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Abstract

Faced with growing competition in the microfinancing market and higher op-
erational risk, it is ever more important for an MFI to be able to leverage less
conventional customer data to improve the efficiency of their lending models. Most
MFIs are active in developing countries where financial history is generally non-
existent on their user base which increases the difficulty in assessing the credit
worthiness of individuals. Instead, an alternative source of data such as mobile
phone call and SMS logs can be utilised to assist with this problem. In this study,
call and SMS logs from the borrowers of a MFI operating in the Kenyan market-
place are featurised and used to train various classification models. The results show
how such data is a valuable commodity in predicting the default class, particularly
when relationship tie-strength features are introduced. The influence of an existing
borrower’s loan outcome on a new loan applicant within their social network is
also modelled using the spreading activation method as an alternative approach to
traditional classification, but results indicate that they are not effective.

1 Introduction

Many microfinancing institutions (MFI) are operating in developing countries where
micro-loans are a valuable credit source for segments of the population that are in many
ways restricted from traditional banking credit lines. This market participation adds to
the overall operational risk of a MFI however, as the majority of borrowers are those with
little to no credit history. This lack of any credit trail invariably opens up the information
asymmetry gap between the loan recipient and the MFI which subsequently increases the
challenge in distinguishing between good and bad loans.

Existing research indicates classification models, both parametric and non-parametric,
can help improve the prediction of loan outcomes for MFIs (Blanco et al., 2013; Cubiles-
De-La-Vega et al., 2013), but there is still high associated misclassification costs due to the
presence of information asymmetry (Baklouti and Bouri, 2013; da Kammoun and Triki,
2016). Much of the research in this domain has also been applied to data sets composed
of demographical attributes that are not always readily available in a digital app driven
business. In P2P lending, various forms of social network data have been introduced
to mitigate the information asymmetry gap and the integration of such data has been
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shown to improve default rate prediction (Zhang et al., 2016; Ge et al., 2017). Therefore,
to reduce this information asymmetry in the absence of conventional data a different
approach is applied in this research by introducing new features to the classification
techniques, based entirely on the call and SMS log data of the loan applicants.

The overarching objective of this research is to therefore exploit the network data
existent in the call and SMS logs of a loan applicant to measure how effectively such data
can predict the outcome of micro-loans. Two methodologies are considered to harness
this information: the first will transform the call and SMS logs into various feature
sets ranging from general usage features such as total call duration to network related
features such as tie-strengths to neighbouring nodes and these will then be used to train
classification models. As we generally expect people to behave similarly to those they
are closest to from the concept of homophily (McPherson et al., 2001), the addition of
tie-strengths are interesting features to consider and their impact to the classification
model performance will also be assessed.

The second method borrows from promising research in the prediction of churn sub-
scribers in the telco domain where network graphs using the call detail records of cus-
tomers are exploited and relational learner models are used to diffuse influence across
the nodes (Dasgupta et al., 2008; Kim et al., 2014; Backiel et al., 2015). The underlying
hypothesis is that churned customers can influence those they are closest to into churning
and the relational learners provide a conduit to spread such influence around the net-
work. Again the underpinning of this application has roots in the concept of homophily
as the strength of the relationship is the factor that determines the influence a person
propagates to a neighbouring node in their network. In applying this to a loan default
problem, the hypothesis is that an outcome can be predicted for a new loan applicant by
measuring the amount of influence passed to them through the topology of their social
network. The spreading activation method (SPA) is adopted for this purpose and the
results are assessed against the traditional classification methods.

Based on the above objectives there are three questions that are analysed:
Q1. Does the spreading activation method perform better in predicting the loan out-

come compared with traditional classification methods with featurised network variables?
Q2. Does the featurisation of a loan applicant’s communication logs enable classific-

ation models to effectively predict defaulters?
Q3. Does the introduction of tie-strength features improve the performance of a clas-

sification algorithm?
There are three main contributions to the field from this study. Firstly, we provide

answers to the three novel research questions by empirically evaluating the performance
of several SPA and classification models using telecommunication data in the domain
of microfinance. Thus, it is determined whether relational learners offer a beneficial
alternative over traditional classifiers. Secondly, it is demonstrated how call and SMS
log data can be harvested into features to efficiently predict default using classification
models. Finally, it is found that the introduction of tie-strength features has a very
positive impact on many classification models.

The remainder of the paper is structured as follows. Chapter 2 presents various related
works. Section 3 details the methodology followed for integrating the spreading activation
method and featurising the communication logs for the classification algorithms. Section
4 outlines the experimental setup used to assess the model performances along with the
models adopted for the analysis. In Section 5, the experimental results from the analysis
analysis are discussed and Section 6 gives concluding remarks on the overall findings.
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2 Related Work

No prior research was found that focused on the integration of telecommunications data
for default prediction in microfinance, so this review of past literature includes work from
the domains of microfinance, peer-to-peer lending (P2P) and churn prediction.

2.1 Default Prediction in Microfinance

The existing research conducted in the microfinance domain has focused on the com-
parative performance of various classification algorithms in predicting defaulters with
positive results with both parametric and non-parametric models featuring prominently
in the studies. Blanco et al. (2013), Baklouti and Bouri (2013), and Baidoo and Arku
(2015) all apply logistic regression (LR) to MFIs operating in Peru, Tunisia and Ghana
respectively and observe good AUC results but misclassification is somewhat worrying.
In Baklouti and Bouri (2013) for instance, there is a misclassification of 20% which can
lead to significant operational costs. Given a parametric model is dependent on numer-
ous underlying assumptions, research has also focused on non-parametric models ranging
from decision trees to black box algorithms such as neural networks (Blanco et al., 2013;
Cubiles-De-La-Vega et al., 2013). Both studies present a comprehensive comparison of
classification models with neural networks providing the highest AUC and lowest misclas-
sification cost. Cubiles-De-La-Vega et al. (2013) also tested the performance of decision
trees with and without bagging and although standard decision trees were actually the
worst performing model in their analysis, results improved dramatically when random
forests were used. Features used in this past research are based mainly on demographical
data that are not available for this research so it is unclear how the performance achieved
in the aforementioned research will associate using communication log data.

2.2 Social Network Impact in P2P Lending

In the P2P lending domain there has been a wide focus on introducing social network data
into classification models to improve prediction accuracy. There are two strands of social
network data that were used in these studies: using internal and external data. In separate
work by Lu et al. (2012), Freedman and Jin (2017) and Lin et al. (2013), social data that
is internal to the P2P lending platform is leveraged with mixed results. Contrary to the
concept of homophily, it was determined that social connections made online were more
likely to lead to default than a real world friend (Lu et al., 2012; Freedman and Jin, 2017).
These online connections would generally be considered weak friendship ties, similar to
connections on social media sites like Facebook so such an influence is a strange result.
Lin et al. (2013) also finds that a borrower’s online connections can signal loan outcome
but in their analysis an extra dimension is added which indicates the type of friendship
(verified or unverified friend) which effectively strips out the noise and it is found that
verified friends (closer ties) provide the strongest signal. A drawback of using internal
platform data is that it is difficult to accurately determine the real relationship between
two connections and it is open to social network fabrication, which people will likely
attempt to appear more creditworthy (Wei et al., 2016). This limitation is addressed by
Zhang et al. (2016) and Ge et al. (2017) that use alternative sources of social data. Of
particular interest is the result of Ge et al. (2017) as they incorporated data from Weibo
which resulted in a strong improvement to the prediction of default.
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2.3 Classifying Churners Using Customer Call Records

Whereas traditional churn models generally use standard customer data to assign a churn
score to each customer, the integration of social network features to models has enhanced
performance (Zhang et al., 2012; Kusuma et al., 2013; Backiel et al., 2016).In using
network features the predictive performance of various classification models improve than
if they are excluded (Backiel et al., 2016). These network features are extracted from
call records on customers so this literature provides a good foundation for how call and
SMS logs could be employed for the focus of this paper. In addition, the positive results
in this domain provide some gravity to their performance potential in microfinance. In
terms of network features, Zhang et al. (2012) exploit call records to add features such
as neighbour composition to the classification models as well as tie-strengths, where
a neighbour is labelled as a churner or non-churner. In the microfinance setting, such
labels would become default or non-default. Óskarsdóttir et al. (2017) introduces another
interesting feature transformed from the call records that takes into account the time of
day and week the communication occurs under the assumption that closer ties are more
likely to contact each other during the evening rather than during work. Finally, there
are various features introduced to take account of tie-strengths within the network. In
most cases, only call data is available so tie-strength is measured as the total or average
call duration to a connection. In Kusuma et al. (2013) they have access to call and SMS
logs and integrate them by converting the value of one SMS into the duration of a call.

2.4 Relational Learners in Churn Prediction

Relational learners applied on telecommunications data have found them to offer im-
proved performance over traditional classification methods in predicting churners (Dasgupta
et al., 2008; Phadke et al., 2013; Abd-Allah et al., 2014; Verbeke et al., 2014; Backiel et al.,
2015; Óskarsdóttir et al., 2017). There are numerous relational learners that can be used
such as the network-only link based and class-distribution relational neighbour classifier
which one of four considered by Verbeke et al. (2014). The most commonly used rela-
tional learner however, is the spreading activation model (SPA) first introduced to churn
prediction by Dasgupta et al. (2008). In their analysis they compared its performance
against decision trees with featurised network variables with the SPA proving far superior.

3 Methodology

The aim of this research is to assess how social network telecommunications data can be
used to improve the prediction of defaulters in a Kenyan microfinancing company. More
specifically there are two subsets to consider in the analysis: new loan applicants that
are present in an existing loan user’s social network, and more general loan applicants.
In this first subset the assumption is that since a user has social contact to an existing
defaulter/non-defaulter, this relationship may influence the outcome of the new applic-
ant’s loan. To analyse this effect, a relational learner called the Spreading Activation
Model (SPA) is introduced in Section 3.3. For the second subset Section 3.4 outlines how
the social network data is featurised for application in classification models, providing a
generalised method to predicting default.
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Call log SMS log

number phone number of connection number phone number of connection
call type incoming/outgoing/missed direction incoming or outgoing
duration length of time in seconds date time in milliseconds since the epoch
date time in milliseconds since the epoch

Table 1: Call and SMS JSON keys

3.1 Data Extraction and Preparation

Access was given to the call and SMS logs of the customers of a Kenyan MFI, as well as
to user and loan database tables that store some basic user information and the terms of
conditions of each approved loan respectively. While this data is structurally stored in a
relational database, the SMS and call log data is stored in JSON objects. For efficient
harvesting of this data, the primary requirement was to create a relational structure of
the data contained within each object. Table 1 shows the keys from each JSON object
that were extracted and locally stored for the various processing stages outlined below.

Only communication to mobile phone numbers are fed through to the analysis. Com-
munication to service numbers are not considered as these are assumed to be transactional
events that do not form a user’s social network. This is particularly relevant since a meas-
urement of tie-strength is of interest in the analysis, as the inclusion of transactional log
data can lead to a dilution of tie-strength between two nodes in relative terms.

Close to 40,000 loans have been approved by the company to date but not all of these
were suitable for this analysis. The company only began requesting call and SMS logs
from customers as of June 2017 so a high proportion of loans given prior to this point
in time are removed as there is no communication log data with which to use. As the
business operations going forward will function by having such data as a prerequisite for
future applicants, the removal of these loans naturally make sense as their inclusion to
any prediction model based on social data is redundant. It should also be noted that due
to batch processing issues when the company first rolled this out, in some cases the SMS
logs are blank for a user, while the call logs are available. Although not having complete
sources for each user is a drawback, the call and SMS log data are instead combined into
single features to ensure completeness. With all of this considered 16,861 loans remain
available for the analysis with a default rate of 13.8%.

3.2 Social Network Graph

Using the communication logs for each user, a network graph can be generated. The
nodes within each graph relate to each individual person that had interactions and the
edges are established between the nodes that had observed communication such as a call
or SMS. In a directed network, the edge represents the communication that originates at
the source node and ends at the destination node. In an undirected network, two-way
communication is included (incoming and outgoing). For this analysis the edges will
take the value of the relative tie-strength which will be composed of both call and SMS
communication and this calculation will be described in Section 3.3.1. Figure 1 shows an
example of a network flow using the total directed tie-strength while Figure 2 shows the
relative tie-strengths.
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Figure 1: Graph using
total directed tie-strength

Figure 2: Graph using rel-
ative directed tie-strength

3.3 Spreading Activation Model

Given the positive results achieved with the application of the spreading activation model
(SPA) in churn prediction (Dasgupta et al., 2008; Kim et al., 2014; Backiel et al., 2015)
the algorithm will be harnessed for this research to assess if such a relational technique
is more beneficial than standard classification methods.

In the churning prediction problem, the objective is to determine which customers
currently availing of a telco provider’s service are potentially going to churn in the future.
The method is applied at a point in time and gathers the customers that have churned
up to that point as seed nodes, sets their energy level to 1, and diffuses this energy across
the network to determine what other nodes (customers) attain an energy level indicative
of a churner (based on an energy threshold value).

For the default prediction, such methodology cannot be readily applied on such a
broad network scale. At a given point in time, while the defaulters up to that point can
be easily identified, any active user node has already obtained a loan so labelling them
as a defaulter/non-defaulter at this point becomes redundant. Instead, the methodology
will be applied to uniquely defined networks for each new loan applicant with the loan
applicant effectively acting as the central hub.

3.3.1 Tie-Strength Measurement

Research by Wiese et al. (2015) indicated that SMS and call logs are useful (but not
perfect) for measuring tie-strength and instead should be combined with multiple touch
points to enhance their utility. The availability of additional messaging apps such as
WhatsApp or Facebook messenger would indeed be a beneficial resource but in reality,
access to such a range of communication apps is very unlikely. Much of the research in
churn prediction has focused on using only the duration of calls to measure tie-strength,
but analysis carried out by Baras et al. (2014) demonstrates that significant improvement
in prediction is possible by combining call and SMS communication. We therefore align
with an approach similar to that followed by Kusuma et al. (2013) where tie strength is
calculated using the duration of a call made by a user to a connection and the number
of SMS messages also sent to this connection.

Tie strength will be measured in seconds so the value of an SMS message in seconds
is needed. Only one telecom provider is currently supported by the company. This telco
charges 10 Kenyan shilling (KES) for a bundle of 200 SMS messages while the cost of a
phone call per minute costs 1KES. This equates 3 seconds of a phone call per SMS so
the weight for each SMS count will be factored by 3. So tie-strength is measured as:

wx,y =
N∑
i=1

Fi ∗ wx,y,i (1)
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Where F (1 for call, 3 for SMS) is the factor to apply to the outgoing communication i
of total outgoing communications N from node X to node Y.

This equation of tie-strength covers a directed graph where communication sent from
X to Y is only considered. To make this undirected, the communication sent from Y to
X can also be included so that:

wx,y =
N∑
i=1

Fi ∗ wx,y,i +
M∑
j=1

Fj ∗ wy,x,j (2)

3.3.2 Default Influence Diffusion

Taking X to be a defaulter, this node is initiated with a value of 1 for the first iteration
of the algorithm. To propagate this energy to a connecting node Y, a transfer function
using linear edge weight normalisation is applied with the value of tie-strength between
X and Y relative to total tie-strength value of all neighbouring nodes N connected to X:

Tx,y =
wx,y∑C
i wx,i

(3)

Given this fraction of the influence from X to be passed to Y, the total amount of
influence received by Y at step i will be:

Ix,y = d ∗ Tx,y ∗ Ix(i) (4)

Where Ix(i) is the default influence energy on node X on iteration i and d is the
spreading factor to be chosen. The spreading factor d (between 0 and 1) represents
the amount of energy that a node will spread to their neighbours while retaining (1-d)
amount of energy. By initialising a high value of d, it is possible for a node to influence
other nodes that are further away in the network, while a low value restricts the influence
around their more immediate connections.

3.3.3 SPA Algorithm Stages

The process of the SPA relies on two main stages: initialisation and spreading.
Initialisation:

• Identify defaulters in network
• Initiate the default energy value on these nodes to 1
• Set the value of the spreading factor to be used
• Define a minimum default energy threshold a node must have to be active

Spreading steps:

1. Begin algorithm by finding active node seeds (nodes with default energy > threshold)
2. Diffuse the default energy to each neighbouring node using the transfer function

and spreading factor
3. Identify the new nodes that have sufficient default energy to be used as activation

nodes in next iteration
4. Repeat from step 2 until max iteration or there is no more activated nodes

Calculating new default energy levels for each loan applicant, ROC curves can be
generated to compare the performance of the technique versus alternative classification
methods.
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3.4 Traditional Classification

To provide a model applicable to any new loan application and as an alternative approach
to the spreading activation method, traditional classification methods are introduced. As
there is an absence of demographic variables for each subscriber, the models will rely
on communication features of an individual’s call and SMS log. To incorporate further
features, the network structure within each of these logs are also transformed through
feature engineering. In the context of a loan applicant’s social network, this featurisation
enables the log records to be split between the types of connections within the network
which is especially useful when we consider that a connection can be an existing in-app
user that has either defaulted or not defaulted on their loan. In this way, not only will
basic features of communication such as the total number of incoming communication
events be generated, but also the total number of incoming communication events from
a defaulter or a non-defaulter.

3.5 Feature Engineering

To overcome the issue of missing SMS logs that affect some users, the method used to
calculate tie-strength in Section 3.3.1 is applied where the SMS is equated to the price of
a call in seconds. Instead of having a separate feature for a call and for a SMS, the events
are combined to ensure that features passed to the classification models are complete.
For example, the count of outgoing SMS and calls are added together to create a count
of all outgoing communication events.

Within each loan applicant’s communication logs, the node on each log entry is de-
termined to be an external source or an in-app user based on whether the phone number
in the log entry exists within the user table in the database. In addition, a loan outcome
label is imputed onto the user-friend instance to enable more features to be defined by
whether the communication was between a defaulter or a non-defaulter in the network.

It is important to note that the definition of a defaulter in this situation is different
from the operational definition that labels a loan as defaulted if the loan remains unpaid
after 120 days from the loan start date. For this purpose, a loan is labelled as defaulted
if it remains unpaid after the initial loan period of 28 days expires. Such a reduced time
frame may seem overly harsh but this is done to provide more relevancy to the model as
waiting 120 days before labelling the loan outcome is subject to understate the default
status of the loan book on each day that a loan application is received.

Finally, the start time of a communication log is used to group each log entry into
three categories: weekday work hours (Mon-Fri: 08:00-17:30), weekday evening hours
(Mon-Fri: 17:30-08:00), and weekend days. The time of day or week that communication
takes place can be indicative of strong ties and Motahari et al. (2012) show that friends
and family are more likely to contact each other during the weekend or in the evening.
Since it is assumed that influence is more likely to exist between stronger ties, featurising
this information can add valuable information.

With this additional grouping information now part of a loan applicant’s communic-
ation logs, a number of local and network features can be generated, a subset of which
are shown in Table 3.

The generation of tie-strength features and the addition of the default absorption
features again borrow from the methodology of the spreading activation model. In this
application however, the tie-strength (both total and relative) are also calculated with
the feature splits between the type of connection and time of day/week.
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Usage
Features

Breakdown of Usage Features Normalised Usage Features

Number of communications
Number of communications during
weekday work time

Daily communications

Number of incoming/outgoing
communications

Number of
communications on weekday evening

Daily incoming/outgoing communications

Duration of communications
Duration of incoming/outgoing
communication on weekend

Daily duration of incoming/outgoing
communications

Duration of incoming/outgoing
communications

Daily communications during weekday
work time

Number of log days available

Network Features

Number of communications to a defaulter
Number of communications during
weekday work time to in-app user

Number of incoming/outgoing
communications to defaulter

Number of communications on weekday evening to in-app user

Duration of communications to
non-defaulter

Duration of incoming/outgoing
communication on weekend to defaulter

Tie-strength Features

Total tie strength directed Total tie strength directed to defaulter Relative tie strength directed to defaulter
Total tie strength undirected Total tie strength undirected to defaulter Relative tie strength undirected to defaulter

Total tie strength undirected on weekend
Total tie strength
undirected to defaulter on weekend

Relative tie strength undirected to defaulter on weekend

Default Energy Absorption

Default absorption directed Default absorption undirected

Table 2: Local and Network Features

Feature Set Group Content Number

1 Basic Usage features only 38
2 Connection Types Usage features and network features 149
3 Tie-strength Usage features, network features and tie-strength 213
4 Default Absorption Usage features, network features and default absorption 151
5 Every Feature Every available feature 215

Table 3: Feature set composition

Two extra features were added to the tabular classification data: directed and un-
directed default absorption from neighbour. Using the real time probability index from
the curves in Figure 3, an absorbed default value is calculated based on the tie-strength
and probability of default for each friend in a users communication log (provided a loan
exists for that user at the application date). This is a similar concept to the SPA except
the loan applicant is absorbing the default energy rather than being sent it. The default
energy absorbed by a loan applicant from their connection N, at application time t is:

N∑
i=1

w(x, i) ∗D(i, t) (5)

where w(x,i) represents the directed or undirected relative weight to connection i and
D(i,t) is the real time default value of the connection at the time of application.

With the complete set of features defined, five feature sets were compiled in order of
easiest to most difficult to set up and each then used in training the classification models
in order to test the benefit in adding both complexity and information (see Table 3).

3.6 Probability of Default Curves

Historical loans were also used to generate default probabilities based on whether any
payment was received from the loan recipient by a certain day since the loan was drawn
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Days from beginning of loan to first payment
>= 0 >=7 >=14 >=21 >=28 >=35 >=42

Loan Outcome Default 6981 6927 6828 6777 6741 6676 6621
Repaid 31320 22718 15071 11058 7943 4712 3322

Total observed outcomes 38301 29645 21899 17835 14684 11388 9943
P(D|first payment >X days) 18.2% 23.4% 31.2% 38.0% 45.9% 58.6% 66.6%

Table 4: Probability of default given the number of days to first loan repayment

down. Table 4 shows an example of this calculation across different intervals of days to
first loan repayment received. What is interesting to note is that when a borrower has
paid nothing by day 14, they carry a risk of default of 31.2% and this risk only increases
as day from the start of the loan increases.

In order to make this information accessible to the analysis, daily probability curves
are generated using only the information available in the system up to that point in time.
This ensures that the probability of default passed to any model is dependent on the
knowledge known at that moment so loans that have an observed outcome up to that
date are the only consideration (so effectively a loan must have existed for > 120 days by
that date). Figure 3 illustrates how the probability curves evolve as time move forward
and more loan outcomes become available. Shown are four dates since the company
first approved a loan. Date 1 relates to a date on which no observed loan outcome was
available, hence the probability is 0%, whereas Date 4 is associated to a more recent day
for which the full sample of loan outcomes are available.

Figure 3: Probability of default given no payment received by day X

4 Implementation

In this section, the experimental setup is described along with the various models that
were implemented to test each experiment.

4.1 Experimental Design

Aside from the overall objective of improving default prediction, another concern of the
microfinancing company is that users who default on their loans are an influencing factor
for defaults observed on future loan users. The model proposed to predict such an effect
is the SPA method. For a loan instance to be considered using this model however, there
is a prerequisite that must be passed which is that:

• At the time a user applies for a loan, they are present within an existing loan user’s
communication logs. Since the SPA method spreads influence from node X to Y,
node Y can only receive influence if they exist in node X’s network.
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Loan Count Default Rate
Training Test Total Training Test Total

Influencer Loans 2165 927 3092 17.1% 17.2% 17.1%
Standard Loans 9639 4130 13769 13.1% 13.1% 13.1%

All Loans 11804 5057 16861 13.8% 13.8% 13.8%

Table 5: Loan size and default rates for sample sets

Of the 16,861 loans available for analysis, only 3,092 loans satisfy this condition. Three
samples of loans are therefore considered, sample set A which are composed of 3,092 loan
which will be labelled as “Influencer Loans”, sample set B containing 13,769 which will
be labelled as “Standard Loans” and sample set C which will be labelled as “All Loans”
and contains all 16,861 loans.

For each sample, 70% was used as the training set and 30% used as the test set. The
split was applied using stratified sampling. Stratified sampling is used since there is a
moderate imbalance of the target default class to ensure that the proportion of defaults
between each set remain the same. The train and test sets for the “All Loans” sample
set are created from the train and test splits that are made for “Influencer Loans” and
“Standard Loans” to ensure consistency. To train the classification models 10-fold cross
validation with stratified sampling for the folds on the 70% training set was used. The
size and default characteristics of each of these sample sets is shown in Table 5. To label
the classes for train and testing, the operational definition of default is used so that a
loan is defaulted if it is not fully paid by 120 days from the draw down date.

4.1.1 Analysis of SPA versus Classification Algorithms

To test whether the SPA model provides a more effective method to predict a loan default
based on influence spread from social network connection, the “Influencer Loans” sample
set is used. The default energy output from the SPA models for the training set loans
are used to tune an optimal threshold value to class the loan as default or non-default.
This threshold value is then applied to the test set to measure the models performance.
For the Classification algorithms, 10-fold cross validation is applied on the training set
and the optimal models are then tested to evaluate their performance. The performance
results of the SPA models are then compared to the classification algorithms.

4.1.2 Analysis of a Single Model or Combined Models

To build and evaluate a general model using a loan applicant’s communication logs, the
analysis is designed to test whether a classification model trained on the “All Loans”
data performs better than two separate models, independently trained on the “Influen-
cer Loans” and “Standard Loans” subsets. This is to determine if there are potential
characteristics within each subset that may be better served with an independent model.

4.1.3 Analysis of the Benefit from Network Features

As a follow on to the general classification model evaluation, all of the classification models
are trained on each of the feature sets from Table 3 to determine how the performance
of models benefit from adding extra features with emphasis on network features such as
tie-strengths between individuals from a users social graph.
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4.2 SPA Models

There are many variations of model setup that can be explored with the SPA method.
The relative tie-strengths can be directed or undirected, the spreading factor d can take
any value between 0 and 1, any value of max iterations can be set and for this application
three methods of node activation energy can be used to impute values upon initialisation
of the model (outlined in Section 4.2.2). For the spreading factor d, values incremented at
10% intervals are applied and models with the max iterations parameter set as 1, 2, and
3 are also used. Using all parameter value combinations a total of 162 SPA models were
built and applied to the communication networks of each loan applicant in the sample.

4.2.1 Communication Networks

The communication networks of a loan applicant are created to incorporate a community
depth of 2. This means influence can be spread to the loan applicant from an immediate
friend, and from a friend of an immediate friend. The max iteration parameter values
were selected to support this network depth where in the case of an iteration value of 3,
influence can reach the loan applicant by spreading through three edges in the network.

4.2.2 Activation Energy

In the initialisation phase in section 3.3.3 it was stated that the energy value for identified
defaulters gets set to 1. In doing so, this inputs the default information into the network to
be propagated. For this analysis, three states of default are considered for this activation:
operational, fixed-value and real-time. The rational in doing so is to analyse how the
introduction of different default definitions affect the model performance.

The operational default state is simply the definition used by the company to label
a defaulter which occurs if the loan remains unpaid beyond 120 days. The fixed-value
default state is similar to the operational except that it labels the loan as defaulted if it
is unpaid beyond 28 days which is the original loan term length. The real-time default
state imputes a probability of default on each node based on the status of their loan on
the loan creation date for the new applicant being assessed (see Figure 3). Figure 4, 5
and 6 illustrate these three states and it can be seen that in the real-time state, all nodes
contain some degree of default probability.

Figure 4: Activation using op-
erational default

Figure 5: Activation using
fixed-value default

Figure 6: Activation using
fixed-value default

4.3 Classification models used

A number of supervised machine learning algorithms were trained and evaluated. These
included logistic regression, logistic regression with lasso regularisation, decision trees,
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random forests, neural networks and support vector machines (with radial based function
(RBF), polynomial and linear kernel although only the RBF provides reasonable results).
The caret package in R was used to tune the parameters of each algorithm.

Although the black box algorithms of NNs, SVMs and random forests suffer from
opaqueness issues and restrict the understanding about how an instance is classified,
they can be top performers (Cubiles-De-La-Vega et al., 2013; Blanco et al., 2013).

4.4 Performance Measurement

To evaluate the performance of each model, two metrics are considered. Since there is
moderate imbalance in the target variable (17% default rate), classification accuracy is not
suitable as the performance of the model on the non-default level is likely to overwhelm
the overall performance. Instead the true positive rate (TPR) and the false positive rate
(FPR) are used to generate ROC plots for each model with the area under the curve
(AUC) providing a comparative metric for how well each model can correctly predict
true instances of default without misclassifying good loans.

The second metric of model performance is the potential profitability of the model
predictions where both the cumulative profit and the return on investment (ROI) is
measured. This is calculated by associating the loans predicted as non-defaulters by
the model (true negatives and false negatives) to the profit/loss realised when a loan is
approved to a non-defaulter and defaulter. For example, the profit of each good loan is
equal to the interest rate charged which is 15% while the loss incurred is equivalent to
the value of the loan itself which is 100%. Therefore the total profit of the model is given
by:

Profit = 0.15% ∗ TN − 1 ∗ FN (6)

and the return on investment given by:

ROI =
Profit

TN + FN
(7)

5 Evaluation

In this section, the results of the implementation scenarios presented in Section 4 are
evaluated. As indicated, the performance of the models are analysed with respect to the
AUC and also from a business operational point of view, using profit and ROI.

5.1 Evaluation of SPA versus Classification Algorithms

The first question of interest was to determine if the spreading activation model provided
a more effective solution than traditional classification methods in predicting defaulters
by exploiting the underlying communication network that a loan applicant exists in.

The top 5 best performing models in order of overall cumulative profit is shown
in Table 6 along with the two best SPA models. Between the relational model and
classification algorithms trained and tested, the traditional methods of feeding tabular
data into classification models result in better performing models. The random forest
trained on the communication features along with the added tie-strength features provides
the highest AUC of 0.75 along with maximum profit equating to the monetary value of
38.9 loans out of 497 approved (loan approval rate of 54%). From a business operational
point of view, depending on capital resource/availability, the random forest classifier
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Feature
Set

Algorithm AUC
Max
Profit

Loans
Approved

% Loans
Approved

ROI

3 RF 0.7503 38.9 497 53.6% 7.8%
5 RF 0.7382 37.25 555 59.9% 6.7%
4 RF 0.7314 35.65 345 37.2% 10.3%
1 RF 0.7238 34.9 432 46.6% 8.1%
2 RF 0.7257 33.2 482 52.0% 6.9%

SPA 0.5544 0 0 0.0% 0.0%
SPA 0.5535 0 0 0.0% 0.0%

Table 6: Top classification algorithms for 3092 subset of loans meeting criteria for SPA

trained on the feature set that includes the default absorption predictor variables is also
worthy of consideration given a higher return on investment (ROI) of 10.3% on a lower
loan approval count (less capital required).

The spreading activation models do not perform well. Of the SPA models tested, the
maximum AUC is 0.554 which is barely better than a toss of a coin. The best performing
model used the fixed-value default activation energy, with two transfer iterations and
undirected tie-strength. The spreading factor for this model also proved insignificant as
any value on this model parameter provided almost the same outcome. In terms of profit,
there is nothing to be gained with a 0% return only possible by effectively taking a “do
nothing” approach and classifying all loans as default.

Using the real-time default value as the initial node activation also performs quite
similarly with an AUC of 0.553. The model used just one transfer iteration and directed
tie-strength with a spreading factor of 20% or 30%. While the result is only marginally
lower than the best SPA model, it is somewhat surprising that the real-time default
probability did not have a more positive impact than the fixed-value given it was providing
default energy to all nodes in the relational model.

A possible reason for this is the fact that the probability values imputed on the
nodes are dependent on loans that were drawn down 120 days previously, so it is quite
reasonable to assume that the information did not reflect the current state. This is hinted
at in Figure 3 which shows how the shape of the default probability curve steepens as
time moves on. What this effectively means is that the imputed probabilities applied on
the network of a loan application at time T in the SPA model are lower than the actual
effective value at that time T. The fixed-value on the other hand labels an existing loan as
default if it is still unpaid at the end of the original loan term of 28 days so it potentially
adds information more reflective of the actual state.

Looking at Figure 7 it is interesting to note the profit value at a probability threshold
of 100%. This effectively indicates the outcome of the current regime where every loan
is indiscriminately approved - so any profit value above this point is representative of
improvement. Although the SPA model does indeed provide some benefit in this regard
(and also relative to the random forest model at some points), it sill leads to negative
profit so it is not a model that should be recommended within this analysis.
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Sample=5057 Single Model Combination of Models
Feature
Set

Model AUC
Max
Profit

Loans
Approved

% Loans
Approved

ROI AUC
Max
Profit

Loans
Approved

% Loans
Approved

ROI

3 RF 0.7548 282.60 3402 67.3% 8.3% 0.7503 273.40 3126 61.82% 8.7%
5 RF 0.7551 280.00 3446 68.1% 8.1% 0.7438 268.75 3003 59.38% 8.9%
2 RF 0.7558 273.35 3463 68.5% 7.9% 0.7337 264.30 3004 59.40% 8.8%
1 RF 0.7492 263.35 3289 65.0% 8.0% 0.7373 268.20 3007 59.46% 8.9%
4 RF 0.7487 268.10 2968 58.7% 9.0% 0.7371 259.15 2686 53.11% 9.6%
1 Nnet 0.7113 259.50 2811 55.6% 9.2% 0.5960 155.55 2210 43.70% 7.0%
4 Nnet 0.7038 252.65 2727 53.9% 9.3% 0.5915 192.10 2377 47.00% 8.1%
3 GLM net 0.7207 246.15 2768 54.7% 8.9% 0.7209 239.65 2671 52.82% 9.0%
2 Nnet 0.7158 244.65 2666 52.7% 9.2% 0.6089 193.95 2420 47.85% 8.0%
2 GLM net 0.7290 243.25 2764 54.7% 8.8% 0.6950 237.85 2498 49.40% 9.5%

Table 7: Top results comparison between single and combination models

Figure 7: ROC Plots and Profit: Best classification model versus best SPA model

5.2 Evaluation of a Single Model or Combined Models

Through the applied methodology the data set was split into three loan sample sets:
“Influencer Loans”, “Standard Loans” and “All Loans”. As the SPA models in section
5.1 underperform the traditional algorithms and provide no operational benefit, they are
discounted from this stage of the analysis. Although it might be preferable to consider a
single model, we evaluate the performance of a classification model trained on all of the
loans and compare this against the outcome of two independent classifiers trained on the
“Influencer” and “Standard” loan samples. It is possible that the characteristics of these
samples has some degree of uniqueness and may be better served by individual models.

Only the top 10 model comparisons are presented in Table 7 and although the ran-
dom forests dominate the results, note that neural nets and logistic regression with lasso
regularisation do perform admirably and generally offer higher ROI than many of the
random forest alternatives. Overall, the single model implementation outperforms the
combination of models. From an academic point of view the preferred model is more
commonly measured using AUC which would indicate the random forest trained on fea-
ture set 2 (includes usage features and network features) as the marginally better model
with an AUC of 0.7558, but from a business perspective the random forest that includes
tie-strength features results in the highest profit with a monetary value of 282.6 loans
through acceptance of 67.3% of the sample test loans.

Considering that capital resource may be an important consideration for the business,
the ROI may be a more central measurement of model performance in which case the
combination of models could offer more flexible benefit. A random forest model training
individually on each loan sample set including the default absorption features has the
potential to achieve a ROI of 9.6%. What this is effectively telling us is that for every

15



Prediction
Group

Trained
Model

AUC
Max
Profit

Loans
Approved

% Loans
Approved

ROI

Influencer Single 0.7275 34.05 549 59.2% 6.2%
Influencer 0.7351 38.90 497 53.6% 7.8%

Standard Single 0.7584 248.55 2853 69.1% 8.7%
Standard 0.7503 234.50 2629 63.7% 8.9%

Table 8: Overall comparison between single model and subset model predicting specific subset

100 loans approved and disbursed by the company, the value of 109.6 loans are returned.
Considering the top profit random forest model, Figures 8, 9 and Table 8 show ROC

and profit plots comparing the performance between the single model and each model
trained on the “Influencer” and “Standard” subsets respectively. In both cases the pre-
dicted results of the single model are only related to the relevant test subsets so we get
a better understanding as to where the single model outperforms the individual builds.

Figure 8: ROC Plots and Profit: Single model versus model trained on “Influencer” subset

In Figure 8 it is actually the model trained solely on the “Influencer” subset that
delivers better performance than the single model. Although the difference is only mar-
ginally beneficial, it does suggests that this special cohort of loan applicants who know
existing borrowers have different characteristics than the overall sample and are better
classified using an independently trained model. The main victory is against the “Stand-
ard” subset model which likely indicates that the single model was able to use patterns
from the “Influencer” subset that allowed it improve its generalisation. With this result,
an optimal strategy for the company to consider deploying would be to utilise both ap-
proaches, where two models are trained, one on the “Influencer” subsets and one on the
complete subset (to attain better generalisation). The “Influencer” model would be used
to predict the smaller subset of loans while the main model would classify all others.

Figure 9: ROC Plots and Profit: Single model versus model trained on “Standard” subset
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5.3 Evaluation of the Benefit from Network Features

As an aside to the overall model development, different feature sets of varying properties
were also used to train the model to assess the impact of their inclusion. The result of
this analysis is based on the single model approach.

Considering the AUC in Figure 10, the performance of the random forest, GLM net,
and SVM radial models are relatively stable with different feature set properties. The
GLM logistc regression model on the other hand shows a significant drop in performance
when tie-strength features are added. This is very likely caused by multicollinearity
between tie-strength features and usage features given they are a dependent function.

Figure 10: Comparison of AUC on single model using each feature set

Looking closer at Figure 11 the AUC is improved in the random forest model by
adding both network features and tie-strength features. Taking the model profit into
account the addition of the tie-strength features increases profit by 7% from a monetary
value of 263.35 loans using the basic features to 282.6. Seeing how much the network
features improve performance is a welcome result and ties in with existing research in
churn prediction. With respect to the research question, adding the tie-strength features
does improve performance but it is model dependent. Logistic regression was negatively
affected but training a model on these features only many prove more reliable and is
something that can be looked at going forward.

Figure 11: Comparison of AUC and profit on random forest using each feature set
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6 Conclusion and Future Work

The objectives of this research had three primary questions to answer. First was to
introduce a relational learning method and determine if it was better in default prediction
over traditional classification methods. While results indicate that the predictions from
the spreading activation model are generally inferior to the classification algorithms and
do not offer meaningful operational benefit to the company, only one of many relational
learner methods was tested. Given that network sparsity may also have a part to play in
the poor results, future work could introduce other relational learners such as a network-
only link based classifier when a denser sample set of loans are available. Additionally,
researching various transfer functions may yield more promising findings. Only a single
function was used in this analysis based on linear edge weight transfer. Introducing non-
linear edge weights would effectively penalise weak connections and buffer the influence of
strong ties. Another element that could be considered going forward is how featurising the
score from the SPA method and adding it to a classification model improves performance.

The second central question was to understand whether classification models depend-
ent on communication data could effectively predict defaulters. To provide a compre-
hensive answer to this, three different data subsets were used to train the models to
understand if particular cohorts of loan applicants were better classified using independ-
ent models. The findings were interesting in this regard. While a single random forest
model does provide the best AUC and profit when compared with the combination of a
model trained separately on the “Influencer” and “General” loan subsets, it is shown that
the model from the “Influencer” subset should be considered as a stand alone classifier
in the operational process.

Finally, the various feature sets generated from communication logs were used to train
several classifiers to analyse their benefit. Of most interest was tie-strength features and it
was found that their addition mostly had a positive impact on performance, particularly
on the random forest algorithm which realised a 7% increase in overall profit compared
with a model dependent only on basic usage features. This result provides evidence
that social network information is a very valuable asset. It supports findings in the P2P
lending where such data improved P2P loan prediction but in this presented research, as
the social data is from a user’s call and SMS logs, the measure of tie-strength is more
objective and less prone to user fabrication, thus adds more legitimacy to the results.

Based on these findings, further work could look at better refinement of the tie-
strength measurement. A linear combination of call duration and SMS counts were
used to calculate tie-strength but introducing extra data sources to this measurement
may improve results further. For example, adding context to the relationship by using
similarity of interests was initially considered for this research by comparing the overlap
of downloaded apps between two users. However, this data proved too sparse at the time
of research but in the future it is certainly something that should be considered.
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