" National
College
Ireland

Improving predictive maintenance classifiers
of industrial sensors’ data using entropy. A
case study.

MSc Research Project
Data Analytics

Eleonora Peruffo
14106761

School of Computing
National College of Ireland

Supervisor: Noel Cosgrave

National College of Ireland . National

Project Submission Sheet — 2017/2018 College of
School of Computing Ireland
Student Name: Eleonora Peruffo
Student ID: 14106761
Programme: Data Analytics
Year: 2016
Module: MSc Research Project
Lecturer: Noel Cosgrave
Submission Due | 13/08/2018
Date:
Project Title: Improving predictive maintenance classifiers of industrial
sensors’ data using entropy. A case study.
Word Count: 5175

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 12th August 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.

3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if
applicable):

Improving predictive maintenance classifiers of
industrial sensors’ data using entropy. A case study:.

Eleonora Peruffo
14106761
MSc Research Project in Data Analytics

12th August 2018

Abstract

The increase in the availability of sensors’ data in manufacturing (Industrial
Internet of Things, IIOT) poses the challenge on how best to use this information.
One of the emerging applications of data analysis in this field is predictive main-
tenance: being able to identify when and why a certain component breaks down
and empower early intervention to prevent breakdowns. Imbalanced datasets lit-
erature shows that tree models perform better with entropy splits than Gini index
splits. Entropy measures applied in previous studies in the domain of industrial
sensors’ data include not only Shannon’s but also Renyi and Tsallis. This paper
looks at the performance of classification trees using different entropies applied to
the Scania trucks dataset. In this case, the best performing tree is a C5.0 model
but we confirm that Renyi and Tsallis entropy trees can improve classification of
the minority class in the data without excessively penalising the classification of the
majority class. These models can therefore help to prevent companies costs by im-
proving the identification of possible failures and avoiding unnecessary interventions
on well-working equipment.

1 Introduction

The manufacturing industry has been implementing quality checks on stock production
for a long time. Until recently, on top of visual and physical inspection, random sampling
or processes similar to Six Sigma have been used to monitor the output of a production
process (Lade et al., 2017). Monitoring product quality in manufacturing is important
because a prompt identification of defects (aesthetic, weight, length, treatment of raw ma-
terial, production environmental factors, etc.) can help manufacturers to intervene and
adjust the process to achieve required standards, for example measuring that a certain
weight range is respected for each batch of biscuits boxes. The development of advanced
manufacturing, or industry 4.0 as it is known in Europe, technologies such as Industrial
Internet of Things (IIoT -sensors), advanced industrial robotics, additive manufactur-
ing, deep learning, made available at a more affordable price sophisticated tools which
can enhance and automate manufacturing processes. These technologies contributed to
the introduction of the 'predictive maintenance’ concept which goes beyond traditional
quality control techniques (Spendla et al.f [2017). The application of sensors across the

production process allows to gather a huge and detailed amount of production process
data (Yan et al.; 2017; |/Alam et al.; 2016)) and ideally to monitor stock along the entire
supply chain (Jayaram; 2016; [Mourtzis et al.; |2016). These data can be analysed with
specially designed algorithms which can deal with highly imbalanced dataset: in general,
a production defect occurs only in a small part of the full productionbatch of products
hence an industrial sensors dataset contains a very small number of observation related
to defective parts.

Predictive maintenance aims at identifying and analysing trends of production data,
trends that can be used to predict when the next process failure will occur (Gu et al.;
2017). The manufacturer can then intervene and fix the problem before it happens
(Canizo et al.; 2017; Sharp et al.; 2018 [Wang et al.; 2018). Predictive maintenance
increases advantages deriving from traditional quality controls: reparation costs are re-
duced in terms of downtime, for example by fixing a metal part before tear-and-wear
breaking point; by reducing the risk of product returns by unsatisfied customers; or by
avoiding material waste caused by defective parts discharge (Lade et al.j 2017)).
Predictive maintenance can be applied not only on the factory shop floor but also for
the maintenance of machines which are sold. Sensors can transmit data to the manufac-
turer: the analysis of data usage is not limited anymore to computer and mobile devices
but can be applied to vending machines, photocopiers and, on a bigger scale, to wind
turbines, tractors, trucks, and aircrafts (El Afia and Sarhani; 2017; [Li et al.f 2017). Sim-
ilar to reparation costs in the factory, the identification of future failure on machinery
and vehicles can save costs in terms of product life cycle and in terms of technicians’
inspection routine trips since the technicians can be sent on demand. With the ’servitisa-
tion’ of manufacturing (Herterich et al.f 2015)) traditional manufacturers are now moving
towards the provision of real time after-sales services, at the same time acquiring inform-
ation which can be used to improve the production process. 'Virtual twins’ or ’digital
twins are digital copies of a machine or vehicles or even of an entire factory built by
collecting sensors data, 'digital twins’ can be used for example to simulate wind turbines’
or airplanes’ behaviours (Negri et al.; [2017)).

This paper investigates the applicability of the Adaptive Renyi Decision Tree (ARDT)
algorithm, previously used to analyse the Bosch production plant dataset, to the Scania
trucks dataset to determine if a factory shop floor algorithm can be used for vehicles
part preventive maintenance. The first section looks at the literature about previous
studies dealing with predictive maintenance. The second section describes the Scania
trucks dataset, justifies the selection of this dataset and discusses previous studies about
this dataset. The third section presents the analysis and the results and the fourth part
presents the conclusion and future work. Sources consulted consist of machine learning
and data mining peer reviewed journal articles and conference proceedings on the topic
of sensors data use for predictive maintenance purposes.

2 Related Work

2.1 Sensors data and imbalanced datasets analysis

Datasets based on sensors data collect huge amounts of data, for example it has been
calculated that a chemical plant can collect up to 2 million raw measurements per hour
(Nino et al.; 2017) or a textile machine can produce up to 8.5 GB of measurements per
hour (Baban et al. [2016]). These measurements are raw and the task of the data team

is to identify the data in the raw measurement which are needed to give useful insights
about the production process. Its important to keep in mind that missing values are
sometimes present (e.g. due to transmission faults) and that correct evaluation of those
values should be done (Yang et al.f 2014). Then, one of the biggest challenges is to build
a model that can identify failures. In a typical manufacturing dataset, the amount of
failures is around 1% or less (Lade et al.; 2017), these small subsets pose challenges to
the data scientist since even a model reaching 99% accuracy could fail to identify the
1% observations object of the investigation (Lade et al.; 2017; Mauryaj [2016). Also,
in practical terms for the company, the misclassification in the positive-negative matrix
could result in yield loss in case of a good part eliminated (depending on its worth it could
be a consistent damage) as bad, or in a bad part ending in the final product. The same
logic applies to failure prevention: a false predicted failure might cause an unnecessary
maintenance intervention but a failure classified as normal behaviour would entail a delay
or possibly a halt of the production process (Lade et al.; |2017)).

2.2 Challenges and solutions

While high data dimensionality, traceability and missing data are challenges encountered
in any big data dataset, imbalance in observations and nonstationary data, that is data
which changes in time due to changes to the production process, are present in industrial
sensors data (Lade et al.;2017)). The high number of features, sometimes reaching thou-
sands, makes it difficult to distinguish which features can be used as predictors (Lade
et al.; [2017; Susto and Beghi; [2016); features reduction is often applied by either talk-
ing with the domain experts, by applying PCA or by using clustering or classification
algorithms (Zhang et al.; 2016). Completeness of time series is important because the
more data rich the time series is, the better the predictive models can be. Timestamps can
be used to infer information for missing data (Lade et al.; 2017) and predictions based on
repeated observations across time and presenting non-stationary data can be dealt with
ARIMA or MIXED as demonstrated by Sanislav et al. (2016]), in their study MIXED
performed better. SAFE has been applied by [Susto and Beghi| (2016): the algorithm
does not require features selection and can build very accurate time series. DDEN in-
stead assigns weights to each feature thus preserving the information in changing across
time and performs better than logistic regression (Ramakrishnanus and Ghosh; 2015)).

2.3 Thresholding

Thresholding is one of the widely applied techniques proposed by data scientist to analyse
high dimensional datasets:

We define the concept of thresholding as a process of determining a decision
boundary in the presence of a tunable parameter.

(Hong et alj 2016). When the maximum value for the parameter is reached, that is
the threshold for the decision we are looking at. When analysing the Bosch dataset ,
which as of June 2018 is one of the biggest [1oT datasets publicly available, a team of
researcher which included Bosch’s data analysts applied the thresholding method with
the ARDT algorithm. This algorithm looks at outliers at every decision node and makes
a classification decision (Hong et al.; 2016) by using Renyi entropy so that the maximum
value of is selected for the prior class distribution; hence the threshold is given by

searching this value of which can vary from 0 to 1. The algorithm has been tested on the
Bosch dataset and on other datasets Hong et al.| (2016). The use of classification trees
with Renyi entropy has not been tested on the Scania trucks dataset. Furthermore, the
Bosch dataset has been exploited by a few authors, both Bosch employees and Kaggle
competitions participants. Another manufacturing sensors’ data dataset should be used
to test the algorithms and techniques, it would allow better comparison and perhaps
novel approaches to the same problems.

2.4 Scania trucks dataset

Five studies looked at the Scania truck dataset aiming at accurately predicting failures.
In this section We compare the different decisions made by the data scientists who already
worked on this dataset: treatment of missing values, algorithm, evaluation of results and
cost achieved.

Gurung et al. (2015)) didn’t have to deal with missing data since they had used the
proprietary version of the data. The rest of the papers were prepared as part of an
industrial data challenge with anonymised data with some missing values. Different
approaches were chosen: Gondek et al.(2016) went for replacement of missing values
with the median value of the feature while Ozan et al.(2016)) assumed that values where
missing completely at random and didn’t take any action. Cerqueira et al. (2016) deleted
missing values rows completely and decided to use SMOTE to create synthetic examples.
This choice is actually a good one since it eliminates incomplete cases and at the same
time allows for a better distribution of the classes. There is a drawback in their approach
though, deleting missing values reduces the dataset to 591 instances which we think is
too small, even if synthetic examples are created from these 591 observations. A dataset
should have a number of observations at least 10 times the number of features. Finally,
a soft impute algorithm where maximum likelihood estimates are calculated for each fold
was utilised by Ferreira Costa and Nascimento (2016)).

Feature engineering consists in creating new features from functional combination of
existing ones, this process brings advantages because by grouping or combining existing
features this can reduce the number of columns in the dataset and thus reduce the train-
ing time of the model. Feature engineering can also be used to increase the number of
features in the dataset and in case of the Scania dataset resulted in a final number of
features of 282 (16 new features for each histogram)(Gondek et al.; [2016)). This approach
seems rather convoluted since after creating the new features, feature selection has to be
used. Indeed, Gurung et al. (2015) preferred to consider adiacent bins only in histograms
thus reducing the number of features. Another solution applied to the Scania dataset
is metafeature engineering (Cerqueira et al.; 2016), advantageous because it doesn’t re-
quire domain knowledge, and which in this case, consists in detecting outliers with three
different techniques (Boxplot analysis, LOF, and clustering based outliers ranking). The
combination of these measures can help to identify that probably there is an anomaly in
an observation.

The full list of algorithms tested on the dataset can be found in Figure [l As this
dataset was the object of a competition all the authors except for the creators (method
area under the curve, AUC) used the cost of the prediction as the evaluation method.
The dataset’s creators, |(Gurung et al. (2015)), looked at the possibility of predicting fail-
ures looking at the histograms classification although the algorithm didn’t present clear
prediction advantages on the other methods and was slower to train. Two studies (Fer-

Figure 1: Previous work on Scania dataset

Authors

Missing data

Feature engineering

Classifier applied to the dataset

Best result given by

Ferreira Costa &
Nascimiento (2016)

Soft-Impute algorithm

Logistic regression, K-NN,
SVM, Decision trees,
Random Forests

Random forest was 92.6%
better than the random
baseline

Gondek et al. (2016)

Replace missing values with
the median value

16 different features for
each histogram.

Random forest with
thresholding for every
feature; changed it in steps
of ane percent.

Random forest

Cerqueira et al. (2016)

Deleted missing values.

SMOTE: over-sampling
technique that

creates synthetic
examples of the minaority
class. SMOTE enables to
balance the class
distribution of the data
which leads to a better
generalization of the
classifier.

Metafeature engineering
approach that does not

require domain knowledge.

Random forest

Random forest with
meatfetures

XGBoost

XGboost with meatfeatures

10k fold cross -validation

XGboost with metafeatures

Ozan et al. (2016)

Assume that missing data
is missing completely at
random.

Use k-NN

SVM, AdaBoost Random
Forests, k-NN 5 fold cross-
validation

K-NN with optimisation.
This approach does not
produce a model, difficult
to get novel novel insights.

Gurung et al. (2015)

Used proprietary version

Histograms and bin merges.

Histogram decision tree

Histogram approaches did

not result in clear
advantages: longer training
times, only captures linear
patterns.

of dataset with no
missing values

learning algorithm.

reira Costa and Nascimento; 2016; Gondek et al.; |2016) found that the random forest
algorithm gave the best result while one found that boosted trees (Cerqueira et al.; 2016])
was better. A different approach, meaning the use of an unsupervised algorithm, K-NN,
was applied by Ozan et al. (2016), although this method does not allow to produce a
model so it has limits in terms of long term applicability for preventive maintenance.
The cost-wise evaluation of the dataset sees the methodology applied by Ferreira et al.
(2016)), winners of the competition, achieving a cost of 9920 while Cerqueira et al. (2016)
achieved a cost between 3000 and 4000.

3 Methodology

The most common parameter configuration for classification trees is the use of information
gain ratio measured with Gini which usually yields good results. If the Gini parameter
doesn’t give satisfying classification results, the parameter criterion that can be used is
information gain calculated with Shannon entropy. As shown in the related work section
of this paper (Hong et al.; 2016|) and more widely in domains with similar issues, experts
found that trees using Renyi entropy perform better for classification of highly imbalanced
datasets.

3.1 Entropy

Entropy is a concept borrowed from physics where it expresses the measure of energy in
a system. Information theory uses entropy as the measure of information present in a set

of data, entropy is at its maximum when the distribution of classes in the set is even (e.g.
in a set with two classes the distribution should be 50/50). Classification trees, using
entropy as the splitting criterion, split the tree according to the attributes which give
more information at each split, that is the ones with highest entropy (Lima et al.; 2010).
The difference between classification trees using Shannon entropy and using Gini index is
that Gini index uses the measure of impurity of a node to achieve the minimum impurity
possible (Kuhn and Johnson; [2013). The most used measure of entropy is Shannon
entropy which is measured as the proportion of the number of positives multiplied by its
log in base 2; and summed to the proportion of the number of negatives multiplied by
its log in base 2. Given pP= portion of positive observations and pN portion of negative
observations, the formula for Shannon entropy is:

—pP xlog2(pP) — pN * log2(pN)

Renyi entropy is a generalisation of Shannon entropy and the formula is where « is a
number between 0 and 1:

1/1 —ax (—pP *xlog2(pP) — pN * log2(pN))
and Tsallis entropy formula is
1/1 —ax (—pP *xlog2(pP) — pN x log2(pN))
where values of a > 1.

‘It is important to note that using Shannon entropy, events with high or low
probability do not have different weights in the entropy computation’(Lima;
et al.; 2010).

The use of an entropy different from Shannon entropy can alleviate the problem of im-
proving the precision for the minority class at the expense of the precision for the majority
class (Hong et al.f [2016). For a > 1 Lima et al. (2010) demonstrate that when using
Tsallis entropy the value of « is proportionally determined by the bigger probability of
classifying an event.

3.2 Description of the dataset

The Scania trucks dataset contains 60,000 observations in the training set and 1,600 in the
test set. The dataset collects information about failures in the air pressure system(APS):
in the training set 59,000 (not related to APS failure) observations are negative and
1,000 are positive (related to APS failure). Although the number of observations in this
dataset is not in the order of millions we believe that it’s enough to be used as a case
example to test the tree using Renyi entropy: the imbalance (1% of positive observations)
is present in a proportion similar to bigger sensors’ data datasets. The model should take
into account that there are different costs in predicting a true positive versus a false
one: cost_1 is the cost of an unnecessary check while cost_2 is the cost for a truck that
needed repair but has not been identified. The model should be evaluated according to
the following formula:

Total_cost = Cost_1 x No_Instances + Cost_2 x No_Instances

3.3 Missing values

The calculation of the prior distribution of the classes is 0.016 which is quite lower than
the one used in previous works where it was around 0.16. If major issues are met in the
analysis of the data as is, SMOTE could be used to improve the class balance in the
dataset. However we will not use it in the same way as Cerqueira et al. (2016|) but look
at implementing it without eliminating all missing data. We think that 591 observations
would be too small as a sample.

3.4 Data models

The aim of the paper is to check if different preprocessing and classification methods
can improve the results obtained in previous work. In particular, since the work of
Lima (2010) and Hong et al. (2016]) showed that Renyi tree can improve classification
performance on imbalanced data. However, it’s important to check other models as well to
be able to compare the Renyi tree performance. The work will entail building a C5.0 tree,
an rpart tree, a random forest and a J48 (using RWeka (Hornik et al.; 2009))) which should
allow to customise entropy. To check performance in different environments, scikit-learn
(Pedregosa et al.j 2011) the classification trees module in Python, which also provides
an implementation of J48, will be explored. Implementation methods which entail the
modification of an existing classifier are suggested by Lima et al. (2010). The work of
Lima et al. (2010) has been developed in a doctoral thesis by Acker (2015) where the
project setup and a list of edits to WEKA java classes is proposed. Since this process
is described in a way that makes it possible to reproduce it, this option will be kept in
mind, but first attempts should take place in the R environment. All models will be
tuned with 10 folds crossvalidation and then tested on the test set.

4 Implementation

Dataset preprocessing was done in R, the approach chosen follows Gondek et al. (2016])
who consider the data missing completely at random and impute the median value of
the column for missing data. We agree with this approach since the dataset has been
anonymised and missing data serve the purpose of preventing too much insights on busi-
ness sensitive data. We contemplated the use of the Multivariate Imputation by Chained
Equations (MICE) package (van Buuren and Groothuis-Oudshoorn; [2011)) but the pack-
age is more apt to impute data where there is more knowledge about each variable. In
this case the post-imputation diagnostic would not be informative since we don’t know
which values could be plausible: they could be values included in the min-max range of
the variable or outside these boundaries. Therefore, the middle value seems a reasonable
choice. A good library to use for missing data when there is around a hundred of features
is 'skimr’, it allows to plot missing data for each variable and plots an inline histogram.
In comparison to Amelia it allows to output a table where it is not necessary to zoom
to be able to read the variables’ names (Figure . The preprocessed dataset has been
used in 3 different environments: R, Python and Weka. The ’class’ column which in the
original dataset was the first column of the dataset, has been moved to the end of the
dataset to make it compatible with Weka. The two class values neg and pos have been
changed from string to numerical ‘0’ and 1’ to allow easier manipulation in Python: if
the class is left as a string the script does not run.

https://cran.r-project.org/package=skimr

Figure 2: Snapshot of missing data using skimr library

integer bh_000 642 59358 60000 NA NA NA 57943.08 152209.32 0 852 26352 49~ "3200~ W ~
integer bi_000 589 59411 60000 NA NA NA 492207.57 1485184.51 0 15947 179842 379~ ~ ~
integer bj_000 589 59411 60000 NA NA NA 510089.23 1820104.91 0 8522 154404 333~ ~ ~
integer bk_000 23034 36966 60000 NA NA NA 280429.11 261301.48 0 162720 210660 281~ "1310~ M ~
integer b1_000 27277 32723 60000 NA NA NA 321353.69 319210.98 0 170540 222540 3e~ 1310~ e ~
integer bm_000 39549 20451 60000 NA NA NA 4e+05 407071.85 0 172210 239140 369~ "1310~ ulle ~
integer bn_000 44009 15991 60000 NA NA NA 463710.83 464447 .34 0 171720 251400 " 493~ "1310~ willl. ~
integer bo_000 46333 13667 60000 NA NA NA 513147.82 5e+05 0 170550 270660 "1310~ "1310~ mille ~
integer bp_000 47740 12260 60000 NA NA NA 551389.8 519611.45 0 172170 288320 "1310~ "1310~ mll. ~
integer bq_000 48722 11278 60000 NA NA NA 582871.32 536697.03 0 170420 305100 1310~ "1310~ mll. ~
integer br_000 49264 10736 60000 NA NA NA 6e+035 547227 .87 0 169470 320400 “1310~ "1310~ mEL. ~
integer bs_000 726 59274 60000 NA NA NA 80360.55 84512.76 0 17300 50540 118~ ler o~
integer bu_000 691 59309 60000 NA NA NA 4515324.7 1.1e+07" 0 105444 23596~ 3863~ ~ ~
integer bv_000 691 59309 60000 NA NA NA 4515325.29 1.1e+07" 0 105444 23596~ 3863~ ~ 1 ~
integer bx_000 3257 56743 60000 NA NA NA 4112218.1 le+07 172 89649 22588~ "3645~ ~ 1 ~
integer by_000 473 59527 60000 NA NA NA 22028.93 53992.82 0 216 12628 20~ le~ B~
integer bz_000 2723 57277 60000 NA NA NA le+05 628912.9 0 6 1036 13~ ~ ~
integer ca_000 4356 55644 60000 NA NA NA 39168.82 36748.3 0 6886 25436 68~ " 120~ B
integer cb_000 726 59274 60000 NA NA NA 405638.15 369386.8 0 77125 278990 e~ 1209~ B~
integer cc_000 3255 56745 60000 NA NA NA 3803443.56 9625672.25 0 62416 21089~ 3364~ ~ ~
integer cd_000 676 59324 60000 NA NA NA 1209600 0 1209600 "1209600 12096~ "1209~ "1209~ | 3
integer ce_000 2502 57498 60000 NA NA NA 64343.56 142846.94 0 266 3409 87~ 4908~ B ~
integer cg_000 14861 45139 60000 NA NA NA 91.52 371.7 0 8 46 ~ 21~ L ~
integer ch_000 14861 45139 60000 NA NA NA 0.00044 0.03 0 0 0 ~ ~ 1 ~

To the best of our knowledge, there are no ready-to-use algorithms using Renyi en-
tropy as a parameter. So, the challenge to this part of the research was to either write a
classification tree from scratch or find a way to modify an existing classification method.
Writing the algorithm from scratch is not trivial since even if a tree is built, all the other
functions from plotting to getting the summary need to be built as well. The literature
review of the selected papers on sensors’ data doesn’t bring up detailed information about
the implementation method.

Looking beyond the selected domain, information on trees using entropy is found espe-
cially for the intrusion detection domain, which also deals with imbalanced datasets. In
order to better understand the Scania trucks dataset a few models were built with R
as preferred tool. However even using parameter tuning, the possibility of entering a
measure of entropy different from Shannon required a modification of the R library. The
current implementation of the C5.0 algorithm only implements Gini splits. The library
by Hornik et al. (2009) provides an R interface to build J48 trees within R, the criteria
are Gini and Shannon entropy. In our quest to build a Renyi tree, the other language
chosen for modelling is Python since the scikit-learn [Pedregosa et al.| (2011)) module offers
a variety of trees. Again the out-of-the box solution doesn’t provide for a change in the
entropy criterion.

The module python-weka-wrapper offers the implementation of WEKA'’s classifiers in
Python and the possibility to call java classes from within a java virtual machine. But,
since in this case WEKA seemed to be the interface that best allowed for the modification
of existing models, it made sense to work on WEKA directly. A modified WEKA applica-
tion has been implemented following Acker (2015): in his paper he proposes one modified
java class and four new java classes to calculate Renyi and Tsallis entropy. We compiled
his classes into a new jar file which can run the modified WEKA program through the
Eclipse Java IDE. The WEKA interface appears as usual but when the J48 algorithm is
selected the entropy is calculated reading the entropy type and values from a text file.
Running the J48 tree just with Renyi and Tsallis and changing the o parameter didn’t
bring an overall improvement of the classifier when looking at the cost since a > 100 False
positive are reported, see table 3] In the modified Weka jar the alpha parameter is an
external input so it’s not possible to run an automatic search on this. Trials were run for
values of alpha from 0.1 to 0.9. In terms of feature selection, note that the nature of clas-
sification trees is to perform feature selection so it is no wonder that running the model
with the top features didn’t improve the performance, of course it sped up processing
time. Using the J48 classifier with Renyi entropy features selection bestsplit results in the

list of the following features:ag 000, ag 002, ak_000, ay_005 while greedystepwise a=0.5
in the list of these features:ag_0002,ak_000,ay_005,da_000.

We followed Hong et al.(2016)) and proceeded with thresholding. The WEKA "Threshold
Selector’ function performs a threshold optimisation search before implementing the J48
classifier. The function was set to optimise the result for the minority class, with 5 fold
crossvalidation. The optimisation threshold search did improve the performance of the
classifier in comparison to the J48 model without thresholding, but again didn’t beat the
best model in C5.0.

Since the Renyi tree didn’t perform better than other classifier we looked at the
previous distribution for the data and decided to diminish the class imbalance by applying
SMOTE to the processed data. The algorithm was set to give us a distribution of >= 0.16
which is the distribution that Hong et al. (Hong et al.; [2016)) found in the datasets that
they tested.

Up to this point we ran tests on the dataset with median imputing, we decided to
test some models on the dataset with an improved distribution: we created synthetic
examples to achieve a prior distribution of 0.16. The tree we used is J48 with a = 0.7
and confidence factor = 0.25 which was the one that performed better in our « search.
In this case, accuracy and Kappa would be two good metrics to take into consideration
since while accuracy will remain high Kappa will give an indication of how the expected
values fared.

5 Evaluation

The models’ performance is evaluated through accuracy and through cost of the model.
Accuracy is the standard measure to check how many instances are correctly classified
but at a superficial look this paper would seem it contains exceptional results since all
classifier have an accuracy > 90%. However, since this is an imbalanced dataset, 'cost’ is
the best indication of the classifier’s efficacy,the lower the number of false positives, the
more money the company can save by repairing trucks before they break down.

5.1 Experiment / Models built in R
Table [1] reports the list of the models built in R and their performance.

Model library Accuracy | Cost FN | FP
rpart gini rpart 0.98825 58,600 | 110 | 360
rpart information | rpart 0.985938 76,360 | 152 | 36
C 5.0 C 5.0 0.990188 16,760 | 31 | 126
C 5.0 100 trials C 5.0 0.9928 9,980 18 | 98
random forest random forest | 0.992438 10,030 | 18 | 103
Naive Bayes naiveBayes 0.96475 264,360 | 528 | 36
random forest RWeka 0.96235 51,680 | 103 | 18
J48 RWeka 0.96235 36,160 | 72 | 16

Table 1: Models built in R

Parameter tuning was performed on the best model, C5.0. The tuning was per-
formed with the caret package, 10 fold cross validation, on a grid looking at n tri-

als = 1,5,10,15,20 and splits from a very shallow tree to a deep one (n splits =
2,5,10,15,20,25,50,100). The final values used for the model were trials = 20 and
splits = 100 (Figure . However, when tested, this did not achieve the same result as
the tree with 100 trials.

Figure 3: C50 tuning with caret

Boosting lterations
20

1 ¢ — 10 =
5 ¢ — 15 ¢ —

0 20 40 60 &0 100
1 1 1 1 | 1 | 1 | 1

FALSE TRUE

Accuracy (Repeated Cross-Validation)

T T T T T T T T T
0 20 40 60 &0 100

Splits

5.2 Experiment / Models built in Python

The package Scikit-learn in Python has been used to build and compare trees. The best
model, with a cost of 19,730 (17 FN and 1123 FP) was using the criteria: entropy,class
weight and minimum impurity decrease(0.5). This indicates that impurity, that is the dis-
order in the dataset, is a parameter that can be used to improve the tree. Table |2 presents
the results obtained (Scikit_learn trees. *ent=entropy, w=class weight, i=impurity).

Models Accuracy | FN | FP | Cost

DT gini 98.7375 64 | 129 | 65,140
DT ent 98.74375 67 | 115 | 58,170
DT ent w 98.74375 74 | 115 | 58,240
DT ent, w, i | 92.875 17 | 1123 | 19,730

Table 2: Models built in Python.

Among the trees built with scikit-learn (Pedregosa et al.; 2011), the best performing
model utilised Shannon entropy as split criteria, this change didn’t improve the predic-
tion compared with the Gini-based split. Similarly, the the introduction of weights for
the classes did not improve the results. The final attempt, introducing the measure of
impurity which in scikit-learn (see documentation) splits a node only if there is a decrease
in the impurity of the node. This improved significantly the number of FP, only 17, but

10

greatly increased the FN to 1123. This solution is not optimal because it means that a
high number of efficient vehicles would be taken off service for no reason.

5.3 Experiment / Models built on modified WEKA.gui

The WEKA implementation of J48 trees using different entropy measures does not achieve
an improvement on the false negatives prediction compared to models built in R. The J48
tree which performed best was the one using Tsallis entropy for a=1.2 and confidence
factor=0.25.Both Tsallis and Renyyi trees performed better than Shannon trees. Table
presents results obtained by changing entropy measures in WEKA. To note that the
threshold search improved the false negative class prediction of the model but the cost
of the classifier remained high (> 50,000). Feature selection was also implemented for
"bestsplit’(looks for global optimum by measuring all possible splits at each stage) and
"greedystepwise’ (finds local optimum and moves on) but the J48 trees based on a reduced
dataset performed of course faster but not better in terms of predictions (the features are
the ones the classifier would use first in any case to do the split).

Entropy | Validation | Alpha | C FP(cost 10) | FN(cost 500) | Cost
Renyi 10 fold 0.5 0.5 |57 229 115070
Renyi 10 fold 0.7 0.5 |34 191 95840
Tsallis 10 fold 1.2 0.25 | 64 128 64640
Tsallis 10 fold 1.2 0.5 |61 129 65110
Shannon | 10 fold na 0.25 | 188 318 160880
Shannon | 10 fold na 0.5 | 206 309 156560

Table 3: J48 models built in modified WEKA .gui.

5.4 Discussion of results

Creating trees in different environments allows to explore and test different solutions.
Options don’t always match so a direct comparison cannot be done but the cost of the
model offers a way to compare results across models but also across environments (see
configuration manual for details of each setup). Among the tested algorithms on the
three applications (R, Python, Weka-jar) the best result, that is the one with the lowest
cost, was achieved by the C5.0 algorithm with 100 trials. The cost was 9,980. We also
performed a grid search for other trials but 100 (the maximum in caret) was the best.
This confirms, as found in the previous works on this dataset, that parameter tuning
through boosting is a feasible option to improve predictions. Similarly, the adaboosting
metaclassifier on J48 does display an improvement in the classification of false positives
without increasing false negatives exponentially; so the observation of Hong et al. (2016)
holds true, but in this case the cost of the J48 Renyi entropy tree remains high. Previous
works looked at finding a model which best reduces the cost of repairing interventions:
in our case the C5.0 model achieved the best results. In comparison with previous work,
the results are similar to those of Ozan et al. (2016), positioned second after Cerqueira
et al.(2016) whose prediction was in the 3000 — 4000 cost range.

In this dataset the prior distribution is 0.016 while, in all the datasets tested in Hong
et al. (2016), prior distribution was > 0.16. Following the creation of synthetic samples,
we tested the difference on the best performing Renyi tree (a« = 0.7, C' = 0.25, M = 2, 10

11

fold validation) on both datasets. The "before’ dataset had an accuracy of 98.62 an Kappa
of 0.475 and 169 FP and 38 FN. The ’after’ had accuracy of 98.01 and kappa of 0.61,
observations misclassification resulted in 109 FP and 209 FN. In this case, this shows that
an improvement in the prior distribution did have an effect on the performance of the
Renyi tree and the majority class misclassification increase wasn’t so steep. In the future,
it would be worth performing more experiments on the synthetic examples dataset.

6 Conclusion and Future Work

This paper investigated the applicability of entropy classification trees on the Scania
dataset. Results demonstrate that in this particular case, probably due to the very low
prior distribution of the classes, Renyi trees did not improve prediction costs. Though,
the distinctive advantage of the Renyi tree model, improving labelling of minority class
without increasing the number of false negatives held true. Further processing of the
dataset to achieve a class distribution of 0.16 showed better results but not enough to
reduce the cost at the level of the C5.0 tree. Ultimately it’s up to the analyst to decide
which model best responds to the business needs. In this case, the best cost-wise solution
resulted to be the C5.0 model.

As seen from the literature, the use of different entropies remains an important feature
for data modelling. Future work could look at adapting the java classes to the current
WEKA version or at developing a modified J48 with Python with the WEKA wrapper
to allow easier selection of parameters, especially a grid search for a values. For R, the
RWeka library could include an extension of the entropy criterion. Given that a Gini
classification tree with 100 trees and a random forests have shown a good performance; a
future work hypothesis could look at implementing a random forest with Renyi entropy
to improve the sensitivity of a model by diminishing the number of false positives and at
the same time by not increasing the false negatives out of proportion.

Classification trees and random forests are not the only solution applied to imbalanced
datasets. Future work on this dataset could look at the performance of the approach
proposed by Sonak et al.(2016]) which combines genetic algorithm for feature selection,
k-means for clustering and ANN to compare thresholds.

References

Acker, F. (2015). Use of Entropy for Feature Selection with Intrusion Detection Sys-
tem Parameters, Doctoral dissertation., Nova Southeastern University. Date accessed:
15/07/2018.

URL: https://nsuworks.nova.edu/gscis_etd/370

Alam, F., Mehmood, R., Katib, I. and Albeshri, A. (2016). Analysis of Eight Data Mining
Algorithms for Smarter Internet of Things (IoT), Procedia Computer Science, Vol. 58,
pp. 437-442. Date accessed: 06/11/2017.

URL: https://www.sciencedirect.com/science/article/pii/S187705091632213X

Baban, C. F., Baban, M. and Suteu, M. D. (2016). Using a fuzzy logic approach for
the predictive maintenance of textile machines, Journal of Intelligent & Fuzzy Systems
30(2): 999-1006.

12

Canizo, M., Onieva, E., Conde, A., Charramendieta, S. and Trujillo, S. (2017). Real-
time predictive maintenance for wind turbines using Big Data frameworks, 2017 IEEE
International Conference on Prognostics and Health Management (ICPHM), pp. 1-8.

Cerqueira, V., Pinto, F., Sa, C. and Soares, C. (2016). Combining Boosted Trees
with Metafeature Engineering for Predictive Maintenance, in H. Bostrém, A. Knobbe,
C. Soares and P. Papapetrou (eds), Advances in Intelligent Data Analysis XV, Vol. 9897
of Lecture Notes in Computer Science, INESC TEC, Universidade do Porto, Springer
International Publishing, Cham, pp. 393-397.

El Afia, A. and Sarhani, M. (2017). Particle Swarm Optimization for Model Selection of
Aircraft Maintenance Predictive Models, Proceedings of the 2nd international Confer-
ence on Big Data, Cloud and Applications - BDCA’17 pp. 1-12.

Ferreira Costa, C. and Nascimento, M. A. (2016). IDA 2016 Industrial Challenge: Using
Machine Learning for Predicting Failures, Advances in Intelligent Data Analysis XV
15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016,
Proceedings, Vol. 9897, pp. 381-386.

Gondek, C., B, D. H. and Sampson, O. R. (2016). Prediction of failures in the air pressure
system of scania trucks using a random forest and feature engineering, Advances in
Intelligent Data Analysis XV 9897: 398-402.

Gu, C., He, Y., Han, X. and Chen, Z. (2017). Product quality oriented predictive main-
tenance strategy for manufacturing systems, 2017 Prognostics and System Health Man-
agement Conference (PHM-Harbin), IEEE, Harbin, pp. 1-7.

Gurung, R. B., Lindgren, T. and Bostr, H. (2015). Learning decision trees from histogram
data using multiple subsets of bins, in R. Stahlbock and G. M. Weiss (eds), Proceedings
of the 2015 International Conference on Data Mining: DMIN 2015, CSREA Press,
pp. 139-145.

Herterich, M. M., Uebernickel, F., Brenner, W. and Boucher, X. (2015). The impact
of cyber-physical systems on industrial services in manufacturing, in X. Boucher and
D. Brissaud (eds), Procedia CIRP 7th Industrial Product-Service Systems Conference -
PSS, industry transformation for sustainability and business, Vol. 30, Elsevier, pp. 323—
328.

URL: https://www.sciencedirect.com/journal /procedia-cirp /vol/30

Hong, C., Ghosh, R. and Srinivasan, S. (2016). Dealing with class imbalance using
thresholding, ACM SIGKDD 2016 Workshop on Qutlier Definition, Detection, and

Description on Demand, San Francisco.

Hornik, K., Buchta, C. and Zeileis, A. (2009). Open-source machine learning: R meets
Weka, Computational Statistics 24(2): 225-232.

Jayaram, A. (2016). Lean six sigma approach for global supply chain management using
industry 4.0 and iiot, 2016 2nd International Conference on Contemporary Computing
and Informatics (1C31), IEEE, pp. 89-94.

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling [Hardcover], Springer,
New York, NY.

13

Lade, P., Ghosh, R. and Srinivasan, S. (2017). Manufacturing analytics and industrial
Internet of Things, IEEE Intelligent Systems 32(3): 74-79.

Li, S., Yang, Y., Yang, L., Su, H., Zhang, G. and Wang, J. (2017). Civil Aircraft Big Data
Platform, 2017 IEEFE 11th International Conference on Semantic Computing (ICSC),
[EEE, pp. 328-333.

Lima, C. F. L., d. Assis, F. M. and d. Souza, C. P. (2010). Decision tree based on shan-
non, rnyi and tsallis entropies for intrusion tolerant systems, 2010 Fifth International
Conference on Internet Monitoring and Protection, pp. 117-122.

Maurya, A. (2016). Bayesian optimization for predicting rare internal failures in man-
ufacturing processes, 2016 IEEE International Conference on Big Data (Big Data),
IEEE, pp. 2036-2045.

Mourtzis, D., Vlachou, E. and Milas, N. (2016). Industrial big data as a result of iot
adoption in manufacturing, Procedia CIRP 55: 290 — 295. 5th CIRP Global Web
Conference - Research and Innovation for Future Production (CIRPe 2016).

Negri, E., Fumagalli, L. and Macchi, M. (2017). A Review of the Roles of Digital Twin
in CPS-based Production Systems, Procedia Manufacturing, Vol. 11, pp. 939-948.

Nino, M., Saenz, F., Blanco, J. M. and [llarramendi, A. (2017). Requirements for a big
data capturing and integration architecture in a distributed manufacturing scenario,
IEEE International Conference on Industrial Informatics (INDIN) pp. 1326-1329.

Ozan, E. C., Riabchenko, E. and Kiranyaz, S. (2016). Advances in Intelligent Data
Analysis XV, 15th International Symposium, IDA 2016, Stockholm, Sweden, October
183-15, 2016, Proceedings, Vol. 9897, pp. 387-392.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python, Journal of Machine Learning Research 12: 2825-2830.

Ramakrishnanus, N. and Ghosh, R. (2015). Distributed Dynamic Elastic Nets : A Scal-
able Approach for Regularization in, 2015 IEEE International Conference on Big Data,
Santa Clara, CA, USA, pp. 2752-2761.

Sanislav, T., Merza, K., Mois, G. and Miclea, L. (2016). Cyber-physical system depend-
ability enhancement through data mining, 2016 20th IEEE International Conference
on Automation, Quality and Testing, Robotics, AQTR 2016 - Proceedings, pp. 0—4.

Sharp, M., Ak, R. and Jr, T. H. (2018). A survey of the advancing use and development
of machine learning in smart manufacturing, Journal of Manufacturing Systems .

Sonak, A., Patankar, R. and Pise, N. (2016). A new approach for handling imbalanced
dataset using ann and genetic algorithm, 2016 International Conference on Commu-
nication and Signal Processing (ICCSP), pp. 1987-1990.

14

Spendla, L., Kebisek, M., Tanuska, P. and Hrcka, L. (2017). Concept of predictive
maintenance of production systems in accordance with industry 4.0, SAMI 2017 -
IEEE 15th International Symposium on Applied Machine Intelligence and Informatics,
Proceedings, pp. 405-410.

Susto, G. A. and Beghi, A. (2016). Dealing with time-series data in Predictive Mainten-
ance problems, IEEFE International Conference on Emerging Technologies and Factory
Automation, ETFA, Vol. 2016-Novem, pp. 0-3.

van Buuren, S. and Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by
chained equations in r, Journal of Statistical Software, Articles 45(3): 1-67.
URL: https://www.jstatsoft.org/v045/i03

Wang, J., Ma, Y., Zhang, L., Gao, R. X. and Wu, D. (2018). Deep learning for smart
manufacturing : Methods and applications, Journal of Manufacturing Systems pp. 1—
13.

Yan, J., Meng, Y., Lu, L. and Li, L. (2017). Industrial Big Data in an Industry 4.0
Environment: Challenges, Schemes and Applications for Predictive Maintenance, IEEFE
Access 5.

Yang, H., Park, M., Cho, M., Song, M. and Kim, S. (2014). A system architecture for
manufacturing process analysis based on big data and process mining techniques, Big
Data (Big Data), 2014 IEEE International Conference on pp. 1024-1029.

Zhang, D., Xu, B. and Wood, J. (2016). Predict failures in production lines: A two-stage
approach with clustering and supervised learning, 2016 IEEFE International Conference
on Big Data (Big Data), IEEE, pp. 2070-2074.

15

	Introduction
	Related Work
	Sensors data and imbalanced datasets analysis
	Challenges and solutions
	Thresholding
	Scania trucks dataset

	Methodology
	Entropy
	Description of the dataset
	Missing values
	Data models

	Implementation
	Evaluation
	Experiment / Models built in R
	Experiment / Models built in Python
	Experiment / Models built on modified WEKA.gui
	Discussion of results

	Conclusion and Future Work

