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Abstract

The resource utilization of cloud-based applications has been used for capacity
planning and forecasting resource demand. Cloud scalability provides significant
scaling techniques to identify real-time demand as well the future demand to re-
duce resource wastage and network bandwidth. The project focuses to tackle the
Docker container reactive scalability and prediction of CPU utilization using pro-
active modelling. The docker container reactive scaling is structured based on
threshold policies on cloud and candidate performed scaling in and scaling out
of docker container web services built on CPU utilization threshold. The CPU
metrics is perceived on cadvisor dashboard where HAproxy is utilized to distrib-
ute load to container web services based on round-robin algorithm. In addition,
proactive scaling is performed using ARIMA time series analysis model. The pub-
lic cloud Amazon Web Services is used to perform container reactive scaling and
containerized open source jupyter notebook application is utilized to perform pre-
diction. Based on CPU utilization data observed on amazon cloud, the proactive
ARIMA model is trained. The parameter combination values are evaluated using
Akaike Information Criterion value to get best results for forecasting CPU utiliz-
ation. The paper explores the evaluation results of container reactive scaling and
ARIMA prediction CPU utilization. In addition, the state of the art results are
also demonstrated.

1 Introduction

Cloud computing technology is widely used in many organizations that provides highly
available IT resources. The introduction of Docker containers provides numerous advant-
ages to industries in many aspects. The lightweight containers are very efficient and it
can deploy easily on any platforms with significant less overhead than existing techniques.
The scalability in cloud plays a vital role, which manages the application seamlessly and
deliver the required resources based on its demand. The scaling techniques such as re-
active and proactive on docker containers springs the high availability for the application
to users.
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1.1 Motivation and Background

The capacity planning in cloud provides a platform for resource management and effect-
ive resource utilization. The cloud consumers are facilitated with pay-as-you-go model
where clients only pay for the resource usage. The capital expenditure in several organiz-
ations are tremendously condensed with the deployment of cloud and docker containers.
The operational expenditure is comparatively low because of the reduction in resource
wastage, network bandwidth which reflects the low latency to end users. The reactive and
proactive scaling aids the application to work continuously with less downtime. The re-
active scaling provides resource on real-time demand and proactive scaling estimates the
future demand of the application that is facilitated on monitoring resource metrics such
as CPU utilization and memory usage. The existing technique is adopted mostly based
on reactive scaling and few in proactive scaling, still scalability on docker containers can
be significantly improved. The project approach comprises of container reactive scaling
based on threshold limit and proactive time series analysis ARIMA model to predict and
forecast the CPU usage. To the best of my knowledge, the results of this project will
be significant and vital to the cloud computing community. The project is conducted
on public cloud Amazon Web Services. The candidate uses base image Ubuntu 16.04,
docker container and scalability techniques based on CPU resource utilization.

1.2 Project Specification

This project tackles the issue of docker container scalability. In addition, the paper
proposes the implementation and evaluation of reactive scaling and prediction of CPU
utilization based on proactive modelling. To tackle the proposed solution, the below
research question is specified.

1.2.1 Research Question

Currently there exists problem on determining equal balance of load when container web
service scaling takes place. RQ-“ Can CPU load stress on docker containers ( web ser-
vices) scale and balance the load using HAproxy load balancer based on reactive threshold
limit technique?”

Use Case Scenario: “If any container limit reaches threshold CPU utilization, scale
out of container web services takes place otherwise, scale In of container web
services takes place.”

Sub RQ- “Can the proactive ARIMA time series analysis model predict and forecast
CPU utilization?”

1.2.2 Research Objectives

To address the research question: Objective 1, investigation of CPU resource utilization
using reactive and proactive scaling models on Docker container. Objective 2, tackles
the design, implementation and evaluation of docker container reactive scaling. Obj
2(i), design and implementation of docker container reactive scaling based on threshold-
policies [shown in section 4.2, 4.3] Obj 2(ii), results and evaluation of docker container
reactive scaling (scaling out and scaling in of containers based on CPU threshold) [shown
in section 5.2.1] Objective 3, tackles the implementation of proactive ARIMA model
of CPU data observed on AWS using containerized jupyter notebook [shown in section



4.4] evaluation and prediction results of CPU usage [shown in section 5.2.2] Obj 3(i),
visualization of CPU resource utilization data before implementing the prediction model.
Obj 3(ii), implementation and evaluation of CPU utilization data using ARIMA model.
Obj 3(iii), ARIMA one-step further forecast prediction. Obj 3(iv), forecasting CPU
utilization. Objective 4, documentation of the NCI technical report and configuration
manual

The specified objectives are mandatory to address the research question. To juggle
these objectives, a comprehensive review is conducted.

1.2.3 Thesis Contribution

This project contributions the following to the body of knowledge: (i) Results of reviewed
literature on docker container reactive scalability and prediction of CPU utilization from
2014-2017 (ii) Computations of the docker container reactive scalability and fully evalu-
ated results from this computations (iii) A fully developed and evaluated proactive AR-
IMA prediction model of CPU usage (iv) Results of scaling out and scaling in of docker
containers based on CPU threshold and visual presentation of proactive model results
(v) A technical technical report and configuration manual which have been submitted to
NCI as a requirement for the MSc.

The rest of this report is structured as follows. Section 2 presents a critical review
of CPU resource utilization using reactive and proactive scaling models. Based on the
results of the comprehensive review and the identified gaps in the body of knowledge, in
Section 3 depicts the methodology of proposed approach on container reactive scalability
and prediction. Section 4 tackles the design and implementation of docker container
reactive scalability and proactive ARIMA model prediction of CPU usage. In Section 5
depicts the evaluation and results of docker container reactive scalability and ARIMA
prediction of CPU usage. Finally, Section 6 illustrates the conclusion of the project and
provides an enhancement for the future work.

2 Related Work

This section presents a review of reactive and proactive scaling models on docker contain-
ers using CPU utilization . More specifically it focuses on CPU Utilization on Reactive
and Proactive Models developed from 2014 to 2017. Furthermore investigation of mit-
igation on docker container scalability and predictions is conducted. Finally a critical
review of the ARIMA prediction model is conducted and identified gaps presented.

2.1 CPU Utilization on Reactive and Proactive Models

Cloud elasticity has remained a platform that offers essential resources in line with vary-
ing workload demands. Kan (2016) established DoCloud gears container elasticity cor-
responding to disparity in web application resource. It entails reactive and proactive
model to tackle horizontal scalability. The experiment is unified with ARMA proactive
model and threshold-built reactive model. The scalability algorithm encompasses CPU
utilization and memory usage of Docker containers that is gauged using HAproxy pro-
ceeding FIFA 1998 world cup traces and randomly simulated workloads. The architecture
is not inspected with whole log files and its constrained scale in, scale out results deliver
additional scope on scaling prediction on containers.



Computing applications resource utilization plays a vivacious role in terms of scalabil-
ity prediction thereby resulting in reduced resource wastage and saving huge expenditure.
Meng et al. (2016) offered CRUPA, that applies resource to forecast container scalability.
The proposed model is executed using ARIMA time series analysis model. The algorithm
involves CPU utilization that adapts horizontal reactive scalability. The CRUPA is de-
ployed on Docker container to encounter predictive container assessment. The exper-
imental scope is extended in ameliorating the prediction accuracy using load balancer
on web application facilitating investigation on container scalability to reduce resource
wastage.

The energy efficiency and performance of data centres isn't quite remarkable in capa-
city planning. Alzahrani et al. (2016) considered SLA and developed Energy-Built Auto
Scaling (EBAS) method encompassing dynamic voltage frequency scaling technique. It
proactively predicts the scalability on containers by using CPU utilization. It assumes
ARIMA model for scaling prediction of web application. The demonstrated results in
effective resource provisioning with improved energy efficiency. The research has supple-
mentary scope in forecasting accuracy involving parameter decision of time series model
and evaluation grounded on large scale applications.

2.2 Identified Gaps in Technologies Used

The scalability and prediction of CPU resource utilization by means of docker containers
is recognized as research gap. The research work acknowledges the exiting work and can
be significantly upgraded with reactive and proactive scaling model in terms of effective
docker environment intended for reactive scaling and parameter decision designed for
better prediction.

2.3 Mitigation on Docker Container Scalability and Prediction

The container scalability is offered using resource utilization, for example response time of
web requests created on PAS algorithm includes proportional-integral-derivative control-
ler (PID). de Abranches and Solis (2016) estimated the experiment with numerous work-
loads using Docker container, HAproxy load balancer and Redis database. The research
scope classifies the importance of improving the PID parameters to scale containers. The
implementation is advanced and built on control theory scalability technique that eventu-
ally lacking the effective comparison to prove better results on elasticity through existing
techniques.

The Docker container performance resource utilization is evaluated and documented
on many aspects to tackle better lightweight tool for effective application sharing. N
et al. (2015) evaluated container performance with Bonnie++ benchmarking tool and
remaining metrics such as CPU utilization and memory usage are evaluated with psutil
benchmarking code. The evaluation is shown between Docker containers and host ma-
chine on disk usage, memory usage, network I/O. As a result, containers outperformed
host system on resource utilization. The performance comparison provides better results
yet the research scope is focused on enhancing Docker scalability and security. Moreover,
no further technique was adopted and implementation was not shown to extend the sup-
port aimed at evaluation.

Baresi et al. (2016) planned MicroCloud architecture that provides effective resource
management built on many containerized applications. The framework is built on ECo-



Ware describes the self-resource adaptation that uses meta-workflow technique to tackle
applications. It consists of TOSCA library to facilitate the infrastructure and it is demon-
strated on Amazon EC2 to evaluate the resource metrics like average response time.
Although the container built resource management provides enhanced results, the per-
formance metric comparison was not carried out for evaluation. The scalability technique
was not accepted and research remained intended to deploy the same architecture on big
data applications.

The advancement in container application deployment facilitates the microservice ar-
chitecture. Inagaki et al. (2016) defines Docker container management that offers insight
on core and container scalability. It identifies the bottlenecks of respective core and con-
tainer scalability that affects the performance of container management. This hierarchical
approach mitigates the bottleneck in operations by analysing multiple layers at Docker
daemon. The results aid to improvise Docker container scalability and elasticities further
research scope scheduled emerging microservice applications.

Hegde et al. (2016) investigates provisioning of large scale application on containers
in addition identified bottlenecks in the aspects of scaling factors and system parameters.
To overcome operating system process overhead, SCoPe is developed in order to provide
decision on application partitioning and provisioning method to tackle the number of
containers required for every application to run parallel on host machine. The proposed
model is executed and evaluated its performance using real data set and documented the
impact of SLA with existing approaches. Although, the SCoPe produced better results,
the decision system has not been structured built on resource utilization of the system.
The provisioning decision system bottlenecks and future work is recognised that offers
the way to work on system utilization rate and execution of real time workloads on
containerized applications.

The integration of container and video surveillance analysis technique has overcome
the bottleneck that exists on virtual machine. Zhang et al. (2016) proposed container built
proactive resource provisioning for video microservices. The prediction is built on nearest
neighbour regression time series model that predicts future resource demand in addition
to usage Docker container to deliver video microservices. The results are evaluated with
other prediction models like ARIMA and DRFA and affords better accuracy and higher
deployment density. The model can be significantly predicted in better way without
constrained observation and effective parameter decision on other models.

Kim et al. (2017) proposed container traffic analyser to increase network traffic and
minimize horizontal scaling out time. LTLB load balancing algorithm is developed on the
basis of collection of real-time network traffic information. The algorithm is implemented
by means of Docker container on AWS and evaluated with virtual machine. Auto scaling
mechanism is deployed also proactive scaling built on traffic and resource usage is pro-
posed and compared with reactive scaling. The future research scope stated on deploying
the proposed scaling technique in order to register low latency and less cloud resource
wastage.

The microservices are widely used to deliver specific functions and it is effectively
deployed on containers. Moradi et al. (2017) shown ConMon, a monitoring system on
containers which automatically monitors network performance whenever containers com-
municate each other. The ConMons monitoring controller does passive and active mon-
itoring on containers. The experiment is conducted on Docker containers with Open
vSwitch. The impact on resource metric along with application performance, traffic
and scalability are graphically shown. The bottleneck for future research is identified as



applications throughput and latency was affected and cost can be resolved on passive
monitoring on multiple application containers.

2.4 Critical Review of ARIMA Model

The cloud application providers need to sustain the competitive advantage to retain their
customers with sufficient QoS. To overcome the problems and results of insufficient QoS,
Calheiros et al. (2015) described that one of the major key factor affecting Quality of
Service (QoS) is the dynamic workload which leads to variable resource demands. In
order to circumvent the real-time workload exceeds the resource capacity problem, a
proactive approach is structured using the Auto Regressive Integrated Moving Average
(ARIMA) model. The approach uses workload analyser component and feeds the result
with accurate predictions that enables rest of the system to scale the resources without
any wastage. The impact of ARIMA model accuracy in terms of efficiency in resource
utilization and QoS was also evaluated. The simulation results showed an accuracy of up
to 91 percent which obviously resulted in efficiency of resource utilization with minimal
impact in response time of users. The research scope is planned to integrate robust
techniques for forecasting peak resource utilization and investigates on load prediction
modelling based on user constraints.

The paramount factor of cloud services is to ensure quality of experience (QoE) to end
users. Dhib et al. (2016) used Massively Multiplayers Online Gaming (MMOG) traces
to predict future workload demand. Seasonal Autoregressive Integrated Moving Average
(SARIMA) model was proposed to forecast workload behaviour. The algorithm is imple-
mented to predict the resource allocation built on the forecasted result of SARIMA. The
experiment is evaluated which address the impact of QoE by proposed algorithm. The
documented results provided accuracy on normal behaviour and future research scope
stated to test the algorithm with various workload scenarios especially during unexpec-
ted behaviour phase. The proactive resource provisioning method was exploited where
forecasting accuracy can be improved significantly on perceiving many MMOG users
simultaneously.

The cloud application resource demand varies in accordance with consumer require-
ment. The prediction of cloud resource needs always secure a significant position to
estimate the future workloads. Erradi and Kholidy (2016) proposed DDHPA, a hybrid
prediction approach which integrates two methods MSVR and ARIMA to predict re-
source utilizations in terms of CPU, memory with higher accuracy. Other metrics such
as response time and throughput can be predicted to decide on resource scalability. The
DDHPA results outperform existing prediction models in terms of CPU utilization which
is evaluated by MAPE and RMSE. In future, the research scope is to test the model with
vast dataset in a real-time environment.

The cloud elasticity aids in capacity planning which facilitates the scaling of cloud
resources. Hu et al. (2016) encountered scaling the virtual machine consumes more time
which results in inefficiency and apparently affects QoS and latency. The proposed pre-
diction core modules such as monitor and predictor identifies the existing problem and
helps to predict the resource built on workload demand well in advance. The predictor
such as ARIMA, SVM was used to evaluate the metrics like under provisioning and
over provisioning of resource. The framework enhances the latency and cloud QoS and re
search scope stated the model will be improved constructed on users demand and resource
metrics.



The reactive scaling provision in cloud infrastructure is not determined to identify the
resource demand of an application. Balaji et al. (2014) conducted comparative study on
two prediction models Holt-Winter and ARIMA using public dataset to monitor resource
usage. The experiment results provided Holt-Winter performed better than ARIMA and
it is evaluated with some metrics such as MAPE and RSME. Since the evaluation is con-
ducted on constrained data thus follows similar pattern, it can be measured significantly
on large data set with improvised parameter decision. The comparative study stated
further research scope on different data which includes metrics such as throughput and
resource utilization.

2.5 Conclusion

Based on the reviewed literature and the identified gaps, the project is proposed to
perform docker container reactive scaling and prediction of CPU resource utilization by
means of proactive ARIMA model.

3 Methodology Approach Used

This section specifies the iterative software methodology which was used. The iterative
model is a particular implementation of a software development life cycle (SDLC) that
focuses on an initial, simplified implementation, which then progressively gains more
complexity and a broader feature set until the final product is complete.

3.1 Proposed Research Approach

The project method is proposed to scale docker containers based on reactive threshold
limit and predict CPU utilization by means of proactive ARIMA model.

3.1.1 Software Development Methodology Used

The Software development methodology castoff in this project is depicted in Figure 1.
The project flow is designed as: (i) planning phase helps the initial planning of project
on docker container scaling technique (ii) requirement phase entails system hardware and
software requirements towards execution of the proposed plan (iii) design analysis phase
encompasses docker container reactive scaling and trained proactive ARIMA model to
forecast CPU utilization (iv) implementation and deployment phase pays the compre-
hensive proposed model implementation techniques and deployment (v) testing phase
confer the test on reactive scaling and prediction of CPU usage by means of open data
to receive results (vi) evaluation phase includes result evaluation of container scalability
and prediction.



Figure 1: Software Iterative Model

3.1.2 Technologies and Softwares Used During Implementation

This section presents the tools and software technologies used in the implementation of
the proposed solutions in Section 4.

(i) Docker: Docker is an open source software that provides containerized platform for
agile deployment of applications besides it allows shipping of an application as package
wherever with a smaller amount overhead. Meanwhile, it uses kernel directly. Docker
containers are distributed by docker daemon which is the environment core. N et al.
(2015) quantified Docker has major components, (i) Docker Image (ii) Docker container
and (iii) Docker registries. Docker image makes Docker containers and it is available in
repository. The container bounces directory location then offers environment aimed at
any application to run. The docker architecture is represented in Figure 2.

Figure 2: Docker Architecture

(ii) HAproxy: HAproxy is an open source software that denotes high proxy availability.



It organizes load balancing function to enhance the reliability of server. It works based
on round robin algorithm in default and distributes workload and balance the network
traffic among multiple servers. Based on users web request content, it uses IP range and
traffic will be forwarded to backend server by HAproxy load balancer.

(iii) Scalability Techniques: Cloud scalability techniques are broadly classified as re-
active and proactive scaling. Reactive scaling prepares the instance scaling in and scaling
out in accordance to real-time demand of an application where threshold built policies
originate under this category, in the meantime it uses resource metric to raise or remove
instance resource. Proactive scaling estimates and conjecture the future workload demand
of an application, while using resource metric to predict resource in terms of time series
analysis of data and subsequently it allocates or deallocates instance depends upon the
requirement. Other scaling techniques such as reinforcement learning, queuing theory
and control theory arises either one of the two categories.

(iv) Threshold-based Policy: Built on resource utilization such as CPU and memory
usage, this technique remains utilized in reactive approach and used by several top-notch
cloud service providers. It adapts horizontal scaling anywhere, instance scaling out or
scaling in takes places bases on threshold limit of CPU usage. Amazon EC2, Microsoft
Azure and many cloud vendors uses threshold-based policy for instance scaling. Openjdk
java platform is castoff to set CPU usage threshold limit.

(v) cAdvisor: Container advisor delivers on running container resource metric usage.
It is facilitated to witness the performance of each container and provide statistical results
on long term usage in terms of charts and histograms. It automatically ensures slight
adjustment on container performance as well as predicts future usage.

(vi) Influxdb: Influxdb is an open source database on time series. It collects resource
utilization and stores it in time series format for monitoring and performing operation
on data analytics.

(vii) ARIMA Time series analysis model: ARIMA is an integration of autoregressive
(AR) and moving average (MA) model with differencing (d) functions, it uses historical
data to predict future value of the time series value. It incorporates autocorrelation func-
tion and partial autocorrelation function i.e. ACF and PACF. It has (p, d, q) parameters
which illustrates p as order of AR, d as differencing operator and q as maximum order
of MA. The prediction results depend on the parameter combination.

(viii)The Jupyter notebook: The Jupyter notebook is an interactive web application
available as an open source that aids to create and deploy code in a flash. The IPython
notebook offers an environment to work on python code and gives easy way to pictorially
represent data results, simulation and many other purposes. The notebook dashboard
provide access to local files. It contains mathematical code and equations that aids to
perform data analysis in addition share documents easily.



4 Implementation of Docker Container Reactive Scal-

ing and ARIMA Prediction of CPU Usage

This section presents the implementation and evaluation of the proposed solution. In
order to solve the research question specified in Section 1.2.1 and address the problem
on determining equal balance of load when container web service scaling takes place, the
objectives specified in Section 1.2.2 are tackled and results presented.

4.1 Requirement Specification

The requirements specified for this project are depicted in Figure 3.

Figure 3: Container Scalability and Prediction Use case diagram

The UML use case diagram of container reactive scaling and prediction of resource
usage is presented. The above diagram elaborates the container web service provision
that can be accessed on the user end wherever it is facilitated through provider. The
minute the workload request to web service hits on high proportion, the response will be
provided on real-time demand somewhere container scaling initializes horizontal scaling
out and scaling in technique based on CPU resource usage. The container CPU metric is
monitored by administrator and provides visibility stats to user. Built on CPU resource
usage, analyst can predict the future demand of web service CPU resource utilization
scheduled using proactive time-series analysis model.

4.2 Architecture Design Specification

The project design and architecture specification is depicted in Figure 4, while it has three
components namely presentation tier, business logic tier and data persistent tier. Each



tier involves of method and functionality to implement container scalability on docker
and prediction built on CPU resource utilization.

Figure 4: Architecture Design

(i)Presentation Tier: The presentation tier consists of user interface which provides an
environment for implementation. The public cloud platform Amazon Web Services is used
in this project for implementation. (ii) Business Logic Tier: The project encapsulates the
two main objectives of implementation. The first main objective is on docker container
scalability built on reactive threshold limit and the second main objective is to predict
and forecast the CPU resource utilization of open data using proactive ARIMA time series
analysis model. (iii) Data Persistent Tier: The workflow is monitored at the backend tier
and it incorporates the functions of cadvisor and influxdb for monitoring CPU resource
usage during reactive container scaling. The open CPU utilization csv data is analyzed
for prediction and to perform forecasting trend of resource utilization.

4.3 Docker Container Reactive Scaling Implementation

This section presents the implementation of docker container reactive scaling and its
work-flow is depicted in Figure 5.

(i) Each dockerfile is created made on docker images such as web service nginx, re-
gistrar, consul, HAproxy load balancer, reactive monitoring, cadvisor and influxdb. The
docker images are successfully integrated with each other on composing together using
docker command. It is significantly implemented using same ubuntu image which occu-
pies less memory on cloud storage.

(ii) The nginx server web content application is deployed as containerized web service
image as myws. The existing docker images are configured and the approach of reactive
scaling regulates the function of docker container flow built on CPU resource threshold.
In addition, we have configured and used registrar docker image to keep register and



Figure 5: Workflow of Container Reactive Scaling

track on new container arrival and unregister on container removal. The information on
container changes is identified and perceived by consul docker image. The registrar and
consul work is incorporated with HAproxy load balancer. Built on consul template, load
balancer initiates round robin algorithm and concurrently balance the traffic between the
containers.

(iii) The reactive container scaling tackles the performance of containers built on
CPU resource usage. The horizontal scale out, scale in concept is adapted in order to
achieve container scalability. The container instance is initiated constructed on threshold
limit. The candidate incorporated openjdk-8 open source java platform to implement
threshold-built container scaling. When container web service is accessed and once CPU
usage crosses above 50 percentage, at that time containers begin to scale up. Built on
the concurrent load and simultaneous hit, the container reactive scaling out and scaling
in technique is implemented.

(iv) Once the implementation of container threshold monitoring image is done, it is
assigned to load balancer to evaluate scaling of containers. Built on CPU load stress,
registrar and consul immediately acts and identifies the scaling process. The approach
scales maximum of 10 containers and minimum of 2 containers. The container resource
metric is configured and initiated simultaneously.

(v) The container reactive scaling is implemented while candidate tackles the perform-
ance of CPU usage and observed using cadvisor dashboard. The load balancing changes
remain identified on HAproxy stats using extensive IP port range.



4.4 Prediction of CPU Usage using ARIMA Model

This section presents the implementation of proactive ARIMA model prediction of CPU
usage and the workflow is depicted in Figure 6.

Figure 6: Workflow of Proactive ARIMA CPU Usage Prediction

(i) The analysis of CPU resource usage is thoroughly performed in order to predict and
forecast the CPU utilization usage. The prediction analysis is conducted on public CPU
usage data observed on AWS using proactive time-series approach. Anaconda 3-4.4.0 and
containerized-scipy jupyter notebook is installed to before prediction.

(ii) The data cleaning is achieved to remove corrupted records. The mean value is
calculated built on daily average of CPU usage and data filling is practical to fill missing
values.

(iii) The ARIMA parameter value is decided made on grid search. It pledges the
parameter combination with seasonal ARIMA to train and evaluate the model to get best
results. In addition, stats models Akaike Information Criterion is used to automate the
process. The candidate performed test on all possible results and selected the best data to
predict forecast of CPU usage. The diagnostic analysis of data is shown graphically. Built
on the result, seasonality and normality of CPU usage data is conducted for evaluation.

(iv) The prediction of CPU usage is initialized on defining date of prediction and
dynamic function. It is performed to validate the prediction built on historical CPU usage
data. Then one step further forecast and forthcoming months CPU usage forecasting is
implemented built on prediction results.

4.5 Conclusion

The architecture design, implementation and work-flow technique of container reactive
scaling and ARIMA prediction of CPU usage is shown that tackles the research objectives
in section 1.2.2



5 Evaluation of Developed Solution

The evaluation is conducted in order to validate and test the docker container reactive
scalability. In addition prediction ARIMA model is also evaluated and results presented.

5.1 Evaluation Process

The steps involved during the evaluations are depicted in Figure 7. During evaluation
analysis, the following machine configurations are utilized. In addition to public cloud
Amazon Web Service (AWS) platform. The specification of amazon EC2 instance is
configured as Instance Type- t2.xlarge which has 4 vCPU, 16GB RAM, storage of 24GB
and we have used base image of Ubuntu 16.04. To implement main objectives, docker
version 17.06.0 ce is installed and a list of mandatory docker images are required to figure
docker environment towards performance of reactive container scaling and containerized-
scipy image is used. Anaconda-3-4.4.0-Linux version is utilized to install jupyter notebook
intended for accomplishment of ARIMA prediction.

Figure 7: Evaluation Process

5.2 Evaluation and Results of Developed Solution

5.2.1 Evaluation and Results of Container Reactive Scaling

The docker container web service is initiated on successful deployment of all docker im-
ages. Initially the technique starts two web services with other HAproxy and cadvisor
images. The container reactive scaling sets horizontal scaling concept grounded on CPU
load. Figure 8 depicts the initialization of container reactive scaling images.

Figure 8: Container Initialization Result



To evaluate the results of container reactive scaling, the candidate assigns CPU load
stress and records concurrent scaling out of web services. Subsequently removal of CPU
load from web services, it is clearly evident of scaling in web services.

(i) For CPU load generation, the tradition of stress cpu 8 -v timeout 60 or yes/dev/null
surges the number of hits reflected in CPU usage rate, consequently CPU load is increased.
The results of scaling out of containers is shown in Figure 9. The below results refer con-

Figure 9: Containers Reactive Scaling Out Result

tainer scaling out has been performed grounded on CPU utilization reactive threshold
limit in which 10 containers scaled out from 2 containers. To validate the results, the
candidate detected container CPU usage from cadvisor dashboard that exemplifies con-
tainer CPU usage rate on top of individual CPU core rate. Built on consul information,
HAproxy stats results are shown in Figure 10, it is evident that workload is balanced
in accordance to round robin algorithm besides CPU usage of containers has stretched
maximum level.



Figure 10: Containers Reactive Scaling Out Evaluation

(ii) To evaluate the reactive scale in of docker container web services, the candidate
detached the CPU load using kill-all yes command. It abridged CPU usage of containers
which is evident when CPU usage is reduced and the container web services gets decreased
as depicted in Figure 11.

Figure 11: Container Reactive Scaling In Result

The below HAproxy stats and CPU usage rate is perceived as soon as container
reactive scaling in is achieved. It is palpable that containers scaled in while HAproxy
distributed workload to 2 containers, in addition CPU usage is diminished to a minimum
level and it is represented in Figure 12.



Figure 12: Containers Reactive Scaling In Evaluation

The overall CPU usage per core is visually shown in Figure 13. It is apparent that CPU
usage is increased during load stress and gradually decreased on the end. The influxdb
is associated with cadvisor and data metrics are internally stored in the database. The
internal database metrics remains as not retrieved for graphical representation.

Figure 13: CPU Usage Per Core

Based on the results and evaluation on docker container reactive scalability, the re-
search question specified in section 1.2.1 has been answered.



5.2.2 Evaluation and Results of Proactive ARIMA Model

(i) The CPU utilization data which is observed on AWS is used to perform prediction.
1 The visualization of CPU utilization of data prior to prediction is graphically shown
in Figure 14. The graph illustrates the mean CPU usage that is calculated daily using
resample function between 2014 May to 2014 July.

Figure 14: Data Visualization before prediction

(ii) The ARIMA parameter values is reserved made on the range (0, 2). Subsequently
the data is dependent on time series, seasonal ARIMA time series model is used to
test the seasonality. ARIMA values are tested and applied to SARIMA parameter. The
models are trained using grid search to experiment several parameter combinations. Both
ARIMA and SARIMA parameter combinations shaped the number of possible outputs.
The candidate castoff AIC value using stats models to get good possible data output
which is used to predict the future CPU utilization. In addition, list of combination
results is tested and (1,1,1) parameter best data value 224.90 is second-hand in ARIMA
model. The results are shown in Figure 15.

Figure 15: ARIMA Best Parameter Result

(iii) From results, the candidate performed diagnostic analysis to evaluate the results.
The standard residual gives the deviation in overall CPU utilization. In addition, the
normal distribution is assessed built on histogram and normal Q-Q plot test. The histo-
gram bins are built on data results and estimated density of CPU usage is slightly differs

1https://www.kaggle.com/boltzmannbrain/nab



0.2 value from normality mean and standard deviation function. The standard residual
and histogram graphs are showed in Figure 16.

Figure 16: CPU Usage Residual and Histogram Evaluation

(iv) The normal Q-Q test and correlogram graphs are represented in Figure 17. From
the graph, the residual distribution of CPU usage blue points is deviated from the linear
CPU usage data. The correlogram graph illustrates the seasonality of time series since it
illustrates less correlation value that is close to 0. The estimated results slightly diverged
from normal distribution in the meantime data exhibits non-linearity and p value results
remain less than z value i.e. 0.05.

Figure 17: CPU Usage Normal Q-Q and Correlogram Evaluation

(v) One-step forward forecast of CPU usage is represented in Figure 18. The predicted
results are detected till end of the July. It is obvious that predicted results are close to
CPU usage. It predicts CPU usage value of 40 percent from the 7th July till the end.

(vi) The forecasting of CPU usage is depicted in Figure 19. The graph re-illustrates
the forecasting trend for August months CPU usage shadowed by normal data. It is



Figure 18: One-Step Further Forecast CPU Usage

apparent that forthcoming CPU usage displays the increase in trends and adjacent to
average of 45 percent CPU utilization for upcoming months.

Figure 19: Forecasting CPU Usage

5.3 Conclusion

Based on the results and evaluation of CPU usage using proactive ARIMA model, the sub
research question specified in section 1.2.1 has been answered and all stated objectives in
section 1.2.2 has been tackled. The final results justify the purpose of this project that
is to study and perform docker container reactive scalability and prediction forecast of
CPU utilization by means of proactive models.



6 Conclusion and Future Work

Docker Containers are used extensively to run applications irrespective of platforms.
Container scalability receipts the advantage to handle the applications seamlessly. The
project work contributes docker container reactive scalability and prediction built on
CPU utilization using proactive ARIMA model. The container metrics plays a pivotal
role in scaling out or scaling in the required number of containers based on users demand.
The approach is grounded on cloud reactive threshold-based policy and we adapted on
containers. The containerized web service, load balancer and additional techniques are
dockerized and achieved experiments on container reactive scalability based on CPU load
stress. It generates real-time demand for container web service. The results of observa-
tion and evaluation has been done for horizontal reactive scaling on docker containers.
Container reactive scaling HAproxy stats and cadvisor provided the scaling functions
result based on CPU threshold. Furthermore, the proactive ARIMA time-series model is
performed to predict and forecast the future CPU usage by using jupyter notebook . The
CPU average usage on daily basis is visualized and parameter combination for ARIMA
model results are illustrated. The ARIMA model is trained and evaluated through sea-
sonal ARIMA by means of AIC values. The diagnostic analysis is evaluated and finally
ARIMA prediction forecast of CPU usage is graphically depicted. The future work will
be carrying out container reactive scaling on real-time application and analyse data pre-
diction built on long term CPU utilization metrics can be obtained via back-end database.
It can be achieved on integrating containerized ARIMA by real-time metrics database to
record CPU usage gathered from large-scale applications.
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