~

N\ National
College
Ireland

Investigating the Effect of Garbage Collection
on QoS of Multitenant PaaS Clouds

MSc Research Project
Cloud Computing

Nikhil Kumar Satish Kumar Sharma
x17110513

School of Computing
National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland . National

Project Submission Sheet — 2017/2018 College of
School of Computing Ireland
Student Name: Nikhil Kumar Satish Kumar Sharma
Student ID: x17110513
Programme: Cloud Computing
Year: 2017
Module: MSc Research Project
Lecturer: Vikas Sahni
Submission Due | 13/08/2018
Date:
Project Title: Investigating the Effect of Garbage Collection on QoS of Mul-
titenant PaaS Clouds
Word Count: 4473

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 16th September 2018

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.

3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if
applicable):

Investigating the Effect of Garbage Collection on QoS
of Multitenant PaaS Clouds

Nikhil Kumar Satish Kumar Sharma
x17110513
MSc Research Project in Cloud Computing

16th September 2018

Abstract

A PaaS Cloud is expected to provide an environment for users to install and de-
ploy the application in which each tenant is isolated from co-tenants and one tenant
is not allowed to interfere with the performance of the co-tenants by over-utilizing
of hardware resources. PaaS tenants most often run on shared Virtual machines or
physical nodes whose performance is dependent on the underlying resource limita-
tions as well as the actions performed by other tenants. The cloud service provider
is expected to maintain certain Quality of Service (QoS) as per the SLAs. PaaS
cloud services are implemented in high-level languages like Java which provide fea-
tures for automatic memory management policies such as Garbage Collection (GC)
which can affect the QoS. The language runtime implements various policies and
algorithm to conduct a GC which can hamper the servers ability to maintain accep-
ted levels of QoS. This paper attempts to investigate which GC policies performs
best and has lowest interference in a PaaS cloud environment.

1 Introduction

Platform as a service (PaaS) a cloud-based service model that forms a abstraction of the
application stack level functions such as runtime, frameworks, build packs and middleware
together to form a service. It thus provides a platform for developers or tenants to
deploy the application Kavis| (2014). For example, PaaS provide solution and services
like caching, asynchronous messaging, scaling that a developer can focus on building the
business logic. The tenants have control over the deployed applications and is less concern
over cost and management of the underlying infrastructure. The major cloud based PaaS
providers include IBM Cloud, Heroku by Salesforce , Red Hat Openshift, Amazon Elastic
Beanstalk, Microsoft Azure and Google App engine as discussed by [Patros et al.| (2016).

Multitenancy empowers computing resources to be shared between multiple tenants
and is core feature of cloud computing. The tenants execute their application on cloud
assuming to hold the resources discretely. According to [Patros et al. (2015)) resource
sharing according to cloud computing principles mentioned by [Kavis (2014) each ten-
ant should be isolated from co-tenants in a way they do not over consume each others
resources. Tenants presume that the resources are unlimited in cloud allowing them scal-
ing up compute, memory and storage but in a public cloud the resources are shared, and
performance is dependent on resources allocated and resource utilization of other tenants.

PaaS cloud services are implemented on platforms such as Cloud Foundry which
support high-level languages like Java, GO. C# and ruby, which provide an automatic
memory management features and policies, also known as Garbage Collection (GC). The
Cloud service provider ideally should maintain a Quality of Service (QoS) for performance
as per the Service level objectives, otherwise can lead to nancial penalties as discussed in
He et al.| (2014)). According to Jones et al.|(2016) GC is potentially a high computational
task and can interfere with the JVM ability to function optimally thereby affect servers
ability maintain its accepted level of QoS. A complete GC can completely pause/stop
the threads request handling from time to time free up memory. Thus, measuring the
impact GC policies have on various applications, runtime and tenants in multi-tenant
PaaS environment is crucial.

According to Patros, Kent and Dawson| (2017)) in a production applications deployed in
PaaS, has conducted research on various resource interference and scaling in PaaSPatros
et al.| (2016]). This paper further attempts to research on stressing the GC component of
the runtime in a direct and controllable way. Thus, proposal to implement and extend
a congurable PaaS application framework that aims in stressing the GC component of
the underlying runtime by capturing and evaluating the GC stats. The investigation
will experimentally evaluate the performance of the four GC policies (Gencon, Balanced,
Optavgpause and Optthroughput) available in the IBM J9 Java runtime in a multitenant
environment specially IBM Cloud based on Cloud Foundry services. It will evaluate based
on the test results, which GC policy incurs the lowest impact to co-located tenants and
benchmark, identify the best policy to maintain QoS.

2 Literature Review

2.1 Multitenancy on PaaS Cloud

Multitenancy allows resources to be shared between tenants and helps to reduce cost, im-
prove hardware resources and energy as discussed by Rimal et al.|(2009). In a multitenant
environment one tenant ideally should not be allowed to read or modify data of another
tenant. Also, tenants should not be allowed to take over consume resources such a CPU
and memory that would hamper the performance of other applications. Platform as a
Service (PaaS) is a type of Cloud Computing service model which provides a platform
for the applications to be developed and run by eliminating the dependencies required
for creating infrastructure and maintenance as mentioned by Kavis (2014]). Cloud ser-
vice providers offer a SLA for the services, wherein inability to maintain it could lead to
financial penalties. Thus, as mentioned by |Patros, Dilli, Kent and Dawson| (2017) cloud
services providers need to maintain the QQOS mentioned in the SLA. The investigation on
resource interference and scaling in a multitenant PaaS environment has been conducted
by [Patros et al.| (2016]) which would be discussed futher.

2.1.1 Benchmarking Cloud Tenants

Benchmarking is critical in evaluating the questions raised in concern with the perform-
ance interference, scaling and location of the tenant in a standardized manner. Thus,
Patros et al. (2016|) implemented cloud burners which replicates the behavior of cloud
tenants. It selects each resource such as CPU, cache, resident memory, network 1/0,
disk I/O which is stress loaded which starves other tenants from those resources impact-
ing performance. The Cloud burner which is a Java EE application was successful in
targeting selected hardware resources whereby all the test registering cache misses. The
testing methodology was looped for duration of 120 seconds for each resource, the burner
is thus capable of targeting the resource it intends to. Thus, it can be used to evaluate
the performance interference in between cloud tenants in a structural manner as it can
explicitly measure and target consumption of the independent resources as demonstrated
by [Patros et al.| (2016).

2.1.2 Resource Interference and Scaling using Cloud Burners

Patros et al.| (2016), by using the Cloud Burner which was discussed above, propose a
plan to evaluate the performance interference between cloud tenants for profiling the
application based on resourced based slowdown analysis. Additionally, scaling the CPU
for tenants on same VM was performed which showed no significance effect on its per-
formance while scaling out in the case of multiple VM it was found that CPU intensive
tenants have performance interference on cotenants. The paper did not highlight resource
targeting for databases which would be detrimental for application profiling in cloud that
can lead to interference’s.

2.2 Java Virtual Machine Isolation

Java Virtual Machine (JVM) which is a part of Java Runtime Environment (JRE),
provides platform independence making it portable to run on any hardware or machine
with a JRE, as described by founders of JVM |Lindholm et al| (2014)), it is also used
in containers build packs for running Java applications on cloud. JVM provides tenant
isolation on a single JVM because of Java specifications class loaders feature for partial
security isolation. The tenants in JVM are isolated in way that one tenant is locked to
read or write object of another tenant unless explicit reference to the objects are spe-
cified. The Java classes having similar class name shared between multiple tenants does
not cause any interference due to the way in which Java class loaders are designed. There
would not be any obscurity as long as every tenant has references to its own class loader
as disused in the paper by [Patros et al. (2015). Apart from the benefits, the drawback
of the JVM isolation would be further discussed.

In Java Enterprise Edition an Enterprise Archive (EAR) is used for mapping multiple
components into a single component providing a feature for Java class library files (JCL)
to be loaded by system class loader that implies there is no separation even with different
class loaders. [Patros et al.| (2015) discussed in order to increasing sharing, the tenants
could use a common JCL, but this could lead to another issue allowing modification of
static fields which is violation of multitenancy isolation required. The above implications
can cause deadlocks and lock contentions on common class objects. Thus, apart from
providing security isolation, performance isolation and resource isolation is not provided
by JVM. A tenant inside the sharing the same JVM could over utilize resources explicitly
as discussed by |Patros et al.| (2016) and also crashing of one tenant could recursively
impact all the tenants sharing the JVM due to interference.

2.2.1 Mulititenant Runtime as a Service:

Runtime as a Service provided by IBMs JVM solves the issues related to tenant sharing
and isolation. In RaaS configuration is made to store the static fields and respective
monitors related to each tenant. In a Application server the memory implication can be
divided into three parts namely the memory required for Java run time i.e. the heap
memory, memory required to run the underline OS and VM, and lastly memory required
by tenant applications. To save and optimize memory utilization for usage of application
server a new theoretical model is proposed by [Patros et al| (2015) namely Application
Server as a Service (ASaaS). By sharing application data between tenants using existing
RaaS, a tenant isolation can be achieved using ASaaS. The memory footprint is drastically
reduced by 36% compared to 60% in RaaS model when multiple tenants are considered
but the drawback is that there is 10% decrease in memory footprint for data intensive
tasks. While signification saving in memory is proposed by this model but the implications
of Automatic memory management such as GC was not considered which could impact
throughput and response time of the services.

2.3 Garbage Collection
2.3.1 JVM tunning and Heap allocation

The heap allocated to the JVM instance is shared by all the application threads installed
on top of it. The heap allocation is initiated right after JVM instance is started that is
used by objects allocation for automatic memory management. The automatic memory
management policies are not presumed but chosen depends on the behavior of the ap-
plication. The default JVM configuration is good for application lower users count and
memory footprint but the JVM needs to tweaked for as the needs increases. The JVM
allows runtime configuration to be configured in an application server wherein initial and
max heap can be specified, whenever those values are modified the JVM instance needs
to be restarted for allocation of new heap size. This type of heap allocation posses a
threat when application needs exceed the heap allocation during runtime for execution,
slowing down resources and a OutOfMemory error is thrown as mentioned by |Jones et al.
(2016]).

2.3.2 Garbage Collection and Performance tuning

The JVM heap size consists of two parts: growth size of heap and time required for
Garbage Collection (GC). Garbage collection in a JVM clears the unused objects and
allocations space for new objects to be stored and retrieved by the application. Thus
GC in Java destroys the objects which are not in use by running continuously in the
background, thus it can be said that goal of garbage collector is to destroy the objects
which are not reachable as discussed by Bruno and Ferreira (2018]). According to [Jones
et al| (2016)) the GC polices need to be optimized for various scenarios, for example a
GC overhead is greater that 10 % then policy has to be changed. A GC occupancy
of more that 75 % can lead to high GC cycles and a occupancy less than 40 % means
longer garbage collection cycles which generally may impact the performance. An out of
memory exception means the heap size is too small to hold the objects and the heap size
has to be increased such as Minimum heap size (-Xms) and Maximum heap size (-Xmx).

GC configuration can help to improve the health and performance of application
running in a server, the JVM arguments and policies thus play a detrimental part for
profiling Java application. [Jones et al.| (2016)) in his book says that GC is often resource
intensive as it needs to move objects graphs of the threads and evaluate the objects to
be deleted from the heap. |Patros, Kent and Dawson| (2017) describes GC has ability to
hamper the QoS defined by the SLAs. This could thus , also impact other cotenants in
multitenant environment as complete GC could stop or slow down the all the threads
execution to clean objects and heap space.

2.4 CloudGC : A need for GC benchmarking

Patros, Kent and Dawson (2017)) highlights need to investigated the problem of Ser-
vice level objectives satisfaction on cloud services due to GC. Previous benchmarks on

Service oriented Java EE that include Cloud store by |Lehrig et al. (2018]), other Java
benchmarks such as by Baylor et al.| (2000) and Cloud burners which was previously dis-
cussed formulated by [Patros et al. (2016) which focuses on specific hardware resources do
not explicitly focus or target on GC component of the runtime as highlighted by [Patros,
Kent and Dawson (2017). Thus, a proposal is made to implement CloudGC which PaaS
application framework with ability to be configurable that stresses on GC component of
the runtime.

Patros, Kent and Dawson (2017) implements this CloudGC to evaluate four GC
policies found in IBM J9 runtime namely by Bailey et al.| (2011) and Sciampacone et al.
(2011):

e Gencon
e Balanced
e Optavgpause

e Optthroughput.

Configurations and
Policies Recommeded Usage Implementation Heap Tunning
Throughput (batch
applictions

Xgcpolicy:optthruput
XgcThreads
Xms(initiliaztion Size)-
Xmx(Maximum heap
size

Application is optimized for Global Mark and
optthruput throughput rather than Sweep Garbage Flat
short GC paused Collection.

Pause Time problems are
not evident

Xgcpolicy:optavgpause
Concurrent Mark and Reduced pause XgcThreads
Sweep times Xms(initiliaztion Size)-
Xmx(Maximum heap

optavgpause reduced pause times

transactional wrokloads
Losts of physical memeory

. . Xgcpolicy:gencon
is required

Throughput and Small Splitinto nursery XgcThreads
pause times and tenure area Xms(initiliaztion Size)-
Xmx(Maximum heap

gencon
There is netincreae in
memory usage when
migrating to gencon
Optimized for Larger heaps

> 4GB Xgcpolicy:balanced

Global Mark Phase Region-based XgcThreads
(GMP) layout Xms(initiliaztion Size)-
Xmx(Maximum heap

balanced
Frequest global garbage
Collections

Figure 1: GC Policies Comparison Bailey et al.| (2011)) and [Sciampacone et al.| (2011)

Patros, Kent and Dawson| (2017)) implemented a GC focused benchmarking tool which
was deployed on PaaS cloud platform cloud foundry that investigate the four GC polices
in local and isolated environment. The configuration settings CLoud GC offered para-
meters to be configured during the runtime. Thus, implementation provides room for
broad number of configurations. The captured inputs such throughput and response
time metrics, were processed afterwards to get the results. Apart from the GC stress-
ing the paper does not consider performance impact through resource interference and
scaling, and other tenants as it could largely effect the results of investigation.

3 Methodology

The PaaS cloud services provide run-times and build packs for running cloud based ap-
plication, one such offering used by most cloud providers is based on Cloud Foundry
Foundations. As discussed by [Patros et al| (2016)), various hardware resources that are
shared by multiple tenants are shared by multiple tenants and interference can slow down
other tenants sharing those resources. Apart from various hardware resource [Patros, Kent
and Dawson (2017)) highlights lack of GC bench-marking tool for PaaS cloud which ex-
clusively targets all the GC resource as it can halt services when a GC occurs. Thus,
identifying GC policies, Optimized parameters such as heap size is critical in cloud en-
vironment.

In this Research Project, the work done by [Patros, Kent and Dawson| (2017)) is further
extended to benchmark GC components on public cloud offerings like IBM cloud as the
previous research was performed on an isolated and local instance of Cloud Foundry with
liberty build pack. This project captures the used heap, average response time in seconds,
throughput and GC stats. It captures and analzyes heap size, pause times, heap before
and after collection, sweep time. The GC stats are further extended to be captured
by Python script and stored locally whenever the stats are updated. This will help to
capture and analyze additional GC components such GC policy, GC Collection Count,
GC Collection time.

3.1 IBM Cloud and Cloud foundry

IBM Cloud provides a catalogue of services on PaaS platform build on its value-added
distribution of Cloud Foundry services to provide build packs of all major runtimes in-
cluding liberty build pack of Java as discussed in Bernstein| (2014)). It provides compute
resources along with application servers as a PaaS service. This allows applications to
be quickly deployed on a public cloud with application management features included.
Considering the Java EE runtime offering IBM cloud becomes ideal for benchmarking
Cloud GC application as it is built on the IBM JVM runtime J9. IBM also provide a
single tenant based Bare Metal server for HPC and /O intensive tasks and workloads as
disscsueed in Kim et al.| (2016).

3.1.1 IBM WebSphere Application Server on Cloud

IBM WAS liberty core plan, IBM WebSphere Base plan, IBM WebSphere ND plan to
provide customizable and full feature Application server. A single instance of WAS Base
plan with 4096 MB main memory and 2 virtual CPUs is allocated. The Application server
consists of a configurable profile hosting the JVM to run installed applications on top of
it. For the Cloud GC application to run heap values are defined in the general properties
of the JVM with Initial Heap size set to 2048 mb and Maximum heap size set to 80%
of the host machine i.e. 3276 mb. The generic JVM arguments are used to specify the
policy for GC, by default a global policy gencon is used by the application server. The
Application server comes with a Integrated Solutions control where the configurations

is made and war file of application is deployed. The application server consists of only
single application Cloud GC running and installed to avoid any interference from other
applications.

OpenVPN is used to connect to the Integrated console of WebSphere and Host VM
through Putty using SSH connection, A VPN connection is established between local
machine and IBM cloud for security and servers cannot be accessed from outside with
it. IBM cloud provides a feature for Public IP to be assigned to the host machine,
after requesting the public IP the access status is kept open for it to be mapped with
host-machine. This public I[P can also be mapped to a DNS server. The Application is
accessible using a Public IP after configuring the Endpoint of HT'TP inbound requests in
WebSphere Application server.

3.2 Load Test Plan using Apache JMeter

Apache JMeter is used to load test the functional behavior of the Java EE application,
here it used to create a load of Number of Threads (users): 1,8 and 64 with a Ramp-
Period (in seconds) of 2,16 and 128 seconds which means after every 2 seconds 1 thread
is started. The Loop count is set forever, and the scheduler is enabled with scheduler
configuration to set Duration (seconds) as 300s, a start up delay is set to 10 seconds
before the test plan executes. A HTTP Request is sent to the webserver with the host
IP address of the IBM cloud machine running on Red Hat linux and application server
with default host 9080 hosting the application services. The HTTP request is send using
POST method here on the path /GrapAction to stress test which generates the HTTP
Servlet Request and Response recursively. A HTTP default request is also sent to the
root directory of the application over the same port and hostname for each instance in
this case JVM instance server on IBM WebSphere Application Server Base Edition.

3.3 GC Benchmarking Framework

Cloud GC is Java EE application created to be run on PaaS cloud environment specially
for IBM bluemix Runtime. It can configure various GC parameters to reproduce GC
patterns on the runtime. This can useful for performing load tests on runtime, various
GC policies like Gencon, Balanced, Optavgpause, Optthroughput of IBM JVM, Applic-
ation performance, this can be useful it terms of research and benchmarking enterprise
application on cloud. Apache JMeter is used to stress test the environment, it can be
configured as to replicate the real world scenario creating standard test cases. It can
highlight the GC component of runtime which would determine the performance of the
policies having the lowest impact in public cloud thereby having lowest impact on other
tenants.

Cloud GC consists of and Initialization component which initializes the GC paramet-
ers, the initialized values can be used to start and benchmark the GC component. The
object graphs used by GC are displayed using a graph. The servlets are exposed for
request initialization of graph using a HT'TP POST request from outside the network.

The metrics captured and plotted on the graphs include :

e Used Heap(mb): Plots the utilized heap memory

e Average Response Time: Plots the response time of each thread.

Average Throughput: Plots the throughout of each requests.

Reclaimed per GC: Shows the graph of reclaimed GC.

Requests per GC: Plots numbers of GC requests.

To recreate functional components of a real world or production applications, stack
structure is maintained by Cloud GC serving as the object graphs roots that is initially
developed by [Patros, Kent and Dawson| (2017). When a request is made new object are
incremented over the stack and object reference to each other is made for the previous
stack. It keeps the object locked to the request scope, the objects are are aloud to die
young, as per the ideas of GC in|Jones et al.| (2016)), this allows a stateless software design
architecture.

The GC parameters provided by the Cloud GC application including addition and
removal of frame, traverse. The parameters can be dynamically executed during run-time
using load-test at the servlet endpoint. This allows wide selection of parameters to be
configured during the run-time for various test case scenarios related to GC components
and bench-marking them the results.

Stress Test

I Initialize
1l. Start / Stop
Il. /GCstats

Apache Imeter

CloudGC

GC Policies

= Optthruput
- Optavgpause
Cloud Foundry + - Gencon

Liberty Build Pack
Bash Script/

Capture GCstats

Local Instance

Figure 2: Cloud GC Architecture

4 Implementation

To investigate the performance of the four GC policies in the IBM JVM, the following
implementation method was conducted : The application was deployed on deployed IBM
cloud with cloud foundry services. IBM WebSphere Server Base edition with single
server instance was installed on top of it. The polices were configured to it for each
tests, verboseGC was enabled, initial and maximum heap size of 2048 mb and 3276mb
respectively was initialized. To stress the Cloud application a stress tests of 1,8 and 64
threads/users were fired on loops using Apache JMeter for a duration of 300 seconds
each, the timeout was set to 2 seconds for each thread. The load was driven from a local
machine outside the IBM cloud environment.

In all the cases the Initializing parameters were Set to default values , the heap was
set constant and the load was set to constant. For each test the JVM was restarted. The
server was also constant with 4096 main memory and two virtual cpu cores. The GC stats
values of all the JVMs were captured using recursive python script and save local machine
for every GC count. All the JMeter stress test HI'TP requests were successfully hit to
the application. The GC stats were further analyzed for detailed analysis to determine

the optimal GC policy having the lowest impact on cloud.

4.1 Cloud GC classes

==Java Class=>
©ChangeSettings
(default package)

FserialVersionUID: long

& ChangeSettings()
< doGet(HttpSenvietRequest HitpSendetResponse).void
< doPost(HitpSenietRequest, HitpSendetResponse) void

<<Java Class>=
GGetSettings
(default package)

I serialVersionUID: long

=<Java Class
@InitGrap
(default packa

& GetSettings()
< doGet(HitpServietRequest HitpServietResponse)void
< doPost(HitpSenietRequest, HitpSendetResponse) void

*'serialVersionUID: long

&nitGraph()
< doGet(HttpSenietRequest, HitpServ
< doPost(HttpSenietRequest HitpSer

<=Java Class>=
@startTracing
(default package)

==Java Class=>
©Tracing
(default package)

i serialVersionUID: long

“FlogPath String
<traceOut: PrintStream

“threadids: ConcurrentHashvlap<Long Long=

& StartTracing()
< doGet(HttpSendetRequest, HitpServietResponse).void
< doPost(HttpSenietRequest HitpSendetResponse).void

“f nextThreadld: AtomicLong
%f classids: ConcurrentHashMap<Sting Long=

“FnextClasskd: AtomicLong
NUM_THREADS: int

& Tracing()

&'start()-void

&'stop() void
&logChanges()-void
#alloc(GraphNode boolean)vaid

==Java Class=>
®GraphAction
(default package)

“serialVersionUID: long
Y globalStack: StackFrames
ofoutOMemEms: int

&GraphAction()
< doGet(HttpServietRequest HitpSernvietResponse)void
< doPost{HttpSendetRequest, HitpSendetResponse)void

s'createAdd(GraphNode boolean):String
&add(GraphNode boolean):void
&'store(GraphMode int) void
eFwrite(GraphNode int GraphNode)-void
efread Prim(GraphNode int) void
&’read(GraphNode,int):void
s'createDel(GraphNode boolean):String
&del(GraphNode boolean).void

#getThreadkd():long
s'getClasskd(GraphNode)-long

Figure 3: Class Diagram of Cloud GC

<<Ja
@St
(defa
%S seralVersionUID: long
& StopTracing()

< doGet(HttpServietRequest Hitj
< doPost{HitpSendetRequest, Ht

<<Ja

©Ge

(defa
“serialVersionUID: long
£GetGCStats()

< doGet(HittpSenvetRequest Ht
+ doPost(HttpSenietRequest H

e Change Settings: This class changes the parameters associated with GC for initial-

10

ization.
e Init Graph: Initializes the graph appends the run time with free memory.
e Tracing: Plots the concurrent hash map on the graph.

e Start Tracing : Starts the initialized parameters and displays the graphs after
tracing

e Stop Tracing: Calls the servlet to stop tracing
e Graph Action: Servlet used to receive stress test

o GC stats: Servlet to process and capture GC related stats.

4.2 Implementation and Stress Testing Process

Install Cloud
foundry service
for WAS on cloud

Deploy
Application on
Server

Configure GC Configure/Load IMeter

policies and heap Stress Test

Change
GC Policy

Capture GC
stats

Analyze and
Process Data

Figure 4: Flow Diagram of the Implement solution

1. Install new set of cloud foundry service with setup of IBM Websphere Application
server.

Deploy the application and change the GC policy to -Xgcpolicy:gencon but adding
the JVM parameters on DMGR console and initialize the heap. (change to each

policy)

11

2. Fire setup request to Servlet Change Settings to initialize Cloud GC parameters.
3. Start the tracing process and fire load with JMeter to stress test.
4. Run the python script to capture the GC stats with a request at /GetGCStats.

5. Further process the data for analysis and evaluation.

12

5 Evaluation

As [Patros, Kent and Dawson (2017) used cumulative frequency to plot a graph and
evaluate the performance of all the GC polices, this research project further extends it to
capture GC stats such as heap size, Free heap before and after collection, Amount of GC
freed, Pause times and Sweep time to further analyze and compute optimal GC policy
for PaaS environment. Mean, Minimum and Maximum values of the above mentioned
parameters are captured and plotted against each other for all the four JVM policies.

5.1 Heap Size

Table 1: Heap Size

Variant Mean Minimum | Maximum
heap (GB) | heap (GB) | heap (GB)
balanced 3.09 2 3.2
gencon 2.67 2 2.97
optavgpause | 3.09 2 3.2
optthruput | 3.14 2 3.2

From the table heap size and graph Figure 5| it can be observed that gencon has the
lowest mean heap and is the most performing, while balance and optavgpause have same
scores and opthruput has the most heap utilized.

5.2 Free heap (after collection)

Table 2: Free heap (after collection)

Variant Mean Minimum | Maximum
heap (GB) | heap (GB) | heap (GB)
balanced 1.33 0.56 1.98
gencon 0.9 0.49 1.72
optavgpause | 1.44 0.78 1.97
optthruput | 1.29 0.21 2.15

From Figure[6land Figure[7]it can be observed that free heap before and after collection
gencon has the lowest mean heap and hence is the most performing followed by balanced,
optavgpause and optthruput respectively.

5.3 Free heap (before collection)

From Table Before Collection and Figure [7| it can be observed that gencon occupies the
least amount of heap whereas balanced has the highest mean heap throughout.

13

Table 3: Free heap (before collection)

Variant Mean Minimum | Maximum
heap (GB) | heap (GB) | heap (GB)
balanced 0.81 0.16 1.92
gencon 0.37 0.1 1.67
optavgpause | 0.13 0 1.92
optthruput | 0.15 0 1.92

5.4 Amount Freed

From the Amount freed table and Figure [§ it can observe that, gencon is capable of
freeing maximum memory, followed by balanced optthruput and optavgpause.

Table 4: Amount Freed

Variant Mean Minimum | Maximum | Total
heap (GB) | heap (GB) | heap (GB) | heap (GB)
balanced 0.52 0 0.96 175
gencon 0.53 0.05 0.9 223
optavgpause | 1.3 0.04 1.64 91.1
optthruput | 1.12 0.02 1.99 75.2

5.5 Pause times

Table 5: Pause Times

Variant Mean Minimum Maximum Total

time (seconds) | time (seconds) | time (seconds) | time (seconds)
balanced 0.14 0 6.68 48.9
gencon 0.09 0 1.37 38.3
optavgpause | 2.06 0.07 10.8 144
optthruput | 2.36 0.06 21.8 158

In terms of pause times similar performance is observed from above table and Figure [J]
gencon has the lowest amount of pause times overall and the maximum time required for
gencon to perform a pause for GC is lowest as well, this translates to an optimum through-
put. optavgpause and optthruput have higher pause time which could have impact on
other tenants in cloud.

5.6 Sweep Time

In terms of Sweep time from Figure [10| gencon has the lowest sweep time but optavgpause
matches it up in terms of mean and maximum time.

14

35
T
=y
=2
-
§
15
10
05 optthruputlog——
optavgpauselog—
genconlog—
0.0 balanced.log—
0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 4:30 5:00 5:30
time (minutes)
Figure 5: Heap Size
200 balanced log—
genconlog—
180 {| optavgpauselog=—
optthruputlog
1.60 | |
140
s
e
§1.20
3 \ |
= \ |
1.00 f X ‘ ‘ ‘
IRNAN (T IF' W
0.80 | i] ‘ .
\ il | \
0.60 ‘ L e
N Il | M
{1} |
0.40 : | i
‘ o it
0.20 — 1
|
0.00

F

time (seconds)

~
o

1=
)

3
o

6.

EX

B

000 030 1:00 130 200 230 300 330 400 430 500 530
time (minutes)

igure 7: Free Heap (before collection)

—balanced.log

—gencon.log

—optavgpause.log
optthruputlog

0 [

0 R ‘

iy A L)

000 030 100 130 200 230 300 330 400 430 500 530
time (minutes)

Figure 9: Pause Times

v
S

|
T
AN, ‘

P

P
[

~=optthruputlog

----- optavgpause.og
—gencon.log

0.00 = log

000 030 1:00 130 200 230 300 330 400 430
time (minutes)

Figure 6:

5:00

5:30

Free Heap (after collection)

—balanced log
—genconlog
~~optavgpause.log
~optthruputlog

]

Il N

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:3
time (minutes)

Figure 8: Amound Freed

:00

0.80
—balanced.log

—gencon.log
070 | —optavgpauselog

0.75

0.65 optthruputlog
0.60
2055
g
$050
o
Eo04s
0.40
035
030
025
020
0.15
0.10
005

0.00

000 030 100 130 200 230 300 330 400 430
time (minutes)

Figure 10: Sweep Time

5:00

5:30

Table 6: Sweep Time

Variant Mean Minimum Maximum Total

time (seconds) | time (seconds) | time (seconds) | time (seconds)
balanced 0.11 0 0.75 1.02
gencon 0.04 0 0.07 0.34
optavgpause | 0.01 0 0.07 0.57
optthruput | 0.05 0 0.11 3.3

5.7 Discussion

Table 7: Summary

GC Mode balanced | gencon | optavgpause | optthruput
Proportion of time GC pauses (%) | 16.28 12.05 | 47.31 47.31
Proportion of time unpaused (%) | 83.72 87.95 | 52.69 52.69
Rate of GC (MB/minutes) 35043 42419 | 18466 13909

The GC stats QoS results, which are aggregated over multiple polices and test reveals
that Gencon which the default policy of WebsSphere Application server is the most
performing in all the test cases that were considered, it has the capacity to perform GC
at the highest rate, sometimes 2-3 times faster than other polices like opthruput, also the
proportion of GC pauses is lowest. Hence, gencon should be the preferred policy for PaaS
cloud services as lower GC pauses would have lowest impact on other tenants. Secondly,
balanced was quite comparable to gencon in terms of of pause times and unpaused %.
Finally, the last two GC polices optavgpause and optthruput underperfomed compared
first two polices.

6 Conclusion and Future Work

In the Research Project, the goal was to identify GC policy in IBM J9 runtime which
would cause lowest interference due to GC on Cloud and other tenants, as complete GC
can halt all the processes and affect other tenants sharing the resources. A PaaS based
application Cloud GC installed IBM cloud with Cloud foundry services : WebSphere Ap-
plication server base edition. Stress test was performed on the application using Apache
JMeter. After running the test and bench-marking the GC parameters, GC stats for all
policies were captured. Further, after evaluating the results it was found that Gencon
had the lowest pause time, highest GC rate and lowest heap utilization. The GC data
and other resource metrics were not captured from other tenants due to limitation of
services.

In Future work, the impact on other co-tenants running on PaaS application that
are sharing resources can be investigated, due to limited resources available this could
not be conducted as it would be quite expensive to simulate this environment on cloud.
Additionally, the GC stats captured could be directly connected and send to database
such a MongoDB on same or different instance per instance.

16

References

Bailey, C., Gracie, C. and Taylor, K. (2011). Garbage collection in websphere application
server v8, part 1: Generational as the new default policy, IBM Developer Works .

Baylor, S. J., Devarakonda, M., Fink, S., Gluzberg, E., Kalantar, M., Muttineni, P.,
Barsness, E., Arora, R., Dimpsey, R. and Munroe, S. J. (2000). Java server benchmarks,
IBM Systems Journal 39(1): 57-81. Core Ranking : A.

Bernstein, D. (2014). Cloud foundry aims to become the openstack of paas, IEEE Cloud
Computing 1(2): 57-60.

Bruno, R. and Ferreira, P. (2018). A study on garbage collection algorithms for big data
environments, ACM Comput. Surv. 51(1): 20:1-20:35. Core Ranking : A*.

He, H., Ma, Z., Chen, H., Wu, D., Liu, H. and Shao, W. (2014). An sla-driven cache
optimization approach for multi-tenant application on paas, 201/ IEEE 38th Annual
Computer Software and Applications Conference, pp. 139-148. Core Ranking : A.

Jones, R., Hosking, A. and Moss, E. (2016). The garbage collection handbook: the art of
automatic memory management, CRC Press.

Kavis, M. J. (2014). Architecting the cloud: design decisions for cloud computing service
models (SaaS, PaaS, and laaS), John Wiley & Sons.

Kim, M., Mohindra, A., Muthusamy, V., Ranchal, R., Salapura, V., Slominski, A. and
Khalaf, R. (2016). Building scalable, secure, multi-tenant cloud services on ibm blue-
mix, IBM Journal of Research and Development 60(2-3): 8:1-8:12.

Lehrig, S., Sanders, R., Brataas, G., Cecowski, M., Ivanek, S. and Polutnik, J. (2018).
Cloudstore towards scalability, elasticity, and efficiency benchmarking and analysis in

cloud computing, Future Generation Computer Systems 78: 115 — 126. Core Ranking
: Al

Lindholm, T., Yellin, F., Bracha, G. and Buckley, A. (2014). The Java Virtual Machine
Specification, Java SE 8 Edition, 1st edn, Addison-Wesley Professional. Cited by 5365.

Patros, P., Dilli, D., Kent, K. B. and Dawson, M. (2017). Dynamically compiled ar-
tifact sharing for clouds, 2017 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 290-300. Core Ranking : A.

Patros, P., Dilli, D., Kent, K. B., Dawson, M. and Watson, T. (2015). Multitenancy
benefits in application servers, Proceedings of the 25th Annual International Conference
on Computer Science and Software Engineering, IBM Corp., pp. 111-118.

Patros, P., Kent, K. B. and Dawson, M. (2017). Investigating the effect of garbage
collection on service level objectives of clouds, Cluster Computing (CLUSTER), 2017
IEEE International Conference on, IEEE, pp. 633-634. Core Ranking : A.

Patros, P., MacKay, S. A., Kent, K. B. and Dawson, M. (2016). Investigating resource
interference and scaling on multitenant paas clouds, Proceedings of the 26th Annual

International Conference on Computer Science and Software Engineering, IBM Corp.,
pp. 166-177.

17

Rimal, B. P., Choi, E. and Lumb, I. (2009). A taxonomy and survey of cloud computing
systems, INC, IMS and IDC, 2009. NCM’09. Fifth International Joint Conference on,
leee, pp. 44-51.

Sciampacone, R., Burka, P. and Micic, A. (2011). Garbage collection in websphere applic-
ation server v8, part 2: Balanced garbage collection as a new option, IBM WebSphere
Developer Technical Journal .

18

	Introduction
	Literature Review
	Multitenancy on PaaS Cloud
	Benchmarking Cloud Tenants
	Resource Interference and Scaling using Cloud Burners

	Java Virtual Machine Isolation
	Mulititenant Runtime as a Service:

	Garbage Collection
	JVM tunning and Heap allocation
	Garbage Collection and Performance tuning

	CloudGC : A need for GC benchmarking

	Methodology
	IBM Cloud and Cloud foundry
	IBM WebSphere Application Server on Cloud

	Load Test Plan using Apache JMeter
	GC Benchmarking Framework

	Implementation
	Cloud GC classes
	Implementation and Stress Testing Process

	Evaluation
	Heap Size
	Free heap (after collection)
	Free heap (before collection)
	Amount Freed
	Pause times
	Sweep Time
	Discussion

	Conclusion and Future Work

