~

-"‘f’“
\ National
College

Ireland

Cloud Testing:Enhancing the speed of Test
Automation using Cucumber Framework

MSc Research Project
Cloud Computing

Srujana Kaleru
x15040402

School of Computing
National College of Ireland

Supervisor: Dr. Adriana Chis

National College of Ireland . National

Project Submission Sheet — 2015/2016 Col]ege of
School of Computing Ireland
Student Name: Srujana Kaleru
Student ID: x15040402
Programme: Cloud Computing
Year: 2016
Module: MSc Research Project
Lecturer: Dr. Adriana Chis
Submission Due | 16/08/2017
Date:
Project Title: Cloud Testing:Enhancing the speed of Test Automation using
Cucumber Framework
Word Count: 5680

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 15th September 2017

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.

3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if
applicable):

Cloud Testing:Enhancing the speed of Test
Automation using Cucumber Framework

Srujana Kaleru
x15040402
MSc Research Project in Cloud Computing

16th August 2017

Abstract

In the current trend of Cloud Computing world, most of the companies are show-
ing interest on developing open source projects that ultimately targets wide variety
of browsers device users ranging from IE on Windows, Safari on Mac, Microsoft
Edge on Windows 10, Firefox and chrome on all supported devices and operating
systems. Before releasing the product into market, the company has to focus on
testing of the product as it plays an important phase in Software Development
Life Cycle to ensure the software product is free from defects by covering various
types of testings that include functional, regression and cross browser compatibility
. To initiate this testing phase and make the software as cloud enabled application
huge investment is required in terms of hardware infrastructure to compensate the
testing coverage on various browser platforms. To overcome this financial costs for
companies, a cloud-hosted testing platform tools like sauce labs and BrowserStack
is introduced in the market to speed up the automated testing of developed applic-
ation. From the sources on the internet it is disclosed that currently 800 browser
instances of beta versions with different O/S combinations are instantly available
on the cloud-hosted testing platforms that eventually eases the hassle of infrastruc-
ture management for testing the applications. To use this infrastructure a reusable
test automation framework is necessary for the testers to the run the tests auto-
matically on different browsers. In the existing frameworks like keyword-driven and
hybrid framework, tester need to have coding knowledge in order to adapt them. So
the main intention of this research is to propose a re-usable automation framework
where a non-technical tester can run the tests on the cloud hosted testing platform
just by enabling the changes in feature files of cucumber. Furthermore, it is im-
portant to evaluate the amount of execution time taken by the tests on different
browsers along with the memory consumption during each test run as this statistics
will help us in identifying the proposed test automation framework will speedup
the execution tests.

1 Introduction

Software testing is a process of validating a software with the goal to compare the de-
viations among provided input and intended output. In general, testing process is con-
sidered to be an important phase in the SDLC(Software Development Life Cycle) which

enables us to find the any errors or software defects with regard to the actual result.
Software testing also facilitates for a quantitative analysis in finding the quality of any
software feature in the software product. According to the IEEE 1059 standard, Testing
is defined and characterized as “A process for evaluating the software to determine the
variations between the existing and expected conditions (like any failures, defects and
imperfections) and eventually to observe the software characteristics”. Most of the com-
panies will employ a separate team who are responsible for performing software testing
as per the requirement specifications. Although the developer can perform unit testing
for a developed feature during the development phase but overall testing coverage cannot
be fulfilled during SDLC. As the number of business requirements increases, there will be
extra effort on development department as only limited resources are responsible to build
a product that aims for quality in short span of time. According to Wei-Tek et al[26] STA
(software Test Automation) is defined as the process of automating the testing activities
by using testing tools to develop the test scripts and execute them to perform functional
verification based on the requirement specifications. As per Arif et al [2] explained that
total cost incurred for manual testing is around 70% and for completing the software pro-
ject takes around 50% time. They have also mentioned that testing a software is highly
challenging as it includes vast coding of programming language, hardware and software
requirements. Therefore to fill this gap an automatic software testing tool will be very
helpful to minimize the cost and timing efforts for software development. However, there
are few available automated testing tools in the market but offered them as licensed tools
which start-up company could not afford them. So these start-up companies relies on
open source automation tools such as Selenium, Robot Framework, Sahi, iMacros, QF-
Test but these tools requires extensive programming knowledge to automate Graphical
User Interface test cases. To test the database of web based application Castro et
allll have suggested a new function by incorporating to the core library of selenium’s
Framework that helps to make a connection to the database for performing open and
close operation. It is also successful in fetching the details of tested data to compare it
with the stored data utilized by the application.However this method has minimized the
testing effort process because the verification of Ul and database will be invoked at same
time when the test script execution process is started but unfortunately this framework
did not functioned properly if the application database holds similar data.

Nowadays most of companies are developing the applications to provide the data
access on wide variety of devices and desktop versions. For this process cross browser
testing plays a crucial role as to check whether the application is behaving uniformly on all
web browsers without any loss of content. Especially with the case of agile development
that runs the sprint just for 4-5 weeks, testers are required to run the regression suites
manually against different browsers needs very huge efforts. In order to test the same
functional test scenarios rigorously for each sprint a well framed automation framework is
highly needed to reduce the manual efforts. However there are many frameworks but none
of them are very easy to understand and control by the non-programmers. Furthermore
to test the application behavior on a large variety of web browsers on various operating
systems needs lot of infrastructure and to maintain further human efforts are required.

In this research work, we have proposed re-usable test automation model that ad-
dresses the aforementioned problems in particular a framework that is highly under-
standable by the non-technical testers for easy maintenance and also that supports the
cloud testing. Below are the major contributions of our proposed work,

1. A feature specific reusable framework that automates different applications.

2. With the aim to run the tests in cloud-hosted testing platform we integrated our
re-usable automation framework with the Sauce Labs for performing cross-browser
testing.

3. To fetch the results after each run we integrated a test reporting feature for our
framework.

4. Collected the memory consumption and browser execution time after each test run
are then recorded in tabular format as to analyze which browser is suitable for
running the regression tests in the agile methodology .

In the remaining paper we have presented various automation frameworks under Re-
lated works and focused on the limitations of n-tiered automation testing framework,
GRAFT framework approach. In the methodology we have discussed the architecture
diagrams of Sauce lab integration with the framework followed by the internal compon-
ents of framework on how the test-scripts are segregated based on Given, When and
Then keywords. In the implementation we have presented on how the demo model of our
reusable automation framework is build by integrating the sauce labs and test reports
feature.In the evaluation section, we have shown that our re-usable framework can be
used for automating multiple applications.In addition we collected the execution times
taken by three different browsers after each test run and fetched the memory consump-
tion that helps in identifying the memory leaks . Eventually we have proposed the future
scope of the work in the automation testing area.

2 Related Work

We have studied various existing automation frameworks presented in various research
articles. To understand the steps involved in automating any test-scenario for the web
application is classified into four different types a) programming specific automation b)
record the test-scenario and replay it ¢) image snapshot specific automation and d) do-
main specific automation. The major challenge with the existing frameworks that are
proposed by Persson et al[I5] and Micallef et al[I2] involves code development work and is
quiite difficult for the software testers . Leotta et al[6] introduced Image capturing based
technology that will perform the Record and Replay actions which requires huge manual
effort than programming specific approach . Little et al[7] proposed another image recog-
nition tool like sikuli have shown a noticeable requirement for capturing the modification
in browser resolution and also background effects . Thummalapenta et al[25] proposed
ATA in which the scripts are presented in domain specific language and parsed into com-
binations of actions and web objects. R.Stejskal et al[23] demonstrated on open source
tool namely concordion for devloping and maintaining automation based Acceptance
tests in Java programming language. For performing regression and functional testing on
various software based applications T.Lalwani et al[24]explained QTP (Quick Test Pro-
fessional) is best license-based tool. It also has User Inteface through which tester can
perform the testing. C.Rankin et al[16] proposed STAF that provides re-usable services.
R.Mugridge et al[13] suggested FIT is the most suitable tool for performing acceptance
testing as it contains general english instructions that establish communication among
different stakeholders in agile based environment. A.Holmes et al[5] demonstrated that
Selenium test scripts can be developed in table format and then later coded into any
desired programming language such as ruby, Java, C and python which represents code

export capability that will eventually invoke the respective test scripts on the specified
browsers. M.Yalla et al[27] has suggested that the combination approach of a re-usable
automation framework and any open source tool is the best way and effective approach to
minimize the testing time, efforts and time. Here most of the focus is on development of
script less framework through Selenium RC. Also the framework facilitates easy methods
for remote execution from the test scripts that were generated.

2.1 N-tiered Test automation Framework Approach :-

Most of the software development companies will segregate the design process of software
project into different tiers typically termed as n-tiered design approach. This means each
client will have different interfaces and based on their requirements they will use the
system in multiple ways. For example there is a scenario where User Interface might
communicate with a specific service to produce the specific piece of information that
needs to be catered and displayed for the end-user. To understand in a better possible
way let us consider an example of american e-commerce website where user requests the
information of jewellery based on certain price range that varies between $500 to $1000,
in this scenario the application will send the user request to web service for retrieving
the data from the database that process the specific query and publish the resultant
data on the User Interface based on the design. To get this information the system
will communicate with the different layers. The complexity of the software is dependent
on the number of layers used for designing the software. In similar manner, from the
testing point of view the number of layers involved in development must also be tested
simultaneously. From the aforementioned e-commerce test scenario, a tester need to
perform front-end GUI testing and back-end testing. From the observations that by
employing n-tiered automation framework approach the organization can have a quality
product in an average of 5 hours by running 500 manual tests and by automating around
650 test cases that include functional, regression tests as to determine if there are any
breaks in the code. If the sprint is accommodated for 4 weeks then the company could
save noticeable man working hours.

2.2 GRAFT Approach :-

Eun Ha Kim et al[I7] introduced a framework based on modularity driven tests that
develops an abstraction layer for each UI component so that it can be re-used anywhere in
the application. Each script in this framework constitutes various modules and methods
of acceptance tests. Also these individual scripts can be combined into large scripts.
Pajunen et al[l4] proposed keyword driven framework in which the the manual tests are
executed based on the keywords mentioned in the external file. The functional testing
can be represented with a notation in the actions script. G. Little et al[8] suggested a
data-driven based framework where the test data will be loaded into the variables that are
captured in scripts. Here both the input and output data of each test scenario will be read
from the properties and data files. E. M. Maximilien et al[9] suggested hybrid framework
which is a combinational approach of keyword and data driven framework. The objective
of this framework is to develop re-usable methods and achieve scalable throughout the
target application. But this approach can be difficult to accomplish in keyword based
framework approach. In GRAFT approach authors have broken the test scenarios into
business based keywords. These keywords later were arranged in external files to form

end to end scenario based on business requirements. This approach has simplified the
formation of test script process. Also to improve the re-usability, a common repository of
test data will be maintained in external sheet so that test data can be re-used in various
test scenarios.

2.3 GUI Pair :-

Maintenance of GUI tests is a continuous process and also considered to be a time con-
suming action in the regard of GUI automation. There are numerous authors who have
suggested various approaches to deal with this Task. If any kind of broken are observed
in GUI Scripts, Water [20] mechanism is suggested to fix the broken automation scripts.
Its functionality is to record the DOM states in sequence manner for the previous iter-
ation of data whether the status of the execution is passed or failed. Their approach is
to analyse the elements location via exploration based technique that would ultimately
helps in passing the test script. In addition, it will trigger the suggestions for the users
to do further modifications for the script to run them successfully in the next iteration
without any errors. By looking at the refactoring settings Daniel et al[3] suggested an
automatic test script repairing process directly from the script refactoring. Grechanik et
al [20] suggested a tool that inspect the steps prior to any impacts if any changes are
submitted to Ul in the application. This can be achieved by making a comparison among
before and after GUI modification. The benefit of this tool is to display the impacted
steps for the testers to make a review and repair accordingly. Memon et al [I0] proposed
a technical way for GUI repair tests by transforming the scripts based on the user spe-
cifications applied. This approach will help the tester to insert any new step for any
broken script. Zhang et al [22] suggested a Flowfixer approach which is considered as an
exploration-based technique for automatically migrating the scripts to the new specific-
ations. By comparing the above said techniques, our mechanism will develop the scripts
that are modification resident for a batch of modifications, the repairs can be externally
by the non-technical testers who do not have any knowledge.

2.4 UI visual analyzer :-

Collins et al [4] have observed that it is futile to make investment in automating the
GUI test scripts until the application UI development achieves stability. Berner et al [I8]
suggested a compendium based on the real time experiments conducted in Ul automation.
During this process they have faced major challenges, among which the significant concern
is the creation and maintenance of GUI test scripts - here maintenance refers to the code
change in the Ul which will lead to the modifications of the existing scripts. This step is
mandatory as there is slight tendency to undergo code breaks in the GUI scripts which will
produce larger amount of false positives errors. This means the test script execution will
be less compared to the expectation rate, which will create a question on the investment
that marks a significant place in automation domain. To analyse the web pages in visual
manner WebDiff [19] helps to detect if there are any differences in the UI layouts across
the various browsers. To analyse the whole web applications and also to identify the
functional failures across different browsers Mesbah et al [I1]suggested dynamic crawling

2.5 Change Resilency tests :-

To enhance the identification of cross-browser defects there is a combination approach
known as crosscheck is suggested by choudhary et al [2I]. This mechanisms are quite
useful in determining if there are any functional incompatibilities and visual changes
across the browsers. This approaches are quite beneficial from our proposed approach
by adapting the script syntax. Eventually there are other approaches which are used for
generation of test scenarios that helps in creating residence tests.

3 Methodology

To automate any web based application in different browsers and on various operating
systems, metrics such as estimated time and human efforts is required to configure the
aforementioned infrastructure as to perform cross-browser testing. From a start-up based
company point of view, to support cross-browser testing on a wide variety of operating
systems will incur huge financial costs. To overcome this problem, we have proposed

Launch app

Invoke the test scripts for
@ Selenium Test

Tcripts

il

Trigger the feature
files

VM assign Requests
browsers to run the tests

o o

@ Desired Capabilities

Figure 1: Sauce Lab Integration for Cloud Testing

an architecture that will target different browsers and perform regression, functional
testing based on the test cases development. Here in the proposed architecture we are
integrating the reusable framework with cloud-hosting testing platform known as Sauce
Labs. Sauce labs will allow the user to perform the testing around on 850 browsers

~N O Uk W N

that includes different versions of each browser like Firefox, Chrome, Internet Explorer,
Safari and Opera etc. It also allows us to perform cross browser testing on devices that
includes android based and I0S based of different screen sizes. In the current work,
we are focusing on desktop based browser versions as to check the compatibility of the
application is functioning as expected based on the requirement specifications.

Figure [1| depicts the overall architecture of our proposed solution and it is composed
of 5 phases. They are as follows

1. Trigger the feature Files : In this phase, the test steps are mentioned in feature
files which will invoke the wdio engine to call the respective functions to start the
execution for each test step.

2. Selenium Test Scripts : In the second phase each test step will perform respective
action by calling the function mentioned in the selenium test scripts (ex: I openUrl
?www.myntra.com” will call the openURL function resided in Given Function).

3. Desired Capabilities : In the third phase, we create a desired capabilities file that
holds the different browser information that are required to run the test scripts on
them. Basically the intention of this file is to accommodate the VM for each O/S
on the cloud-hosting platform to execute the tests in parallel or sequential

4. Sauce Labs: In the fourth phase we integrated the cloud testing platform namely
Sauce Labs to invoke the VM requests on browsers mentioned in desired capabilities
to run the tests. We can invoke the browsers on Sauce Labs only if sauce service is
enabled in the script and the parameters referred in Listing

5. Report Generation: In the final phase we integrated the allure reporting feature
that will fetch the test results in .json format and will convert into human readable
format by using the following command “allure generate test-results”. The benefit
of integrating the reporting tool is to determine the count of defects and execution
time

Set SAUCE_USERNAME= ’XXX’ // Enter UserName
Set SAUCE_ACCESS_KEY= ’XXX’ // Enter Access Key

/* services: [’sauce’],
user: process.env.SAUCE_USERNAME,
key: process.env.SAUCE_ACCESS_KEY,
sauceConnect: true, */

Listing 1: Sauce Connect Parameters

At a time we can invoke only 5 Vm instances by setting the keyword Maxinstances
as follows

Set Max_Instances = 5 // Instantiates 5 browser instances for test
case executions

Listing 2: Maximum Instance parameter

The reason for using 5 instances is the limitation provided in the trail version of Sauce
Labs account Invocation of the instances will enable all the browsers to start the execution
of the test cases based on parallel or sequential setting simultaneously. To determine the

execution time, we are collecting the time metrics after the completion of running of each
test case for each browser, as this metrics will be quite helpful in evaluating whether
parallel tests or sequential tests are suitable for regression test suite. Eventually in the
final phase of the architecture we are integrating with test reporting feature as it will
fetch the statistics of each test step whether it is passed or failed. If any defects or
failures occur during the test case execution, user will get detailed information of what
went wrong in the report and it will also trigger respective error code on the console for
easy debugging. In addition, memory usage is also calculated while running the test case
as to detect any memory leaks while performing actions on the browsers. These statistics
provide a strong support for performance testing .

Internal Architecture of Test Automation Framework:-

GIVEN
open the URL
openURL(): _—
WHEN
Feature Files :f setinputText(); Set UserName
clickLogin(): Set Password
Click Login
——

THEN L LS
K= & o
Successful Login .
. X Login Success i 1
Myntra Facebook Ve”?:;:‘i%;;user erify username @ 1 q
[- B3 o

Figure 2: Internal Framework

In our approach we developed an internal test automation framework that helps a
novice to understand about how test scripts are written and how each test step will call
the function in the backend and how it executes on the browser. We used the guidelines
of Gherkin syntax for developing the action based scripts. We segregated the actions
like opening a URL , providing the data in the input fields, click on login button and
eventually verifying the text if the login is successful. From the figure [2| if we observe
“Given”,“When” & “Then” keywords are used and the objective of writing a test scenario
is to split into three different sections and assign the specific actions to these keywords.
Below are the keywords and their importance.

1. Given: This section helps to determine the pre-conditions to begin the test.
2. When: This section is where the tester will specify the behavior

3. Then: This section will describe the expected changes from the specified behavior.

1 Given: I open the URL "www.myntra.com"
2 When: I set the input to the field "set username"

3 When: I set the input to the fiels "set password"
4 And: I click on the "Login" button
5 Then: Check the "set username" is present in the home page

Listing 3: Feature Example

From the figure [2| the test scenario “login to the myntra application” will contain series
of test steps that will perform the respective actions on the browser instance invoked by
the feature file. As per the example mentioned in Listing [3| the feature example, To open
a URL “www.myntra.com” will map with the openURL() function in the Given Script
and perform its action on the browser. Similarly to set the input fields like UserName
and Password will map with the setInputText() function in the When script, also to click
on the login button it will map with the clickLogin() function. Eventually to check if the
login is successful we are verifying the username in the homepage for that verifyText()
function will be mapped to the respective test step in Then script. Similarly in this
way we have developed nearly 366 test cases that includes different types of actions
like sorting, searching, filtering, re-sizing the images. The basic idea of developing this
individual action specific functions are for re-utilizing them for other web applications
such as flipkart and amazon. Therefore, the tester just needs to develop the feature files
and use the reusable functions.

0O ~J O UL W N+

N O O Wi

4 Implementation

We present our solution by implementing a re-usable automation framework that allows
the non-technical testers to create feature files for the target application ” www.myntra.com’
and run against different browsers in sauce labs.

)

4.1 Re-usable Feature test Automation Framework:-

To develop a re-usable automation framework, initially as a tester the primary duty is
need to consider the repeatable actions that will act as part of number of test scenarios.
For each test scenario there will be sequence of steps that will be mentioned in feature
specific file extension.The Feature Test Automation Platform will allows the tester to
authenticate the automation based test-scripts using a Gherkin specific Language. The
GSL will follow english based syntax making the end-users to easily understand and
maintain the test scripts.FTAP holds .feature extension which will converts the tests
steps written in GSL into JavaScript using WebDriverlo API. The test script in FTAP
contains .feature specific files and functions in Given, When and Then scripts. Below
figure will give the syntax used for writing the test step

Scenario: Hover on user icon and click on LOGIN
Given I open the url "https://www.myntra.com/"

And I wait for 10000 ms

When I move to element ".desktop-userIconsContainer"
And I wait for 5000 ms

When I click on the webelement "al[data-track=’login’]"
And I wait for 5000 ms

Then I verify that webelement ".login-title" matches the text "
Login to Myntra"

Listing 4: Sample test scenario

From the above example, it is very clear that what actually each test step is about and
now lets understand how the mapping or conversion into javascript will be done through

webDriverIO API.

import openURL from ’../Myntra_support/action/openURL’;
function given() {
this.Given (
/"1 open the (urllsite) "([""]1*x)?"$/,
openURL

~—

Listing 5: My Javascript Example

Here the Xtext and Xbase strings will be used as part of regular expression. This
means at point of context searching, through the framework the tester can issue possible
keywords. Ultimately the keywords should match the regular expressions. The main goal
of introducing the GSL instructions in the feature files is to fulfill the following criteria

1. The GSL should be relatively match with the language that a non-technical user
should understand and adopt the framework.

2. The GSL should be restricted to the most frequently utilized commands.

Below are the certain characteristics of the feature files

N O U Wi

1. Easily understandable by non-programmers to create feature files and enables them
to understand the flow of the test script so that it can be maintained without any
programming knowledge.

2. Enable the testers to pick the command from the view proposals and for every
selenium command specific GSL keyword need to be developed that eventually
maps with the respective function in the back end code.

3. To ensure the test coverage we will develop the functions that invokes the Web-
Driverlo APT’s directly from GSL instructions.

4.2 Invoke of JavaScript coding from GSL:-

During the process of designing GSL, we should consider the most frequently used sel-
enium commands in Gherkin Format. Incase if there are any commands that are not
covered then a mechnism is required that invokes these non-represented commands via
GSL to make sure that there is complete coverage

var boolVar = false
Scenario: First I would like to search for an item
Given I open the url "https://www.myntra.com"
And I update variable boolVar = JavaScript {
console.log("Hello world inside GSL!");
return true;
by

Listing 6: OpenURL function in Given Script

The Javascript can be invoked through the “JavaScript” keyword in the GSL. We
have included the XBloc statement syntax of the XText Framework. From the above
figure the JavaScript will return the data type and then it will be assigned “boolVar”
variable mentioned in the GSL.

4.3 Assertions and Error Logging on console:-

To create tests in expressive way, we have chai assertions that runs with promise specific

assertion libraries. Let us consider following example to understand how assertions can

be dealt with webdriverio. In the below figure the tester is verifying a image21 in myntra

application contains “Tommy Hilfiger”. Since it is a e-commerce application the products

will be updated on daily basis. Here using the chai assertions we are able to find out

what went wrong. As per the error triggered on the console it is clear that Image21 does

not contains “Tommy Hilfiger” instead it contains new updated brand “Highlander Blue

Slim Fit Denim Shirt”. This information is pretty enough for a non-technical tester to

understand this specific error. For the next iteration of run, the tester can easily modify

the changes in the feature file for “10 test case” and make the test passed.

10) Verify image21 I expect that element ".pdp-title" contains the text

"Tommy H

ilfiger":

expected ’Highlander Blue Slim Fit Denim Shirt’ to include ’Tommy
Hilfiger’

running chrome

AssertionError: expected ’Highlander Blue Slim Fit Denim Shirt’ to
include ’Tomm

[=p}

w

CO J O UL i W N+~

y Hilfiger’
at World.module.exports (F:/project/cucumber_myntra/src/
myntra_app_support/check/checkC
ontainsText.js :55:25)

Listing 7: Assertion error code snippet

For error logging, let us consider a test case where the target web element is not
located in the application. In this case the webdriverio make use of the PROMISES to
trigger the error on the console. From the error it is very clear that the target element is
not present in the page hence this test caused failure.

5) Login using Facebook7 I move to element ".desktop-userIconsContainer

" .

An element could not be located on the page using the given search
parameters.

running chrome

Error: An element could not be located on the page using the given
search parameters.

Listing 8: Element not found error

4.4 Integration of automation testing with Sauce Labs

Saucelabs is a cloud-enabled cross browser and platform testing that facilitates the testers
to run their automation scripts and manual scripts on wide variety of browsers installed
on various operating systems and device emulators. This approach of cloud testing does
not require software company to configure any infrastructure setup like installing multiple
vim’s of different versions and flavours. Currently as part of our research work we are tar-
geting Firefox, Internet Explorer, Chrome, Microsoft Edge and Safari Browser to run the
test-scripts that were developed using our proposed Feature test automatwd framework.

var webdriver = require(’selenium-webdriver’),
user = "thesisproject",
key = "9662c8f4-0665-4ec0-8ec6-9cb19845a3bd",
browser;

browser = new webdriver.Builder ().

withCapabilities ({
’browserType’: ’chrome Browser’,
’operatingSystem’: ’Windows 7°,
’versioNumber’: ’51.0°7,
’userName’: user,
>accessKey’: key

.

usingServer ("http://" + userName + + accessKey +

"Qondemand . saucelabs.com:80/wd/hub") .

build () ;
browser.get("http://www.myntra.com") ;
browser.getTitle () .then(function (page_title) {
console.log("Page Title is: " + page_title);

DN

browser.quit () ;

Listing 9: Code for Connecting To Sauce Labs

4.5 Metrics of Execution time, Cpu Usage and Memory Usage

After completion of executing every test case we are collecting the execution time, cpu
usage and memory usage statistics. The importance of this metrics is to check on which
browser the execution time is more and also this is an efficient approach for memory
leakage detection. In the traditional approach, especially to perform memory leakage
detection we basically use chrome browser and take the heap snapshots.Make a com-
parison between the acquired snapshots by repeating the test case, in this way one can
identify if there are any memory leaks the usage between the two heap snapshots will be
drastically high around 500 MB. Then such discrepancy can be considered as defect as
part of Ul memory leak testing. So if we follow the similar approach through out the
application then huge manual efforts is required. To prevent this for each test case run
we are collecting the memory usage as to see whether there any memory leaks.

[chrome #B-1]1 Sesszion ID: Becdecbabe—8926—4dbf-h518-67c?cBd6381c

[chrome #B-11 Spec: F:isprojectscucumber_myntrassrcifeaturessadd_to_bag_options.f
eature

[chrome #8-11 Running: chrome

[chrome #8-11

[chrome #8-11 1 would like to add the items to the hag

[chrome #8111

[chrome #B-11 Firzt I would like to search for an item

[chrome #B-11 I open the url "https: swuw_myntra.com'

[chrome #1811 set "watches" to the inputfield ".desktop—searchBar"
[chrome #1811 click on the element ".desktop—submit'

I
I

[chrome #8-11 I wait on element ".horizontal-filters—title' to he visibl
I

expect that element ".horizontal-filters—title" matches

[chrome #B-11

[chrome #8811 Hover on an item and wverify the options save and Add to bhag
[chrome #B-11 I move to element "ul.wesultsz-basze > li:nth-—childdi>*
[chrome #1811 I expect that element '"ul.resultsz—hase > li:nth-child{1> >
div.product—actions > span:inth—child<1>" is visible

[chrome #8-11 I expect that element "wl.results—base » liinth-child<{1i> >
div.product—actions » span:inth-child<2» > span" is wvisihle

[chrome #8-11

[chrome #8111 Click and verify Add to Bag

[chrome #B-11 I click on the element "uwl.resultz—haze > li:nth—child<i>

> div.product—actions > span:nth—childd{2> > =zpan"

[chrome #1811 I expect that element '"div.product—showSizelisplayDiv > di
Inth—child<1> > szpan:nth-child{1>" matches the text "Select a size"

[chrome #8-11 I expect that element "div.product—showSizeDisplayDiv > di
tnth—child<i1>» » span:nth-child<2>" is wvisihle

[chrome #8-11

[chrome #8-11 Click on close icon

[chrome #8111 I click on the element "div_.product—showSizeDizplayDiv > d

ivinth—-child{1> > span:nth—child{2>"

[chrome #1811 I expect that element '"div.product—showSizeDisplayDiv > di
inth—child<1> > span:nth-—child{1>" iz not wvisihle

[chrome #8-11

[chrome #8-11

[chrome #8-11 17>

[chrome #8-11

§ 188818 8I8i8IRIEIRIEIBIBIRIEINIE S
chrome

emory wsed in
emory used in

Figure 3: Memory Usage stats

5 Evaluation

In this section we will provide the results conducted for the experiments mentioned in the
implementation section. In the first case study we evaluated that the proposed framework
can be reusable on multiple browsers across different applications. Furthermore, we eval-
uated the sauce lab integration that invokes the parallel tests on three different browsers
namely firefox,chrome and TE. We presented the metrics of memory usage consumption
and execution time in Table [3]To record the test status after each run, a reporting feature
is enabled that will provide the severity of the defects and execution time.

Using the Re-usable Feature Test Automated Framework we have developed 363 test
cases that covers wide areas in www.myntra.com application. In the first case study we
will show the results of re-usable framework for multiple applications. We are focusing on
two different domain based web applications. They are e-commerce application ”"myntra”
and money transfer application ” Transferwise”.The objective of re-usable framework is
to develop feature files and run them on browser without changing back-end code.

5.1 Framework Re-usability Evaluation

In this case-study we have written registration feature file for TransferWise and also
executed the feature file of myntra registration file. The purpose of this two test scenarios
is to check whether we are able to run the test cases without any modification to the
back-end code.
We also shown the execution time taken by these two feature files.

Table [If depicts execution of registration test case that uses same functions from the
framework solution but executed against different applications.

Table 1: Registration Scenario for multiple applications

Test Case Scenario Browser Execution Time (secs)
Myntra Registration Chrome 20
Transferwise Registration Chrome 22.5

¥ R — &

Send money with
the real exchange ¥ ”]
rate

‘ou could save up to: 39.67 EUR

Get started

e s T
(b) Myntra

(a) Transer Wise

Figure 4: Running the tests on multiple applications

Table 2: Execution time for features

. . Browser Execution Time in secs
Feature File No. Test Scenarios Firofox | Chrome B
add_to_bag_options 13 28 30 32
add_to_checkout_complete 19 40.10 50.50 58.02
bread_crumb 8 10 20 30
contact_us 16 26.4 28.4 35
forgot_password 12 14 16 18
items_total 19 42 46.90 50
login_using_facebook 19 32.30 36.70 41.02
login_using_google 21 33.21 36.90 35.33
navigate_home 18 34.21 37.70 32.25
search 15 32.30 35.80 28.30
menu_bars 18 23.02 19.70 20
show_more_products 14 38.23 41.20 45.03
signup 17 31.03 23.30 25
sortby 13 23.60 23.90 25.8
valid_login 25 38.54 45.80 45.2

5.2 Execution of Test Cases in Sauce labs

We have integrated Sauce Labs a cloud testing platform that executes the test cases on
800 browsers of different o/s. From our research point of view we have executed the test
cases of each feature file in three different browsers namely firefox, chrome and IE as
these are the popularly used browsers .We have presented the execution time consumed
by each feature file on different browser in sauce labs. We ran nearly 266 test scenarios In
case if any test steps failed then respective error shots is also captured. To invoke the test
case execution at Sauce Labs, tester needs to provide username and accesskey that will
help in connecting to the O/S running on the VM.In addition, Browser name, browser
version, O/s name must be mentioned in the script in order to execute the tests. Table
presents the different type of functional features that include “login using facebook google
account” in the myntra application, add to cart , total items added in the cart, etc., that
were covered during the test case execution on three browsers parallely in the Sauce Labs.
This experiment is conducted as to check whether the functional tests were successfully
passed on different browsers or not as part of cross-browser testing.In addition, we have
collected the execution time of feature file on each browser as to evaluate the performance
testing.

5.3 Metrics of Execution time and Memory usage

The main purpose of memory usage statistics is to find memory leaks while running the
test scenario. This approach will not help in finding the memory leakage defects but
helps in maximizing the chances for leakage detection if observed any during the test.
Table [3] shows the memory consumed by each feature file and the execution time.

Table 3: Memory usage for test scenarios

Test Case Scenario Execution Time in Memory Usage in MB
secs on chrome
add_to_bag_options 30 96.4
add_to_checkout_complete 50.50 77.14
bread_crumb 20 100.86
contact_us 28.4 99.37
forgot_password 16 101.57
items_total 46.90 60.02
login_using_facebook 36.70 60.35
login_using_google 36.90 57.48
navigate_home 37.70 75.69
search 35.80 102.39
menu_bars 19.70 102.72
show_more_products 41.20 54.9
signup 23.30 100.43
sortby 23.90 101.84
valid_login 45.80 60.8

5.4 Test Reports

We have integrated a test reporting tool that will collects the information in json format
initially. By using allure reports command it will convert the json format into html
format.

In the Figure it is displayed that 78.42% of tests have been executed and the
test results are segregated into five parts in pie-chart representation they are 1) Failed
2) Broken 3) Passed 4) Skipped and 5) Unknown. This way of representation will help
us know how many defects have occurred during the test execution. So that they can
be raised in the defect management tool for tracking purpose. Those statistics also helps
whether the defects are fixed for the next iteration of the execution run. To know the
statistics of execution time taken by each test scenario during the execution we have
Figure [5b| that will represent no.of test scenarios that were executed in seconds. On the
x-axis if we consider the time frame between 3 secs and 5 secs nearly 22 test case scenarios
have been executed.The majority of the test cases were taken 1 second to complete the
execution. To know the severity level of the defects we can get the details as shown in in

the [bdl

5.5 Discussion

In our research we performed various experiments by considering target application
"www.myntra.com” test scenarios by running them on local machine presented in Table
and on cloud presented in Table [2]. We have also showed the demo of two application’s
test scenarios that can automated using the designed re-usable framework without any
modification in the back-end. We have considered nearly 12 feature files that comprises
of around 266 test cases that were ran against different browsers on cloud. During the
execution of each test we have collected the memory stats, execution times along with
test step’s status. The benefit of using this re-usable feature test automated frameowrk

Figure 5: Test Report features

STATUS
B Failed
Broken
[Passed
78.42% .
" 0 @ Unknown
(a) Defects
DURATION
2840
240
220
200
180
180
140
120
100
20
a0
40
20
a T T |-|
0s 13 2z 2z Az Bz (=1 Tz 83 Bs 103 115
(b) Time duration
SEVERITY
280 4
.zm —
240 —+
0
200+
180 o
180
140
120 o
100
A0 4
m —
4_‘:' —
.2{' —
a T T T T 1
blocker critical normal minor trivial

(c) Severity of defects

is to automate multiple applications by adapting it in Given, When & Then format. In
case if there are any failures in the steps it will notify the required actions like assertions
which can be handled without any programming knowledge. We have integrated test
reporting tool that will collect the information after completion each test run in the json
format. All this json files will be collectively converted into readable format during the
test report generation. From the test report stats we can view how many defects are
found along with the severity level. One important aspect of this test reporting feature
is it gives information of failure test steps for further correction. So in the next iteration
tester need to make sure that defects were resolved. This framework is highly suitable
for developing functional tests and run them for every sprint as part of regression tests
in agile methodology.

From the test report case study it is observed that using the re-usable feature test
framework we have executed 366 test scenario’s in 10 minutes span. If we try to run
them manually then it is known fact that a large number of human working hours is
required. For every sprint in agile methodology the tester is responsible to check/verify
the previous build functionality is successfully working fine with the newly introduced
features. Therefore, the automation plays an important role and the framework which we
have designed is easily adaptable, understandable, maintainable by non-technical tester.

6 Conclusion and Future Work

We have proposed a reusable framework which can be supported for multiple applica-
tions just by developing the feature files. This framework is highly suitable for running
regression tests in agile methodology as it can be easily maintainable, adaptable by non-
technical testers who do not have any sort of coding language. The Gherkin language
instructions in the features are well presented in such away that any layman can under-
stand the test scenario. To add an extra benefit of this framework we have integrated with
the Sauce Labs which allows a tester to run the automation framework in a wide variety
of browsers. Moreover, we have collected the memory stats after completion of each test
to help in detecting the memory leaks. In future, we would like to extend this work by
adding support to Android and IOS versions of mobiles for testing any application using
our framework.

Acknowledgements

I would like to extend my sincerest thanks to my supervisor Dr. Adriana Chis for her
continuous support and motivation during this research. Her confidence in my research
proposal has boosted me up in exploring the new innovative ideas until the final stage of
shaping up the solution. Her timely advice and guidance have benefited me in producing
the thesis with all the questions answered in well organized way.

References

A. M. de Castro, G. A. Macedo, E. F. C. and Dias-Neto, A. C. (2013). Extension of
selenium rc tool to perform automated testing with databases in web applications,

Vol. 5 of in proc. of Automation of IEEE 8th International Workshop on Software Test
(AST), IEEE, San Francisco, CA, pp. 125 — 131.

Atif Farid Mohammad, H. M. (2011). Cloud services testing: An understanding, Vol. 5
of Procedia Computer Science, Science Direct, pp. 513 — 520.

B. Daniel, Q. Luo, M. M. D. D. D. M. and Pezze, M. (2011). Automated gui refactoring
and test script repair, In Proceedings of the First International Workshop on End-to-
End Test Script Engineering, pp. 38 — 41.

Collins, E. F. and de Lucena, V. F. (2012). Software test automation practices in agile
development environment: An industry experience report, Vol. 5 of In Proceedings of
the 7th International Workshop on Automation of Software Test, IEEE, pp. 57 — 63.

Holmes, A. and Kellogg, M. (2006). Automating functional tests using selenium, in proc.
of IEEFE Agile Conference pp. 6-10.

Leotta, M. (2013). Capture-replay vs. programmable web testing: An empirical assess-
ment during test case evolution, 20th Working Conference on Reverse Engineering

(WCRE) .

Leotta, M. (2014). Visual vs. dom-based web locators: An empirical study, International
Conference on Web Engineering. Springer International Publishing .

Littler, G. and Millery, R. C. (2006). Translation of keywords into exec code, In Proc..
of the 19th ACM Symposium on User Interface Software and Technology pp. 135-144.

Maximilien, E. M. and Williams, L. (2003). Assessing test-driven development at ibm. in
proceedings of the 25th international conference on software engineering, IEEE Com-
puter Society pp. 564-569.

Memon, A. M. (2008). Water: Web application test repair, Vol. 18 of ACM Transaction
Software Engineering Methodology, pp. 1 — 4.

Mesbah, A. and Prasad, M. R. (2011). Automated cross-browser compatibility testing,
In Proceedings of the 33rd International Conference on Software Engineering, pp. 561
— 570.

Micallef, M. and Colombo, C. (2015). Lessons learnt from using dsls for automated
software testing, Vol. 8 of Software Testing, 2015 IEEE Eighth International Conference
on, IEEE, pp. 23 — 28.

Mugridge, R. and Cunningham, W. (2005). Fit for developing software: framework for
integrated tests, Pearson Education .

Pajunen, T.; Takala, T. K. M. (2011). Model-based testing with a general purpose
keyword-driven test automation framework, in Software Testing, Verification and Val-

idation Workshops (ICSTW) pp. 242-251.

Persson, C. and Yilmazturk, N. (2004). Establishment of automated regression testing at
abb: industrial experience report on avoiding the pitfalls, Vol. 8 of Automated Software
Engineering, 2004. Proceedings. 19th International Conference on, IEEE, pp. 23 — 28.

Rankin, C. (2002). The software testing automation framework, Vol. 41, IBM Systems
Journal, pp. 126-139.

Ryoo, E. H. K. J. C. N. S. M. (2009). Implementing an effective test automation frame-
work, Vol. 2 of in Proceedings of COMPSAC 33rd Annual IEEE International, IEEE,
pp. 534-538.

S. Berner, R. W. and Keller, R. K. (2005). Observations and lessons learned from auto-
mated testing, Vol. 5 of In Proceedings of the 27th international conference on Software
engineering, IEEE, pp. 571 — 579.

S. Choudhary, H. V. and Orso, A. (2010). Webdiff: Automated identification of cross-
browser issues in web applications, In IEEE International Conference on Software Main-
tenance, pp. 1 — 10.

S. R. Choudhary, D. Zhao, H. V. and Orso, A. (2011). Water: Web application test
repair, Vol. 5 of In Proceedings of the First International Workshop on End-to-End
Test Script Engineering, pp. 24 — 29.

S. R. Choudhary, M. R. P. and Orso, A. (2012). Crosscheck: Combining crawling and
differencing to better detect cross-browser incompatibilities in web applications, In
Proceedings of the International Conference on Software Testing, Verification and Val-
idation, pp. 171 — 180.

S. Zhang, H. L. and Ernst, M. D. (2013). Automatically repairing broken workflows for
evolving gui applications, In Proceedings of the International Symposium on Software
Testing and Analysis, pp. 45 — 55.

Stejskal, R. and Siy, H. (2013). Test-driven learning in high school computer science,
in proc. of IEEE 26th Conference on Software Engineering Fducation and Training
(CSEET) pp. 289-293.

T. Lalwani, S. N. Kanoujia, T. H. and Smith, M. (2011). Quicktest professional un-
plugged, Knowlegelnbox .

Thummalapenta, S. (2012). Automating test automation, Vol. 2 of 8/th International
Conference on Software Engineering (ICSE) on, IEEE, pp. 26 — 32.

Wei-Tek Tsai, Y. H. and Shao, Q. (2011). Testing the scalability of saas applications,
Scalability of SaaS applications. In Proceedings of the 2011 IEEE International Confer-

ence on Service-Oriented Computing and Applications (SOCA ’11), IEEE Computer
Society, Washington, DC, USA, pp. 1 — 4.

Yalla, M. and Shanbhag, M. (2009). Building automation framework around open source
technologies, Vol. 10 of in proc. of Software Testing Conference, IEEE, pp. 6-9.

A First Appendix Section

Below are the

feature file format
GivenStatement script Format
ThenStatement Script Format
WhenStatement Script Format
Memory stats code

File Edit Selection View Go Debug Tasks Help

search.feature X

4 OPEN EDITORS @search
arch.feat r search activity
wdio.con

e EEREEE enario: Search for CLOTHES using search bar

nvalid_login.feature ... Given I open the url “https://www.myntra.com"
4 MYNTRA When I set "Clothes" to the inputfield ".desktop-searchBar"
) And I click on the element esktop-submit"
And I wait on element "_horizontal-filters-title" to be visible
Then I expect that element worizontal-filters-title™ matches the text "Clothes"

header_footer.feature

feature

Scenario: Use filters to filter the search results
Given the checkbox "ul.categories-list> li:nth-child(1)" is not checked
menu_| When I click on the element "ul.categories-list> li:nth-child(1)"

Then I expect that element "ul.filter-summary-filterlList > li:nth-child(1) > div" matches the
Given the checkbox "ul.brand-list > li:nth-child(4)" is not checked

When I click on the element "ul.brand-list > li:nth-child(4)"

Then I expect that element "ul.filter-summary-filterlList > 1i:nth-child(2) > div" matches the
show_more_product... And I pause for 5000ms

navigate_home featu.
= search_suggestions f...

search feature

up.feature

feature Scenario: Verify image
When I click on the element "ul.results-base > li.product-base:nth-child(1) > a"
And I pause for 5000ms
Then I expect that element

= transferwise.feature

.pdp-title” contains the text "Tommy Hilfiger"

Ln 18 Col115 Spaces:2 UTF-8 CRLF Plain Text

Figure 6: Feature File Format

B4 given.js — myntra— Visual Studio Cod] o T S

File Edit Selection View Go Debug Tasks Help

@ X RER

4 OPEN EDITORS

p search.feature s 4 e.e
.Given(
¥

given,)
wdio.conf.js openlWebsite
transferwise.feature ...

nvalid_login.feature ...
4 MYNTRA ven(

header_footer.feature R
T isvisible
nvalid_login.feature

tems_total.feature

login_using_faceboo... .Given(

login_using_google....
isEnabled

-Given(
checkSelected
-Given(

checkSelected

givenjs

RN, v i i Al W00

Figure 7: Given Script

Ln19 Col15 Spaces:4 UTF-8 CRLF JavaScript

54 when,js — project — Visual Studio Cod] o s

File Edit Selection View Go Debug Tasks Help

ORER elcome when.js
4 OPEN EDITORS i t submitForm f
Welcome
when.j: when() {

en(
4 PROJECT

b allure-report clickElement
» allure-results
b errorShots

> node_modules en(

setInputField

given js -When(
then,js g
whenjs clearInputField
support

tagProcessor.js

_When(

& babelrc
+~ codeclimate.yml dragElement
editorconfig
eslintrcyam|
€) .gitignore en(
.nvmrc

{h submitForm
1 CHANGELOG.md

Pmaster D0AO Ln1 Coll Spaces:4 UTF-8 CRLF JavaScript

Figure 8: When Script

M=

File Edit Selection View Go Debug Tasks Help

EXPLORER e e then.js
4 OPEN EDITORS 0 then() {
Welcome = Ul
then.js c

4 PROJECT

checkTitle

allure-report
b allure-results -Then(
errorShots Y&
isVisible
node_modules

src

b features -Then(

teps
given,js waitForVisible
thenjs
when,js
» support
tagProcessor.j che thinViewport
& babelrc
»* codeclimate.yml
.editorconfig -Then(
.eslintrcyam| N
© .gitignore sting
.nvmre
CHANGELOG.md

master G040 In1l. Coll Spaces:4 UTF-8 LF JavaScript

Figure 9: Then Script

4 wdic.confjs — project — Visual Studio Cod] o D o |

File Edit Selection Go Debug Tasks Help

EXPLORER e - wdio.confjs %

SROBENFDTORS after(failures, pid) {
Welcome
wdio.confjs | pusage = require('pidu
4 PROJECT pusage.stat(process._pid,
allure-report expect(err).to.be.null
allure-results expect(stat).to.be.an(’
errorShots expect(stat).to.have.property(
node modules expect(stat).to.have.property(
src
global.cpustat = stat;
memory = require(
mb = memory();
-editorconfig global.mb = mb;
.eslintreyaml B;

5 babelrc

.codeclimate.yml

.gitignore
.nvmrc process.on(
HEHEHAHHEAHERBRE) ;

CHANGELOG.md

~ browser.desiredCapabilities.browserName);
LICENSE

C zzinizzzzziziz', pglobal.cpustat.cpu);
EEagE EadEs . u global.cpustat.memory);
package.json ole. us i :::", global.mb);
README.md ole. : I HEHRHHHEAHHHAHEHRHERR
update values for th
wdio.confjs

i pusage .unmonitor(process.pid);

Pmaster @140 Ln1 Coll Spaces:4 UTF-8 CRLF JavaScript

e i e B0 XL

Figure 10: Memory stats code

£ Login % | Allure Report %\ [0 Hi - srjanoratna@gmail.co % | & Enable or disable cookies - 0 % |+

file:///F:/project/cucumber_myntra/allure-repert/index htmi= e Qs v @+ &0 o =g

Allure ALLURE REPORT - TREND
10/08/2017

19:36:19 - 19:44

343

78.42%

A overview

!

SUITES 44 item

As an enduser | would like to buy an ite E
m Add item to cart and checkout There is nothing to show
I would like to 1ogin to the application us
ing FACEBOOK account Login using F . .
acebook CATEGORIES " itemioia

| would like to login to the application us Test defects

ing GOOGLE account Login using Goo

gle Show all

Iwould like to add items to wishlist and t n
o check whether items are added or not EXECUTORS

Adding items to wishlist

Figure 11: Reports Stats

61 Vi ity 8ot Tz s — s
. £ Login % | Allure Report %\ M Hii - sjanaratna@gmail.co % | Enable or disable cookies - ¢ % | +

)/l port/index. /b026e92877ad4f3cl0cb184832252a3ae/e288 <) Q

wla G- 3 A& 9 o #- @ =

ject/cucumber my

i 7 (21As an enduser | would like to buy an item Add item to cart and che... F
Allure Suites (i) 2 A) A
name = duration = status = | I click on the button “.login-login-
Filter by status: [button™

> As an end user | could be able to navigate to home screen from any screen
Navigate to home screen from checkout cart screen — Overview History Retries
> As an end user | could be able to navigaie to home screen from any screen Severity: normal
Navigate to home screen from contactus screen

Duration: @ 167ms
> As an end user | could be able to navigate to home screen from any screen

Navigate 1o home screen from search results screen Execution
™ As an enduser | would like to buy an item Add item to cart and a8 “ Teet body 3
checkout
I click on the bution " login-login-bution" 167ms ::'e(‘JESmTegn‘fsmuDfsesswonmEnfEeES—EQIb—AeEb—E1 97-eb627c01d6et
| click on the element " deskiop-submit” 3s 527ms 2 atachments
@ | click on the element "#outton[contains(texi(), CONTINUE TO 5h 22m POST lwdMubisession/dcc(e63-69M-dedl-8197-e0h27c01d5c
PAYMENT)]" 2 attachments
| click on the element "/button[contains(texi().'PLACE ORDER")]" 1s 565ms POST fdihub/session/4cc iGe3-60b-4e30-8107-ebB27c01dEc 1
@ click on the element "/form@id="credit_card'/div[3/div[5/button” 0s ’ff{fﬁ?“lf{ click e
@ click on the element "//input{@id='credit_save_card']" Os L
& click on the element "//li[@id="tab_credit_card']" Os
| click on the element "/fspan[contains(text(). ADD TO BAG")]" 136ms
| click on the element "//span[contains(text().'GO TO BAG')]" 1s 853ms

| click on the element "div.size-butions-size-buttons > button:nth-child(2) 129ms

Figure 12: Test steps information

	Introduction
	Related Work
	N-tiered Test automation Framework Approach :-
	GRAFT Approach :-
	GUI Pair :-
	UI visual analyzer :-
	Change Resilency tests :-

	Methodology
	Implementation
	Re-usable Feature test Automation Framework:-
	Invoke of JavaScript coding from GSL:-
	Assertions and Error Logging on console:-
	Integration of automation testing with Sauce Labs
	Metrics of Execution time, Cpu Usage and Memory Usage

	Evaluation
	Framework Re-usability Evaluation
	Execution of Test Cases in Sauce labs
	Metrics of Execution time and Memory usage
	Test Reports
	Discussion

	Conclusion and Future Work
	First Appendix Section

