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Abstract

The online marketplace has become a great platform for conducting business.
Not only does it allow the users to find and buy desirable items easily, but also
stages an area where the user can upload their refurbished products in search of a
potential buyer. Due to ever increasing competition within the market, competitive
sellers go to great lengths to ensure that their products are noticed. This results in
sellers posting the same advertisement several times, using near-duplicate titles or
using slightly altered descriptions.

This study proposes to build a dichotomous classifier that would spot such
duplicate commercial advertisements that feature the same product. A Russian
dataset of 3 million records was translated into English, for the better understanding
of the results. The dataset was imbalanced with data samples for duplicate class
less than the non-duplicate class.

This study compares the six oversampling techniques, Random oversampling,
SMOTE, SMOTE-Borderline 1, SMOTE-Borderline 2, SVM SMOTE and ADA-
SYN, used to achieve class balance in the dataset. Four classification models,
Gradient Boosting Tree, Logistic Regression, Naive Bayes and SVM, are built, on
top of the oversampling techniques, to identify the duplicate advertisements.

This study finds that the performance of classifiers improves with an increase
in the sample size of the training data. The best performing model was SVM when
paired with Borderline-SMOTE 2, with an F1 score of 0.9151

The proposed model will prevent the buyers from sifting through the dozens of
deceptively identical advertisements, thereby expediting the search process. With
more accurate duplicate ad detection, the model will enable the buyers to easily
find a desirable product.

1 Introduction

The introduction of online shopping has redefined the way of conducting business. Shoen
et al. (2012) describes online marketplace as a platform that provides services in the
e-commerce marketplace to facilitate a transaction between a customer and a host. Al-
though online marketplace is gaining popularity in the market as it allows a user to sell
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their product hassle-free, this dynamic medium of conducting a business is accompanied
by a set of problems. The concerns about internet security and online fraud have a huge
impact on the online business transactions (Smith et al.; 1999).

The increase in the competition of the online market place coerces the e-commerce
websites to host high volumes of listings. Often, the competitive sellers go to great lengths
to ensure that their products are noticed. These sellers post the same advertisement
several times under different categories, using near-duplicate titles or using slightly altered
descriptions. In the scenario of big data, the chances of presence of duplicate records
becomes significant. A study by Wang et al. (2009) shows that more than 80 percent-
age of the news articles present on the web are not original and are just a near-duplicate
of the original articles. These repetitive records hinder the user experience and results
in an increase in the cost of data storage and maintenance. Hence, the duplicity of data
hosted on the online marketplace is a concern shared by both, the consumers as well as
the corporate business.

The aim of this research is to investigate to what extent duplicate advertisements
in the online marketplace can be identified by using Machine Learning algorithms. The
classification of advertisements into duplicates or non-duplicates can be considered as a
text classification task, where the text-based fields such as title, description, category and
numeric values of price, latitude, and longitude can be compared. According to the survey
conducted by Allahyari et al. (2017) on text mining algorithms, Naive Bayes classifiers,
decision tree classifiers, support vector machines (SVM) and Nearest Neighbour Classifier
are some notable classifiers which are widely implemented for text classification.

Many classifiers rely on the class distribution for making predictions on data. If the
data is not balanced across the different classes, it can interfere with the performance of
the classification model. Class-imbalance is also closely related to cost-sensitive learning
(Liu et al.; 2009). One of the major concerns when detecting duplicates is the imbalanced
nature of the dataset. The likelihood of a pair of advertisements being duplicates is much
less than the likelihood of them being non-duplicates. For a classification model, it is
necessary for a classifier to learn from the data samples of both classes, if not the results
of majority class will result in high accuracy. Hence, it is essential to ensure that there
is a class balance in the data so that the classifiers do not give biased results.

The present study compares the various oversampling methods and classification al-
gorithms on the duplicate ad dataset. The aim of this study is:

• To identify if balanced data provides better results than imbalanced data

• To observe how the classifiers behave for different oversampling techniques and
examine which method provides better results

• To observe the impact of different samples of the dataset on the classifier.

The process flow of this study is threefolds:

• in the first step, similarity measures are used to identify duplicates when two records
are compared;

• in the second step, six oversampling strategies are used on an imbalanced data set
to attain balanced class distribution;

• in the third step, four classification models are implemented upon each of the re-
distributed data sets



The rest of this paper is organized as follows: Section 2 reviews related methods.
Section 3 discusses the methodology used for this study. Section 4 describes the imple-
mentation. Section 5 is the discussion on the results of the experiment. Finally, Section
6 concludes this paper.

2 Related Work

Naumann and Herschel (2010) define duplicate detection as the identification of more than
one representation of same real-world objects. The duplicate records can be identical or
non-identical. Identical records are the records which are exactly similar to each other
whereas non-identical duplicates, also known as Fuzzy Duplicates, are records which have
slight different representation of the same object.

Duplicate pairs can be identified by using a similarity measure function sim(c, c’)
that takes two parameters, compares them and returns a similarity score (Naumann and
Herschel; 2010). A high similarity score returned by the function indicates that two
compared parameters are highly similar. The two candidates are classified as duplicates
if their similarity score is above a given threshold, and hence they form a duplicate pair.

2.1 Applications of duplicate detection

Numerous approaches have been suggested for identifying duplicates in news articles,
literature works, patents, or finding repetitive parameters in databases or recognizing
fake claims. In domains like, digital libraries, plagiarism detection, web search, spam
email detection, it is important to identify near-duplicate or similar documents.

Kovacevic et al. (2010) proposes the use of the Jaro-Winkler algorithm to detect
duplicate listings of titles of books in a digital library. Kondrak (2005) compares the
performance of n-grams (bi and tri-) to the existing methods like LCSR and NED, con-
cluding that a better precision of 0.841 can be achieved using bi-grams against the 0.798
in LCSR and 0.823 in NED.

Vaughan (2014) discusses the impact on the performance of a business when near-
duplicate web pages are displayed on a search engine. Urvoy et al. (2008) discusses the
application of similarity detection algorithms for recognizing a web scam, by identifying
fake web pages that have a common look and feel to that of the original webpage, by
comparing the similarity in the HTML source codes. Henzinger (2006) compares the
shingling algorithm and the Charikar’s hashing algorithm for the detection of duplicates
in a set of 1.6 billion web pages. The results show that the hashing algorithm outperforms
the shingling algorithm with a precision of 0.50 against 0.38.

MinHash is one of the widely used hashing algorithm for duplicate detection. Weiss-
man et al. (2015) proposed the MapReduce implementation of Minhash for an XML
dump of 10.2 million Wikipedia articles for identifying clusters of sentences with high
Jaccard similarity. The set-up identified that nearly 45.3% articles present across the 16
Hadoop nodes were identical whereas 13.5% were near duplicates.

However, Hassanian-esfahani and Kargar (2018) argue that MinHash is not the appro-
priate technique to detect NDD articles, as it predicts the similarity of the two documents
based on the attributes they possess, whereas for near-duplicate documents, it is essen-
tial to consider the position of the attributes. Instead of MinHash, they proposed using
Sectional MinHash for the detection of the near-duplicate documents, which gave an
F-measure of 87.05%.



A novel technique, SuperMinHash, has been introduced by Ertl (2017), a hashing
algorithm that succeeds MinHash. SuperMinHash significantly improves the runtime for
calculating signatures for large datasets. For instance, if the signature consists of m
values, the complexity of Minhash is O(mn) whereas for SuperMinHash, the complexity
follows as O(n +m log2 m). SuperMinHash considers that the signature values are not
independent, and hence it generates random permutations for each of the input data
elements.

Bilke and Naumann (2005) implemented an approach for identifying similar attributes
in a database formed by the merging of various schemas. The DUMAS(Duplicate-based
Matching of Schemas) approach compares a common attribute using extended tuple sim-
ilarity measure etupsim(), in order to determine if a pair of tuples or rows, originating
from different schemas, represents the same object. The results show that 95% of the re-
cords were matched correctly (recall) whereas the number of incorrect matches(precision)
was 10%.

Phankokkruad (2017) suggests the use of longest common subsequence, Smith-Waterman,
Euclidean distance and Damalau-Levenshtein distance for detecting plagiarism in the
6700 pairs of assignments submitted by 135 students. The Levenshtein Distance Al-
gorithm has also been used by Gaikwad and Bogiri (2015) for the detection of duplicate
XML documents, giving a better recall of 0.48 against that of NED algorithm (recall
0.37).

2.2 Duplicate ad detection

Burk et al. (2017) discusses a model, called Apollo, used to detect duplicate job ad-
vertisements in the online recruitment domain. The ad content from multiple sources
was collected and reduced into concatenated keys consisting of a high-level occupation
classification, company name and geographical location, using MapReduce jobs. These
keys were then split into hashed shingle sets. Jaccard Similarity was used to compare
the similarity between shingles from two job ads. After calculating the Jaccard similar-
ity between two job ads, heuristic thresholds were used to determine if they are similar.
While the traditional SimHash and Shingling techniques gave a precision of 0.27 and 0.33
respectively, the proposed model gave a precision of 0.36.

2.3 Oversampling techniques

In a real-world scenario, the identification of duplicates in large datasets is a challenge
because datasets might not have many duplicate records. This results in class imbalance.
An imbalanced class is where the data points of one class is way higher than the data
points of the other classes. In cases such as identifying non-identical duplicates, the
dataset is expected to have more records that hold information about the advertisements
which are not duplicates than the duplicates itself. As suggested by He and Garcia (2009),
the input that gets provided for the model needs to be altered or sampled in such a way
that it provides a balanced distribution or near balanced distribution.

Weiss and Provost (2003) compared the performance of classifiers on data with bal-
anced and natural class distribution. Using the C4.5 algorithm on 26 diverse data sets, it
was concluded that a classifier that is trained on a balanced dataset performs better, even
if the testing dataset is imbalanced. Thus, it was shown that class balance is important
for the training stage of probabilistic machine learning algorithms.



Feng et al. (2018) categorized the approaches used for balancing datasets into two
divisions: 1) the sampling approach 2) the algorithmic approach. Sampling approaches
include undersampling and oversampling techniques. Undersampling is defined as a non-
heuristic method which balances the class distribution by removing the samples from
the majority class. Hence, a subset of the majority class is used to train the classifier
(Liu et al.; 2009). Since many data points of the majority class are ignored, the training
data set becomes balanced and the overall training process becomes faster. However, a
major drawback of this technique is the loss of information caused due to the neglected
data points (Liu et al.; 2009). Oversampling is defined as the systematically generated
synthetic instances of the minority data points. These samples are synthesized by con-
sidering the class ratios of the surrounding nearest neighbours of the minority data point
(Chen et al.; 2010). However, the replication of samples can result in overfitting of the
classification model.

The algorithmic approach leverages a machine learning algorithm to sample the data.
Lin et al. (2017) uses two undersampling techniques that employ clustering during the
data preprocessing step. Forty-four small-scale and two large-scale data sets were tested
against a C4.5 decision tree classifier and single multilayer perceptron classifier ensembles
to deliver optimal performance. Lu et al. (2017) proposes a novel ensemble framework
that combines the Ensemble of Undersampling (EUS) technique, Real Adaboost, and an
adaptive boundary decision strategy to build a hybrid algorithm.

Random oversampling is a technique in which the samples from the minority class
are selected randomly and replicated in the feature space until the number of minority
class samples is approximatly equal to that of the majority class samples. This technique
could lead to the overfitting of the model. To avoid overfitting, Synthetic Minority
Oversampling TEchnique (SMOTE) is used to synthesize the samples of the minority
class.

SMOTE algorithm (Chawla et al.; 2002) is one of the most well-known oversampling
algorithms. It aims at attaining a class balance by fabricating data points randomly
between the minority data point and its K-nearest neighbour.

Han et al. (2005) introduced some extension, such SMOTE-Borderline 1 and SMOTE-
Borderline 2, which creates the minority samples on the decision boundaries among the
different classes. Borderline-SMOTE 1 generates synthetic minority samples only for
those data points that are endangered to be classified as majority class. Borderline-
SMOTE 2 works similar to Borderline-SMOTE 1, however it oversamples the majority
class samples along with performing the borderline-SMOTE. The oversampling of major-
ity and minority samples is carried out until a desired balance is achieved between the
classes. SVM SMOTE finds a hyperplane that differentiates the classes with the max-
imum margin, with the support vectors acting as an anchor in the separating plane. New
minority samples are synthesized around the support vectors (Nguyen et al.; 2011).

Zhang et al. (2017) uses SMOTE SVM on six UCI datasets for the binary classifica-
tion of high dimensional data. The study concludes that the SVM-BRFE(SVM Border-
Resampling Feature Elimination) algorithm (precision of 91.3%) performs better than
the original SVM-RFE algorithm (precision of 87.7%).

ADASYN is an improvement of SMOTE. This method is designed to create class
balance and to adjust the classification limits adaptively with difficult samples. Aditsania
et al. (2017) proposes the use of ADASYN with a back propagation classifier to predict
customer churn in the telecom industry. ADASYN uses density distribution as a criterion
to automatically determine the number of synthetic samples to be generated for each



minority datapoint (He et al.; 2008).
Wu et al. (2017) states that oversampling can result in some noisy data which has to be

removed in order to build a proper data learning model. For noise removal from insurance
data, the SMOTE-RSB algorithm was used, as it filters out the sampling records when
they have a similarity which is greater than a particular threshold. The SMOTE-IPF
algorithm resamples synthetic sampled data to multi noise filter. SMOTE-FRST removes
synthetic samples which are lesser than a given distance threshold.

3 Methodology

The research question for this study is to establish the best performing machine learning
algorithm for identifying duplicate advertisements, thereby providing better customer
service by reducing the number of repeat advertisements directed at the customers.

The objective of this study is to fabricate a sufficiently balanced dataset and to develop
a classification model that can identify duplicate ads efficiently.

The methodology for this study is developed on the lines with CRoss Industry Stand-
ard Process for Data Mining (CRISP-DM).

3.1 Business understanding

The duplicity of data hosted on the online marketplace is a concern shared by both,
consumers as well as the corporate organisation who owns the e-commerce website. If
the data is not appropriate, the e-commerce websites stand to lose sizable amounts of
potential profit due to customer dissatisfaction. Due to the presence of duplicate ads,
it becomes difficult for a consumer to find the desired product, as manual intervention
is required to filter out the advertisements of the unwanted products. These repetitive
advertisements hinder the user experience and results in an increase in the cost of data
storage and maintenance.

The definition of the initial problem was simple, the objective is to leverage previous
researches performed in this area and to build upon it to find a unique way to form a
model that identifies duplicate advertisements. The two primary approaches considered
to solve this problem were:

1. to analyse the information for each seller in order to determine whether they were
in the business of duplicate ad posting by tracking their activity; or,

2. to analyse the advertisement content and frame it as a text analytics problem.

The first approach identifies if the seller is highly likely to post a duplicate advertisement
by studying the seller’s style of writing, reviews given by the customers, and personal
information, such as name, location, contact number, profile picture and so on. The
second approach analyses the content of the advertisements, such as title, description,
price and so on, and identifies if they are duplicates or not. The limitations in the
availability of data and the issues around handling of personal information of the seller
discouraged the use of the first approach. On the other hand, a sufficient amount of
advertisement content related data was available from free sources. Hence, it was viable
to analyze the content of advertisements to predict duplicity.



3.2 Data acquisition

An attempt was made to contact various e-commerce websites to request for datasets
but unfortunately this effort did not yield any results. The next step was to build a web
scraper that would collect the advertisements hosted on Olx for all Indian locations. India
was chosen as it is densely populated with a high probability of sellers posting duplicate
ads. Olx was selected, primarily, because it is one of the largest marketplaces for India,
as it provides the ease of seller account creation and ad posting.

The problem with the above mentioned method was the manual identification of
the duplicate and non-duplicate ad pairs, to prepare the training and testing datasets
(Henzinger; 2006). Manual fabrication of data is prone to human errors, which could
compromise the results of the research. Hence, an alternative solution was implemented
that was to collect the data from the Kaggle website. Considerations were taken to ensure
that the data was not pre-processed. The scope of this project is limited to the commercial
advertisements, as the results are targeted to improve the customer experience. The
concept of this project is universal and can be applied to any of the e-commerce websites.

3.3 Data preparation

The research data consists of two datasets:

1. advertisement content dataset, ItemInfo train.csv, having 11 columns, namely: itemID,
categoryID, title, description, images array, price, locationID, metroID, latitude,
longitude (Figure 1)

2. labelled dataset, ItemPairs train.csv, having 4 attributes, namely: itemID1, itemID2,
generationMethod and isDuplicate (Figure 2).

Figure 1: Ad content dataset

Figure 2: Labelled dataset



The isDuplicate column, relates to (Figure 2), of the ItemPairs train.csv dataset is
the dependent variable. It is valued as 1 if the pair of data points is duplicate and 0 if
they are not duplicate.

As shown is (Figure 1), the text in the ad content dataset was in the Russian language.
Although the python libraries that are used in the project are universal and can run on
any language, it was taken into consideration that the content should be translated into
English, refer (Figure 3), for the benefit of readers who cannot understand the language.
Also, the author is a non-Russian speaker, so it was difficult to understand the data and
identify if and what preprocessing steps are required. Hence, in order to have a better
understanding of the data and to verify the results, it was beneficial to have the dataset
translated to a familiar language. (Wan; 2012)

Figure 3: English translation of Ad content dataset

On manual verification of the translation, it was found a few Russian characters were
converted into meaningless dummy variables. Thus, the translated dataset was cleaned
of unwanted characters. The resulting dataset had 3.3 million records. This dataset was
then merged with the second dataset, relates to (Figure 4), taking ItemID as the primary
key, resulting in 2.9 million records. Missing values were checked and removed from the
merged dataset. After data cleaning and transformation, the resulting dataset had 2.4
million records.

Figure 4: Merged dataset

3.4 Feature creation

The feature selection and classification processes are dependent on each other. In order to
train the model for improved performance, a number of features were developed according
to the properties of the dataset. Text based features were obtained from the title and
description of the advertisements, and they were as follows: relative difference between



the title and description of a pair of ads, Levenshtein similarity, Damerau similarity,
optical string alignment, Jaro-Winkler similarity, longest common subsequence, n-grams
(where n is 2,3 and 4),q-grams, cosine, and jaccard similarity for the ngrams. Other
features include the difference between the prices of two ads, location of the ads, and
number of images in the ads.

Figure 5: Feature creation

3.5 Oversampling

An issue with machine learning models is that the training data points for each class must
be similar in number. To achieve class balance in the dataset, six different oversampling
approaches have been used in this study. Alternatively, undersampling techniques can be
used, in which a part of majority class is dropped to attain the class balance, resulting in
removal of information. This can result in the loss of useful information which could be
relevant for training the model, thereby, compromising the performance of the classifier.
Hence, oversampling technique was chosen over undersampling as a preferred technique.

For this study, the minority class is oversampled by synthesizing minority class samples
and not by replicating the samples. Replication of samples can cause the classifiers to
overfit, hence synthesis was considered as a more suitable option (Eshmawi and Nair;
2014). The results of the classifier were compared for random oversampling, different
versions of SMOTE and ADASYN.



3.6 Classifiers

This study compares the performance of four classification algorithms for different over-
sampling methods. Generally, a supervised machine learning algorithm depends on the
features and the class probability of the training data. Each classifier has a unique ap-
proach of utilizing the features and class information.

3.6.1 Gradient boosting tree

Gradient boosting produces a prediction model by estimating the weak prediction models.
Relative to other classifiers in this study, gradient boost requires less time and power for
computation.

3.6.2 Logistic regression

Logistic regression is widely implemented for dichotomous distinction between the two
classes.

3.6.3 Naive Bayes

Since the algorithm assumes strong independence of features, it is efficient for high di-
mensional data. As a classifier, Naive Bayes requires comparatively less time and less
computational power than any other model in this study.

3.6.4 Support Vector Machine

Despite the fact that SVM uses more computational time and power than any other
classifier in this study, Yang and Liu (1999) found that SVM is one of the best performing
classifiers for high dimensional text data.

3.7 Performance measure

Past research shows that accuracy is not a reliable measure for imbalanced datasets be-
cause high accuracy is achieved when predicting for the data as the majority class (López
et al.; 2013). According to Powers (2011), ROC (Receiver Operating Characteristic)
curve and F1 score are selected as the appropriate performance measurements.

The performance measure for this study is taken as F1 score. F1 score represents the
trade-off between the precision and the recall. It avoids using the true negative, which can
be extremely high for an imbalanced dataset classification. The results of the classifiers
are compared against the study conducted by Suh et al. (2017). The aim of this research
was to study the effect of different oversampling techniques on topic based classification
of Korean news articles.

4 Implementation

4.1 Data pre-processing

The python library googletrans was used to translate the Russian content into English.
The result of the translation was verified by visually inspecting a random sample of data.



Figure 6: Data pre-processing workflow diagram

Though the majority of translated content was clean, there were a few instances where
Russian characters were converted into dummy variables. For example, some Russian
characters were converted to ’???’, ’x047’,or spaces between two characters was converted
to the pattern ’u200bu200b’. Once the data was translated into English, the Python
package re, for regex, was used to remove the unwanted patterns in the datasets. Once the
data was translated the unnecessary fields such as ’locationID’, ’metroID’, ’categoryID’,
’attrsJSON’ were removed. Since the research data is divided into two datasets, the ad
content dataset is merged using an inner join on the itemID 1 and itemID 2 columns
of the labelled dataset. The merged dataset was then checked for ’NaN’ values and the
respective rows were removed. The final merged dataset had 2,403,189 records with 35
columns.

Figure 7: Duplicate detection workflow diagram

4.2 Data sampling

One of the major challenges while using nearly 3 million records was the computational
time and power required. The translation of data took more than a week, and running
an XGBoost with minimalistic features took around 35 hours.The python console threw
a memory full exception when the SVM classification model was trained with 3 million
records. Hence it was not feasible to utilise the entire dataset. A viable solution to the
problem was to sample the data. Hence, the dataset was randomly sampled into subsets
of 50000, 100000, 500000, 1 million and 1.5 million records. The performance of the
classifier was measured against each of these sample size, resulting in 120 computations.



4.3 Feature creation

The feature creation was done by using the strsim library in Python. This library was
developed by luozhouyang and is available free-source on GitHub (GitHub; 2018). The
similarity between the titles and the descriptions of the pair of ads was measured against
the list similarity indexes mentioned in section 3.4. The number of images per ad is cal-
culated by counting the number of comma-separated values in the images array column.
The difference between the absolute numerical values of price, number of images, and
latitude-longitude is taken as three additional features.

4.4 Oversampling

For each computation, the dataset was randomly sampled into training and testing data
in a ratio of 3:1, with the percentage of class representation similar over each set. Over-
sampling methods were implemented using the Python imblearn library. The minority
class of the dataset was oversampled until a class balance of 1:1 was attained.

4.5 Classification model

All the classifiers, except the gradient boosting tree, were implemented in Python using
the scikit-learn libraries. Gradient boosting tree was implemented using the XGBoost
package. The parameters for XGBoost were selected as follows: the maximum depth
of a tree was 5, the learning rate was 0.1 and the fraction of observations and columns
to be randomly sampled for each tree was 0.8. The parameters for Logistic Regression
are: penalty was ’l1’, inverse of regular strength was 1x106 and maximum iteration was
5000. The SVM and Naive Bayes classifiers used default parameters. The performance
of the classifiers is measured in terms of F1 score, implemented using scikit-learn library.
The best model is considered to be the one which has the best F1 score across the four
classifiers.

5 Evaluation

Japkowicz et al. (2000) conducted a study to determine the influence of varying data size,
class imbalance level and complexity on the performance of the classifiers. The tables
below show the comparison of the performances of each classifier for various oversampling
methods, across different sample sizes.

Table 1 shows the F1 scores of different classifiers on 1.5 million samples of imbalanced
data. When the training data was imbalanced, the F1 score of all the classifiers was
averaged at 0.61. The best performing model for the imbalanced dataset was Logistic
regression with an F1 score of 0.64 whereas the worst performing model was Naive Bayes
with an F1 score of 0.56

5.1 Experiment 1: Gradiant Boosting Tree

Table 2 shows the performance of gradient boosting trees for varying sample sizes using
the six oversampling techniques. For smaller samples, the classifier showed better results
when paired with ADASYN. The overall performance of the gradient boosting tree im-
proved drastically as the sample size was increased. The best F1 score for 50000 records



Classifiers F1 score
Gradient Boosting Tree 0.6038

Logistic Regression 0.6459
Naive Bayes 0.5612

SVM 0.6387

Table 1: The F1 score for imbalanced data set of sample size 1500000

Sample
size

Random
over-
sampling

SMOTE
Borderline-
SMOTE1

Borderline-
SMOTE2

SVM-
SMOTE

ADASYN

50000 0.6018 0.6141 0.6142 0.6152 0.6125 0.6173
100000 0.6279 0.6154 0.6411 0.6417 0.6219 0.6432
500000 0.7921 0.7974 0.7993 0.8018 0.7951 0.8021
1000000 0.8579 0.8710 0.8689 0.8704 0.8693 0.8595
1500000 0.8273 0.8739 0.8695 0.8762 0.8714 0.8606

Table 2: F1 score for Gradient Boosting Tree

was 0.61 whereas for 1.5 million records it was 0.87, which is an increase of 42%. For
the sample size of 1 million, the performance of SMOTE was the best. With 1.5 million
records, Borderline-SMOTE2 gave the best result.

5.2 Experiment 2: Logistic Regression

Sample
size

Random
over-
sampling

SMOTE
Borderline-
SMOTE1

Borderline-
SMOTE2

SVM-
SMOTE

ADASYN

50000 0.6028 0.6394 0.6427 0.6608 0.6561 0.6580
100000 0.7291 0.7562 0.7896 0.7947 0.7473 0.7618
500000 0.8014 0.8127 0.8159 0.8006 0.8058 0.8083
1000000 0.8650 0.8793 0.8691 0.8803 0.8392 0.8747
1500000 0.8753 0.8991 0.8692 0.8734 0.8816 0.9143

Table 3: F1 score for Logistic Regression

Table 3 shows the performance of logistic regression for different sample sizes while
using the six oversampling techniques. Logistic regression classifier showed better results
when paired with Borderline-SMOTE2. However, for the sample size of 1.5 million, the
ADASYN oversampling technique performed the best.

5.3 Experiment 3: Naive Bayes

Table 4 compares the performance of different oversampling techniques, using varying
sample sizes, for the Naive Bayes classifier. The classifier gave better results when paired



Sample
size

Random
over-
sampling

SMOTE
Borderline-
SMOTE1

Borderline-
SMOTE2

SVM-
SMOTE

ADASYN

50000 0.5617 0.5746 0.6017 0.6914 0.6750 0.6992
100000 0.6022 0.6397 0.6991 0.7028 0.6949 0.7190
500000 0.6803 0.6829 0.6963 0.6927 0.7195 0.7308
1000000 0.7064 0.7593 0.7343 0.7425 0.7396 0.7284
1500000 0.7841 0.7928 0.7934 0.8065 0.7992 0.7976

Table 4: F1 score for Naive Bayes

with ADASYN. The Naive Bayes classifier gave a spectrum of results for small dataset.
For 50000 records, the classifier, when paired with random oversampling, gave the lowest
F1 score of 0.56. However, it outperformed every other classification model when paired
with ADASYN. The performance of Naive Bayes improved by only 15% when the sample
size increased from 50000 to 1.5 million records.

5.4 Experiment 4: Support Vector Machine

Sample
size

Random
over-
sampling

SMOTE
Borderline-
SMOTE1

Borderline-
SMOTE2

SVM-
SMOTE

ADASYN

50000 0.6495 0.6396 0.5977 0.6218 0.6307 0.5999
100000 0.6593 0.7302 0.7194 0.7205 0.7249 0.7187
500000 0.7380 0.7706 0.7698 0.8046 0.7993 0.7290
1000000 0.8547 0.8688 0.8835 0.8937 0.8764 0.8803
1500000 0.8919 0.9042 0.8821 0.9151 0.8848 0.8962

Table 5: F1 score for SVM

Table 5 compares the performance of the SVM classifier paired with different over-
sampling techniques, using varying sample sizes. The classifier gave better results when
paired with Borderline-SMOTE2.

5.5 Discussion

In this research, high performance scores were achieved when the training sample size
was big and the data was balanced. 1.5 million records were randomly sampled from the
dataset of 3 million. Subsequently, 75% of the sampled data was used to train the model,
whereas 25% was used for testing. The natural dataset was fairly imbalanced and was
provided to the classifiers. The best F1 score for the imbalanced dataset was 0.64 achieved
with logistic regression. This data sample was then balanced using 6 oversampling tech-
niques and it was found that the best result was obtained by SVM and logistic regression
models, with an F1 score of 0.91. Hence, the study reiterates the results from the Weiss
and Provost (2003) study which shows that a classifier performs better with a balanced
class distribution rather than a natural distribution. The results also agrees with those



obtained by Suh et al. (2017). The work by Suh et al. (2017) compares the performance
of various classifiers on balanced data and different levels of imbalanced data, concluding
that highest performance scores are reached when the data is balanced.

In this study, the experiment was performed on different sections of data and the
results verify that the performance of the classifier, for balanced dataset, increases with
an increase in data size. The dependency between the sample size and the performance
of a classifier has been discussed in the work of Sordo and Zeng (2005). Sordo and Zeng
(2005) compares the impact of the size of sample data on the classification accuracy
for Naive Bayes, Decision Trees and Support Vector Machines over a set of 8500 text
excerpts.

Suh et al. (2017) resampled 1000 data samples, which originally had a class balance
of 9:1. The performance of the classifier on balanced dataset results in an F1 score of
0.81. In this study, an F1 score of 0.91 was achieved with 1.5 million data samples, which
reiterates the fact that the performance of classifiers improves with an increase in data
size.

Another observation made from the study is the similarity in the performance of SVM
and logistic regression classifiers. When the sample size was 1.5 million, logistic regression
and SVM showed similar results and were the best performing models, with F1 score of
0.91. This result verifies that close relations between SVM and logistic regression, as
mentioned by Vapnik (1999) and Zhang et al. (2003). Both the models can be viewed as
probabilistic models that minimise the cost associated with misclassification based on the
likelihood ratio. Logistic regression worked best when paired with ADASYN, whereas
SVM worked best when paired with Borderline-SMOTE 2.

The purpose of this study was to build a model that can detect duplicate advertise-
ments in the online marketplace. A similar study was conducted by Burk et al. (2017)
to build a model, called Apollo, for detecting duplicate job classifieds on online recruit-
ment portals. The dataset was balanced with 500 samples of duplicate ads and 500 of
non-duplicates. The F1 score for Apollo for 1000 samples was 0.45. For this study, when
a random sample of 1000 records was taken, the performance of Logistic regression with
SMOTE was 0.62. Thus, this model outperforms the Apollo for a 1000 records.

6 Conclusion and Future Work

This study compares the performance of various oversampling techniques and classifica-
tion models to deal with the issue of duplicate ads in the online marketplace.

As mentioned in section 3, alternative approaches could have been taken for identi-
fication of duplicates. The area of future work lies in the development of the alternative
approach; that is to investigate the information for each seller in order to determine
whether they are in the business of duplicate ad posting. Essentially, the combination of
this approach, along with the scope of this study, will give a better prediction of whether
a seller is likely to post a duplicate ad, and the type of ads that are more likely to be
reproduced.

This study focused on the text based fields of advertisements and compared the titles,
descriptions, pricing and location of the pairs of ads. However, the scope of this study can
be extended to image-based features. Features can be created by comparing the images
published with the ads.

The limitation of this research is that it does not analyse the entire dataset that was



available on Kaggle. This was due to the time constraint and limitations on the hardware.
Further research could be conducted on the entire dataset to check if the results of this
study still hold true. Big data storage solutions can be used to handle the huge volume
of data. Alternatively, as the models developed in this study are generic for detecting
duplicates, data can be obtained for any of the e-commerce websites and the experiments
can be reconducted.

The scope of this model is not limited to detecting duplicate advertisements. This
study can be applied to any text-based classification of imbalanced data. Depending on
the nature of the dataset, different features can be extracted and relevant class balancing
technique can be applied. In this study, similar to others in the field, the text-based
features were first converted to numeric features and then oversampling techniques were
applied across all the numerical data fields. However, a recent study by Castellanos et al.
(2018) proposed the use of oversampling technique in string space. A similar approach
for oversampling could be applied to this study. Additionally, different machine learning
algorithms could be used for the classification model. If there is sufficient time and
resources to train the model, more features could be engineered, and experiments could
be conducted using artificial neural networks.
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