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Abstract

The increase in the production of digital information every second has raised
the demand for storage as its counterpart. Hard disk serves an important storage
device but subjected to failure which leads to the loss of data. To improve its reliab-
ility several researches were put forward, which didn’t provide a satisfactory result
and had no real-time implication of their system. The purpose of this research is
to propose Disk Failure Prediction (DFP) models based on Random Forest (RF),
Feed Forward Neural Network (FFNN) and unsupervised K-means clustering, with
a real-time Self-Monitoring System (SMS) built on a predictive model showing the
most stable and reliable performance. The performance of the model were evalu-
ation under various test cases such as providing samples of different sizes, taking
timing into account and considering voting in the predicted result. The RF model
performed best under this test cases with a maximum DFP rate of 99% with 0.01%
False Alarm Rate(FAR) which is superior to state of the art model such as Decision
Tree (DT).

Keywords: Random Forest, feedforward neural network, decision tree, K-means
clustering, smart monitoring system, h2o, hard disk failure.

Contents

1 Introduction 2

2 Related Work 3
2.1 The existing smart technology and its cons . . . . . . . . . . . . . . . . . 3
2.2 Consolidation of statistical and machine learning techniques . . . . . . . 4
2.3 Considering anomaly behaviour of hard disk for fault detection . . . . . . 5
2.4 Implemented techniques of machine learning to predict the disk failure . 5
2.5 Summary of recent research works on hard disk failure prediction . . . . 6
2.6 Tracking down to the implemented system . . . . . . . . . . . . . . . . . 6

3 Methodology 7
3.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Preliminary checks and Dataset pre-processing . . . . . . . . . . . . . . . 8
3.3 Methods description and parameter adjustment . . . . . . . . . . . . . . 8

1



3.3.1 Random Forest based model . . . . . . . . . . . . . . . . . . . . . 8
3.3.2 K-means clustering model . . . . . . . . . . . . . . . . . . . . . . 9
3.3.3 Feed-forward neural network based model . . . . . . . . . . . . . 10

4 Implementation 11
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 The model’s stability with varying sample sizes . . . . . . . . . . . . . . 11
4.3 The timing-based model and its performance . . . . . . . . . . . . . . . . 12
4.4 Applying voting to the predicted individual disk samples . . . . . . . . . 12
4.5 Self-monitoring system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5.1 Crystal Disk Info . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5.2 The h2o library in R . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5.3 Description of the Application . . . . . . . . . . . . . . . . . . . . 14

5 Evaluation 15
5.1 Performance measure with the variation in disk samples . . . . . . . . . . 15
5.2 Timing consideration in the training data . . . . . . . . . . . . . . . . . . 17
5.3 The voting on predicted individual disk samples . . . . . . . . . . . . . . 18
5.4 Run time estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Conclusion and Future Work 20

1 Introduction

With the blooming digital world, creating large amounts of digital information has
increased the demand for storage. It has led to a 7% increase in storage market every
year (Kaplan; 2008). This demand has caused a massive shipping of hard disk, nearly
104 million hard disks were shipped in the third quarter of 2017 (Peng; 2017). This hard
disk is highly reliable, but its failure may lead to a drastic loss of useful information of
users. And a heavy economic loss for the service provider is observed during the down-
time. It is estimated (Gehrer; 2016) that if a data center is missing in action it would
cost $9,000 US every minute. This Significance of the hard disk demands it to be more
reliable in functionality. But it is observed that the disk remains as the most often failing
component causing that downtime in a data center which drives the research interest on
it (Botezatu et al.; 2016).

To improve the reliability of the disk, the pioneer of disk manufacturer IBM, in-
troduced Self-Monitoring Analysis and Reporting Technology systems (SMART) (Allen;
2004). This SMART system is designed to predict the disk failure in advance so, as to
facilitate the user to save their data before the actual failure could occur. This system
works based on threshold method, the features of the disk where continuously monitored
by the SMART and its compared with the threshold level provided by the disk manufac-
turer. An increase in the feature value above the threshold would indicate the user about
the upcoming failure. The SMART threshold value varies among the manufacturers. Ac-
cording to Allen (2004), this method provided a very low prediction of 3%- 10% with a
FAR of 0.01%. There is not even 50% guaranteed chance of correctly predicting the will
fail disk. More importance is given to the FAR to be maintained low as an increase in
this value could have a negative impact on the manufacturer. As they need to replace



the disk which fails before the warranty.
The SMART system provided a very low failure prediction, a great deal of research-

ers had made the contribution in improving the prediction of the disk failure with reduced
FAR. This was done by building model based on SMART attributes using some of the
statistical and machine learning methods (Murray et al.; 2005, 2003; Wang et al.; 2011;
Queiroz et al.; 2016; Li et al.; 2017).

These built models had many drawbacks, most of this model showed a low predic-
tion with high FAR than the SMART system. Nearly half of them used a very small data
set which defers from the real-world hard disk data. The predicted results were not stable
with the varying data sizes. They do not depict any practical application of the model
built for prediction. The existing system has several features to be improved upon.

The objective of this research is to deploy machine learning based models that will
perform better than the existing methods in terms of higher FPR with lower FAR, main-
taining its stability under various circumstances. A Classification and clustering based
models such as ensembled RF, unsupervised K-means clustering and supervised FFNN
will be implemented to get improvement in performance in terms of prediction and sta-
bility. They will be tested on a dataset coming from real-world data center used by the
previous researcher Li et al. (2017) to have a comparative study on their performance.
A SMS system will be built for a real-time monitoring of system disk status using the
best performing machine learning algorithm.

The remainder of this paper is organized as follows. The previous researchers work
on DFP are briefly reviewed in Section II. The dataset description and summary of our
proposed methods with initial adjustment are provided in section III. Implementation of
the proposed methods is given in section IV followed by the evaluation of the algorithms
in section V. The section VI concludes the paper.

2 Related Work

2.1 The existing smart technology and its cons

The SMART introduced by IBM has a goal to provide valuable time to the user to
safeguard their data before the failure of the disk could occur Allen (2004). This system
doesn’t provide to be a good model as it showed a very low Failure Detection Rate (FDR)
with moderate FAR.

Many works were put forward by researchers to improve upon this feeble section of
the SMART system with the main intention of achieving higher FDR at a minimal FAR.
The work by the researchers in detecting the hard disk failure is divided into three main
categories as said my Chaves et al. (2016). The first set of researchers used the hard disk
generated log files, but it lacked in providing incisive information. The second set used
externally built monitoring system designed using sensors, but the cost of implementation
of this system was high. The third set had an inbuilt technology to monitor the status of
the disk with minimal prediction rate of 3% with a FAR of 0.01% named as the SMART
system (Allen; 2004). Most of the researchers followed the third set and used the SMART
attributes collected by the system to achieve their results.



2.2 Consolidation of statistical and machine learning techniques

The improvement on this SMART system was first conducted by Hughes et al.
(2002) using Walcoxon rank-sum test by considering the SMART attributes to be non-
parametrically distributed. The method showed a higher FAR of 0.5% showing a detection
of 40%-60% which is higher than the default SMART system. This system was imple-
mented using the OR-ed single variant and multivariant rank-sum test. The implemented
system was not good for general learning and the dataset used has a very minimal count
of data.

Murray et al. (2003) worked on the improvement of this system by including feature
selection on data. A comparative study was conducted by him implementing Support
Vector Machine (SVM), two nonparametric statistical tests and unsupervised clustering.
This implementation showed a major disadvantage with SVM showing deterioration of
performance with the selected feature. A high FAR of 1.0% was shown which couldn’t be
lowered below this range in autoclass. And no further improvement on the 33.2% FDR
with 0.5% FAR was achieved by Murray et al. (2003).

With the FAR being very high, reduction of this value was taken into consideration
by Murray et al. (2005) as his further work by using non-parametric methods, assuming
that the attributes are non-parametrically distributed. A different dataset having 191
failed and 178 good disks making a total of 369 disks were used. To get a better predic-
tion and to have minimum FAR separate groups of algorithms were considered to focus
on each of this causes separately. Even the newer data set with different feature selection
performed using reverse argument and z-score the prediction of 33.2% with 0.5% FAR was
given by the rank-sum method and found to be better than Nave Bayesian classifier(mi-
NB) which was newly implemented with a hope to achieve a lower FAR. The attribute
consideration still had an effect on SVM which showed 0% FAR at 50% FDR with full
attribute and a deprivation with limited attributes. It also took longer time to set SVM
than other algorithms. With the SVM performance, it is clear that attribute selection
has a major effect on the performance of the model as said my Saeys et al. (2007).

Disagreeing with above researchers (Murray et al.; 2005, 2003; Hughes
et al.; 2002), Li et al. (2014) pointed that the good and failed disk considered
in Murray et al. (2005) research had different point of origin and data set
was smaller and had almost similar count of good and failed disk which won’t
be the case with real data from a hard disk system. They also showed a very
low prediction with greater FAR.

The Controversial argument was raised by Zhao et al. (2010) that relationship
between the attributes is an important factor which changes over time and previous
researchers (Murray et al.; 2005, 2003; Hamerly et al.; 2001) didn’t consider this rela-
tionship into account. Zhao et al. (2010) predicted the disk failure using HiddenMarkov-
Models (HMMs) and Hidden Semi-MarkovModels (HSMMs) models by considering the
relationship between the attribute. A set or individual attributes were considered as a
time series observation and log likelihood calculated on the train and test set was done to
compute a threshold to predict the disk status. With this consideration, the HMM and
HMSS showed a performance of 46% and 30% for single and 0% FAR with 52% prediction
for multiple attributes. The performance was superior to (Murray et al.; 2005, 2003).



2.3 Considering anomaly behaviour of hard disk for fault de-
tection

The abnormal behavior is named as an anomaly. Its mostly used in cases where the
samples are imbalanced such as the case in rare disease prediction. The methodology to
detect the fault in disk using anomaly was first carried out by Wang et al. (2011). He
used Mahalanobis distance to determine the abnormality in most of his experiments, the
measured mark of the degree of degradation is compared with a threshold to determine
the disk status. He used feature selection by conducting a detailed study on the structure
and content of the hard disk. The attributes selected by Wang et al. (2011) was different
from that of Murray et al. (2003). The anomaly method had a greater prediction ac-
curacy with the selected feature showing a detection capability of 63% with 0.56% FAR
which was better than Hamerly et al. (2001). To provide a further improvement, to the
Mahalanobis distance a Box-Cox transformation was introduced in his subsequent study
(Wang et al.; 2012). Along with attribute selection process Wang et al. (2012) using
minimum redundancy maximum relevance (mRMR) and failure model, mechanisms, and
effects analysis(FMMEA). Improvement was not seen with all this implemented strategy
it only increased the computational cost (Wang et al.; 2014).

The use of Mahalanobis distance for fault detection was opposed by
Queiroz et al. (2016) raising an opposite viewpoint by stating that use of
the distance approach in the case when HDD doesn’t meet normality as-
sumption could show a degradation in performance of the model which was
not considered by (Wang et al.; 2014). As a solution for this Gaussian system
with a recursive feature elimination for attribute consideration is proposed by Queiroz
et al. (2016) for detecting the anomaly in disk behavior. The maximum of 80.59% failure
detection with minimal FAR was the result of this case.

2.4 Implemented techniques of machine learning to predict the
disk failure

Chaves et al. (2016) opposed the Gaussian method proposed by Queiroz et al. (2016),
by stating the difference between failure prediction and fault detection. The numerical
quantity defining the rest of the useful life of the disk is given by failure prediction and the
finding of this failure in advance is given by false detection which focuses on the anomaly
of the disk. The previous researchers Queiroz et al. (2016) and Wang et al. (2014) didn’t
consider the prediction of failure and gave more importance in fault detection. Queiroz
et al. (2016) differentiated his work by building a model using Bayesian Network and
named Bayesian Network based Hard Disk Drive (HDD) Failure Prediction(BaNHFaP)
which used the Power-On attribute of the disk discriminating itself from those models
which used only the remaining useful life. The dataset used had four percentage of failed
disk and was provided by Backblaze company.

The above researchers showed a better prediction than the SMART sys-
tem but most of them were subjected to controversy some of the models by
Chaves et al. (2016); Murray et al. (2005, 2003) were black box approach
and had inconsistent showing a low prediction with higher FAR. The later
researcher Li et al. (2014) mentioned that the SMART attributes changed
with the deterioration of the disk which was not considered into account. And
had no description of the way the model could be used in the real world. The



data set used are mostly smaller and had a minimum failed disk samples
Considering all this into account Li et al. (2017) used DT for hard disk predic-

tion problem and Gradient boosting regression (GBRT) for monitoring the health degree
and got a maximum prediction of 93% at FAR of 0.01% with DT. They considered 13
best features from a real-world dataset after going through three non-parametric statist-
ical tests methods used by Hughes et al. (2002). Though the performance was higher
than the rest of the researchers the DT lacked its stability with smaller samples and the
prediction was lower than expected with a higher FAR rate of 0.01%. And there were de-
gradation in performance of both DT and GBRT when the hybrid dataset was considered.

2.5 Summary of recent research works on hard disk failure pre-
diction

S.No. Reseachers Techniques Cons with the imple-
mented system

Reference

1 Zheng,Zhao and
Lui(2010)

HSMM-and
HMM-based
approaches

The maximum FDR was
50% which is minimal and
needs improvement.

(Zhao
et al.;
2010)

2 Miao, Wang and Michael
peche (2011)

distance using
Mahalanobis

It works with normality as-
sumption and no consider-
ation was made on HDD
which doesn’t meet this as-
sumption.

(Wang
et al.;
2011)

3 Miao,Wang and Michael
peche (2012)

A fusion ap-
proach on
Box-Cox Trans-
formation Ma-
halanobis

It works with similar as-
sumption of normality and
would show degredation in
performance with HDD not
meeting this assumption.

(Wang
et al.;
2012)

4 T. Brito, C. Brito,
Queiroz, Radrigues
Gomes and Machado
(2016)

Mixture of Gaus-
sians

Their consideration was on
fault detection and no at-
tempt was made on failure
prediction

(Queiroz
et al.;
2016)

5 Xinpu, Jing, Zhu, Yuhan
and Wang (2014)

Regression and
Classification
tree

Their performance was lim-
ited to FDR of 95% with
higher FAR of 0.1%.

(Li et al.;
2014)

6 Wang, Gang, Li, Jing,
Rebecca and Li, Zhong-
wei, Ming (2014)

HDD failure pre-
diction using DT
and GBRT

The performance was not
stable and the maximum
prediction was only 93%
with 0.01% FAR

(Li et al.;
2017)

2.6 Tracking down to the implemented system

The disk failure forecast is a classification problem as stated by Li et al. (2014). RF
introduced by Breiman (2001) provides both classification and regression which is highly
accurate and more robust to noise which provides the estimate of variable importance
(Dı́az-Uriarte and De Andres; 2006). The voted result of internally built trees
by RF makes the result more precise than other algorithms. It is stated by



(Li et al.; 2014) that RF based classification could be a better feature work
on DFP. On the other hand, the DT used in previous research is subjected
to error due to bias and variance which is internally looked after by RF, it
reduces variance by taking subgroup of features and diverse samples of data
for training. They can maintain bias error with no increase in overfitting.

The RF is used by many researchers to achieve better prediction than state-of-the-
arts model such as SVM which is clear from Khalilia et al. (2011) research where he used
the RF for a highly imbalanced dataset and compared its performance with bagging,
boosting and SVM to show RF prediction accuracy. It was also the case with Wei and
Chiu (2002) churn prediction, the RF showed superiority than basic Long Short-Term
Memory and Gradient Boosting Trees. These features of RF makes it superior to be used
in this research.

The neural network (NNET) was introduced in computing by Limpon (1987). They
served as a complex system recognizing image and speech. This complex system is been
in use for many years and as a classifier by researchers. Kirkos et al. (2007) used an
NNET and DT in his classification of fraud document and found the NNET to provide
a better prediction. Many of the researchers (Wang et al.; 2011; Queiroz et al.; 2016)
treated disk failure detection as anomaly detection where failed and will fail disk which is
less in the count is segregated from the good once. K-means is an unsupervised clustering
algorithm introduced by Hartigan and Wong (1979) is subjected to anomaly detection.
Due to its simplicity and the high-speed performance alone with the capability to handle
huge datasets its been used in classification and anomaly detection, Yuan et al. (2017)
and Phua et al. (2010) used k means and got a better result.

3 Methodology

3.1 Dataset description

T he dataset1 we have considered for this research is a real-world dataset with 23,395
disk drives from Seagate model (ST31000524NS) which are enterprise-class drives. 22962
drives among the 23,395 are the good drives which don’t experience any failure during
the entire operation while the data was recorded. The rest 433 drives failed at some point
while the data was recorded. The SMART attributes of each good and the failed drives
were recorded every hour over a prolonged period of time which makes each disk to have
several samples which we named as Individual-Disk-Samples (IDS). All the bad disk has
IDS of 20 days before the actual failure which is retained in the dataset but most of the
drives which didn’t last until 20 days of record period had lesser than 480 IDS. All those
drives which didn’t fail during the record operation were categorized as the good drives
and the last seven-days IDS of all those good drives were retained in the dataset. This
entire IDS of data formed the dataset described by the name “W”. The statistics of “W”
data set is given in Table 1.

The dataset has thirteen features including the serial number which is like disk-ID
representing each individual disk by a unique number. The twelve other features of the
disk expect serial number is completely normalized to a scale of (-1 to 1). The output
label has (-1 and 1) where “-1” denotes failed disk and “1” denotes good disk. The dataset
is unbalanced with a greater number of good disk nearly 50 times higher good disk than

1Dataset is available at: http://pan.baidu.com/share/link?shareid=189977&uk=4278294944.

http://pan.baidu.com/share/link?shareid=189977 & uk=4278294944.


Table 1: Statistic of “W” dataset

Dataset Labels Period No. of Hard
disk

IDS

“W” Failed 20 days 433 158,150
Good 7 days 22962 3,837,568

Table 2: Attributes of “W” dataset

Attribute

Raw Read Error Rate High Fly Writes
Spin Up Time Temperature Celsius
Reallocated Sectors Count Hardware ECC Recovered
Seek Error Rate Current Pending Sector Count
Power On Hours Reallocated Sectors Count
Reported Uncorrectable Errors Current Pending Sector Count

the failed disk. The complete description of the attributes in “W” is given in Table 2

3.2 Preliminary checks and Dataset pre-processing

The data is completely processed in RStudio. The header for the dataset is provided with
the description of the dataset which are then included in the dataset. The summary of
the dataset are made to have a clear understanding of the features. There where no null
values included in the dataset and were completely normalized. The serial number of the
disk was not used in build the model. The label column which describes the drive status
was converted to factor to acknowledge the model to treat it as the output column. All
the other feature were maintained as a numeric quantity. The dataset is divided into test
and train, with 70% of the data in train set and rest 30% in the test set. The samples of
this data were used to test and train the model built. Further processing of the data is
done based on the research conducted on it, this further processing is clearly described
in their specific sections.

3.3 Methods description and parameter adjustment

3.3.1 Random Forest based model

The motivation for using RF is due to its peculiar functionality of generating several
internal classifiers and providing the voted result of that classifiers, unlike the DT model
which used external voting for increasing prediction accuracy (Khalilia et al.; 2011).
Along with that, it runs its own internal validation minimizing the (OOB) error which
makes it provide a better prediction (Dı́az-Uriarte and De Andres; 2006). In addition to
that, It avoids overfitting and uses the importance of features to generate better results.

In this research, we took the help of a package randomForest to build RF in R
studio. While building this model the important parameter considered are ntree and
mtry variables of the RF which has to be tuned in accordance with the dataset and



the experiment. The ntree determines the number of tree to be build from the dataset
provided. The mtry is the number of variables to be used in each random tree built in
the process. The ntree value was set randomly at the first run of the RF model to get a
deeper insight on the error estimate. Figure 1 shows the error estimate with ntree value
of 900. Based on the error value obtained in this first run the ntree is fixed to a value of
100.

Figure 1: Error estimate for ntree value of nine hundred.

The value of ntree is minimized as possible as there is no decrease in the error rate
after this stage and building further trees did have a major impact on the prediction
performance and it increased the computational time to read the additional trees. The
value of mtry specifies the performance of the model in prediction. To set a proper value
of mtry the square root of total column in the dataset is considered as a first approach,
taken that “X” is the number of column in the dataset.

mtry = diskdata(sqrt(ncol(X))) (1)

The total of twelve features skipping out the model serial number is selected for building
the model. The mtry value of 3.4641 is used for the first run. As we proceeded with
tuning the RF for a better prediction, using the repeated cross-validation method with
grid search which is available in the caret package of R. A three folds cross-validation was
done twice on the training data to determine the value of new mtry. The cross-validation
provided the mtry value of six which gave the maximum prediction performance with the
training data and it was better than the mtry set using the formula (1) so rest of the
experiment used the mtry of six. The values of the rest of all the perimeter in the RF
were left to its default value.

3.3.2 K-means clustering model

K-means clustering is an unsupervised learning method. The preference of this
method is due to the data set structure which has a minimal number of attributes that
are numerical which makes the k-means more suitable unsupervised learning algorithm
to be chosen for this problem. And it’s simple and suitable for large dataset as it doesn’t
involve any pre-calculation. Along with this the hard disk failure detection is considered
as an anomaly detection by Wang et al. (2012); Queiroz et al. (2016) and work on this



by using different statistical approaches. K-means is a simple and preferred algorithm
for detection of the anomaly, which is used to achieve good accuracy in prediction by
several researchers (Lima et al.; 2010; Li et al.; 2011). The performance of the unsuper-
vised machine learning in classifying the disk into two categories with the minimal FAR
is checked. The k-means clustering is performed in RStudio with its library k-means.
The important attributes of the k-means clustering are the value of “K” which is the
total number of clusters to be formed at the end, the initial number of centroids and the
stopping criterion for the k-means clustering.

The value of “K” is assigned as two as we have only two categories as our response
variable. The initial number of times the algorithm has to run to get the minimum within
sum of square is set a random value of five whereas the default value is one. The stopping
criterion is given by “iter.max” which is left to its default value of “10”. The k-means
uses different methods to compute the clusters the default method in which K-means
package work is Hartigan-Wong which is left unaltered.

3.3.3 Feed-forward neural network based model

The Artificial neural net is a creation with the inspiration of human brain func-
tionality. The self-adaptive feature of NNET according to the input data without expli-
cit interaction. Followed by their flexible nonlinear modeling feature for the real-world
complex relationship (Hornik et al.; 1989; Hornik; 1991). Along with their universal
functional approximation made their way to be applied in this research. The NNET has
shown its precedence when applied to several real-world classifications of fault detection
(Bartlett and Uhrig; 1992; Hoskins et al.; 1990) and prediction of bankruptcy (Leshno
and Spector; 1996; Tam and Kiang; 1992).

Figure 2: The graphical illustration showing FDR and FAR values for different counts of
neurons.

The FFNN was implemented in RStudio using the nnet package available in R.
This package provides a simple FFNN with a single hidden layer. The number of input
neurons is equal to the number of input variables. In this case, the input neurons were



set to twelve and the output layer has a single neuron as there was only a single output
variable with two categories. The selection of optimal neurons in the hidden layer is an
important task. With many hidden layers, there may be the problem of overfitting and
with lesser number of hidden neuron, there may be the problem of underfitting with a
poor prediction result. The optimal number of neurons in the hidden layer is selected by
trial and error method. For this, a sample of 500,000 rows from “W” dataset is used to
train and test the model with varying neuron count as shown in Figure 2.

The optimal number of fifteen neurons is chosen in the hidden layer which showed
a good prediction with minimal FAR. With the increase of neurons in the hidden layer
beyond the input parameter, the True Positive Rate (TPR) increased with a gradual
degradation in FAR. The number of neuron were selected in such a way that the FAR
remains minimal with a good prediction rate. The maximum iteration run during the
training of the model was fixed to the default value of hundred to minimize the time
required to run the training and most of them converged before hundred iterations.

4 Implementation

4.1 Overview

The hard disk prediction has been a research interest for many, the recent research
was carried out using DT by (Li et al.; 2017), though the DT showed a better performance
than the previous researchers it had degradation in performance with smaller datasets,
showing unstable performance with varying sample sizes. We built models using both
supervised and unsupervised learning algorithms such as RF, FFNN, and k- means clus-
tering to improve upon the existing prediction capability with minimum false alarm rate
and to get a stable performance. The implemented models were checked under different
conditions such as samples of data of various sizes, considering the timing into account
with the training data, and conducting voting in the predicted results of the algorithm
to compute their efficiency under different conditions. The models were implemented in
RStudio with all the attributes set to the values defined in section 3.3. An SMS system is
implemented for a real-time self-monitoring using the best performing machine learning
algorithm.

4.2 The model’s stability with varying sample sizes

The stability in the performance of the model could be checked by varying the
sample size of the dataset used to train the model. As the sample size contributes to
change in the performance of the model in the previous research conducted by Li et al.
(2017), where the performance of DT and GBRT degraded with smaller sample size. To
check this effect on the algorithm considered, different sample sizes were used to build
the model and their performance in prediction was checked. Following the section 3.2,
we started with randomly segregating the IDS of data and then sampling the data to
different sizes. The minimum size of the sample we used was 1000,00 which was from 417
failed disk and 22594 good disk. The samples were then increased in such a way that the
count of disk increased in the samples taken. Eight different samples of a various size
were considered. Every sample was then split into train and test set, 70% of the data
from the sample was treated as a training set which was used to build the model and the
rest 30% of the data was used to test the model. The three different model where built



using the RF, FFNN, and k-means clustering with all the attributes of the algorithm
configured from the section 3.3. Figure 3 illustrates a simplified overall view of building
a model using samples of data.

Figure 3: The overall pictorial description of building a sampling-based model with ran-
domly segregated IDS forming different sample sizes.

4.3 The timing-based model and its performance

The general feeding of the entire data set as test and train sets to the model doesn’t
provide much understanding of the underlying functionality mostly in cases of the exper-
iment where timing is a consideration. The deterioration of the disk happens by time
(Zhao et al.; 2010) so, to predict the disk failure timing is to be considered as an im-
portant parameter. Each IDS recorded every hour has attributes of the disk which varies
with timing. How well an algorithm could get in line with this variation of attributes
contributing to failure, to predict the disk failure with minimum hours of data provided
(when limited data is available) would state its performance. The performance of the al-
gorithm is checked by varying the timing interval, a total of five different timing interval
are considered.

To conduct this experiment the data set is partitioned into train and test set after
randomly distributed them. This makes IDS from a single disk to be in both test and
training set. The training sample which has several IDS from many disks is then grouped
by the serial number (Disk-ID) of each disk. From this grouped disk “N” hours of IDS
(“N” explicitly means timing in hours) from each disk are taken to build the model. Con-
sider if N=8, the 8hrs of data from all the disk is used to train the model. The complete
description of different “N” values that are taken and their results obtained is produced
in Figure 9. Figure 4 illustrates the model building steps, taken to check the effect of
timing on the model.

4.4 Applying voting to the predicted individual disk samples

All the above sections had a prediction where each IDS will have either failed or
good as the result. But all the IDS predicted for a disk won’t have the same output. The



Figure 4: The description of steps taken to build a model with timed data. Here “N”
hours of timed train data is used for training the model.

output could vary along the IDS of each disk when predicted by the model. A single disk
IDS could have both the failed and good as the results. So, the status of the disk is not
concluded by a single value, either fail or good but has IDS varying from good to failed
and vice versa. In such a case, to determine the exact status of the disk a voting based
method can be used which is expected to give a more accurate result. As it takes the
majority votes into consideration while determining the status of the disk rather than a
single IDS.

Figure 5: The pictorial description of voting being considered in the predicted results of
the model to minimize misclassification of disk.

To conduct the voting based test on the algorithms the training data formed by
combining the good and failed disk is used to build the models. The trained model is
then tested in the testing set. The predictions are then grouped by the serial number
given to the disk. This generates a group of IDS for each disk having both failed and



good as the result. Then “V” number of IDS predictions of each disk is taken to generate
a voted output. In general, Once the value of “V” is confirmed, say V=10 the last 10
IDS of a disk is taken for voting to determine its status.

The value of “V” is varied and the lowest count of IDS for which the model attains
the best result in classifying the disk properly into good and failed is noted, this would
determine the performance of the different model. The minimum IDS the model takes to
correctly define the status of the disk, the best the model performance is. The number
of IDS the model correctly defines has an influence on the voting result. The description
of the model performance for a different number of voting sample is given in Figure 10
and Figure 11. The illustration of the steps taken to build the model is given in Figure 5

4.5 Self-monitoring system

The SMART system works by maintaining thresholds on the attributes it collects from
the hard drive. These SMART attributes are used by most of the researchers to build
there machine learning algorithms to predict the disk failure. RF and other algorithm
implemented in this paper also use the same SMART attribute as its data for build-
ing models and for testing. We used this SMART attributes to build a self-monitoring
application that would track the health status of the inbuilt disk of the system in real
time.

4.5.1 Crystal Disk Info

Crystal Disk Info (CDI) (DiskInfo; n.d.) is open source software that runs on a windows
machine and is widely used to collect the SMART attributes of the internal disk in the
system. A total of twenty-two attributes are collected by the software, this collection of
the disk attribute can be timed. A frequency interval of five minutes is set for collection
of the attributes which are then saved internally in a text file.

4.5.2 The h2o library in R

h2o.ai (Allen; 2004) is a fast scalable open source machine learning platform, providing
support in Java, R, and python. It is available as an easily installable package in R.
The RF is one among the many algorithms that are supported by h2o. The reason for
choosing h2o is its capability to convert the machine learning model to java POJO class
which is a machine learning implementation of open source framework of h2o.ai. After
the conversion of R built a model to POJO it can be run in java by the Gradle a general
purpose build tool.

4.5.3 Description of the Application

For implementing the application RF is used which is built in h2o with the sample
of 800,000 rows from “W” dataset considered in 4.2. The reason for not considering
timing or voting methods in building the system is because voting is used when several
IDS is available as a result but in real time implementation, we get a single row of data
with all the attribute, where voting is not possible. The timing-based is designed to check
the modes performance when the data is limited but it’s not the case here we have an
ample data to train the model. The built model trained with a sample of data is then
extracted as a java POJO class which is used as a backbone to build the application in



Figure 6: Overall illustration of SMS built on the most predictive model using h2o.

java. The internal disk data of the system is collected by the CDI and stored in a file
which is processed and provided as a test sample to the model. The predicted status of
the disk is given to its user. This internal disk data collection happens every 5 minutes
and is tested with the model automatically and the status is updated dynamically. This
entire system of operation is automated and its complete pictorial description is given in
Figure 6. Figure 7 shows the flow of data and the internal working of SMS.

5 Evaluation

The implemented models in RStudio is evaluated under various conditions. As an eval-
uation metric, the TPR and False Positive Rate (FPR) were recorded for all the ex-
periments conducted. The prediction of the failed disk where considered as a positive
prediction, so the TPR is the number of failed disk correctly predicted as failed which
is mentioned as FDR and the FPR is the good disk classified to be failed mentioned as
FAR.

5.1 Performance measure with the variation in disk samples

To check the performance of the algorithm with different sample sizes, considerable
samples of varied sizes were taken into consideration. The minimum number of sample
considered was one hundred thousand and had a failed disk count of 417 and a good
disk count of 22594 holding a failed samples of 3929 and good samples of 96072. The
samples were then increased in such a way that the count of disk increased in the samples
taken. The eight hundred thousand samples included IDS from all the failed and good



Figure 7: The flow diagram showing the in-depth concepts and functioning of SMS de-
veloped on RF model.

disk. The complete description of the recorded FAR and FDR for three algorithms is
given in Figure 8.

The RF showed better prediction results with different sample size. Even with a
smaller sample of one hundred thousand, it showed an FDR of 96% and FAR of 0.01%
which is higher than the DT model built by Li et al. (2017) which showed a lower FDR
of 82.3% at 0.09% FAR with a smaller sample. As the size of the sample increased RF
showed a drastic improvement in performance with a higher FDR at a minimal FAR. The
RF computes the importance of the variable with the trees it built internally. From the
result obtained on the important Attributes Power-On Hour (POH) attribute followed
by Reallocated Sector always remained as the most important with the Pending Sector as
the least important attributes. With the 800,000 samples, the important attribute POH
was used 52 times as a root node in the formation of internal trees with a maximum
of 5585 child nodes beneath it. The interaction between the variables is assumed as
an important parameter in Zhao et al. (2010), this interaction effect is considered by
RF internally and it’s seen that POH has maximum interacted with Seek Error nearly
88 times while building the model. The performance of the complete dataset was not
recorded in the case of RF due to the lack of computational capability of the system
used in building the model. As with larger dataset, the size of trees built internally
increases, with the replica of data being held for each tree in the memory which leads to
the consumption of a lot of memory. The memory consumption also increases linearly
with the increase in the number of trees. Due to this memory limitation of RF with
large dataset made it impossible to run on a smaller machine. The computation could
have been made possible with a high-end machine, but its clear that the performance is



increasing with the increase in the sample size and its performance way better than DT
algorithm with just a fraction of data.

Figure 8: The disparity in the prediction results with variation of sample sizes

The FFNN showed a better performance than the k-means algorithm. It provided
FDR of 88% with 0.1% FAR. With the increase in the sample size, the performance
of FFNN also increased, with complete data set it showed 90.8% prediction at 0.15%.
Similar results were obtained using Back Propagation on the same dataset by Li et al.
(2017). The neural net mostly converged within hundred iterations so it’s left unchanged
throughout the experiment.

With the k-means clustering model, the FAR remained almost constant and higher
than the FDR in most cases, showing an overall deficient performance. In some cases, it
showed a drastic improvement in FDR. The k-means clustering provides greater deviation
and different results while running the same samples this is due to the selection of different
starting point by the algorithm. The initial partition has a greater effect and results in
different final clusters. This was helped by setting a seed which regained the same best
result obtained by k-means for a sample. But as a whole, this algorithm lacked it’s
performance when compared to the result obtained by Li et al. (2017) and it was also
lower than the one obtained by the SMART algorithm (Allen; 2004).

5.2 Timing consideration in the training data

This experiment provides an idea about the performance of the model when provided
with “N’ number of IDS samples before its actual status. The IDS are recorded at a
frequency of one hour. The timing in hour indirectly refers to the “N’ number IDS before
the actual disk status.

Five different timing in hours where considered which are 12hr, 24hr, 48hr, 96hr,
and 169hr. For each of the timing interval, the maximum FDR with minimum FAR was
recorded. To provide an accurate result the average of ten runs for each timing is taken
into consideration for evaluating the models. The RF obtained the best result when the
timing was set to 169hrs providing FDR of 99% and FAR of 0.02%. With the decrease
in the timing the data considered in the training of the model decreases which leads to
the decreased prediction capability of the model, it also occurred in the previous section
where different samples were considered.

The FFNN model built with twenty-four hours of data showed a better prediction



Figure 9: The performance measure of the model recorded with different timed training
data.

result, with 87% FDR at 0.04% FAR. Although it shows a considerable performance
its lower when compared to RF. The k-means clustering which selects random starting
point showed 88% FDR with 6.8% FAR which is lesser than other algorithms. The
maximum value of 100% FDR was recorded in many cases by k-means. The stability of
the algorithm remains so low that it shows a greater deviation between the maximum and
average reading. The complete representation of models performance when evaluated by
different timing interval is shown in Figure 9

5.3 The voting on predicted individual disk samples

All the above sections had predicted for IDS to have either failed or good as the
result. But this output could vary along the IDS of each disk when predicted by the
model. So, a single disk has many IDS which will have both the failed and good output
as the results predicted by the model. In this case to determine the exact status of a disk
voting based method is used which is expected to give the more accurate result. As it
takes the majority votes of IDS results into consideration while determining the status of
the disk rather than a single last IDS predicted by the model. The voting introduced in
the results lowers the misclassification of the disk and provides a positive impact on the
predicted result. The Figure 10 and Figure 11 provides the misclassification of the good

Figure 10: The variation in disk misclassification when voting is introduced to the RF
predicted results.

and failed disk and its reduction when the voting is introduced. Although the tabulated
result shows a single unit variation in terms of misclassification of the disk, it considers



several samples to determine this status. The FFNN showed better improvement when

Figure 11: The variation in disk misclassification when voting is introduced to the FFNN
predicted results.

the voting method is introduced to its samples of output. But with almost hundred
samples of each disk being considered for voting, there was not much variation in the
misclassification rate of the disk. It is obvious that the algorithm itself didn’t provide
much accuracy in classification of the IDS to their specific category of good and failed.

In case of RF, it’s clear that the algorithm performance is way better than FFNN
as disk classification is concerned. With the minimum of three sample it provided better
classification and with an increase in the sample to fifty it showed zero classification error
for the failed disk with a single disk misclassified in case of good ones. The RF has its
own voting considered on the tree it builds internally so its performance is Superior to
other algorithm considered. The internal trees built be the RF shows that with 40 trees
the error in classification subsides below 0.01 with the increase in the tree to 100 it lowers
to a range near 0.008 which shows the supremacy of RF.

The overall look of the complete statistical description of the best results obtained
under different condition by each algorithm compared with the DT is given in table
Figure 12.

Figure 12: The overall statistical results showing the best performance of the algorithm
under different condition in comparison with the DT results.

5.4 Run time estimates

The RF model on which the SMS application is built has FDR of 99% with 0.01%
FAR. The maximum time taken to build the model in Gradle is 1.26mins. After a single



build its tested with updated disk data every 5mins to check the status of the disk.
Among the algorithms, the K-means took the least time of 22.39secs to build the model
with a sample size of 800,000 rows. The FFNN and RF showed 5.16mins and 3.57mins
under the same condition. Figure 13 shows the run time estimates of the algorithms.

Figure 13: The time taken by the algorithms to build the models with a train set of eight
hundred thousand rows.

5.5 Discussion

The findings from this study showed an improvement over the existing prediction
rate of the disk with reduced FAR with the model built using RF. The RF has a steady
performance when put to test with different samples of data, with a maximum of 3%
difference with a wide range of samples. The performance of RF is also superior when
tested with timing and voting methods. It is made possible to predict the disk status
24hr before the failure with a FAR of 0.01% by a model built on RF. With this credibility,
a real-time prediction of underlying disk status using the RF mode is implemented.

Surprising results were observed with the introduction of under-sampling to balance
the data set for prediction. The results provided showed an increase in the FAR for both
the RF and the FFNN with a moderate increase in the prediction rate for FFNN. This
is due to the increase in the minority (failed disk samples) samples in the test set after
performing under-sampling. Similarly, when the voting procedure is used on the predicted
IDS of all the three algorithms together to determine the status of a disk, the number of
disks properly classified decreased. The reason behind this effect is apart from RF the
K-means and FFNN wrongly classify most of the IDS. So, while using voting on the three
the result from K-means and FFNN is picked as the major vote which leads to the wrong
classification. Some of the limitation came from the computational incapability to check
the RF model on the entire dataset.

6 Conclusion and Future Work

In this paper, we propose models based on RF, FFNN, and k- means clustering for
building a stable and more accurate predictive model with maximum FDR at minimum



FAR. The comparison of our models with states of the art model such as DT is done
under various conditions of sampling, timing and voting showed that the RF performs
best by predicting the maximum failing disk with a reduced FAR. The RF showed a
stable prediction even with a minimal sample size when compared to DT. In particular,
RF model attained a maximum prediction of 99% with a FAR of 0.01% whereas DT
showed only 93% FDR with 0.01% FAR.

For building and evaluation of the model, we considered real-world dataset with
many good and failed disks. To extract the practical benefit from the RF model, we built
a real-time predicting system using RF to monitor the status of the underlying disk which
provides a prediction rate of 99% which is far superior to the inbuilt SMART system which
has only 3% to 10% prediction capability. As a future work, the implemented prediction
system could be extended for predicting disk status from a wide range of disks. And
we believe the RF algorithm provides stable and good failure prediction with HDD its
worthwhile to check RF on a wider range of dataset with several classes of disk drives.
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