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Abstract

Despite significant research efforts, the 
implementation of computerized clinical practice 
guidelines (CPG) in practice remains problematic for 
a number of reasons. In particular most guideline 
representation models do not deal adequately with 
incomplete or inconsistent clinical data. We present a 
constraint satisfaction approach to address such 
shortcomings by focusing on CPG data rather than 
CPG representation. We model a CPG as a set of 
data-driven constraints which are used to generate 
complete solutions for describing a patient state from 
incomplete clinical data, where the patient state is 
confirmed by the user. Inconsistent input data can be 
temporarily eliminated and final feasible solutions 
(permitted complete solutions from a CPG) can 
pinpoint inconsistencies in original input data 
alongside allowable guideline data. We demonstrate 
a sample implementation of the approach for a 
pediatric asthma CPG.

Introduction

Research into the implementation of CPG in clinical 
practice has focused on two main topics. First,
methodologies have been developed for facilitating 
the translation of natural language guideline 
documents (medical literature) to computer 
interpretable formats1. Second, a large body of 
research has focused on developing formal, 
structured, and common representation models for 
guideline data to facilitate interpretation in multiple 
implementation environments2. Examples of such 
models include Asbru, PROforma and the Guideline 
Interchange Format (GLIF). While this research has 
progressed computer based modeling, authoring, and 
dissemination of guidelines, solutions that actually 
implement guidelines in clinical practice remain 
exceptional. A key limitation in CPG models is they 
overlook issues on how guidelines are actually used 
in practice. For instance, focusing on representation 
tends to emphasize population-oriented or general 
recommendations whereas implementing guidelines 
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in practice requires more patient-centered or data-
driven suggestions3. Furthermore representation 
models encounter implementation problems with 
incomplete or problematic input data. However, in 
practice, clinical data is routinely collected in an 
inconsistent, incomplete and/or inexact manner4. 

Current guideline representation models are 
represented as primitives including action steps, 
(clinical task to be performed or avoided), decision 
steps (selection from a set of alternatives) and patient 
state (describing clinical status of a patient) 2.  
Primitives can be represented using rules (e.g., Arden 
Syntax rules in GLIF), as workflow systems, or 
models such as Bayesian models (see 
www.openclinical.org for examples of such 
approaches). A common challenge with primitive 
representation is they are sensitive to data that is 
missing or mismatched with the CPG, causing 
problems when matching rules against patient data. 
This issue can be addressed using rule inferences that 
allow for partial matching.  However, the outcome of 
such matching schema is usually some ‘estimate of 
strength’ or score which may not be useful as no 
insight is provided into what data is used in 
performing calculations. In practice it would be more 
useful to leverage possible data-based outcomes to 
allow a physician to check to what extent such an 
outcome corresponds to data at hand (i.e. patient data 
already collected). 

In this paper we address these issues using a flexible 
data-driven approach to CPG implementation, where 
a CPG is cast as a constraint satisfaction model with 
constraints defining allowable variable values and 
permitted combinations of values for clinical 
variables from a CPG. Incomplete clinical data is 
input to a constraint model and extended to complete 
CPG solutions for describing a patient state. 
Modeling a CPG in such a manner can overcome 
limitations of current guideline models such as 
missing or mismatched data. At present our 
constraint satisfaction approach is only concerned 
with expanding the decision step of a guideline 
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model in order to provide a more comprehensive 
representation of the decision to be undertaken.  
Once the decision step has been implemented using 
the constraint-based approach it could be easily 
extended to automatically trigger the action step of a 
CPG which could provide the user with a list of 
possible recommendations for the decision and 
patient state. The paper is organized as follows. First
we provide an overview of constraint satisfaction. 
Second we describe our framework for implementing 
CPG as a constraint model. Third we present an 
implementation of the approach for a pediatric 
asthma CPG. Finally we conclude with a discussion. 

Constraint Satisfaction

Constraint satisfaction solves problems by stating 
constraints about the problem area and consequently 
finding solutions that satisfy all or some of these 
constraints. A constraint satisfaction problem is 
defined by a tuple P = (X, D, C) where X = 
{X1,….,Xn}  is a finite set of variables, each associated 
with a domain of discrete values D = {D1,….,Dn}, and 
a set of constraints C = {C1,….Cn}. Each constraint Ci

is expressed by a relation Ri on some subset of 

variable values, Ri 
⊆Di1 x …x Dik and denotes the 

tuples that satisfy Ci 
5
. A solution to a constraint 

satisfaction problem is an assignment of domain 
values to variables, in such a way that constraints are 
satisfied and solutions are found by systematically 
searching through the space of possible assignments 
of values to variables. This may involve finding just 
one solution with no preferences, all solutions or an 
optimal solution given some objective function 
determined in terms of some or all variables. 

In this work we make use of two commonly used 
constraint satisfaction methodologies for finding 
feasible solutions to CSP constraint models. Firstly 
we employ a Backtracking search methodology to 
extend an incomplete input solution to a complete 
solution. The backtracking search methodology 
attempts to incrementally extend an incomplete 
solution towards a complete solution, by repeatedly 
choosing values for variables which are consistent 
with values in the incomplete solution. If an 
incomplete solution violates any constraints, 
backtracking is performed to the most recently 
instantiated variable that still has alternatives 
available. The search guarantees a solution, if one 
exists, by searching for all possible solutions from the 
input data, or else proves that the problem is 
unsolvable. We also employ a variation of a 
constraint satisfaction methodology known as Node 
Consistency. Node Consistency is a technique for 
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detecting inconsistent values in an input that cannot 
lead to a solution. The technique we use works as 
follows: A node representing a variable X is node 
consistent if for a value d in the domain of X, a unary 
constraint (a constraint defined on a single domain 
variable) on X is satisfied. If the domain D of a 
variable X contains a value "d" that does not satisfy a 
unary constraint on X, then the instantiation of X to 
"d" will result in failure. Thus, the node inconsistency 
can be eliminated by simply removing those values 
from the domain D of each variable X that do not 
satisfy the unary constraint on X.

A CPG Constraint Satisfaction Approach

For a given disease, CPG define a number of possible 
diagnoses in terms of clinical attributes and their 
expected values. Each CPG diagnosis can be viewed 
as a decision step and we refer to this as a diagnosis 
decision step (DDS) hereafter. The constraint 
satisfaction approach presented in this paper 
represents a CPG DDS as a constraint model by 
defining appropriate attributes and values and 
relations between them for the DDS; identifying 
possible feasible solutions for the constraint model; 
and defining a methodology for generating solutions 
to the constraint model. Given a constraint model 
representing a DDS, a confirmed diagnosis from a 
physician and an incomplete set of clinical values 
describing a patient state, the aim of the constraint 
satisfaction approach is to identify a complete set of 
feasible values from the CPG for describing the 
patient state. A feasible solution to the problem is any 
DDS solution or outcome involving an allowable 
combination of all possible attribute values for the 
particular diagnosis that also includes all consistent 
values from the incomplete input solution. The 
solution methodology is a backtracking search that 
finds all possible complete solutions, where feasible 
solutions include all node consistent values from the 
incomplete input solution. 

Therefore, using the constraint satisfaction approach 
one outcome of a DDS from a CPG may be modeled 
as a tuple CPG_DDSi  = (Xi, Di, Ci), where Xi = 
{Xi1,…,Xin}  is a finite set of clinical attributes, Di = 
{Di1,….,Din}, are the domains of the attributes, i.e. a 
set of attribute values and Ci = {Ci1,…,Cin} is a set of 
constraints defining either allowable individual 
attribute value pairs (unary constraints) for a given 
DDS, or  permitted relations among all attribute 
values (non-unary constraints) for a DDS. (It is 
possible to have many outcomes/solutions for one 
DDS as well as many decision steps in a CPG.) 
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The first types of constraints are referred to as 
partial-patient-descriptor-constraints and define all 
possible values for individual clinical attributes in a 
DDS. More formally a unary constraint for a DDSi is:

Ci= {Xi {Zi}}, where Zi 
⊆Di and Zi ≠ φ

These unary constraints are used to sanity check 
individual attribute values from an incomplete input 
solution to ensure node consistency.  The second set 
of constraints is called complete-patient-descriptor-
constraints. These constraints model allowable 
relations over all possible attribute values for a given 
DDS (combined using a Boolean AND) and are used 
to find feasible complete solutions for describing a
patient state by extending a node consistent 
incomplete description of a patient state. For a DDSi, 
these constraints are defined by:

Ci = {Xi1 {Zi} ∧ Xi2 {Zi} ∧ …. ∧ X in(Zi)},  

where Zi 
⊆Di and Zi ≠ φ

A feasible solution to a DDS constraint model is any 
complete set of values for describing patient state, 
which fully satisfy any constraint from the set of 
complete-patient-descriptor-constraints and which 
includes all values from an incomplete input solution 
that satisfy any constraints from the set of partial-
patient-descriptor-constraints. Our constraint 
satisfaction approach for solving a problem is as 
follows:

Step 1: Perform node consistency check on 
incomplete input solution - A confirmed diagnosis 
and an incomplete solution (set of partial clinical 
data) provided by a physician as he/she assesses a 
patient are the input to the constraint satisfaction 
model. The DDS constraint model matching the 
diagnosis supplied by the physician is invoked and a 
node-consistency check is performed on each value 
from the incomplete input using the set of partial-
patient-descriptor-constraints. There are three 
possible outcomes to the node consistency check – no 
consistent nodes are found, all nodes are found to be 
consistent, or the result may be a combination of 
consistent and inconsistent nodes. If no consistent 
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nodes are found (i.e. all partial-patient-descriptor-
constraints are violated), the physician is informed 
that all data entered is inconsistent for the confirmed 
diagnosis. If all nodes are consistent (i.e. all partial-
patient-descriptor-constraints are satisfied), the 
incomplete solution may be extended to a feasible 
solution for the particular DDS.  Therefore the input 
solution is retained as is, and provided as an input to 
the complete-patient-descriptor-constraints (step 2). 
Finally if a combination of consistent and 
inconsistent nodes are found (i.e. some partial-
patient-descriptor-constraints are violated and some 
are satisfied), inconsistent values are eliminated from 
the incomplete solution and consistent values are 
retained. Inconsistent values are referred to as 
conflict values, and are flagged to draw attention to 
the mismatched CPG and patient data in final 
solutions. Retained values that have satisfied partial-
patient-descriptor-constraints are provided as input 
to the complete-patient-descriptor-constraints (step 
2).

Step 2: Extend incomplete solution to complete 
solution - Given a node consistent input solution 
obtained using step 1, the approach extends the 
incomplete solution to complete solutions for 
describing the patient state. Complete solutions are 
those which contain feasible values for all possible 
clinical attributes for a DDS from the CPG. Solutions 
are found using a backtracking search and complete-
patient-descriptor-constraints. Given the incomplete 
input, values for missing variables are found that are 
consistent with values present in the current input 
solution; variables are instantiated sequentially and 
when all variables are instantiated, the validity of the 
constraint is checked using complete-patient-
descriptor-constraints. The search continues until all 
possible solutions are found.

Step 3: Order complete solutions - A DDS constraint 
model may return multiple outcomes or feasible 
solutions for an input solution.  Therefore, solutions 
are ranked using a normalized Euclidean distance 
measure to calculate the similarity 
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Table 1: CAEP pediatric asthma CPGDSS model

Mild Moderate Severe
Dyspnea exertional   at rest   labored   
Beta Agonist good response   partial response   weak or no response   
Difficult Speech absent   absent or moderate   moderate or present   
Tachycardia absent   absent   present   
Tachypnea exertional   exertional or at rest   at rest or labored   
Accessory muscles none   none or moderate   moderate or severe   
Breathing sounds normal or reduced reduced   reduced or silent   
Typical episode better or same   same or worse   same or worse   
Sa02 >95   92-95   <92   
PEV >75   50-75   <50   
FEV >75   50-75   <50   

Mild Moderate Severe
Dyspnea exertional   at rest   labored   
Beta Agonist good response   partial response   weak or no response   
Difficult Speech absent   absent or moderate   moderate or present   
Tachycardia absent   absent   present   
Tachypnea exertional   exertional or at rest   at rest or labored   
Accessory muscles none   none or moderate   moderate or severe   
Breathing sounds normal or reduced   reduced   reduced or silent   
Typical episode better or same   same or worse   same or worse   
Sa02 >95   92-95   <92   
PEV >75   50-75   <50   
FEV >75   50-75   <50   
between an infeasible input solution (containing 
conflict values) and feasible solutions returned by the 
DSS model (where conflict values were replaced by 
missing values). The measure requires non-numeric 
attribute values DDS model (where conflict values 
were replaced by missing values). The measure 
requires non-numeric attribute values to be encoded 
in a numeric format. However, if no conflict values 
are found in the original input solution, each solution 
is assigned an equal rank as in the absence of conflict 
values all solutions are equally adequate for 
representing the patient state.  Solutions are presented 
so that feasible guideline values for conflict values as 
well as actual conflict values from input data are 
displayed to draw attention to mismatched CPG and 
patient data. The methodology allows the physician 
to visualize in a data-driven manner, the different 
effects of mismatched data on the patient state as well 
as to examine the extent to which they are applying 
the CPG for the particular patient. The ultimate 
decision to save or overwrite data describing the final 
patient state is left to the physician.

Sample Implementation: Pediatric Asthma

We demonstrate our constraint satisfaction approach 
we apply it to the CAEP (Canadian Association of 
Emergency Physicians) pediatric asthma guideline as 
shown in Table 1. The guideline allows physicians to 
distinguish if a patient is suffering from a mild, 
moderate or severe asthma exacerbation by analyzing 
values for 8 different clinical signs (dyspnea - typical 
episode) and 3 clinical measurements (SaO2, PEV, 
and FEV).  The guideline also consists of 
recommended treatments that should be applied 
given different levels of exacerbation severity, 
however our CPG constraint modeling approach 
currently focuses only on the decision step 
component of guideline modeling and thus in Table 1 
we omit the guideline component that deals with 
treatment. To transform the asthma CPG from its 
representation in Table 1 to one consistent with our 
constraint satisfaction approach, we define a DDS 
constraint model for each diagnosis/severity 
category; mild, moderate, and severe. For each model 
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the set of variables X, are the 11 clinical signs and 
measurements, X = {dyspnea, beta agonist,…,FEV} 
as shown in the first column of Table 1, and D, the 
set of domain values are the associated values for 
those signs and measurements in the columns labeled 
mild, moderate and severe in Table 1. For example, 
for the moderate DDS the variable X3 = {difficult 
speech} has domain values D3 = {absent, moderate}.

For each DDS model we define two sets of 
constraints C; unary partial-patient-descriptor-
constraints and complete-patient-descriptor-
constraints. For example unary constraints on the 
variable ‘difficult speech’ are CDDS3 = difficult 
speech{absent} for the mild DDS constraint model, 
and CDDS3{1}=difficult speech{absent} and 
CDDS3{2}=difficult speech {moderate} for the 
moderate DDS constraint model. A sample complete-
patient-descriptor-constraint for the mild DDS 
constraint model is: CDDS1 = {dyspnea (exertional) Λ
beta agonsist (good response) Λ difficult speech 
(absent) Λ tachycardia (absent) Λ tachypnea 
(exertional) Λ accessory muscles (none) Λ breathing 
sounds (normal) Λ typical episode (same) Λ SaO2 
(>95) Λ PEV (>75) Λ PEV (>75)}.  

We demonstrate an application of the CPG constraint 
satisfaction approach using the sample description of 
a mild asthma patient shown in Table 2. The input 
solution is incomplete in that it contains missing data 
and data that is mismatched with the CPG (e.g. the 
value ‘worse’ for the variable ‘typical episode’ is 
mismatched for a diagnosis of mild from the CPG). 
We demonstrate how the CPG constraint satisfaction 
approach may extend the incomplete solution in 
Table 2 to a complete feasible solution for describing 
the patient state. 

Attribute Value
Dyspnea exertional
Beta Agonist good response
Difficult Speech absent
Tachycardia absent
Typical Episode worse

Table 2: Input solution
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Step 1: Perform node consistency check on 
incomplete input solution - The physician has 
confirmed that the patient is suffering from  mild 
asthma and thus the incomplete solution in Table 2 is 
passed as an input to the mild DDS constraint model. 
A node consistency check is performed on all values 
from the incomplete solution by checking the validity 
of each unary constraint defined by partial-patient-
descriptor-constraints. For the sample incomplete 
solution, partial-patient-descriptor-constraints are 
both satisfied and violated for the mild DDS 
constraint model. Conflict values detected during the 
node consistency check are flagged and removed, e.g. 
a value of ‘worse’ for variable ‘typical episode’ and 
all values which satisfy the partial-patient-
descriptor-constraints are retained in the input 
solution and the approach proceeds to step 2. 

Step 2: Extend incomplete solution to complete 
solution - The solution methodology is to perform a 
backtracking search to find any constraints from the 
complete-patient-descriptor-constraints for the mild 
DDS constraint model which are fully satisfied. The 
algorithm searches for all feasible complete solutions 
by instantiating missing variables from the 
incomplete input solution with values consistent with 
those already present in the incomplete solution. For 
the scenario in Table 2, 4 feasible solutions are 
found. 

 Step 3: Order complete solutions - Complete 
solutions from the mild DDS constraint model are 
ranked by similarity to the incomplete input solution. 
For example; a conflict value of worse for the 
variable ‘typical episode’ was detected in the 
incomplete solution. In calculating the Euclidean  
distance between the incomplete and complete 
solutions from  step 2, solutions with a value of 
‘same’ for ‘typical episode’ are closer in distance 
than solutions with a value of ‘better’ for ‘typical 
episode’ and ranked higher in the returned ordering. 
In displaying results, consistent values from retrieved 
solutions for which conflict values were detected in 
the original input are flagged for attention along with 
the actual conflict values.  For example, feasible 
values for the variable ‘typical episode’ of ‘same’ 
and ‘better’ from complete solutions are flagged and 
displayed alongside the actual conflict value of 
‘worse’. 

Discussion

In this paper we have introduced a data-driven CPG 
constraint satisfaction approach for implementing 
CPG in clinical practice. The approach expands the 
decision step of guideline models by proposing a 
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methodology for implementing CPG in cases of 
incomplete data or a mismatch between patient data
and CPG. Using constraint satisfaction, incomplete or 
mismatched data may be extended to find feasible 
complete solutions for describing patient state.  We 
also provide a methodology for data-driven 
explanation of the differing effects of mismatched 
clinical data on the final description of a patient state 
using constraint satisfaction to leverage different 
patient ‘scenarios’ which can include/exclude 
mismatched data as well as allowing physicians to 
view the extent to which they are applying a 
guideline for a particular patient. The framework also 
enhances data quality by drawing attention to 
mismatched data and by ensuring the collection of all 
data for patient encounters. Clinicians consulting on 
this research believe the ability to facilitate decisions
based on incomplete or partially incongruent data 
would be extremely useful, particularly for novice 
physicians. We will seek further clinical advice as we 
extend and implement our framework. We intend to 
extend the framework by further developing the 
heuristic for ordering feasible solutions. This could 
be performed by incorporating domain knowledge 
into the problem solving process. For instance, there 
may be subsets of attributes/values from a CPG that 
may be more discriminatory in describing patient 
state. This domain knowledge could be elicited 
directly from experts or it could be learned 
automatically from a case-base of previous 
incomplete and complete feasible solutions for 
describing patient states.
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