~

N\ National
College
Ireland

A Framework of Docker Containers to
Minimize Risk of ARP Protocol Poisoning
Attack

MSc Research Project
Cloud Computing

Bhagirath Purushothama
x15047211

School of Computing
National College of Ireland

Supervisor: Manuel Tova-Izquierdo

National College of Ireland . National

Project Submission Sheet — 2015/2016 Collegeof
School of Computing Ireland
Student Name: Bhagirath Purushothama
Student ID: x15047211
Programme: Cloud Computing
Year: 2016
Module: MSc Research Project
Lecturer: Manuel Tova-Izquierdo
Submission = Due | 16/08/2017
Date:
Project Title: A Framework of Docker Containers to Minimize Risk of ARP
Protocol Poisoning Attack
Word Count: 5255

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students
are encouraged to use the Harvard Referencing Standard supplied by the Library. To
use other author’s written or electronic work is illegal (plagiarism) and may result in
disciplinary action. Students may be required to undergo a viva (oral examination) if
there is suspicion about the validity of their submitted work.

Signature:

Date: 15th September 2017

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. You must ensure that you retain a HARD COPY of ALL projects, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer. Please do not bind projects or place in covers unless specifically
requested.

3. Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:
Penalty Applied (if
applicable):

A Framework of Docker Containers to Minimize Risk
of ARP Protocol Poisoning Attack

Bhagirath Purushothama
x15047211
MSc Research Project in Cloud Computing

15th September 2017

Abstract

As Docker is slowly transforming the virtualization and deployment world, it is
essential it does not have any security loopholes. But due to resource and kernel
sharing with the host and no inbuilt authentication mechanism Docker greatly in-
creases the surface area of the attack on the host machine. This paper addresses
ARP poison attacks among docker containers, which is one among the many se-
curity issues in Docker. As there is no definitive way of creating a container, this
paper suggests a way to effectively detect an ARP poisoned container by creating
containers in a framework.

1 Introduction

In the world of datacenters and virtual machines where technology has enabled one to
spin up an instance of a server or an entire machine up in minutes, we are always looking
for more. More speed, more efficiency, more performance, etc. In this relentless search
for more out of a virtualization software a new paradigm of virtualization was designed
on share the resources and kernel of a host machine but can work and behave like a
virtual machine and spin up deployable server environments in seconds. This is the
Linux Container - LXC. LXC have been around for two decades now. But only in recent
years they have been considered to be used as an alternative for commercially successful
virtualization solutions. This was possible due to tools such as Docker, Mesos, rkt, Solaris
Containers, CSDE(Commercially Supported Docker Engine) etc. These tools enabled
the use of container as a deployable environment. Thus, effectively creating a virtualized
environment within the realms of a host machine utilizing the resources available to the
host without harming the host (well, almost!).

Docker, though having the provision for security features does not have any of it
implemented ab-initio. One such security loophole is the possibility of ARP poisoning
and ARP spoofing. To begin with Dockerfiles are, by default, build-able by any user and
do not need any special permissions. Hence, a Docker image can be built from scratch just
by copying a Dockerfile from a USB or a disk. Once the image is built, a user can push
the image into the Dockerhub, All the while with no checks or security authentication of
any sort. Due to this there is a chance that corrupt or poisoned images can find its way
into a live production environment.

Docker containers are miniscule instances of an operating systems having only the
bare minimum files required to run a process. Due to this, it essentially does not have
any authentication and validation, hence, a container can be easily influenced and induced
in a live environment to spoof on the activities of other containers on the machine. This
is a major persisting issue in the current IT world (Combe et al.; 2016).

ARP is a basic protocol that works on the Data-link layer in the OSI model. ARP is
not a reliable protocol meaning, it does not wait for a response for a respective request
packet in a network. It just broadcasts the node information and captures the incoming
node information of the other nodes in a network. This enables any intruder to easily
create a pseudo node and spy on the network traffic. Hence, to overcome this among
docker containers where the security is one of the highest concerns a framework of Docker
containers has been proposed in this paper which can detect any ARP intrusion among
many containers. More detailed description and discussion follows in further sections.

To begin with let us first understand what is Docker and how it works. |[Matthias
and Kane| (2015) is a guide to work with Docker and probably a good place to start
understanding Docker. According to this book, more than understanding, what Docker
is, we need to know what Docker is not. Docker is not a commercial virtualization
solution like VMware, KVM, etc. (this can be confusing but, bear with me). Docker is
not Cloud platform like Openstack, AWS, cloudStack, etc. Docker neither is configuration
management tool like Puppet, chef, etc. But, Docker has the flexibility of the all of the
above technologies. That is, it has the ability to provide a virtualization solution, it can
form a cloud platform, it can also can be used as a configuration tool and deployment
tool. In short Docker is all of it combined in one. Basically, Docker is just a process, but
a powerful one, which shares the resources of the host machine.

2 Related Work

Before we dive right into the details of the project we need to research how many others
have already worked on the similar topic as mine. Also, we need to understand and
validate the existing problem. And if the problem exists then what is the possible solution
for it and validate the solution as well. Without further ado lets dive right into the
different sections of the literature review. [J

This entire section is divided into four subsections. The subsection [R.I] describes
and defines what Docker is and how is it changing the very ways in which applications
are being developed in the current technological world. The subsection is intended on
highlighting the positive aspects of Docker and other containerization software. Operating
system virtualization being one of the simplistic and lightweight virtualization solutions,
is the basis of Docker, Mesos and other LXC (Linux Containers).

The second subsection [2.2] deals with the Address Resolution Protocol. Various
papers have been written on the ARP and how they affect the network security. ARP is
a simple and non-reliable protocol which works at the Data link layer (layer 2) of the OSI
model. ARP works on the principle of address resolution and reverse address resolution.
This subsection intends on understanding how the ARP works and what are flaws which
make the ARP an unreliable protocol.

After understanding the Docker and ARP, the subsection deals with ARP pois-
oning or spoofing attack in Docker containers. This subsection highlights the how ARP

'Like this one: http://www.ncirl.ie

http://www.ncirl.ie

spoofing can affect the security of a system running Docker containers. And in what way
is the system affected by the spoofed containers.

And finally, the subsection [2.4] highlights various solutions in which ARP spoofing and
poisoning attacks can be contained in a network of Containers. This section highlights
the solution in discussion in this paper and how effectively it dispels any threat of ARP
poisoning attack.

2.1 Docker: An overview and its extent of usage

Lets begin with the big question. What are containers? According to |Joy (2015]) Isol-
ating the processes to access and utilize the resources allocated only to the respective
process environment without affecting the other processes - thats a simple definition of
LXC or LINUX Containers. LXC are basically processes running independently utilizing
the resources allocated inside the respective namespace. But the major advantage of
containers is that they have their own network interface and can connect and interact
with the other systems just as another system. Some of the advantages of the LXC are
that they highly portable and lightweight, need minimal configuration and, the major
advantage, they share the host system OS kernel and are not affected by the underlying
host processes. This makes the containers a very ideal substitute for other virtualization
rivals like hypervisors.

App | App
[Guest 05 | [Guest 05 . Container Container
Hypervisor Container Engine
0s 0s
Server Server

Figure 1: Virtual Machines vs Containers (Joy; 2015)

The figure [1| depicts the comparative depiction of a conventional virtual machine vs a
container solution such as Docker. A typical VM makes use of hypervisor and isolates the
hardware from the operating system. Whereas a containerization effectively isolates the
host operating system from the containers processes. Hence, containers are also called
operating system level virtualization. Containers mainly work with the help of namespace
and control groups (cgroups for short). Namespaces takes care of the environment in
which a process is running and the limits defined for the respective process. And cgroups
manages the access and control of the process and helps isolates the process from each
other. The figure [2| depicts the typical architecture of a Docker Container with respect
to the namespace and cgroup.

Some popular containers software are Docker (leverages LXC), Mesos and Kubernetes
(technically it is a tool to manage cluster of containers). And as popularity of the contain-
ers technology grows more, more applications are finding usefulness in the containerizing
than sticking to the conventional virtual machines and hypervisors. In my study on

/ / 4/

Namespace Namespace Namespace

centes Ubuntu RHEL

* n

{

Wamespace
uts
ipc
pitd
net
mnt

Figure 2: Namespace and ControlGroups ; 2015))

Control groups Linux Kernel

hardware

Docker container found papers which were using Docker containers in their projects. A
few of the papers are listed below.

|Anderson| (2015)) points out the problems that Docker addresses with respect to a
Virtual Machine. According to this paper Docker is an effective tool which enables a
developer not to worry about changing and configuring the system environment and
focus only on developing the application without messing up the environment. He points
out that Docker is most helpful for the DevOps team as lesser configuration is needed
and Docker helps isolate the process of coding and configuration. And a single system
can be used as a host to more than one application without affecting the each other. This
notion is concurred by the (Choudhari and Mhatre| (2015)). In this paper, we can see why
containers have an upper hand over the traditional solutions for virtual methods.

Standard host OS
T

Figure 3: A Docker container architecture (Choudhari and Mhatre; [2015))

The figure [3| depicts the architecture of a Docker container. The usefulness of Docker
can also be seen in the field of research and development. This is proven by
(2015).

The idea of the [Boettiger| (2015)) is also confirmed by Di Tommaso et al. (2015)
where Docker containers are used to set up the environment for research with Genomic

Pipelines. Typically, genomic pipelines are of experimental nature as often, third party
software are used. Apart from this, they are constantly changing keeping pace with
the technological changes. Hence, reproducing the particular version or a setting up of
environment becomes increasingly difficult. Hence, Docker containers provide the solution
by containerizing the particular version/set-up without affecting the other newer or older
versions of the same. Knoth and Nst| (2017) as well, speaks on similar lines where Docker
containers are used to resolve the issue of reproducibility of environments for Geographic
Object-Based Image Analysis (GEOBIA) which mainly use proprietary software but is
now gradually migrating to Open-Source Software.

As the topic of the section suggests, Docker is finding its way into main stream tech-
nological solution. Usage of Docker in datacentre is one such example. This is supported
by (Guan et al.| (2017;2016;). In this paper, the author convincingly portrays the effect-
iveness of usage of Docker in datacentre. The author(s) have proved by experimentation
that the algorithm for resource allocation using Docker containers performs better than
the conventional methods.

Another way of using Docker containers is by clustering and managing multiple con-
tainers and making them work as a single unit. The paper |Sallou and Monjeaud (2015)
deals with the one such utility where Docker containers are used to implement mechan-
ism for executor plug-in and custom scheduler based on open source software for batch
scheduling.

Map-Reduce is the most sought-after technology for crunching big data. Docker can
be used as a good alternative even for the Map-Reduce as well. This is proved in Xavier
et al. (2014). Here the author experimentally proves that Map-Reduce is more effective
with containers as the CPU utilization and systems resources are used comparatively
lesser when compared to the traditional VM software.

The bottom line of this section being - Docker is effective, efficient, portable, ideal
and faster than the traditional or conventional virtualization software such as HyperV,
KVM, XEN, RHEV, etc. Though the traditional systems are robust and very secure in
comparison to Docker, they come nowhere even close in terms of speed, efficiency and
portability. And Docker has the potential to replace any of the leading virtualization
solution.

2.2 ARP: An overview. What is spoofing?

We already know that Internet makes communication possible between two separate
computer systems. In network, the Internet is divided into seven layers under the OSI
model. And each layer speaks with the immediate layer above or below itself. These layer
‘speak’ with each other using protocols. Hence, each layer has its own set of protocol.
The protocol in discussion here is Address Resolution Protocol in short ARP. ARP works
in the Data-link layer of the OSI model and is an unreliable protocol. Meaning, after
sending a packet of information as request on a Local Area Network, it does not wait for
a response for that packet. The main purpose of ARP protocol is to collect and maintain
a table of IP address and physical Media Access Control Address pair of every system in
a network and store it. ARP does this in four simple steps; ARP Request, ARP response
and RARP request and RARP response. This is done by broadcasting the IP address as
well as the Physical address of the machine in a network. Once the packet of information
is broadcast, the node does not wait for a response. If the node needs to route or send
information to another machine in its network, it refers it’s ARP table with the help of

RARP (short for Reverse-ARP) and finds out the position of a node in the network and
forwards the respective packet to it. The Figure [4] depicts the typical structure of an
ARP protocol.

ARP Packet Format

~+————Ethemet |l header ———»

ARP Request or ARP Reply IPzddmg| CRC |

| = | e uaqu

28 0 a

Hardware type (2 bytes) Protocol type (2 bytes)

Hardware address Protocol address
length (1 byte) length (1 byte)

Source hardware address”

Operation code (2 bytes)

Source protocol address*

Target hardware address*

Target protocol address*

* Note: The length of the address fields is determined by the corresponding address length fields

7

Figure 4: Structure of an ARP packet (Address Resolution Protocol (ARP); n.d.)

As we already know the main functionality of ARP protocol is to map the physical
MAC address in the physical layer to the IP address of the nodes in data-link layer.
The physical MAC address of the nodes, a 48-bit value with 6-octets, is mapped to a IP
address of the respective nodes, a 32-bit value with 4-octets. This can be referred in the
ARP packet structure in Figuredl Usually, the 32-bit value is associated to the LAN and
the respective nodes in it. Meaning, each node has all the values associated to the nodes
in that particular LAN. And ARP cache stores these value for faster retrieval. The most
common use of ARP cache can be seen in default gateways and physical routers in the
network.

That being the case, it becomes very easy for a hacker node to impersonate a pseudo
node. Meaning, an impersonator node broadcasts an ARP packet with false information
of another node (the node usually being the default gateway or a router). This enables
all the traffic to redirect to the impersonated node and the Internet packet travel via the
pseudo node. Rahman and Kamal| (n.d.) clearly explains this with the help of a diagram
as depicted in the Figure [5] below.

Moon et al| (2014) and (Zdrnja; 2009) have explained the issues in ARP in detail.
According to the author(s) following are the major drawback of the ARP protocol.

o Statelessness: ARP and RARP are both unreliable protocol and work in a simplistic
manner. Meaning, they do not have any states. The only broadcast or receive the
broadcast packets of data.

e No Authentication: This is a major hurdle as any new entry in the network can
easily gain access to the network details or the ARP cache of the LAN.

e ARP cache auto-update: The ARP cache table consisting of all the entries are
updated without any verification based on the packets received.

The above drawbacks lead to the LAN being prone to various forms of intrusion and
harm. Some of which have been listed below.

Mormal Traffic Pattern

Target Computer Switch Router

& {__,@f)‘__..@

Sniffar

Poisoned ARP Cache

Targe! Computer Switch Rauter

Nt

Figure 5: ARP cache poisoning attack (Rahman and Kamal; n.d.|)

e Host block: Once an intruder is able to gain access into the LAN it is very easy for
the attacker to redirect the packets isolating one or many nodes. This leads to the
host being blocked to provide service for the requests.

e Host impersonation: Once, the user is able to isolate a particular system he can
easily pose as a pseudo node without being detected. This leads to a host being
impersonated by another impostor machine.

e Man-in-the-middle attack: Once, the user is able to impersonate the behaviour of a
system. it becomes increasingly difficult for the network to detect the presence of an
impostor as there is very little difference between the impostor node and actual real
node. This makes it easy for the impostor to launch his own attack. On detection,
the real node will be detected rather than the impostor.

Summary of the section is that ARP is a necessity but it is not smart enough to verify
itself and can pose a serious threat to systems connected in a network. We cannot totally
ignore the protocol as it works in the bottom layers of the OSI network model.

2.3 Security issue and ARP Spoofing in Docker Containers

As all seemingly perfect systems, even Docker has a catch. LXC Container is a Free Open-
Source Software (FOSS). Meaning every LINUX experienced person can not only easily
understand and work, but also develop his/her own techniques and software applications
using this tool. Meaning, there are only guidelines which needs to be kept in mind when
working with Docker, and no prescribed manner in which to standardize the usage of
Docker. This leads to varied and distinct methodologies for Docker usage. All these
leads to one logical conclusion, if there are more than one ways of working on it there is
also more than one way of breaking it. Standardizing the usage of Docker reduces the
security loops in the software and narrows the surface for security breach in the system.
In this section, we will be discussing the possible security drawbacks of Docker tool.
The fundamental question any developer would ask is, why do we need Docker when
there are alternatives available, if not better, which are robust and provide high security?

7

Why would technological enthusiasts want to make use of Docker? |Combe et al.| (2016)
answers exactly that. The author(s) has researched that though very efficient and effective
than its other virtualization peers, Docker comes with its fair share of security holes. The
following are the ones mentioned in the paper.

Manu et al.| (2016b) aims at bringing out the underdeveloped side of Docker. The
author(s) of this paper have clearly mentioned as Docker daemon works along with and is
connected to the host kernel, it gives a direct access to the host machine itself. This leads
to attack surface widened attack surface every time a new container or image is loaded
onto the Docker host. The conclusion of this paper clearly states that Docker technology
is in its infancy yet and the security patch up that needs to be implemented is possible
bigger than the technology itself.

According to Manu et al.| (2016a) the security aspects of Docker containers is literary
unchartered territory. The LXC and containerization has been around for two decades
now but Docker combines use of container technology and containers configuration in a
single bundle. But, the problem being, the tool needs to be flexible and must provide
as much configuration management as possible without tarnishing the ease of use. So,
technically speaking, there are no security features inbuilt like other tool. But, they can
be configured to implement one. This paper is addressing one such problem of security
problems in Docker containers with respect to ARP spoofing and ARP poisoning attack.

During, the course of my dissertation, I got in touch with the official Docker channel.
Grattafiori (2016]) is white paper provided by them to understand the security features
and hardening the Docker containers. According to the paper, Docker has enough security
feature but it does not implement them by default. Hence, to overcome the issue of ARP
poisoning, we need to use of a customized bridge which can be programmed. This is
discussed in detail in further sections.

As stated earlier, the problem of intrusion and poison attack is common among a
system. As Docker containers are treated as individual systems in a network they are not
immune to these attacks. With regards to Docker containers security very limited papers
are available and thus more research is necessary in this topic.

2.4 Existing solution and proposed solution

There is more than one way to overcome ARP poisoning attacks. The most common
ways are to monitor the ARP cache of the machines in a network, checking for a flood of
gratuitous packets. Paper such as Rahman and Kamal (n.d.), |[Lv and Li (2011)), |[Kavan
et al.| (2014) and Wu et al.| (2016)propose new and exhaustive methods to detect and
nullify ARP poisoning attacks. Not only systems, ARP attacks can greatly influence the
websites and their cross scripts also. (Zdrnja; 2009) and Zhang et al.| (2012) discuss this
in detail. Cross scripts are JavaScript that are captured in a network and replaced with
malicious scripts or viruses that run by themselves on a computer harming or bugging the
system for a long period. |Kim and Huh| (2011)) proposed ways of detecting the intrusion
over a domain. Detecting a phishing attack over an entire domain is not as effective as
detecting over a network. The paper has proposed a phishing detection technique over
an entire DNS by examining the network performance characteristics. The author(s) has
examined four classification algorithms: -

e Linear Discriminant Analysis

e Naive Bayesian

e K-Nearest Neighbour

e Support vector machine

Among these the most effective one for detecting the phishing in a domain is K-nearest
with 99.4% detection rate.

Similar issue of intrusion and poisoning can also be seen in Peer-to-Peer Network
Protocol(P2P). P2P supports scaling and is a very robust protocol but it does not detect
any intrusion by default. [smail et al. (2017) discusses this issue and proposes a technique
to detect a poisoned node. The paper proposes an algorithm to detect and prevent
intrusion in P2P protocol.

Cha et al.| (2017)) is a unique paper where DoS attacks and eavesdropping of packets
over VoIP and mVoIP can be detected and stopped by using Docker as a tool. Though
not completely relevant this paper brings out the idea that Docker is actively being used
in cloud based technologies and is susceptible to attacks over the network as a result of
its raw implementable nature.

As the ARP is somewhat basic and (can be called primitive) protocol, it might very
much need upgrading. (Nam et al.; 2010) suggests a new improved ARP to detect and
overcome intrusion detection in a network. Due to non-authenticity and unreliable nature
of ARP system in a network are vulnerable to attack. This can be overcome by improving
the ARP to detect and prevent Man-In-The-Middle(MITM) attacks. The mechanism
proposed in this method is based on a voting where each node rates the node entries in
its ARP cache and is always self-aware of the adjacent node info. This reduces the MITM
attacks greatly. Also, Min Su et al.| (2014)) discusses a new and improved ARP protocol
(on similar lines of (Nam et al.; 2010)) which works on the principle of routing trace.
This improved version of ARP is backward compatible and can be deployed instead of
the existing one incrementally. The paper [Trabelsi and Shuaib| (2008) also proposes an
improved Man-In-The-Middle attack detection scheme for switched networks.

Lastly, Chen et al| (2016) discusses the security for an entire cloud system network
as a whole to secure the critical cloud infrastructure. As we analyse, it can be observed
that a little research has been done on detecting and preventing the poising attacks in
Docker. I've tried to implement a framework of containers that can be used to detect
and prevent the ARP poisoning and intrusion.

The gist of this subsection being, there are solutions to prevent an ARP poisoning and
ARP spoofing attacks in network. But in Docker there is no such software or mechanism.
Hence, we will be discussing the framework of containers to detect an ARP poisoned
container.

3 Methodology

To begin with the project was started with an assumption that a framework of containers
all use individual network connection from the host network bridge. And initially all the
containers had to be connected with each other to create a framework of docker container.
So by initial assumption, Our framework of containers will look as it is depicted in the
Figure [6]

Where, the master container is the parent container and all other containers are laid
out in the form a binary tree. And each container is allowed to have one parent and two
children only. All the containers are logically connected to communicate only in the flow

Master Container
> 6‘
Container 1 Container 2
Container 3 Container 4 Container 6 Container 5

Figure 6: Framework of Containers

of the binary tree with the help of iptables. And also, each container acts as a monitor
to it’s immediate child node and keeps track of the packet data being transmitted to it’s
child. If one among the tow nodes of are collecting more packets than the other, then
parent node is suspicious about the child node and informs the master node to isolate
the particular container from the framework.

There are two major issues with the above approach. First, the assumption on that
docker container directly connect with the ethernet was false (Grattafiori; 2016). Docker
has a dedicated bridge docker(. Second, even if we find a way to connect the containers
in the form of a binary tree, the proposed framework would be ineffective as the size of
the tree increases the number of levels on the tree will increase and transmission of data
packet will be slower.

According to Docker white paper Grattafiori (2016) and the official website Docker
(2017) it was clear that docker creates its own default bridge ‘docker0’ which acts as a
connection center for all the containers hence, all the containers communicate via the
‘docker0’ bridge. As all the networking is through a single bridge it is better to use the
existing bridge to keep track of the packet movements. The below Figure shows a bridge
connecting three Docker containers to the Ethernet via a proxy server. The proxy server,
the default bridge and the NAT connection of all the three are a part of Docker daemon
and are installed together with the Docker-machine.

' '
! Docker Server ! Virtual Network
1

QOutbound

| H Request 17216231
! 1 fromContainer
! I

Network

docker)
17216.3.7
Inbound Reguest
10 Exposed Port

TP 10520

Figure 7: A Docker bridge connecting containers to Ethernet

Following the above pattern I came up with steps to create a custom framework
making use a custom bridge and subnet masks.

1. Create a custom bridge for Docker

2. Create a custom subnet mask under the new bridge

10

3. Create containers with static IP address and assign them under the new custom
subnet mask

4 Implementation

The following are commands and code to create a custom bridge in Docker and assign
static IP addresses to every container while connecting to the bridge.

The first step is to create a custom bridge in Docker and add that bridge to be used
by another container.

Before we begin, we need to stop the currently running Docker daemon either manually
or by stopping it in background.

Once the Docker daemon is stopped, configure and create a new bridge as follows

sudo brctl addbr custom_bridge_0
sudo ip addr add 172.132.1.1/24 dev custom_bridge_0O
sudo ip link set dev custom_bridge_O up
Once configured, confirm the configuration settings
ip addr show custom_bridge0
It should output the following

bridgeO: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state UP group default
link/ether 66:38:d0:0d4:76:18 brd ff:ff:ff:ff:ff:ff
inet 172.132.1.1/24 scope global custom_bridge_O
valid_1ft forever preferred_lft forever

We are good to go with the new bridge. Configure Docker to use the new bridge
instead of the default one. Open the file /etc/docker and edit the file daemon.json to
have the following entry.

{
“‘bridge’’: ‘‘custom_bridge_0’’

}
Restart the Docker daemon with the following command
sudo docker service restart
And once Docker is restarted, we can delete the now unused bridge ‘docker(’

sudo ip link set dev docker0O down
sudo brctl delbr dockerO

sudo iptable -t nat -F POSTROUTING

We should be able to use the custom bridge for docker. We can verify this by

Once we have a custom bridge, the next step is to assign static [P address to every
container that we create. This is one of the approaches. Another and a more secure
approach is that we can create a custom network with user defined subnet mask and
assign the containers to it.

Once we have the custom network we can create containers with static IP and assign
it to the new network.

11

dvm@dvm-machine:~% sudo brctl show

bridge name bridge id STP enabled interfaces
br-ecéezbdagi3el 8000.9242d54a233c no
custom_bridge_@ 8000.0200000000000 no

Figure 8: A custom bridge

dvm@dvm-machine:~% docker network create --subnet=172.18.9.8/16 custom_network
49e5ebecbc71bd74ba24933f18d12f88dd75fafe94ad827bdbe22df@20792ad7
dvm@dvm-machine:~% docker network 1ls

NETWORK ID NAME DRIVER SCOPE
e5e45bbbeef7 bridge bridge local
49e5e6ecbc7l custom_network bridge local
d95ff5ale7c9 host host local
f75366caB233 none null local

Figure 9: A custom network

dvm@dvm-machine:~% docker run --net custom_network —-ip 172.18.8.5 -it alpine
/ # ifconfig
eth@ Link encap:Ethernet HWaddr ©2:42:AC:12:00:05

inet addr:172.18.0.5 Bcast:0.0.0.0 Mask:255.255.0.0

UP BROADCAST RUNNING MULTICAST MTU:1588 Metric:1

RX packets:16 errors:® dropped:® overruns:@ frame:@

TX packets:@ errors:® dropped:® overruns:@ carrier:@

collisions:@ txqueuelen:®@

RX bytes:2070 (2.0 KiB) TX bytes:@ (9.@ B)

lo Link encap:Local Loopback
inet addr:127.8.0.1 Mask:255.0.0.9
UP LOOPBACK RUNNING MTU:85536 Metric:1
RX packets:® errors:® dropped:@ overruns:@ frame:@
TX packets:@ errors:® dropped:® overruns:@ carrier:@
collisions:® txqueuelen:1l
RX bytes:@ (0.2 B) TX bytes:® (0.0 B)

Figure 10: A container with static IP

5 Evaluation

In this section, we will be testing and evaluating the framework by manually creating

containers and testing them against ARP attacks. Two scenarios are considered

1. Containers outside the framework

2. Containers inside the framework

In both the cases we will be introducing a rogue container to capture details of another

container. The subsequent behaviour of the system would be recorded and the results

would be displayed.

5.1 Containers outside the framework

Creating 5 containers outside the framework for the purpose checking for ARP spoofing

docker run --name dynamic_container_1 -d -it alpine

12

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
c686ed4co2cl alpine "/bin/sh" 11 seconds ago Up 1@ seconds dynamic_container_7
42f34b3df6fb alpine "/bin/sh" 16 seconds ago Up 15 seconds dynamic_container_6
cbf73edaadeb alpine "/bin/sh" 33 seconds ago Up 32 seconds dynamic_container_5
5e90d57042b9 alpine "/bin/sh" 38 seconds ago Up 37 seconds dynamic_container_4
9caBb958e3a7 alpine "/bin/sh" 43 seconds ago Up 42 seconds dynamic_container_3
0f37b117258e alpine "/bin/sh" 47 seconds ago Up 46 seconds dynamic_container_2
94248ecdofcf alpine "/bin/sh" 54 seconds ago Up 53 seconds dynamic_container_1
Figure 11: List of containers outside the framework
"Containers™: {
"3b15bb4d77125622b48242a9786517078fc27d66884T1f31a248acfaad@5bed43": {
""Mame": "dynamic_container_5",
"EndpointID'": "486edal23e7172eel3b92c44fa7f7195ac32a477d40d9013c37213843c93daz27"",
"MacAddress'': "@2:42:ac:84:01:06",
"IPv4Address'': "172.132.1.6/24",
"IPvBAddress'': """
},
"6T2975528aabbc41fb880bcdfa@4bl197c@daBel2723f85dc44876e746e71225": {
""Name'": "dynamic_container_2",
"EndpointID'": "1e9b31082acef39b43602b44blbB1c2f875842bT8a981d3914aaeb36das869792",
"MacAddress'': "@82:42:ac:84:01:03",
"IPv4Address™: "172.132.1.3/24",
"IPvBAddress'': """
},
74087 T4946af2d5345e9584d580a653eT@3594bb66 T 1b24b8435e12 f8adede59": {
“"Mame": "“dynamic_container_4",
"EndpointID'': "837cf@480a625bcePacbaddb2c70TI9ced48884125da7328f63351c52b31918e58"",
"MacAddress' @82:42:ac:84:01:05",
"IPv4Address'': "172.132.1.5/24",
"IPvBAddress'': """
},
"bl43de8716855b4b6643a563c9a5774acb64502b18d85b3aae797deble3F834F": {
""Mame": "dynamic_container_1",
"EndpointID'"': "3fdelB8ef9431475b252eaac5a35284be2de2f41143c6077782086aa6@88cccB1"",
"MacAddress'': "@2:42:ac:84:91:82",
"IPv4Address'': "172.132.1.2/24",
"IPvBAddress'': """
¥,
"e@2eb3a@2ad3854a@Talcl64b9a5Te5e4c55d256270c3b782T47@b3262ec7ad42" 1 {
""Mame": "dynamic_container_3",
"EndpointID'": "ael911252b75b72f9e78d62e96c7bT2b28d5372effO6880cb44833b83af8eace",
"MacAddress'': "@2:42:ac:84:91:84",
"IPv4Address'': "172.132.1.4/24",
"IPvbAddress'': """
¥,

Figure 12: Container details which are out of Framework

After creating 5 such containers (Figure

On inspecting the containers (Figure

If we stop any one of the containers from the framework, and add a new container
the default bridge assigns an already used IP address to the new container

"fd6ffbecled16132415f7df3eba786cbc41816d6b36@97986bb3d73c@db127¢": {

"Name": "dynamic_container_6",

"EndpointID": "la9a76cab2814eb362b564belae56819c60431fbdf78f5fc31afhe3999202937",
"MacAddress": "@2:42:ac:84:01:06",

"IPvdAddress": "172.132.1.6/24",

"IPvbAddress": ""

Figure 13: Container details of the new dynamic container created

This means even though the container is different it is assigned the same IP address
and the MAC address and instantly recognized in the ARP table. This can lead a
container being induced into the bridge by default with arising any suspicion.

5.2 Containers in the framework

Creating 5 containers inside the framework for the purpose checking for ARP spoofing

docker run —-—-name static_container_1 --net custom_network
--ip 173.130.1.2 -d -it alpine

13

After creating 5 such containers,

64d454c2e1d6 alpine "fbin/sh" About an hour ago Up About an hour static_container 4
1a5d94¢572f2 alpine "fbin/sh" About an hour ago Up About an hour static_container 3
647a0¢038df5 alpine "fbin/sh" About an hour ago Up About an hour static_container 2
96205f760e20 alpine "fbin/sh" About an hour ago Up About an hour static_container 1

Figure 14: List of containers inside the framework

On the other hand, all the containers in the framework have fixed IP address and
once a container is removed its IP address is not used again and the subsequent container
being added will have a new IP address.

“Containers": {
"647a9c@38dT51b3304e842812b63ad4cac6T137d990d1b59efff19a@337c491e": {

“"Name'': "static_container_2",

"EndpointID": "43f68e4c78c@db9@@dc88f785a7182f557583ac34clee8d2814b31c855f24fa1l",
"MacAddress": "@2:42:ad:82:01:03",

"IPv4Address': "173.13©.1.3/25",

"IPveAddress': "

},
"64d454c2eld6101166a879%9edd2628659b1d86a47a3e97d2716992bbaa665b73d": {
“"Name": "static_container_4",

"EndpointID": "9f153@fcd?§acfdb@2d1a68d531?35@65@cc266f95b158??1838fe524853cﬁea".
“"MacAddress': 2:42:ad:82:01:05",
“"IPv4aAddress': "173.13@.1.5/25",

"IPvbAddress': "

¥,
"7a5d94c572T2635ec7a5eb3a9321T27bd31cc76455b41a502a41cB81le855e2868" 1 {
“"Name'': "static_container_3",

"EndpointID": '"393a663c6T15787T29ceb4a961le4@5cccb8@46@b7bcdd4eefbal6cd7a@bdb8f7@",
"MacAddress": "@2:42:ad:82:81:84",

"IPv4Address': "173.130.1.4/25",

"IPveAddress': ""

},
"9b2b5T76@e2bd@7e89e2018e3c677646ceT5ebc311e4471e6984T7eaff1lbs 57" {
"Name": "static_container_1",
"EndpointID": "a%9a627d7197c253ad7add9cbl86bl7ef36844T7713abbc85632d@e278cb83adf",
“"MacAddress'": 2:42:ad:82:01:02",
"“"IPv4Aaddress': "173.13@.1.2/25",

"IPvBAddress': "
¥,
"e79448deblTd6b2888b92de4T7479b66b82ba5d7e37e287788352dTh89at373e": {
"Name": "static_container_5",
“"EndpointID": "fel4237084977cef@9@b24ecaalbfc7db3bff833861la78bed34efzd2zfed4ezaea”,
“"MacAddress": "@2:42:ad:82:91:96",

"“"IPv4Address": "173.13@.1.6/25",
"IPv6Address': ""

Figure 15: Container details which are inside the Framework

While stopping and adding a new container subsequently an IP address is configured
along with it. This prevents the reuse of IP address

"a47cfdb979d35414470914ae21c831d842999949457bb0295d7d9280120d67a": {
"Name": "static_container_g",
"EndpointID": "fad6cefd5614df8cd2acBb@cbbb82eb7867af597a18f0a56553302000d459d93",
"MacAddress": "@2:42:ad:82:01:07",
"IPv4Address": "173.130.1.7/25",
"IPvbAddress": ""

Figure 16: Container details of the new static container created

As the result shows that though the MAC address is the same but the I[P address are
different. This leads to a new entry in the ARP cache table which authenticates that
the new container is not a copy of another container and is not a potential ARP poison
threat.

14

5.3 Discussion

From the above experiment, it was found that duplicate ARP cache records can be
prevented over a network of containers when the containers are in the framework. Or
to be more precise, the containers outside the framework have more chance of being the
possible poisoned container. Establishing the proper framework of containers enables
the containers to have a unique entry in the ARP cache records rather than taking the
place of a pre-existing container. Hence, it can be said that the possibility of poisoned
containers finding its way into the production environment is considerably reduced, in
turn making the container environment more secure for the applications.

6 Conclusion and Future Work

The framework of containers in discussion here resolves the problem of ARP poisoning
attack among docker containers. The framework disables duplicate entry in ARP cache
preventing any threat in the form of ARP poisoning by creating a static entry in ARP
table even before an intruder can spoof the identity of another container. This makes
the entire network of containers secure and reliable. A secure network additionally needs
lesser security implementations on the hosting machines which will reduce the cost of
maintaining and setting the server environment.

The future work could include the automation of creating custom bridge along with
static IP address for containers in a single command in Docker by contributing to the
source code to add an option of private and secure bridge creation along with static
IP address for the containers. Another possible enhancement could be to integrate an
ARP cache monitor daemon to constantly monitor the Docker network bridge to detect
a duplicate entry in the ARP cache and instantly isolate the respective container from
the network.

15

References

Address Resolution Protocol (ARP) (n.d.). Accessed: 2017-03-01.
URL: www. cs.virginia.edu/c¢s458/slides/module06-arp V2. pdf

Anderson, C. (2015). Docker [software engineering|, IEEE Software 32(3): 102—c3.

Boettiger, C. (2015). An introduction to docker for reproducible research, ACM SIGOPS
Operating Systems Review 49(1): 71-79.

Cha, B., Kim, J., Moon, H. and Pan, S. (2017). Global experimental verification
of docker-based secured mvoip to protect against eavesdropping and dos attacks.,
EURASIP Journal on Wireless Communications and Networking 2017(1): 1 — 14.
URAL: http://search.ebscohost.com/login.aspz?direct=truedb=eoahAN=41653973site=pfi-
lwe

Chen, Z., Xu, G., Mahalingam, V., Ge, L., Nguyen, J., Yu, W. and Lu, C. (2016). A
cloud computing based network monitoring and threat detection system for critical in-
frastructures, Big Data Research 3: 10 — 23. Special Issue on Big Data from Networking
Perspective.

URL: http://www.sciencedirect.com/science/article/pii/S2214579615000520

Choudhari, S. and Mhatre, M. (2015). Docker : run, ship and building applications,
International Journal of Latest Trends in Engineering and Technology 6(2).

Combe, T., Martin, A. and Pietro, R. D. (2016). To docker or not to docker: A security
perspective, IEEE Cloud Computing 3(5): 54-62.

Di Tommaso, P., Palumbo, E., Chatzou, M., Prieto, P., Heuer, M. L. and Notredame,
C. (2015). The impact of docker containers on the performance of genomic pipelines,
PeerJ 3: el1273.

Docker, 1. (2017). Docker reference architecture: Securing docker ee and secur-
ity best practices - docker, inc., https://success.docker.com/Architecture/
Docker_Reference_Architecture/3A_Securing_Docker_EE_and_Security_Best_
Practices. Accessed: 2017-08-14.

Grattafiori, A. (2016). Ncc group whitepaper understanding and hardening linux
containers.
URL: https: //www. nccgroup. trust/globalassets/ our-research/us/
whitepapers/2016/ april/ncc_ group_ understanding_ hardening_ Linuz_
containers—1-1. pdf

Guan, X., Wan, X., Choi, B.-Y., Song, S. and Zhu, J. (2017;2016;). Application oriented
dynamic resource allocation for data centers using docker containers, IEEFE Commu-
nications Letters 21(3): 504-507.

Ismail, H., Germanus, D. and Suri, N. (2017). P2p routing table poisoning: A quorum-
based sanitizing approach, Computers Security 65: 283-299.

Joy, A. M. (2015). Performance comparison between linux containers and virtual ma-
chines, 2015 International Conference on Advances in Computer Engineering and Ap-
plications, pp. 342-346.

16

https://success.docker.com/Architecture/Docker_Reference_Architecture%3A_Securing_Docker_EE_and_Security_Best_Practices
https://success.docker.com/Architecture/Docker_Reference_Architecture%3A_Securing_Docker_EE_and_Security_Best_Practices
https://success.docker.com/Architecture/Docker_Reference_Architecture%3A_Securing_Docker_EE_and_Security_Best_Practices
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf
https://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2016/april/ncc_group_understanding_hardening_linux_containers-1-1.pdf

Kavan, D., kodov, K. and Klma, M. (2014). Network-based intrusion prevention system
prototype with multi-detection: A position paper, pp. 1-9.

Kim, H. and Huh, J. H. (2011). Detecting dns-poisoning-based phishing attacks from
their network performance characteristics, Electronics Letters 47(11): 1.

Knoth, C. and Nst, D. (2017). Reproducibility and practical adoption of geobia with
open-source software in docker containers., Remote Sensing 9(3): 1 — 24.
URL: http://ezprozy.ncirl.ie/login?url=hittp://search.ebscohost.com /login.aspx ?dir-
ect=true Auth Type=ip,cookie,uiddb=a9hAN=122025585site=eds-livescope=site

Lv, H. and Li, H. (2011). Research on intrusion recognition and tracing under attack and
defense confront environment, 2011 International Conference on Information Manage-
ment, Innovation Management and Industrial Engineering, Vol. 3, pp. 209-214.

Manu, A. R., Patel, J. K., Akhtar, S., Agrawal, V. K. and Murthy, K. N. B. S. (2016a).
Docker container security via heuristics-based multilateral security-conceptual and

pragmatic study, 2016 International Conference on Circuit, Power and Computing
Technologies (ICCPCT), pp. 1-14.

Manu, A. R., Patel, J. K., Akhtar, S., Agrawal, V. K. and Murthy, K. N. B. S. (2016b).
A study, analysis and deep dive on cloud paas security in terms of docker container

security, 2016 International Conference on Circuit, Power and Computing Technologies
(ICCPCT), pp. 1-13.

Matthias, K. and Kane, S. P. (2015). Docker: Up & Running: Shipping Reliable Con-
tainers in Production, ” O’Reilly Media, Inc.”.

Min Su, S., Jae Dong, L., Young-Sik, J., Hwa-Young, J. and Jong Hyuk, P. (2014).
Ds-arp: A new detection scheme for arp spoofing attacks based on routing trace for
ubiquitous environments., The Scientific World Journal, Vol 2014 (2014) .

Moon, D., Lee, J. D., Jeong, Y.-S. and Park, J. H. (2014). Rtnss: a routing trace-
based network security system for preventing arp spoofing attacks, The Journal of
Supercomputing .

Nam, S. Y., Kim, D. and Kim, J. (2010). Enhanced arp: preventing arp poisoning-based
man-in-the-middle attacks, IEEE Communications Letters 14(2): 187-189.

Rahman, M. F. A. and Kamal, P. (n.d.). Holistic approach to arp poisoning and coun-
termeasures by using practical examples and paradigm.

Sallou, O. and Monjeaud, C. (2015). Go-docker: A batch scheduling system with docker
containers, 2015 IEEFE International Conference on Cluster Computing, pp. 514-515.

Trabelsi, Z. and Shuaib, K. (2008). A novel man-in-the-middle intrusion detection scheme
for switched lans, International Journal of Computers Applications 30(3): 234-243.
Copyright - Copyright ACTA Press 2008; Document feature - Equations; Tables;
Graphs; ; Last updated - 2016-08-28.

Wu, H., Dang, X., Wang, L. and He, L. (2016). Information fusion-based method for
distributed domain name system cache poisoning attack detection and identification,
IET Information Security 10(1): 37-44.

17

Xavier, M. G., Neves, M. V. and Rose, C. A. F. D. (2014). A performance com-
parison of container-based virtualization systems for mapreduce clusters, 201/ 22nd

Euromicro International Conference on Parallel, Distributed, and Network-Based Pro-
cessing, pp- 299-306.

Zdrnja, B. (2009). Malicious javascript insertion through arp poisoning attacks, IEEE
Security Privacy 7(3): 72-74.

Zhang, J., Yang, C., Xu, Z. and Gu, G. (2012). PoisonAmplifier: A Guided Approach
of Discovering Compromised Websites through Reversing Search Poisoning Attacks,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 230-253.

URL: https://doi.org/10.1007/978-3-642-33338-5,2

18

A Procedure and Output
sudo brctl addbr custom_bridge_0
sudo ip addr add 172.132.1.1/24 dev custom_bridge_0
sudo ip link set dev custom_bridge_O up
ip addr show custom_bridge0

Open the file /etc/docker and edit the file daemon.json to have the following entry.

{
“‘bridge’’: ‘‘custom_bridge_0’’

}

sudo docker service restart

And once Docker is restarted, we can delete the now unused bridge ‘docker(’
sudo ip link set dev dockerO down

sudo brctl delbr dockerO

sudo iptable -t nat -F POSTROUTING
We should be able to use the custom bridge for docker. We can verify this by

dvm@dvm-machine:~% sudo brctl show

bridge name bridge id STP enabled interfaces
br-ec6ezbdaB3@1 B000.0242d54a233c no
custom_bridge_@ 8000.000000000000 no

Figure 1: A custom bridge

dvm@dvm-machine:~% docker network create --subnet=172.18.9.8/16 custom_network
49e5ebecbc71bd74ba24933118d12fB@dd75fafe94adB827b46e22dT020792ad?
dvm@dvm-machine:~% docker network ls

NETWORK ID NAME DRIVER SCOPE
e5e45bbbeef7 bridge bridge local
49e5e6ecbc7l custom_network bridge local
d95ff5ale7c9 host host local
f75366caB233 none null local

Figure 2: A custom network

Building containers based on alpine base image

#Base Image
FROM alpine
CMD apt-get update

19

Build and run as many containers as you want by creating a docker-compose file

version: ’2’°

services:
appl:
image: alpine
networks:

custom_network:
ipv4_address: 172.16.238.10

app2:
image: alpine
networks:

custom_network:
ipv4_address: 172.16.238.11

app3:
image: alpine
networks:

custom_network:
ipv4_address: 172.16.238.12

app4:
image: alpine
networks:

custom_network:
ipv4_address: 172.16.238.13

appb:
image: alpine
networks:

custom_network:
ipv4_address: 172.16.238.14

networks:
custom_network:
driver: bridge
driver_opts:
com.docker.network.enable_ipv6: "true"
com.docker.network.bridge.enable_ip_masquerade: "false"
ipam:
driver: default
config:
- subnet: 172.16.238.0/24
gateway: 172.16.238.1
- subnet: 2001:3984:3989::/64
gateway: 2001:3984:3989::1

Then,

docker-compose up

20

dvm@Docker:~/sandbox/thesis/alpine_image$ docker attach static_container_2

/ # ifconfig

eth®@

lo

/ #0

64d454c2e1d6
Ta5d94¢57212
6472003815
902051760620

Link encap:Ethernet Hwaddr 02:42:AD:82:01:03

inet addr:173.130.1.3 Bcast:9.0.0.0 Mask:255.255.255.128
UP BROADCAST RUNNING MULTICAST MTU:150@ Metric:1l

RX packets:33 errors:@ dropped:@ overruns:@ frame:@

TX packets:@ errors:@ dropped:@ overruns:@ carrier:@
collisions:® txqueuelen:@

RX bytes:3863 (3.7 KiB) TX bytes:@ (0.0 B)

Link encap:Local Loopback

inet addr:127.9.8.1 Mask:255.9.0.0

UP LOOPBACK RUNNING MTU:65536 Metric:1

RX packets:® errors:@ dropped:@ overruns:@ frame:@
TX packets:@ errors:@ dropped:@ overruns:@ carrier:@
collisions:@ txqueuelen:1

RX bytes:@ (8.8 B) TX bytes:® (9.0 B)

Figure 3: A container with static IP

Figure 4: List of containers inside the framework

21

alpine "bin/sh" About an hour ago Up About an hour
alpine "bin/sh" About an hour ago Up About an hour
alpine "bin/sh" About an hour ago Up About an hour
alpine " [bin/sh" About an hour ago Up About an hour

static_container 4
static_container 3
static_container 2
static_container 1

	Introduction
	Related Work
	Docker: An overview and its extent of usage
	ARP: An overview. What is spoofing?
	Security issue and ARP Spoofing in Docker Containers
	Existing solution and proposed solution

	Methodology
	Implementation
	Evaluation
	Containers outside the framework
	Containers in the framework
	Discussion

	Conclusion and Future Work
	Procedure and Output

