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Primates interpret conspecific behaviour as goal-directed and expect others

to achieve goals by the most efficient means possible. While this teleological

stance is prominent in evolutionary and developmental theories of social

cognition, little is known about the underlying mechanisms. In predictive

models of social cognition, a perceptual prediction of an ideal efficient trajec-

tory would be generated from prior knowledge against which the observed

action is evaluated, distorting the perception of unexpected inefficient

actions. To test this, participants observed an actor reach for an object

with a straight or arched trajectory on a touch screen. The actions were

made efficient or inefficient by adding or removing an obstructing object.

The action disappeared mid-trajectory and participants touched the last

seen screen position of the hand. Judgements of inefficient actions were

biased towards the efficient prediction (straight trajectories upward to

avoid the obstruction, arched trajectories downward towards the target).

These corrections increased when the obstruction’s presence/absence was

explicitly acknowledged, and when the efficient trajectory was explicitly pre-

dicted. Additional supplementary experiments demonstrated that these

biases occur during ongoing visual perception and/or immediately after

motion offset. The teleological stance is at least partly perceptual, providing

an ideal reference trajectory against which actual behaviour is evaluated.
1. Introduction
Human and non-human primates take the ‘intentional stance’ when watching

conspecifics [1], interpreting their behaviour as purposeful and goal-directed

[2–6]. Crucial to this is the understanding that others’ actions are optimized

to achieve their goals in the most efficient and rational way, minimizing time

and energy expenditure, given the environmental constraints. Both human

infants and macaque monkeys, for example, show surprise when intentional

agents do not attempt to avoid an obstacle, or take an unnecessary long way

to reach their goal [5,7]. This simple efficient action heuristic can provide a foun-

dation for the development of sophisticated capacities for mentalizing and

theory of mind in adult humans (e.g. [5,8]). For example, seeing a seemingly

inefficient action (e.g. a reach straight for an object despite an obstacle in the

way) can prompt the insight that others may act according to beliefs that

differ from one’s own (i.e. they may not have seen the obstacle). Indeed,

seeing such actions captures attention [9] and alters activity in brain areas

implicated in action perception and mentalizing (e.g. [10,11]).

Yet, despite the crucial role of teleological/intentional reasoning in human

and animal social cognition, little is known about the underlying processes. The

currently dominant view sees social perception as a bottom-up ‘resonance’

of one’s own motor apparatus with others’ actions, which allows the associated

goals and internal states (sensations and emotions) to be derived (e.g. [12,13]).

Action efficiency would, in such a model, be conceptualized as a post hoc moto-

ric signal of effort or energy expenditure, which can be compared with a

reference value for this type of action (e.g. [14]). However, such models are
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challenged by findings that children make efficiency judge-

ments for movements of biomechanically impossible actions

for which motor resonance is unlikely [15], that they can pro-

cess efficiency before acquiring competence in the seen

actions (e.g. [16,17]) or that, in adults, eye movements indi-

cate expectations of efficient action before action onset,

when such kinematic information is not yet available [18].

An alternative is that teleological reasoning might not

emerge from a ‘late’ motoric signal, but from earlier percep-

tual signals (e.g. [6]). Recent predictive coding frameworks

argue that perception in general—and social perception in

particular—is informed by prior expectations, derived from

one’s knowledge about the world and other people, and

that these expectations guide processing of the perceptual

input [19–24]. Predictive influences have been demonstrated

in a diverse range of perceptual abilities, including the per-

ception of ‘true’ colour from surrounding illumination [25],

anticipated effects of physical dynamics on motion percep-

tion [26] and three-dimensional (3D) concave/convexity

from the presumed location of light sources [27]. In a similar

way, the environment provides all the necessary information

to generate an ideal reference trajectory that a fully rational,

intentional actor would take to achieve their goal (i.e. location

of goal objects and possible obstructions), and which would

provide a comparison to immediately flag observed actions

as being efficient or not, confirming prior attributions of

goals and intentionality.

Here, we provide a first test of (i) whether human observers

make such predictions of how rational actors who are aware of

all environmental constraints efficiently traverse the given

action space, (ii) whether these predictions are realized in a

perceptual format that can serve as a reference image for the

observed action, and (iii) whether this format biases the percep-

tual representation of the observed action. We rely on the

well-established phenomenon that when a moving stimulus

suddenly disappears, participants’ estimations of its last seen

position show robust distortions towards the expected path

(i.e. representational momentum [28]), in line with the notion

that the considerable uncertainty during motion perception is

sharpened by top-down information (e.g. [29,30]), or that

predicted paths are perceptually ‘filled in’ after the sudden

offset [31]. Importantly, these distortions rely on changes to

lower-level visual representations (e.g. [32,33]), occur even

when participants are warned against them [34,35] and can

integrate higher-level information such as the physical forces

acting on the objects (e.g. momentum, friction and gravity; for

a review, see [28]) or prior action expectations [36–38].

Here, we use this paradigm to reveal the expectations of

efficient action that guide the perception of others’ actions.

In three studies, participants watched an actor reach towards

an object. The action disappeared mid-trajectory, and partici-

pants indicated the perceived disappearance point on a touch

screen. In two conditions, the actions were efficient, showing

a reach either straight towards the object or arched over an

obstacle placed in between. In two other conditions, the

actions were made inefficient by either adding an obstacle

to the path of the straight reaches (such that the actor

would knock into the obstacle) or removing the obstacle for

the arched reaches (such that the actor reached over empty

space). If others’ behaviour is perceived relative to what

would be expected under the implicit assumption of efficient

action, then the perceived kinematics should be displaced

along the trajectory that an intentional, rational actor might
take. Unexpected inefficient actions should be ‘corrected’

towards the predicted efficient action trajectory: straight

reaches would be perceived upward if approaching an

obstacle where an avoidance movement would be predicted,

while an arched reach would be displaced downwards if

made over empty space as this energy expenditure is

unnecessary. Moreover, such distortions should be observed

spontaneously when participants passively observe these

actions, but should increase the more that attention is

drawn to the environmental constraints and the behaviour

of a rational actor. As an additional between-subjects task

manipulation, we therefore varied whether the actions were

viewed under no additional instructions (no task), or whether

participants were asked to report ‘yes’ or ‘no’ in response to

the presence of an obstacle prior to action onset (report

obstacle) or to predict whether a rational actor would ideally

have to reach ‘straight’ or ‘over’ an obstacle before the action

started (predict trajectory). Further experiments showed that

these deviations are not observed when static non-action

stimuli have to be judged in the same scenes (electronic sup-

plementary material, Experiment 1), that they generalize to

probe judgements tasks that do not require working

memory or touch screen responses (electronic supplementary

material, Experiment 2) and that they are substantially

reduced through dynamic visual noise masks that disrupt

recurrent interactions between early visual areas and

top-down information (electronic supplementary material,

Experiment 3).
2. Material and methods
(a) Participants
Eighty-five participants took part (mean age ¼ 24 years, s.d. ¼

7.7, 62 females; no task: n ¼ 30, report obstacle: n ¼ 27, predict

trajectory: n ¼ 28). Seven additional participants were excluded

due to performance (see Results). All participants were

right-handed, had normal/corrected vision, were recruited

from Plymouth University and wider community, and received

course credit or payment. The study received ethical approval

from the University of Plymouth’s ethics board, in accordance

with those of the ESRC and the Declaration of Helsinki.

A priori power analyses of previous experiments investigating

similar effects with the same method ([36], Experiment 3) revealed

that a sample size of 14 is required to achieve power of 0.95.

(b) Apparatus
Stimuli were filmed with a Sony HD video camera at 50 f.p.s.

with a widescreen aspect ratio (16 : 9) and a resolution of

1920 � 1080 (2.1 megapixels) and edited with Adobe Photoshop.

The experiment was delivered using Presentation (NeuroBS) via

an NEC Multisync P221w LCD touch screen monitor (1680 �
1050). Verbal responses for the report obstacle and predict trajec-

tory conditions were recorded using Presentation’s sound

threshold logic via a Logitech PC120 combined microphone

and headphone set.

(c) Stimuli
Example stimuli can be seen in figure 1a. Videos were filmed of

an arm starting in a rest position at the right of the screen and

reaching to grasp a target object on the left (either an apple,

bottle, crisps, glue stick or stapler). In the original set of

videos, the actor’s reach was either (i) unobstructed and the

trajectory of the arm was straight towards the target object

http://rspb.royalsocietypublishing.org/


efficient(i) (ii)

(iii) (iv)

inefficient
action efficiency

ar
ch

ed
st

ra
ig

ht
ac

tio
n 

tr
aj

ec
to

ry

stimulus conditions

trial sequence

hold the spacebar
action sequence
(4 – 7 frames)

spacebar pressed
and remains
depressed

start frame
1000 – 3000 ms (no
task) or until verbal

responce (report
obstacle or
trajectory)

final frame

response stimulus

(a)

(b)

Figure 1. Stimulus conditions and trial sequence. The stimulus conditions are depicted in (a). The action trajectory was either straight (i,ii) or arched over (iii,iv). The
presence or absence of an obstructing object made the action trajectory either efficient (i,iii) or inefficient (ii,iv). In all examples, the hand is in the initial start
position, and the white markers depict the final four frames of the trajectory of the index finger tip. The action sequence disappeared at one of these four points. An
example trial sequence is depicted in (b), depicting an efficient arched trajectory over an obstruction. (Online version in colour.)

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20180638

3

 on October 2, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
(straight/efficient), (ii) obstructed by one of four objects (iPad,

lamp, pencil holder or photo-frame) and the trajectory of the

arm was arched over the obstruction (arched/efficient). From

each video, 19 frames were extracted for the experimental

stimuli, beginning with the onset of movement (frame 1) to

mid-way through the action (frame 19). Inefficient action

sequences were created by digitally removing the obstructing

objects in the arched/efficient videos (arched/inefficient). For

each of the straight/efficient actions, a new set of videos were

created by adding each of the obstructing objects to show the

actor was reaching straight for the target, despite the obstruction

(straight/inefficient). This created a set of inefficient actions that

were identical to the efficient actions in terms of movement kin-

ematics, and differed only by the presence/absence of the

obstructing object. Finally, for each action, a single frame was cre-

ated in which the hand was digitally removed. This served as a

response stimulus at the end of each trial where participants

estimated the disappearance point of the action.

(d) Procedure
Participants completed two blocks of 80 trials in which each com-

bination of action trajectory (straight and arched) and efficiency

(efficient and inefficient) was represented by 20 trials. Partici-

pants were instructed that, on each trial, they would see an

actor reach from the right of the screen for a target object on
the far left, but that sometimes there would be a second object

in between.

An example trial sequence can be seen in figure 1b. At the

start of each trial, participants were instructed to ‘hold the space-

bar’ and to keep it depressed to prevent them from tracking the

observed action with their finger to improve performance. They

then saw the first frame of the action sequence as a static image.

In the no task condition, the action sequence began after a ran-

domly chosen delay of between 1000 and 3000 ms. In the

report obstacle condition and predict trajectory conditions, it

began 1000 ms after the participant’s verbal response had been

detected. In the report obstacle condition, participants said ‘no’

if there was no obstruction and ‘yes’ if there was an obstruction.

In the predict trajectory condition, participants said ‘straight’ if

there was no obstruction and ‘over’ if there was an obstruction.

The action depicted the frame order progressing at three frame

intervals for a total sequence of between four and seven frames

for 80 ms each (e.g. frames 1–4–7–10–13–16–19). Starting

frames and sequence length were randomly chosen on each

trial to prevent memorization of the final position from the start-

ing frame. The final frame was immediately replaced by the

response stimulus, creating the impression that the hand

simply disappeared from the scene. Participants released the

spacebar and, with their right hand, touched the screen where

they thought the final seen position of the tip of the index

finger was. As soon as a response was registered, the next trial

http://rspb.royalsocietypublishing.org/
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began. Debriefing during pilot testing in the report obstacle con-

dition has established that this experimental set-up is relatively

opaque to participants and therefore unlikely to capture

demand effects (e.g. [39,40]). Participants believed the aim to be

investigating speed of motor responses and/or sequence learning,

but none of them mentioned action efficiency/rationality or the

hypothesized effect of perceptual mis-localizations.
3. Results
Participants were excluded if the distance between the real and

selected positions exceeded 3 s.d. of the sample mean (mean ¼

49.2 pixels, s.d. ¼ 12.4, no exclusions), or if the correlation

between the real and selected positions was more than 3 s.d.

below the median r value (X-axis: median ¼ 0.914, s.d. ¼

0.055; Y-axis: median ¼ 0.901, s.d. ¼ 0.077, four participants

excluded). For each participant, individual trials were

excluded if the response procedure was incorrect (spacebar

released before the action offset, 4.1%), or if response initiation

or execution times were less than 200 ms or more than 3 s.d.

above the sample mean (5.1%, initiation: mean ¼ 443.5 ms,

s.d. ¼ 84.4; execution: mean ¼ 817.2 ms, s.d. ¼ 230.4). Three

additional participants were excluded for having an excessive

number of trial exclusions (greater than 50%).
The real final screen coordinate of the tip of the index

finger was subtracted from participants’ selected screen coor-

dinate on each trial. Analysis was conducted on this residual

localization error, which provided a directional measure of

how far, in pixels (px), participants’ responses were displaced

along the X- and Y-axes. An accurate response would produce

a value of 0 on both axes. On the X-axis, positive values denote

a rightward displacement (against the direction of motion) and

negative values a leftward displacement. On the Y-axis, posi-

tive and negative values denote upward and downward

displacements, respectively.

Overall, there was a significant leftward bias (X-axis:

mean ¼ 28.4 px, s.d. ¼ 19.2, t84 ¼ 24.01, p , 0.001, d ¼
0.61, 95% CI (24.3, 212.5)), and a significant downward

bias (Y-axis: mean ¼ 215.1 px, s.d. ¼ 15.0, t84 ¼ 29.27, p ,

0.001, d ¼ 1.35, 95% CI (211.9, 218.3)). The differences

along the X- and Y-axes and the result of the one-sample

t-test, for each experimental condition across all tasks and

for each task individually, can be seen in electronic sup-

plementary material, table S1 (figure 2a–d). These

difference values were entered into a 2 � 2 � 3 mixed-

measures ANOVA for the X- and Y-axes separately, with tra-

jectory (arched and straight) and efficiency (efficient and

inefficient) as within-subjects factors, and task (no task,

http://rspb.royalsocietypublishing.org/
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report obstacle and predict trajectory) as a between-subjects

factor.

(a) Y-axis
The main prediction is that perceptual judgements of ineffi-

cient actions would be displaced towards the expected

trajectory, that is, downwards for inefficient arched trajec-

tories and upwards for inefficient straight trajectories.

Indeed, the analysis revealed a main effect of efficiency

(F1,82 ¼ 12.04, p ¼ 0.001, h2
p ¼ 0:128) that was qualified by

an interaction of efficiency and trajectory (F1,82 ¼ 136.2, p ,

0.001, h2
p ¼ 0:624). As predicted, inefficient arched trajectories

(219.7 px) were displaced below efficient arched trajectories

(211.0 px, t84 ¼ 29.33, p , 0.001, d ¼ 0.47), and inefficient

straight actions (212.0 px) were displaced above efficient

straight actions (217.7 px, t84 ¼ 8.51, p , 0.001, d ¼ 0.44),

despite the actual hand disappearance points being identical

within each trajectory. Importantly, there was a three-way

interaction between trajectory, efficiency and task (F2,82 ¼

10.6, p , 0.001, h2
p ¼ 0:205). The interaction effect was

re-quantified as a single value for each participant

((arched/efficient 2 arched/inefficient) 2 (straight/

efficient 2 straight/inefficient)) to reveal the total amount in

pixels by which inefficient actions were corrected towards a

more efficient trajectory for each task (figure 2e). Between-

subjects t-tests on this interaction value—mathematically

equivalent to the pairwise three-way interactions of trajec-

tory, efficiency and task—show that the interaction was

marginally larger in the predict trajectory condition than

the report obstacle condition (t53 ¼ 21.95, p ¼ 0.057, d ¼
0.53), which in turn was significantly larger than in the no

task condition (t55 ¼ 22.81, p ¼ 0.007, d ¼ 0.73). Demonstrat-

ing the robustness of the interaction, exploratory analysis

showed that the interaction of trajectory and efficiency was

evident in all conditions with a corrected a-level of p ¼
0.017 (no task: F1,29 ¼ 35.3, p , 0.001, h2

p ¼ 0:549; report

obstacle: F1,26 ¼ 44.5, p , 0.001, h2
p ¼ 0:631; predict trajectory:

F1,27 ¼ 57.7, p , 0.001, h2
p ¼ 0:681; figure 2a–c). There were

no further main effects or interactions.

(b) X-axis
We did not have specific predictions about how action ration-

ality would affect perceptual displacements on the X-axis,

and the analysis indeed did not reveal either a main effect

of efficiency (F1,82 ¼ 0.837, p ¼ 0.363, h2
p ¼ 0:01) or an inter-

action of efficiency and trajectory (F1,82 ¼ 1.39, p ¼ 0.242,

h2
p ¼ 0:017). We report the remaining effects of no interest

below, but due to a-inflation of unpredicted effects in an

ANOVA [41], they should be considered exploratory and

interpreted with caution. A main effect of task (F2,82 ¼ 8.81,

p , 0.001, h2
p ¼ 0:177) revealed a general leftward displace-

ment in the no task (216.8 px, t29 ¼ 25.14, p , 0.001, d ¼
1.35) and predict trajectory conditions (210.0 px,

t27 ¼ 23.43, p ¼ 0.002. d ¼ 0.86), but not in the report

obstacle condition (9 px, t26 ¼ 0.720, p ¼ 0.478, d ¼ 0.19).

A main effect of trajectory (F1,82 ¼ 1231.4, p , 0.001,

h2
p ¼ 0:938) showed a leftward displacement for arched trajec-

tories (224.4 px, t84 ¼ 211.0, p , 0.001, d ¼ 1.7) and a

rightward displacement for straight trajectories (7.7 px,

t84 ¼ 3.74, p , 0.001, d ¼ 0.53), most likely reflecting the

further right displaced centre of gravity of the straight arm

configurations ([42]; see also [36]). Finally, an interaction
between trajectory and task (F1,82 ¼ 9.88, p , 0.001,

h2
p ¼ 0:194) revealed that the trajectory effect was larger in

the no task than in the report obstacle (t55 ¼ 4.15, p , 0.001,

d ¼ 1.1) and predict trajectory conditions (t56 ¼ 3.25, p ¼
0.002, d ¼ 0.86), which did not differ from each other (t53 ¼

1.18, p ¼ 0.243, d ¼ 0.32). There were no further interactions

(all values of p . 0.351).

(c) Non-biological stationary stimuli (see electronic
supplementary material, Experiment 1)

An alternative explanation for the Y-axis interaction between

trajectory and efficiency on perceptual judgements is that the

presence of an obstacle reduced the amount of general down-

ward displacement. In electronic supplementary material,

Experiment 1 (reported in full in the electronic supplemen-

tary material), the hands were therefore replaced by a static

geometric shape in the same position as the disappearance

points of the task relevant index finger, which crucially

could not be interpreted in terms of intentionality nor effi-

ciency. However, here, the presence/absence of an obstacle

had no effect on these perceptual non-action judgements.

(d) Replication with probe judgements (see electronic
supplementary material, Experiment 2)

Electronic supplementary material, Experiment 2 (reported in

full in the electronic supplementary material) confirmed that

the perceptual shifts towards efficient actions could also be

observed in a psychophysical task without motor or working

memory components. Here, participants simply reported—

with a press of a button—whether the index finger’s seen

disappearance was identical to a probe stimulus presented

directly after action offset (250 ms gap to prevent masking),

which could be displaced either subtly upwards or down-

wards from the real disappearance point. Mirroring the

results of the main experiments, participants were more

likely to misidentify probes displaced towards the predicted

‘ideal’ trajectory with the actually perceived disappearance

point (F1,36 ¼ 11.39, p ¼ 0.002, h2
p ¼ 0:240). They more readily

accepted downwards probes as the same as the last seen pos-

ition of inefficient arched reaches, and upwards probes for

inefficient straight reaches. This replication rules out that

the effects emerge from perceptual changes to the action’s

representation in later working memory or motor control

stages, and instead reveals a contribution to immediate per-

ceptual processing, either during ongoing motion

perception (e.g. [43,44]) or to perceptual ‘filling in’ in the

brief interval directly after its sudden offset (e.g. [31]).

(e) Masking with dynamic visual noise (see electronic
supplementary material, Experiment 3)

Electronic supplementary material, Experiment 3 (reported in

full in the electronic supplementary material) tested whether

the perceptual shifts towards the efficient trajectories can be

disrupted with a short (560 ms) dynamic visual noise mask

directly after action offset that was presented in 50% of

trials, at the same frequency as the prior motion stimuli

(80 ms per frame), while maintaining equivalent task

demands as the main experiment. Such masks reliably dis-

rupt lower-level perceptual processes [45,46], eliciting

similar effects to transcranial magnetic stimulation of

http://rspb.royalsocietypublishing.org/
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occipital cortices (e.g. [47]). They specifically interrupt re-

entrant interactions between V1 and higher visual areas

that are crucial for conscious access to a stimulus during

actual perception (e.g. backwards masking [48,49]) or visual

imagery (e.g. [50,51]). Indeed, while the non-mask trials

fully replicated the perceptual shifts towards efficient actions,

they were reduced to about one-third of their size in the

masked trials (F1,26 ¼ 8.89, p ¼ 0.006, h2
p ¼ 0:25). These mask-

ing effects therefore further confirm that the perceptual biases

in the main experiments reflect changes to early visual stimu-

lus representation, specifically tying them to the re-entrant

feedback required for stabilizing percepts in perception or

visual imagery (e.g. [48,51]).
R.Soc.B
285:20180638
4. Discussion
The present study showed for the first time that the teleo-

logical interpretation humans have of others’ behaviour is

perceptually instantiated and provides a visual reference

signal for an expected ‘ideal’ trajectory during action obser-

vation. Participants watched a hand reach for objects with

either efficient or inefficient kinematics and reported its

last position after it had suddenly disappeared. Across sev-

eral samples, perceptual reports were consistently biased

towards the ideal reference kinematics. Straight reaches

were reported higher if there was an obstacle in the way,

as if lifted to avoid it. Conversely, reaches with a high

arched trajectory were reported lower if the path was clear.

These biases were evident automatically, but became more

pronounced when observers explicitly processed the poten-

tial obstacles that could constrain the action and

particularly when they predicted the most efficient action

kinematics through the scene.

Further experiments showed that the biases in perceptual

judgements were action-specific and not elicited when

locations of briefly presented non-biological stationary

objects were judged in the same scenes (electronic sup-

plementary material, Experiment 1). They could also be

observed in a probe judgement task without working

memory or motor components already at 250 ms after

action offset (electronic supplementary material, Experiment

2), did not increase with longer response times (electronic

supplementary material, response time (RT) analysis) and

were effectively disrupted by dynamic visual noise masks

(electronic supplementary material, Experiment 3), which

interfere with the recurrent (top-down) feedback to early

visual cortex [48], preventing its use in awareness (i.e. back-

wards masking, [46,47]) or visual imagery (e.g. [50,51]). The

observed biases in perceptual judgements are therefore unli-

kely to stem from unspecific perceptual changes in memory

or motor control (e.g. [40]; see [52] for an example for percep-

tual changes in action memory). Instead, they support a role

in ongoing motion perception (e.g. [43]) or occurring directly

after its sudden offset, when the predicted future trajectory is

visually ‘filled in’ (e.g. [31]).

The results are also unlikely to reflect the cognitive/social

demands of the experimental set-up (e.g. [39,40]). The rapid

nature of action sequences and resulting touch responses pre-

cluded considered decision-making that takes into account

the required pattern across experimental conditions. More-

over, the effect was replicated in a more complex and

cognitively opaque probe judgement task (electronic
supplementary material, Experiment 2), which is largely

unaffected by conscious strategic manipulation [34,35].

Finally, even though cues to the research question were

equivalent, the perceptual biases were successfully reduced

by brief dynamic visual noise masks directly after stimulus

offset (electronic supplementary material, Experiment 3),

which are known to disrupt perceptual processes specifically

[48,49].

Together, these results reveal that, during social

perception, the principle of efficient action provides a simi-

lar perceptual reference signal to the assumption that light

comes from above [27] or that gravity pulls objects

downwards [53], constantly pushing the perceptual rep-

resentation of inefficient actions towards a more rational

path. The resulting biases in perceptual judgements

cannot be accounted for by an abstract awareness of the

action’s goal, such as when eye movements jump towards

an action’s target [54] or perceptual judgements are biased

towards them [36–38]. Instead, they reveal concrete expec-

tations of the specific trajectory that the action will take

through the scene. Moreover, making this awareness expli-

cit prior to action observation increased the perceptual

bias. Action efficiency is therefore not only evaluated after

an action has been completed [5,7,9,55], but constantly

updated, at every step in the trajectory, by predictions

that can be derived from contextual cues prior to the

motor behaviour.

Our results support predictive coding frameworks of

social perception [19–24], which argue that social perception,

like perception in general, is hypothesis-driven and guided

by top-down expectations. In such models, observers con-

stantly test their inferences about others’ goals and beliefs

by predicting how they would behave, and matching this

prediction to—and integrating it with—the actual perceptual

input. In such a view, predictions of efficient action can con-

tribute to the perceptual sharpening of the visual uncertainty

during action perception (i.e. motion blurring, [29]), or after

its offset, constantly biasing perception towards the expected

avoidance or straightening movement, with the amount of

bias constrained by the visual uncertainty. In addition, they

allow humans to rapidly confirm the intentionality of

others’ behaviour, only requiring a match of the observed

actions to the ideal kinematics that would follow from these

goals. Prediction errors, by contrast, would signal inefficient

actions, triggering more sophisticated mentalizing processes

to re-evaluate the actor’s goal or how their beliefs may

differ from one’s own [5,10,11]. In this way, the relatively

simple perceptual process of prediction and prediction error

would not only support perception, but also provide a foun-

dation for higher-level judgements about others’ beliefs or

intentions, even in cases in which motor experience is

unlikely [15–17].

An important question is at which level the present pre-

dictive biases on social perception arise. While attribution

of goals is often seen as a higher-level process (e.g.

[19,23,24]), the detection of intentionality has been argued

to be a feature of perceptual processing itself, based on

specific stimulus features that signal intentionality and

which allow humans to ‘see’ the agency behind others’ move-

ments (for a review, see [6]). A perceptual expectation of

efficient action could emerge directly from such low-level

unconscious perceptual inferences. Indeed, a series of

follow-up studies ([56]; pre-print at: https://doi.org/10.
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17605/OSF.IO/QWJTF) has linked the perceptual displace-

ments to stimulus features that imply intentional action,

being almost completely eliminated for moving stimuli that

are not intentional (e.g. a ball) and do not follow the charac-

teristic motion profile of intentional action towards objects

(e.g. [57]). Such a perceptual origin is also consistent with

the finding that, in humans, sensitivity to kinematic efficiency

emerges early in development, that it is present in other

primates [7] and that it is spared in individuals with

autism spectrum conditions, for whom only more

advanced mental state reasoning proves problematic

[9,58]. The key leap to the sophisticated socio-cognitive

abilities of humans may therefore lie in the abstraction of

these lower-level content-based representations of goals,

environment and action, to higher-order representations

of desires, beliefs and intentions, respectively [5]. For

example, it is clear that human infants from the age of 4

onwards are able to predict what others will do not

based on the actual environmental constraints (toy is in

box A), but in terms of what the actor believes the state

of the environment to be (they believe it is in box B),

suggesting that the bottleneck emerges at this later state

that requires sophisticated coordination of representation,

such as others’ beliefs that differ from one’s own beliefs

or objective reality [59–61].
5. Conclusion
The principle of efficient action allows observers to perceive

others’ actions relative to ideal reference actions, thereby con-

firming prior goal attributions or revising them in the case of

a conflict. Such perceptual mechanisms for efficiency percep-

tion support rapid attribution of intentionality and facilitate

the perception of others’ behaviour and our interactions

with them. The burden of social cognition is placed on

mechanisms that account for unexpected behaviour through

a re-evaluation of their beliefs, desire and intentions, so that

our model of the social world can be refined, and predictions

of other’s behaviour can be made more accurately.
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