = JSON.parse(jsonString);

 var accuracy = json.predictions.tench;

 accuracy = Math.floor(accuracy* 100)

 accuracy = accuracy.toString().replace("0.", "");

 if (parseInt(accuracy)>60) {

 res.render('tench', {

 accuracy: accuracy

 });

 }else {

 req.flash('error_msg', 'Could recognise specie of fish, please ensure

that it is a clear picture of the fish.');

 res.redirect("/imageRec");

 }

 }

To allow a user to create a post, there had to be a post model created which

contained the contents that would be saved to our database. With this we had to

create methods to create posts, create comments, delete posts, delete

comments and to update likes.

First we define the schema of the post:

// Post Schema
var PostSchema = mongoose.Schema({
 creator: {

 33

 type: String
 },
 specie: {
 type: String
 },
 weight: {
 type: Number
 },
 method: {
 type: String
 },
 description: {
 type: String
 },
 img_name: {
 type: String
 },
 location: {
 type: String
 },
 privacy: {
 type: Boolean
 },
 likes: {
 type: Number
 },
 comments: [{
 body: String,
 user: String,
 date: Date
 }]

});

Then we must export the model to be used in other files and create our methods

that will be needed :

module.exports.createPost = function(newPost, callback) {
 newPost.save(callback);
}

module.exports.findAndUpdateLikes = function(_id, likes, callback) {
 var query = {
 _id: _id
 };
 var numlike = parseInt(likes);

 34

 numlike = numlike + 1;
 Post.findOneAndUpdate(query, {
 $set: {
 likes: numlike
 }
 }, callback)
}
module.exports.findAndUpdateComments = function(_id, comment, user, callback) {
 var query = {
 _id: _id
 };
 var date = new Date();
 var comments = {
 "body": comment,
 "user": user,
 "date" : date
 };
 Post.findOneAndUpdate(query, {
 $push: {
 comments: comments
 }
 }, callback);
}
module.exports.findAndDeleteComment = function(_id, postid, callback) {

 Post.update({
 _id: postid
 }, {
 "$pull": {
 "comments": {
 "_id": _id
 }
 }
 }, callback);

}
module.exports.findAndDeletePost = function(_id, callback) {
 var query = {
 _id: _id
 };
 Post.findOne(query).remove(callback);
}

We can then call one of these exported functions upon request. For example

when the app receives a post request from the from end containing /comment/:id

we can call the function.

// Post a comment
router.post('/comment/:_id', ensureAuthenticated, function(req, res, done) {
 var _id = req.params._id;
 var comment = req.body.comment.toString();
 var user = req.user.username;
 console.log(user);
 console.log(_id);

 35

//Gather all needed info above and save to variables then call function passing these
//variables and get response
 Post.findAndUpdateComments(_id, comment, user, function(err, call) {
 if (err) {
 req.flash('error_msg', 'Something went wrong!');
 res.redirect("/");
 }

 console.log(call);
 req.flash('success_msg', 'You have posted a comment!');
 res.redirect("/");
 });
});

When implementing the API, I chose flask a minimalistic framework as I did not

see much point in choosing Django a heavy feature framework. Tensorflow gives

premade files classify an image based on your trained_graph.pb and

trained_labels.pb these two files are produced after we running the training file.

The training file is a shell file which executes the retrain.py and sets some values

such as how_many_training_steps, directory of image dataset etc:

python retrain.py\
 --bottleneck_dir=tf_files/bottlenecks \
 --how_many_training_steps=8000 \
 --model_dir=inception \
 --summaries_dir=tf_files/training_summaries/basic \
 --final_tensor_name=final_result \
 --output_graph=tf_files/retrained_graph.pb \
 --output_labels=tf_files/retrained_labels.txt \
 --image_dir=training_dataset \

When we have created our two files retrained_graph and retrained_labels we can

start to create the API, we must build a basic flask API and import some of

Tensorflows classify methods to run the image recognition on the given image

file. I chose to handle a binary post, this way I could simply pipe a post request

with the image from my node.js server. This was done with the request node

package. Firstly I set the response to output one prediction as that is all we need.

I also set the path to the two files which I had to edit when my files where on the

ubuntu ec2 instance.

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string(

 36

 'model_dir', './',
 """Path to retrained_graph.pb, """
 """retrained_labels.txt""")

tf.app.flags.DEFINE_integer('num_top_predictions', 1,
 """Display this many predictions.""")

Then we can handle the post request. We can grab a lot of this code from

tensorflow and change it to suit or method. So firstly we must create a graph from

the saved retrained_graph.pb

def create_graph():
With tf.gfile.FastGFile(os.path.join(
 FLAGS.model_dir, 'retrained_graph.pb'), 'rb') as f:
 graph_def = tf.GraphDef()
 graph_def.ParseFromString(f.read())
 _ = tf.import_graph_def(graph_def, name='')

We then must load up the node_lookup which will convert the node ID to a

readable string which are in our retrained_labels.txt. After this, we can run

tensorflow inference on the image and print out the result in a JSON format and

handle if there is an error.

@app.route("/classify", methods=["POST"])
def classify():

 create_graph()
 print("Model loaded")

 node_lookup = NodeLookup()
 print("Node lookup loaded")

 predictions = dict(run_inference_on_image(request.data))
 print(predictions)
 return jsonify(predictions=predictions)

@app.errorhandler(404)
def not_found(error):
 return make_response(jsonify({'error': 'Not found'}), 404)

Run Inference on the image:

 37

def run_inference_on_image(image_data):
 """Runs inference on an image.
 Args:
 image_data: Image data.
 Returns:
 Nothing
 """
 # Set the tensorflow session to not use GPU this was to run on an ec2 instance
 config = tf.ConfigProto(device_count = {'GPU': 0})
 sess = tf.Session(config=config)
 print("Tensorflow session ready")
 node_lookup = NodeLookup()
 print("Node lookup loaded")
 # Runs the softmax tensor by feeding the image_data as input to the graph.
 softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
 predictions = sess.run(softmax_tensor, {'DecodeJpeg/contents:0': image_data})
 predictions = np.squeeze(predictions)

 # sort predictions to make sure the highest result is outputted
 top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1]

 # map to the friendly names and return the tuples
 return [(node_lookup.id_to_string(node_id), float(predictions[node_id])) for
node_id in top_k]

To run the app on the ec2 and get a response from it externally I needed to run

the app on the localhost port 80.

app.run(host='0.0.0.0' port=80 debug=true)

 I then started a tmux window on the ec2 so the application would continue to run

when I closed the ssh connection. I achieved this by running this command.

tmux new -s mywindow

2.4 Graphical User Interface (GUI) Layout

Mobile Layout:

 38

● Login

● Register

 39

● Dashboard

● Best Fishing Date

 40

● Image Recognition

 41

● Post Catch

Desktop Layout:

● Login

 42

● Register

● Dashboard

 43

● Best Fishing Date

● Image Recognition

 44

 45

● Post Catch

 46

2.5 Testing

I carried out extensive testing throughout the project and believe that it is at a

stage now where error handling is well laid out throughout the app, and usability

design is good. To get to this stage, I carried out testing techniques such as

Think Aloud Test and Heuristic Evaluation.

2.5.1 Think Aloud Test

The thinking aloud usability availability testing, involves asking test participants to

use your system while continuously talking aloud, expressing their feelings or

thoughts as they navigate through the systems interface completing a series of

given tasks.

To carry out the think-aloud test I developed a series of tasks relating to the web

application that the test participants were asked to carry out, the questions are

outlined below. After the tests had been completed we asked the test

 47

participants to fill out a System Usability Scale (SUS) form; the results can be

found in the appendix.

Questions asked:

● Can you locate and register as a user

● Can you create a post as this user

● Can you add a comment to this post

● Can you delete your post

● Can you use the best fishing date in Dublin

● Can you use the image recognition system with provided picture

Think aloud test results analysis

The testing process went well, except for the issue that occurred with one of the

participants expecting the add post button to be on the dashboard page and not

in the navbar.

The majority of the test participants found the web application simple and intuitive

to use; they also felt they would easily be capable of using the site without any

assistance, which I feel is an excellent result as this is what I aimed for.

A breakdown of the System usability scale can be seen below; the SUS form can

be seen as a general measurement of the usability of the site, a site with a score

below 68 usually means there is a serious issue with the usability of the systems

interface.

Test participants (TP) SUS scores:

TP1 - 100

TP2 - 95

TP3 - 84

TP4 - 82.2

 48

With the following scores, we can see that there doesn't seem to be any serious

issues with the usability of our website. There may be a small issue with the

location of the Post button, but this can be reinvestigated to see if a possible

solution exists that may help to improve the overall usability of the website.

2.5.2 Heuristic Evaluation

Heuristic evaluation is a discount method for quick, cheap and easy evaluation of

a user interface. It requires a set of testers to examine and judge the interface

according to the recognised usability principles. Heuristic evaluation is a

prevalent method of testing as it requires minimal resources. Heuristic evaluation

is known to find more than 90% of usability problems. We will have five individual

testers to evaluate our website. They will follow these usability heuristics:

● Visibility of system status

● Match between system and the real world

● User control and freedom

● Consistency and standards

● Error prevention

● Recognition rather than recall

● Flexibility and efficiency of use

● Aesthetic and minimalist design

● Help users recognise, diagnose, and recover from errors

● Help and documentation

2.5.2.1 Visibility of system status

Visibility of System Status is concerned with the questions “Where am I now?”

and “Where can I go next?”.

Our testers expressed that With the Titles of every page it was quite simple to

see where they were although they would like if the navbar was highlighted on

the current page.

2.5.2.2 Match between the system and the real world

 49

The system should speak the users’ language using words, phrases and

concepts that are familiar to the user.

Our testers spoke about how the website felt comfortable to use because of the

use of bootstrap.

2.5.2.3 User control and freedom

This principle talks about giving the user the freedom to navigate and perform

actions. The freedom to undo any accidental actions.

The testers express that the alert to ensure that they want to delete their

post/comment was a valuable insight to the page

2.5.2.4 Consistency and standards

Across the website, similar names and terms should be used to describe entities

and concepts. If a symbol or name is used for something on one page, it should

not be different on another page.

The testers ensured that there was no problem with consistency across the app

and highlighted that the map marker system and image upload was the same on

different pages.

2.5.2.5 Error prevention

The system should be designed in a way to limit the errors a user can see while

using the website.

There was a small issue with the CSS loading in for one of the user; We believe

this was to a cdn link that was down for a second because upon refresh the CSS

loaded incorrectly. Other than that there were no errors.

2.5.2.6 Recognition rather than recall

Make sure objects, actions, and options are highly visible. Website visitors should

not have to remember information between different parts of their dialogue with

the site.

 50

None of our testers expressed any issues with remembering what different

elements did, or meant.

2.5.2.7 Flexibility and ease of use

Flexibility and ease of use are the optimisations of a system to benefit the needs

of a novice and an advanced user. There should be operations to speed up

interactions with the system.

They express the app is simple to use and does not need any operations to

speed up interactions with the system. They highlighted how mast the image

recognition system was to respond

2.5.2.8 Aesthetic and minimalist design

Extraneous information on a page is a distraction and a slow-down. The system

should only have information that is needed.

The testers were happy with our design on the site.

2.5.2.9 Help users recognise, diagnose and recover from errors

If errors appear, the problem should be precisely indicated, and a solution should

be provided with it if possible.

Testers ensured that error handling on the site was brilliant, instead of being

brought to a 404 page they were redirected home with an error message on top

of the screen highlighting what to do next time, so it does not happen.

2.5.2.10 Help and documentation

Although our testers were able to easily navigate through our page without the

need of help or documentation. They expressed it would not hurt to have an FAQ

section or Contact us page.

 51

3 Conclusions

I enjoyed working on this application. It is different to work on something that you

enjoy as a hobby in life. Although I do feel there are some advantages and

disadvantages to the workings of the project. There was very little information on

hosting an API to interact with tensorflow, and there was even less information on

what was needed to host it. I feel like the use of node.js and MongoDB were a

huge success in the application. Node.js and express made it very easy to create

all the views and Handlebars made it easy to implement checks in the HTML.

MongoDB and Mongoose were perfect, and I found all the documentation I

needed on the Mongoose site.

In the end, the flask API worked out very well, and I was surprised with the speed

of the AWS ec2 instance as it gives responses much faster than expected. The

accuracy of the image recognition was impressive. If I had more time, I would

add more species to the image recognition, and I would create a python

application to generate a weighted scoring model instead of creating it with the

use of graphs from the dataset.

4 Further development or research

With more resources, the species list for the image recognition is endless, with a

powerful enough set of GPUs very accurate graph could be trained. Also with a

larger dataset of images per fish species would increase the accuracy even

more. If a python application was created to rebuild a weighted score model

every month based on users input, I believe that it would lead to a very

successful predictor.

5 References

Abadi, M. (2016). TensorFlow: A System for Large-Scale Machine Learning.

[online] Savannah. Available at:

 52

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

[Accessed 3 Mar. 2018].

Cleary, F. (2015). Running a Flask app on AWS EC2. [online]

Datasciencebytes.com. Available at:

https://www.datasciencebytes.com/bytes/2015/02/24/running-a-flask-

app-on-aws-ec2/ [Accessed 1 Apr. 2018].

Docs.mongodb.com. (2018). MongoDB Documentation. [online] Available at:

https://docs.mongodb.com/ [Accessed 2 Mar. 2018].

Holland, J. (2010). Adaptation in natural and artificial systems. Cambridge,

Mass. [u.a.]: MIT Press.

Ireland, I. (2018). Fishing in Ireland. An angler's guide to the bestfishing in

Ireland.. [online] Fishinginireland.info. Available at:

http://fishinginireland.info/ [Accessed 9 Mar. 2018].

Mongoosejs.com. (2018). Mongoose v5.1.0: Schemas. [online] Available at:

http://mongoosejs.com/docs/guide.html [Accessed 14 Apr. 2018].

Siraj Raval (2018). Tensorflow. [podcast] Available at:

https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A

[Accessed 8 Feb. 2018].

TensorFlow. (2018). API Documentation | TensorFlow. [online] Available at:

https://www.tensorflow.org/api_docs/ [Accessed 5 Mar. 2018].

Udeogu, I. (2017). How to create an image recognition web-service — Part I.

[online] Medium. Available at: https://medium.com/@innarticle/how-to-

create-image-recognition-web-service-23554bc967bb [Accessed 10 Mar.

2018].

WIKSTRÖM, J. (2015). Evaluating supervised machine learning algorithms

to predict recreational fishing success. [online] Stockholm. Available at:

 53

https://www.diva-portal.org/smash/get/diva2:851477/FULLTEXT01.pdf

[Accessed 4 May 2018].

6 Appendix

6.1 Project Proposal

3 Objectives

• The application should be able to create a fishing community where users

can share pictures and other details about the catches.

• The application will be aimed at freshwater fishing only.

• A user should be able to use a picture recognition AI to name the species

of the fish.

• The application will use a deep neural network to recommend users the

best time/day to go fishing, the best method to use and the best fish to fish for.

The application should become smarter over time as it will progress from each

users input. This input will consist of the date, time, temperature, atmospheric

pressure. It will use a weather API to grab the weather info and try to see some

patterns that appear with catching certain fish.

4 Background

One of my best hobbies is fishing, I have been fishing for many years and one

thing I noticed in the fishing community is a lack of technology and community. I

believe that some of the older fishing generation like to keep things secret and

may not like the use of technology currently, but a new generation of people are

starting to fish that are more technology friendly. I believe that this could be a big

gap in the market to take, as fishing is one of the biggest hobbies in the world. I

believe that community where users can share there catches along with the

 54

location, weather information, date and method used. With this information the

application will get very smart over time as the deep neural network should

continue to learn after everyone’s input. For example, a user catches a fish in

December and logs the weather info with. The AI should be able to recommend a

date to go fishing based on future weather forecast. Over time the AI will

recognise patterns in the weather to catch ratio and it should start to generate

trends such as; When atmospheric pressure is below 1000 pike seem to feed

heavily. From this we can see that temperature and rainfall don’t affect these

fishes feeding and the AI should be able to pick up on these things from all the

users information.

5 Technical Approach

An android application must be created which will contain a database to store all

the user’s information. A deep neural network will be created using tensorflow

which is a python framework for machine intelligence. This should be able to grab

data from the database and run it through the AI to generate trends or patterns.

The application should also have direct contact with the AI, as if the user would

like to use the image recognition system to see what fish species they have

caught. There will be an API created that will retrieve weather information which

will communicate with the Deep Neural Network to plot against the future weather

forecasts.

6 Special resources required

Based on some of my researched to run a big dataset through a deep neural

network requires a strong GPU. I believe that the image recognition system will

require a strong GPU as it won’t learn as the app progresses with more

information it should know the species from get go. This will require me to run a

large dataset of images through it, and test it extensively for errors.

 55

7 Project Plan

Gantt chart using Microsoft Project with details on implementation steps and

timelines

8 Technical Details

Implementation language and principal libraries

• Android Studios

• Node.js

• MongoDB

• Swagger API

• Python

• Tensorflow

9 Evaluation

The image recognition system will be tested with real images of the fish species I

will be defining.

I will use mocha to automate testing in some areas such as login, registration,

and social posting.

The fishing prediction AI will be tested initially but will require real user data to

improve over time.

