

National College of Ireland

BSc in Computing

2016/2017

Karl Lyons

X13452508

Karl.Lyons@student.ncirl.ie

Intelligent Chatbot

Technical Report

Table of Contents

Executive Summary ... 6

Introduction .. 7

Aims 7

Technologies ... 8

Background Research .. 9

Chatbots .. 9

AIML 11

Microsoft Bot Framework ... 11

Facebook Messenger .. 12

API.AI 13

Wit.AI 14

System ... 15

Requirements .. 15

Functional requirements ... 15

The chatbot must respond when a conversation is initiated. 15

The chatbot must work with Facebook Messenger. .. 16

The chatbot must work on a web client. .. 16

The chatbot must work on a mobile device (Facebook Messenger) 16

The chatbot must work with LUIS. .. 17

The chatbot must work with Computer Vision API .. 17

The chatbot must work with SendGrid Email API ... 18

The chatbot must work with QnA Maker ... 19

Usability requirements .. 20

Environmental Requirements ... 22

Non-Functional Requirements .. 22

Performance/Response time requirement ... 22

Availability requirement ... 23

 - 3 -

Security requirement .. 23

Reliability requirement ... 23

Maintainability requirement ... 23

Portability requirement .. 23

Reusability requirement ... 23

Design and Architecture ... 24

Architecture Overview .. 24

Use Case Diagram ... 25

Initial Setup ... 26

Application Files .. 26

Packages and Main Methods .. 27

General Response Dialog .. 28

Global Message Handling.. 29

Security .. 31

Implementation .. 32

Testing ... 42

Bot Framework Emulator .. 42

Test Cases .. 43

Conclusions ... 48

Further development .. 48

References .. 50

Appendix ... 53

Project Proposal .. 53

Objectives .. 54

Background ... 54

Technical Approach ... 54

Special resources required .. 54

Project Plan ... 54

 - 4 -

Technical Details ... 55

Evaluation .. 55

Project Plan ... 55

Monthly Journals... 56

September Journal .. 56

Introduction .. 56

Supervisor Meetings ... 56

October Journal ... 57

Introduction .. 57

My Achievements ... 57

My Reflection .. 57

Intended Changes ... 57

Supervisor Meetings ... 58

November Journal ... 58

Introduction .. 58

My Achievements ... 58

My Reflection .. 58

Intended Changes ... 58

December Journal ... 59

Introduction .. 59

My Achievements ... 59

My Reflection .. 59

Intended Changes ... 59

January Journal ... 59

Introduction .. 60

My Reflection .. 60

Intended Changes ... 60

February Journal ... 60

Introduction .. 61

My Achievements ... 61

My Reflection .. 62

Supervisor Meetings ... 62

 - 5 -

March Journal ... 62

Introduction .. 62

My Achievements ... 63

My Reflection .. 63

Supervisor Meetings ... 64

 - 6 -

Executive Summary
Intelligent Chatbot is a project that explores what can be accomplished with AI agents in

the world we live in today. Alan Turing (1912-1954), known as the father of modern

computing, developed the idea of artificial intelligence. Perhaps most famously known

for breaking the Enigma code used by the Germans in WWII, which was widely regarded

as unbreakable, he lay the foundations for the development of computer science

explored what is possible using electronic computers and artificial intelligence. In his

1950 paper on Computing Machinery and Intelligence, he asks the question; “Can

machines think?”. He created a test, with the fitting name of the Turing test, whereby a

machine is tested on its ability to exhibit intelligent behaviour equivalent to, or

indistinguishable from, that of a human. Throughout the paper he delves deeper into

this idea and I came across an interesting quote. To quote directly from Turing, “I

believe that in about fifty years’ time it will be possible to programme computers, with a

storage capacity of about 109 , to make them play the imitation game so well that an

average interrogator will not have more than 70 per cent chance of making the right

identification after five minutes of questioning.”[Turing, 1950].

He wasn’t too far off. In June 2014, a computer program called Eugene, which simulated

a 13 year old Ukrainian boy was said to have successfully passed the Turing test at an

event held at Reading University’s School of Systems Engineering. Some artificial

intelligence experts refuse to recognize this as a legitimate victory but it is interesting to

note how close Turing’s prediction was.[BBC tech, 2014]

 Messaging applications are the #1 most used applications in the world at the moment

and some businesses are already taking advantage of this and developing chatbots of

their own to complement their social media presence. With messaging applications

taking up the majority of a users time, it makes sense for businesses to capitalise on this.

Bots are becoming smarter and faster and will soon become easier to use than a

website or app. A recent inquiry into the area of chatbots indicated that 180 bot-related

 - 7 -

companies have attracted $24 billion in funding towards the development of AI driven

bot applications. [Gatti, Venturebeat, 2017]

 Microsoft CEO Satya Nadella was quoted saying “Bots are the new apps”.[Cava, USA

Today, 2016] With Microsoft set on exploring deeper into the world of chatbots and

accelerating the innovation and sophistication of chatbots, I’ve found this project both

interesting and exciting as I dived into Microsofts newest platform; Microsoft Bot

Framework. With many companies already creating their own bots using the Bot

Framework such as Ebay, Skyscanner, StubHub and Foursquare, I believe that in the next

few years every major business will have a chatbot to deal with customers’ basic queries

and maybe even go as far as processing full orders. Chatbots have the potential to

replace call centres, customers can get their queries answered simply by opening their

favourite messaging platform and chatting with a bot.

Introduction

Aims
The purpose of this project is to showcase the power of chatbots and how they can be

an alternative to using an application or even a website. The chatbots should be easy to

use, respond in a timely fashion and be all round user friendly. The bots should make

the users interaction as easy and fast as possible to ensure that the users time is not

wasted and that they get what they want without any difficulty or misunderstanding

from the bot. The conversation should flow and always keep the user in control of the

conversation. Users should come away from their experience with the chatbot and think

that it was a fun, easy to use and straightforward interaction that would encourage

them to come back without any hesitation.

With messaging platforms being the most used type of application in the world,

businesses will be looking to take advantage of this and start to develop their own

 - 8 -

chatbots to work along with their social media pages. For example, a person calling a

restaurant to see what time they open at or what is the special today, the customer can

simply message the page on Facebook and the bot will respond accordingly. This frees

up time for real employees to do other work and allows the chatbot to handle the

simple tasks. Since users will already have a messaging app installed on their mobile

device, there is no need to download a separate application to use the chatbot. This can

turn a lot of users away as nowadays there is an plethora of applications available and

most users will be fed up of having to download an application that they may only use

once or twice.

Technologies
This application will be developed using one of Microsoft’s newest frameworks;

Microsoft Bot Framework. This framework allows for the bots to be built and deployed

using Microsoft Azure. Once the bots are hosted on Azure they can be then hosted on

various other platforms such as Facebook Messenger, Skype, Slack and more. For the

purpose of this project, I will be mainly using Facebook Messenger as a platform to

showcase the bots I’ve developed as it is easily available with the Messenger application

and allows for easy testing.

The bots themselves are developed using C# using the Microsoft Bot Builder packages.

Microsofts LUIS is a language understanding and interpretation service that I’ve used to

process the data which the chatbot receives and derive the intent from the users

message. LUIS works by taking the users input and scoring it against its database of

intents and then performing the function of the highest scoring intent. Users can have

multiple ways of expressing a single intent and LUIS is there to figure out what the user

wants to do.

 Multiple packages and APIs have been used in the development of this application

including:

SendGrid – Allows the sending of feedback emails entirely within the chatbot.

 - 9 -

Microsoft QnA Maker – Allows me to host a FAQ database that a chatbot can then pull

information from and use it to answer the users questions.

Microsoft Computer Vision API – Image analysis tool used to determine what content is

in a photo and return it to the user. This can be used to identify images and products.

Facebook API – My bots are available with their own Facebook page. These can be

accessed by anyone with a Facebook account. According to my research most users will

already have a Messenger account with the app downloaded on their mobile device.

Background Research
This section will cover the background research that I have conducted into chatbots and

some of the technologies I’ve explored before settling on Microsoft Bot Framework

Chatbots
A chatbot is an AI agent that can participate in a conversation with a user. Most are

equipped with a messenger type interface with an input from a user and an output from

the chatbot. The chatbot processes the users input and outputs a reply based on what

the user has just sent. It could be a greeting, conversation topic, or even an image.

Most basic chatbots work by matching an users input with a predefined set of dialog.

For example, a user saying “Thank you” will result in the chatbot saying “You’re

Welcome”. The predefined set of dialogs can be set up to imitate a normal conversation

between two people. Problems can arise when a user says something the chatbot does

not recognize, an example could be the user meaning to say “Thank you”, but instead

says “Thanks a lot”, this can confuse the chatbot as it will be looking to match the

“Thank you” input with “Welcome”. This leads to a lot of manual work by trying to

define every combination of a user saying “Thanks”.

Modern chatbots are more complex and feature natural language processing that can

learn from user inputs. They can access APIs to get information users such as news,

 - 10 -

weather, time etc. They can even process orders and make bookings entirely through a

chatbot interface.

Chatbots are well suited for mobile devices as messaging is at the heart of a mobile

phone. Messaging has come a long way since SMS messages became popularized in the

2000s and is now on the decline. From the years 2011-2015 the usage of SMS in Ireland

has dropped by 44%. 3 billion texts in 2011 compared to 1.7 billion texts in 2015. [John

Hargan, killbiller.com 2015] Although SMS is experiencing a decline, this doesn’t mean

that people aren’t sending messages anymore, it just means they are using different

services. It is fast becoming the norm where a chatbot is easier to use than an

application, and businesses are taking advantage of this.

With automation looking to takeover manual labour and factory type jobs, chatbots are

starting to make their way into the customer service sector. Call centre and customer

service jobs whereby a human worker will work off a script and a set of answers to

generic customer queries will soon be replaced by chatbots. Chatbots can be trained

and equipped to deal with the everyday needs of a customer, and they can do so at a

very little cost. It is also worth mentioning that chatbots can run 24/7 365, giving

customers what they need even during the Christmas and public holidays. With the cost

of the development of a chatbot ranging anywhere from $3,000 to $10,000, it would be

a no-brainer for a company to implement chatbot services to their customer service

department. [Oswalt, 2017] Inevitably, there will be situations where a chatbot will not

suffice and a customer will have to be redirected to a human representative, but it is still

a step forward in cutting down costs and automation.

Another aspect of chatbots that should not be overlooked is the data they can collect.

Chatbots are just another stream of data that companies can exploit benefit from.

Chatbot conversations can provide everyday user scenarios that can be used for training

material for human workers. Chatbots can be used to complete data sets by acquiring

information from users. The conversations can be used a way to learn more about the

user and build up an advertising profile that can then be used to for targeted advertising

and promotions. From large multi-national organizations to the restaurant down the

 - 11 -

road, the data a chatbot can collect can be helpful in identifying who your customers are

and what they want.

The infrastructure is there for chatbots to thrive as more and more people are using

messaging apps every day. There is a wealth of APIs and platforms for chatbots to

explore and make use of and bring interesting features and services to users.

 AIML
Alice, short for Artificial Linguistic Internet Computer Entity, is a chatbot developed by

Richard Wallace using AIML (Artificial Intelligence Markup Language).

When I was first researching chatbots and how to develop them I came across AIML

(Artificial Intelligence Markup Language). It’s an XML schema used to create intelligent

chatbots. One of the world’s most known chatbots; A.L.I.C.E, short for Artificial Linguistic

Internet Computer Entity, was developing using AIML. At first it seemed to be the best

framework to develop my project on. There was lots of material online for me to read

and get to understand how everything worked. I started work on my project using this

language and made some progress but regrettably it just wasn’t going to work out. It

was an old language initially released in 2001 and wasn’t very flexible. Basic

conversations were easy to get up and running but accessing APIs and getting it hosted

on social media platforms caused great difficulty. It’s archaic architecture didn’t stand

up to todays modern platforms. I scrapped all of my work on AIML and moved to

Microsoft Bot Framework which I stuck with for the remainder of the projects

development. In hindsight, I should’ve moved on earlier.

Microsoft Bot Framework
In January I came across Microsoft Bot Framework and it looked like the perfect

platform for my projects development. It supports development in C# and Node.Js. I

have worked with C# on many college projects over the years and Visual Studio would

be my preferred IDE, so this was a massive factor in deciding what framework I was

going to work with. It allows you to connect your chatbot to multiple platforms at ease

 - 12 -

as well as hosting on Azure. This allowed me to work on the project in college and

upload my code to Azure via GitHub, and then when I get home I could continue my

work seamlessly. Bot Framework is one of Microsofts newest projects which means that

the documentation and online material is not of the highest standard but it has been

exciting to develop on this platform as it grows. Bot Framework is still in its preview

phase but since starting working with Bot Framework many more features have been

added and Microsoft seem to be really pushing chatbots into the commercial space so I

expect to see big things from them in the near future.

Facebook Messenger
Facebook Messenger is the most used messaging application in the world. With 1.2

billion users, it surpasses WhatsApp to be the most used messaging platform in the

world. This is one of the reasons why I chose Messenger as my main social media

platform to develop my bots on, another reason being that WhatsApp doesn’t have an

official API for chatbots to take advantage of. Since Facebook owns WhatsApp it may

not be long before we see this introduced.

FIGURE 1 MESSENGER USERS [TECH CRUNCH, 2017]

 - 13 -

API.AI
Before I decided to work with Bot Framework, I also explored what other frameworks

were out there. One of them was API.AI, which was recently acquired by Google. API.AI

boasts a wide range of features with support for chatbots, wearables, apps, smart

homes and even smart TVs. I started work using the framework but I soon discovered

that a lot of the features available with it such as knowledge bases and API packages,

were locked behind a paywall. I felt that it was more geared towards a development

team and not really catering for a solo developer like myself. As I was just learning about

chatbots and looking at my options I chose to stay away from API.AI mainly due to the

premium only features. I also found that the documentation was not as easy to read as

Microsofts Bot Framework.

FIGURE 2 API.AI FEATURES

Figure 2 above shows some of the features of their framework. They offer prebuilt bots

that you can configure to your needs which would be useful but they are in fact locked

 - 14 -

behind a paywall. I also felt that it would kind of take away the fun of working on a

project as everything is already defined for you with this framework.

Wit.AI
Like API.AI, Wit.AI is another framework I explored before deciding to use Bot

Framework for my project. Wit.AI was acquired by Facebook, you can start to see the

trend with all the major companies getting on board with Artificial Intelligence and

language processing. Wit.AI works similar to the way Microsofts LUIS works by

extracting the intent from a user’s message. This seems to be the direction most natural

language processing entities are heading. With users seeking to use a chatbot solely for

function instead of a conversation, deriving the intents of the user is the chatbots

utmost priority. As well as API.AI, Wit.AI features support for bots, apps, smart homes,

wearable devices and even robots.

Wit.AI mainly focuses on users building their bots within their web client, a feature

which I was trying to stay away from as I would prefer to actually write the code

needed. As well as the web client, they offer documentation for development using

Node.Js, Python and Ruby. All of which I am not too familiar with so this pushed me

away from this framework and left me with Bot Framework. Bot Framework also

supports Node.js but it has support for C#, a language I am familiar with and have used

to develop many college projects throughout the years.

FIGURE 3 FEATURES OF WIT.AI [WIT.AI]

 - 15 -

System
Requirements
When setting out to gather my requirements I conducted surveys relating to the use of

chatbots on mobile devices or web clients. From these surveys, I was able to establish

that the majority of those questioned would be more inclined to use a messaging

application on their smart phone as opposed to using it on Desktop/Laptop. I found that

in the age range of 12-18 almost all users would only use a messaging application on a

mobile device while users in the age range of 19-30 would use both a mobile device as

well as a Desktop/Laptop. This may be due to the older using owning a Desktop/Laptop

for college/work, while the more younger users rely solely on their mobile device for

communication purposes.

With this information, I was able to conclude that the majority of users would prefer a

chatbot that would function on a mobile platform. I have structured my requirements

based around this information.

Functional requirements
They key functional requirements can be identified as the following:

The chatbot must respond when a conversation is initiated.
This requirement at its most basic level is the core functionality of the bot. The bot must

respond to the user when enters the conversation. This sets the conversation up for the

user and allows the them to use the bot as they desire. As this is a fundamental

requirement for the application to work, it is considered a high priority.

Code Segment

 - 16 -

FIGURE 4 REQ 1 CODE SEGMENT

The chatbot must work with Facebook Messenger.
This requirement requires the chatbot to work with Facebook Messenger. This requires

the bot to be configured with a Facebook Page, obtaining a PageId, App Id, App secret

and a page access token. All of this information needs to be fed into the Bot Framework

website to get it configured for access with Facebook Messenger. This requirement

gives the bot portability and cross platform functionally by giving it both access to

Facebooks Mobile Messenger as well as the web client. From my market research, it was

clear the users would like the bot to have a Messenger presence rather than a

standalone app.

The chatbot must work on a web client.
This requirement requires the chatbot to work on a web client. From my market

research, it was noted that although the majority would prefer a mobile client, there

was a number of people who would also like to see a web client for the bots. The bots

need to be configured on the Bot Framework platform to allow webchat embedding.

This is achieved by hosting the bots on my website located at:

http://karlfyp.azurewebsites.net

The chatbot must work on a mobile device (Facebook Messenger)
This requirement requires the chatbot to function on a mobile device, in this case, using

the Facebook Messenger application. It is required to work on both Android and iOS.

This allows mobile users to avail of the chatbots services.

http://karlfyp.azurewebsites.net/

 - 17 -

The chatbot must work with LUIS.
This requirement requires the chatbot to be configured with a LUIS account

subscription. This handles the natural language processing of the bot and the routing of

the dialogs. Once a LUIS account is set up and a language model is defined with intents

and utterances, the model ID and subscription key can be entered into the

RootLUISDialog class. This allows the bot to function using the services of LUIS.

Code Segment

FIGURE 5 REQ 5 CODE SEGMENT

The chatbot must work with Computer Vision API
This requires the chatbot to have a valid Computer Vision API key. This can be obtained

from Microsoft Azure Service, once acquired it can be added to the Web.config file so it

can be referenced by other classes. This allows the chatbot to access the Computer

Vision API and make use of its services.

Code Segment

 - 18 -

FIGURE 6 REQ 6 CODE SEGMENT

The chatbot must work with SendGrid Email API
This requirement allows the chatbot to make use of SendGrid email API to let the users

give feedback within the chatbot. The bot must have a valid API key for SendGrid. Once

acquired it can be added to the Web.config file where it can then be referenced by

other classes. This requirement allows users to give feedback and also give their email to

receive a response to their feedback.

Code Segment

 - 19 -

FIGURE 7 REQ 7 CODE SEGMENT

The chatbot must work with QnA Maker
This requires the chatbot to have a valid QnA Maker API key. A QnA service needs to be

created and once it is established the knowledge base key and subscription key can be

placed into the Web.config file where it can be referenced by the classes that need it.

This requirement allows the bot to access the external QnA’s created on the service.

Code Segment

FIGURE 8 REQ 8 CODE SEGMENT

 - 20 -

Usability requirements
The main usability requirement is that the chatbot and website are user friendly. The

chatbot, in its own nature is user friendly since it is a simple chat interface. Everyone

knows how a chatbot works as it is simply like a conversation with their friends. The

messages come in on the main screen and there is a text box at the bottom to type in

and a send button.

Users must feel comfortable in the conversation and feel in control. To guide the users

through the conversations, help messages should be in place to aid the user if they so

happen to get stuck or are unsure of what to do. An example of this can be seen with

the Pizza bot. If a user types “help”, the following message will be displayed:

FIGURE 9 PIZZA BOT HELP MESSAGE

This allows the user to view information about the option they are currently at and how

they can answer. It tells the user how they can go back, quit, view the status or switch to

another option. This more than meets the requirement of letting the user be in control

of the conversation. Inexperienced or low skilled users will easily be able to navigate the

Pizza bot with the help of the help menu. To ensure that users know about this feature,

 - 21 -

I’ve added it to the welcome message shown below.

FIGURE 10 PIZZA BOT WELCOME

As with the Pizza Bot, the NCI bot also has some usability features. Users will be greeted

with a welcome message as and also how to cancel the current dialog if they get stuck.

The website needs to be user friendly in that any kind of user will be able to open it up

and easily be able to navigate through the different chatbots. The website must be

accessible to mobile users as well as desktop users. The site has been designed in such a

way that it accommodates to both groups of users. To ensure the ease of access of the

different chatbots, I have featured them across the navigation bar at the top of the web

page. This is shown below.

FIGURE 11 WEBSITE NAVIGATIONAL BAR

 - 22 -

Facebook Messengers UI is user friendly and easy to navigate. Users that use the

chatbots on Messenger will already have a Facebook account and will be familiar with

how it works.

Environmental Requirements
The chatbot must be able to run on multiple platforms and operating systems. With the

bots hosted on Facebook the bot will be available to anyone with the Messenger

application running on their mobile device. Anyone with a computer can access the bots

via my website which support all major web browsers (Chrome, Edge, Firefox, Safari,

Opera) and runs with no issues. A mobile device can run the chatbots via a mobile web

browser but I’ve found that it does not run as smoothly as in an application or on a

computer. I would recommend that users use the application in either Facebook

Messenger application or on my website with a computer to get the best experience.

When running the website on a mobile browser however, it can be a bit slow to respond

compared to other forms of use. Although it is a small bit slower it can still function.

I would recommend that users use the most up to data firmware for their mobile

devices and the latest Messenger application.

Non-Functional Requirements

Performance/Response time requirement
Response Times: The Chatbot should reply to the user in a timely manner to keep the

conversation flowing without interruption. Users value their time greatly and if the

response is not quick enough the user will move on to a different website/app. Google

conducted an experiment in regard to load times. They wanted to increase the number

of search results shown per page to give the user more information to choose from.

They upped the number of search results per page to 30, increasing the load time of the

page by 0.5 seconds. Google concluded that traffic dropped by 20% just from a wait

 - 23 -

time increase of 0.5 seconds. Users value their time greatly so it is important that the

chatbot responds quickly.

Availability requirement
The chatbot must be available to chat at any time. This is achieved with Azure Cloud

platform services. All code for the chatbots is uploaded to Azure which is then passed on

to whichever messaging platform is in use e.g Facebook Messenger, Skype.

Security requirement
The code must be stored securely by Azure Services and also users information must be

kept secure. Facebook and Azure use HTTPS (Secure Socket Layer) for all of their

communications. Azure, developed by Microsoft, who has decades of experience and

has build some of the most used and powerful software in the world take security very

seriously. Microsoft complies with international and industry-specific compliance

standards to ensure the security of data.

Reliability requirement
The Chatbot must be consistent with its responses. It must behave consistently in a

user-acceptable manner when communicating with a user. The information relayed to

the user must be consistent with the dialog topic.

Maintainability requirement
The chatbots must be able to be updated with up to date FAQ’s and timetables/exam

timetables. This allows the chatbot to develop as time goes on and

Portability requirement
The application should be able to run on any device connected to the internet. The

chatbot can be hosted on a variety of social media platforms as well as on personal

websites. Once the chatbot is hosted on azure it can then be accessed by other sites and

platforms.

Reusability requirement
The AIML files can be used for different Chabot’s and can be interchangeable between

different bots.

 - 24 -

Design and Architecture
This section outlines the design and architecture of the chatbots. The bots are

developed using Microsoft Visual Studio 2015. The bots are constructed using Microsoft

bot template. The main components of the application are the MessagesController.cs,

Web.config, and the Dialog files. The dialog files will vary from bot to bot but they all

provide a similar function; to support the dialogs of the application.

Architecture Overview

FIGURE 12 ARCHITECTURE OVERVIEW

Shown above is a diagram of the architecture overview of a chatbot. The bots are

developed in C# using Visual Studio 2015 with the Bot Builder Source Development Kit.

 - 25 -

From there it is pushed up to GitHub and processed my Microsoft Bot Service. This is

where it interacts with the various APIs, services and chat channels used in the project.

Use Case Diagram
This diagram demonstrates the typical use of a bot. It shows what the user can do and

what the chatbot does to respond.

 - 26 -

Initial Setup
In this section I will explain the process of getting a bot hosted online and ready for user

interaction.

Once a bot has been created and all of the code is ready to be deployed, it is then

pushed to an Azure Web App which hosts the application online. Once it is hosted I can

then register the bot with Bot Framework and obtain a Microsoft App Id & Password.

Once the bot is successfully registered it can then be set up on the different

communication channels. Depending on the purpose of the bot additional setup may be

required. For example, with LUIS, an account has to be set up as well as the intents and

utterances trained and published. Once the LUIS subscription key is obtained it can be

placed in the Web.config file and added to a dialog class.

Application Files
MessagesController

This class is essentially the main class of the application. It deals with the initial set up of

the conversation and routes it to the different dialogs associated with the application.

For the majority of the bots I’ve created, the MessagesController class is essential a

landing pad for the bot before it is routed off to another dialog. I found it easier to split

up the dialogs into a different folder and have separate classes for each different one.

Web.config

The Web.config file holds information such as the BotId, MicrosoftAppID & Password,

and other API keys that are in use in this application. Storing them here allows them to

be referenced in any other class within the project. Shown below is a snipped of a

Web.config file.

 - 27 -

FIGURE 13 WEB CONFIG FILE

Packages and Main Methods
LUIS is used for natural language processing. It is a language understanding service

developed by Microsoft that works be finding the intent of the user. I have incorporated

LUIS into the majority of my chatbots as it allows me to figure out what the user intends

to do and point them towards the right dialog/method. It allows users to express their

intent in a multitude of different ways and still be understood by the chatbot. I feel that

this is what makes the chatbots intelligent, they are able to figure out what the user

wants no matter how the user phrases it. Below is a sample of a LUIS dialog, in this case,

the RootLUISDialog class.

What’s happening here with [LUISIntent(“Timetable”)], means that when LUIS detects

that a users intent is to view a timetable, it will execute the StartTimetableDialog

method, which then initiates the TimetableDialog class which holds the information and

images of the timetables. It also has handler so if they bot doesn’t understand the users

 - 28 -

input, it will send “Sorry I didn’t understand.”

FIGURE 14 ROOTLUISDIALOG CLASS

Also in Figure 14, it shows the LUIS intent for Faq. This works the same as the timetable

intent, where it initiates the QnADialog class that I will explain later on in this report.

General Response Dialog
This class is used to handle all of the generic parts of a conversation, from

hello/goodbye to thankyou/you’re welcome. Below I have shown a sample of the class.

It works using the BestMatchDialog which function by having an array of user messages

and a reply based on what the user has sent. In the first method seen below, you can

see a variety of ways the user can say “Hello”, all of these messages will still get the

same response; “Hi there”. This prevents the bot from getting confused if the user

means to say hello but phrases it differently. The threshold parameter gives some

leeway for spelling mistakes and allows for some slight difference in the phrasing.

 - 29 -

FIGURE 15 GENERAL RESPONSE DIALOG

Global Message Handling
Global message handling allows me to reset the bot and return it to its initial startup

state. This is useful when the bot is using multiple dialogs and it can be hard to navigate

through them back to the start. By setting up global messaging handling I was able to

assign a key word, in this case “Cancel” that returns the bot to its startup dialog. This

works by setting the bot to check every message for the keyword “Cancel” before

processing the methods that are in place in the current dialog. In the pizza ordering bot,

this is very useful as if the user makes a mistake while submitting their order they can

simply type cancel to reset their order and continue from the start.

In order to do this, I needed to set up a Cancel class, which looks at user’s messages for

the keyword “Cancel”, and resets the dialog. As with the GeneralResponseDialog and

QnA dialog, there is a Score method that allows you to set a threshold for the keyword.

In this case I do not want the bot to be making a guess at what the user wanted to do so

 - 30 -

I’ve set it to 1.0 to avoid any confusion. This means the dialog will only reset if the user

types the key word correctly. I also needed to set up a BotModule class to register the

scorable method. Once that is done it also needs to be initialized in the Global.asax

class.

QnA Maker is another project of Microsoft used to create FAQs that can link up to bots

developed using Bot Framework. I used this to host NCI’s FAQ and relay it to my NCI bot.

This cuts out adding in each question manually and allows for easy access to update a

question or edit an answer simply by accessing the website. This means I can update

questions without touching the application code. Below is a screenshot of the code

implementing the QnA dialog. An interesting part of this snipped is the

LowScoreHandler method. This works by assigning a score threshold, in this case I’ve set

it to 85 as I feel it works the best and leave a bit of leeway in the users phrasing of the

question. QnA Maker works similar to LUIS, where it will score the message based on

the intent of it and go with the highest scoring one. With QnA maker, if the users

question is at least a 85% match to one of the questions in the database, it will then

send the answer back to the user. This gives the user some flexibility in the phrasing of

the questions. An example could be, “How do I get to NCI”? The bot will respond with

the location and transport information. That is how the question is phrased on the

website, but if type “Where is NCI?” It will give me the same answer even though the

question was phrased differently.

 - 31 -

FIGURE 16 QNA CODE

Security
As a cyber security student, I felt that it was fitting that I touch on the security aspects of

this project. Unfortunately, there is not very much to cover as since the bots are hosted

online with 3rd parties, the security side of things is taken away from me. One feature I

did implement was on the chatbot website I created. I added a “RequireHttps” attribute

to the Home controller which handles all the bots hosted on the site. This ensures that

users have a secure connection when chatting with the bots on the site and can prevent

the conversation data from being view or even intercepted.

Although I couldn’t implement many security features to this project I did consider the

privacy policy of Facebooks Messenger. Users wishing to use chatbots on Messenger will

have to be aware that their conversations data may be being used for research purposes

or even to generate an advertising profile of the user. For example with the Pizza bot

chatbot, Facebook will store information such as delivery address and payment

information. Shown below is an extract from their privacy policy page.

 - 32 -

FIGURE 17 FACEBOOK PRIVACY POLICY

Also shown in this extract is that Facebook tracks device information and even your

location. It is important that users understand that they are handing their data over to

Facebook when they make use of the chatbots hosted on their site.

Implementation

 - 33 -

Implementation was the hardest part of this project. I was working with a Framework

that I never used before and was still in development. It took me a lot of trial and error

and a lot of reading to really understand Microsofts Bot Framework. Once I had a bot set

up and ready to be worked on one of the hardest things I found was trying to control

the dialogs, meaning that when I started to further develop the bots to be multi-

functional, I ran into difficulties with that. Working on a bot that one main function was

fairly easy once I knew what I had to do. As soon as more functionality was added some

issues started to arise. Some of the issues included bots getting stuck on the same

dialog, or sometimes even just getting into a loop of saying “Sorry I couldn’t understand

you.”

An example of this issue is with the NCI bot. I could implement the FAQ part fine and

that caused no issues but the bot would get confused when the user was looking for

something other than the FAQ, even something as simple as saying “Hello” or

“Goodbye” could sometimes cause the bot to get stuck and crash.

To overcome this, in the Messages Controller(Where the conversation starts off, landing

pad for the user and bots conversation), as soon as a conversation is initiated I send the

welcome message (Figure 16),

FIGURE 18 WELCOME MESSAGE

The conversation then heads towards the RootLUISDialog class. (Figure 18)

FIGURE 19 SEND TO ROOT

 - 34 -

Once in the RootDialog class, the conversation could go a number of ways. After the

initial greeting the bot is then looking out for a number of intents including: Feedback,

Timetable, FaQ and a blank intent. LUIS intent methods are set up to analyse the users

next message and extract the intent from it. If the intent matches one of these methods,

they are sent to the corresponding dialog where they can continue the conversation. If

not, that is what the blank dialog is for. Shown below is the LUIS intent method for “” or

blank. This is when LUIS cannot figure out what the user wants or the user is just saying

hello or how are you.

FIGURE 20 LUIS BLANK INTENT

This method then checks the users messages for a list of responses located in the

GeneralResponse Dialog. This fixed the issue of having the bot crash after a user would

simply say “hello” or “how are you”. A sample of that class is shown below.

 - 35 -

FIGURE 21 GENERAL RESPONSE DIALOG

This class using the BestMatch Dialog package created by Gary Pretty, a Microsoft MVP

who focuses on Microsoft Bot Framework. A lot of his tutorials have been a great help in

the development of this project as there is a lack of tutorials online up to the standard

of Garys. This package allows me to set a number of strings that could match a users

message and set a response to be used if there is a match between the strings and the

users message. It also allows me to set a parameter for the threshold. This allows there

to be some space for error if the users message doesn’t fully match up with the string.

This prevents the bot from getting confused when the user simply spells a word wrong

or has an extra space in the message.

Next step was to implement the QnA dialog. To do this I used Microsofts QnA Maker.

First I needed to create a new QnA service and import the questions from NCI’s FAQ

page. With the service created and trained, it can then be published. Once published I

receive the knowledge base ID and subscription key. This is then used in the QnADialog

class shown below.

 - 36 -

FIGURE 22 KNOWLEDGE & SUBSCRIPTION KEY

Now I needed to add methods to handle the situation whereby the bot cannot find an

answer to the users question and also a close match method, which will allow for some

differences in the phrasing of the question. The method for no match is shown below.

FIGURE 23 NO MATCH HANDLER

The close match method allows me to set parameter for how close the users message

can be to the original question. After much testing, I found that 85 seemed to work best.

Allowing for small differences in phrasing but not too much to get confused with other

similarly worded questions. This method is shown below.

FIGURE 24 CLOSE MATCH METHOD

The next feature to implement was the Timetables Dialog. This feature allows the user

to search for their timetable and view an image of it. I tried multiple ways to do this.

One of them was to have the images stored within the application and map each image

to a query. For example, “Computing Cyber Security” would display the cyber security

timetable. I was having difficulty getting the images to load correctly. Another way was

 - 37 -

hosting the image online and pointing the bot towards them but again I was having

issues with them loading correctly. I finally settled on working with QnA Maker.

Although it primarily functions by creating FAQ, it allowed me to set key words and

match an answer to it. One issue with this was that QnA maker did not allow images to

be hosted within its message, so I needed to host my timetable image online. This was

fairly straightforward so I uploaded the timetable images to Imgur and added the

answers to the corresponding questions.

FIGURE 25 TIMETABLE QNA

I started to test the bot and the images we’re not showing, the link given led to an

image that didn’t exist. After much time spent trying to figure out what the issue was, I

used Bot Framework Emulator to see what was going on with the messages sent. Using

the Emulator I was able to examine each message and see its JSON properties. I noticed

that when QnA maker processes image links, it converts the text to all lower case. This

causes issues with images hosted on Imgur as the links are case sensitive. So, to

overcome this I needed to find an image hosting site that provides its links with all

lower-case letters or even just numbers. After trying multiple different hosting sites

Flickr was the one that did the job. The image links used contain numbers and a

lowercase letter so it is perfect for my needs. With the images loading correctly I was

now able to add the rest of the timetables to the service. Shown below is the method

that shows the timetable to the user.

 - 38 -

FIGURE 26 TIMETABLE METHOD

With the issue of general response dialogs out of the way and the timetables and QnA

implemented, I was able to have a bot that was multi-functional and could reply to

general messages from the user. The next issue I faced which I foolishly overlooked for

quite some time, when a user wants to use the FAQ but then go back and check a

timetable the bot was unable to do so and was locked into the FAQ dialog. When I was

initially testing the bot I was just checking that I could use the timetable okay and then I

would compile and see if I could use the FAQ.

To solve this issue I needed to create a way for the user to return to the root dialog at

any time. Unfortunately, with the FAQ dialog, if I just said back the bot would not

understand the question and just ask the user to repeat the question. I found a tutorial

online, by Gary Pretty that had exactly what I needed. Global Message Handling. This

allowed me to get the bot to check every message for a keyword before it was

processed by the respective dialog class. In this case I used the word cancel. To

implement this, two new classes need to be created to handle this and also a package

needed to be imported. It uses the Bot Framework Scoreable package. This package is

primarily used to score a user message based on a given parameter. In the case of global

message handling, I get it to check the users messages for the word “cancel”, and if it

matches up 1:1 it will reset the dialog. A sample from the CancelScorable class is shown

below. The second method show resets the dialog.

 - 39 -

FIGURE 27 SCOREABLE

This allows the user to back out of a dialog at any given time simply by entering the

keyword. It provides more flexibility to the conversation.

With my Pizza Bot, I needed to implement a form that the users can fill out with their

order. I needed the form to be flexible and cater to many several types of orders and to

provide a clear and uncomplicated way to for the user to do this. To do this I used

FormFlow, one of the features of Microsofts Bot Framework. This feature was fairly easy

to implement as I found the documentation on FormFlow to be very clear and provided

lots of examples. The first step to implementing this feature was to populate the form

with the various options needed for a pizza including size, crust, sauce, type of cheese,

toppings etc. Next step was to build the form, add some welcome messages, add the

prompts for each choice, a confirmation step towards the end of the dialog and finally

some validation for the delivery address and phone number. Shown below is the build

form method.

 - 40 -

FIGURE 28 PIZZA FORM

Shown in the snippet of the pizza form code is the validation methods for the address

and phone number. This prevents users from inputting an invalid address and also an

invalid phone number. Phone numbers are required to have 10 digits.

Another chatbot I created was the Image Caption bot. This bot uses Microsofts

Computer Vision API, so my first step was to get registered there and grab an API key to

use with my bot. Once that was acquired I could place it into the appSettings.config file.

From there it can be referenced throughout the application. By following the tutorial on

Microsofts website, I was able to correctly implement this feature. Some highlights of

the code are shown below.

 - 41 -

FIGURE 29 IMAGE CAPTION WELCOME MESSAGE

Shown above is the welcome message sent to the user when it enters the conversation.

Shown below is the process result method which also has handling for a situation

whereby the bot cannot find a caption for the image.

FIGURE 30 IMAGE CAPTION PROCESS

Finally, my next task was to get all of my bots hosted on my own website which I could

use to demonstrate. This gave me no challenge as I simply set up an MVC websiteusing

Visual Studio and got it hosted with Azure. With the website created I just needed to

edit the home page to my liking and display a link to each of the chatbots in the

navigational bar. One extra feature I did implement into the website was the

“RequireHttps” attribute. This ensured that all of the requests to and from this site were

completed using HTTPS. If a user did not have a HTTPS connection they would not be

able to use the chat bots. I’ve touched on this in the security section of this report.

 - 42 -

Testing
Bot Framework Emulator
The bot framework emulator is a desktop application that can be used to test the bots

created with Microsoft Bot Framework. This tool allows me to test my bots locally or

even remotely. It emulates a normal conversation but also shows the JSON information

that is sent and received with each message. The emulator also gives me the

opportunity to test my chatbots locally before they are pushed online and in reach of

users. I can test the accuracy of the bots replies when asking different questions to see

what responses may need to be updated/modified. Having a sandbox to really dig into

the bot and see how it performs with a range of different queries has helped greatly in

the development of this project. This information gives an insight into how the bot is

working and has been vital for the testing of my project.

Figure 31 shows the emulator in action. In this instance, I am testing the responses of

the FAQ bot. The panel on the right hand side shows the JSON information received in

the messages. Using the emulator I am able to test the accuracy of the FAQ bot. In this

example, I’ve asked “how do I get to NCI?” and “Where is NCI?”. Both questions return

the same answer. This test reveals that the bot is able to figure out the intent of the

 - 43 -

users message regardless of the phrasing.

FIGURE 31 EMULATOR TESTING

Test Cases

Due to the unique nature of this project I decided to conduct some conversational tests.

I will outline a conversational path I wish to take and then test it against a live bot and

see how it plays out.

For testing purposes, I will initiate a conversation with the Pizza bot and go through the

steps, but attempt to alter my choice mid order, to see if I can alter my order

successfully with no difficulty. In this case I will go through my order as normal and then

change the size of the pizza before the order is complete. Shown below is the alteration

of the order.

 - 44 -

FIGURE 32 ORDER ALTERATION

With the size changed, I could fully complete the order.

FIGURE 33 UPDATED ORDER

 - 45 -

Manual Test Cases

Shown below is the manual test cases conducted for this project. These scenarios cover

the main functional requirements of this project. The tests were mainly conducted on

my website and also using the Facebook messenger client on both iOS and Android

platforms.

FIGURE 34 MANUAL TEST CASE 1

 - 46 -

FIGURE 35 MANUAL TEST CASE 2

Selenium

I attempted to create automated tests using Selenium Firefox IDE but unfortunately it

was not compatible with the web chat client. The tests passed in the selenium IDE which

is shown below in figure 36.

FIGURE 36 SELENIUM IDE TEST

When I extracted the test case to Visual Studio, I configured the class by adding in sleep

commands “Thread.Sleep(5000);”, to allow the page to load before performing each

action. After much configuring and trial and error, switching between xPath and CSS

 - 47 -

Selector, I couldn’t get the selectors to work correctly. This resulted in the tests failing.

Unfortunately, due to the structure of the Bot Framework, I had to limit my testing to

the Bot Framework Emulator and manual test cases. Figure 37 below shows my UnitTest

class.

FIGURE 37 UNIT TEST CLASS

 - 48 -

Conclusions
Overall I feel that working on this project provided me with a great learning experience.

This has been my first major college project that was completely solely by me so it

taught me a lot in terms of time management and work load management. My favourite

part of this project was working on an area of computing that is really starting to grow

and break into the mainstream market. With so many companies getting on board by

creating their own chatbots, in a few years we will see it as an everyday thing. It has

been great to work with Microsofts Bot Framework that is still in development and more

and more features being added each day. Regrettably, I feel that I did spend a lot of

time working with AIML before I moved on to Bot Framework, I feel that if I had have

been working with Bot Framework from the start, I would’ve achieved a lot more. The

feedback from Keith and Eugene at my mid-point presentation really set me in the right

direction. In the future, I will remember to be realistic with the goals I set myself and to

explore every available option to me before committing to one framework.

 Although this project was great to work on, I’m disappointed that I did not get to

implement any of the security features that I have learned about in my other modules

completed in semester 2. I’ve learned a lot in the security aspect of computing from my

other modules but it has been a learning experience developing this application as it

touched on areas that I’ve never worked with before which gave me a challenging but

beneficial experience.

Further development
With Microsoft Bot Framework still only being in the preview phase, many more

features are still to come which I will be keeping a close eye on. Since I’ve started

working with this Framework more features have been added and more and more

 - 49 -

companies are starting to add their own bots to the bot directory on the Microsoft

website.

One opportunity for this project to expand could be an official NCI Student Union

chatbot. I feel that it would be an interesting addition to the Student Union Facebook

page and could provide students with a quick and straightforward way to get answers

for their queries. For example, the Faq feature of my NCI bot could be implemented to

take care of the general queries. Users could view timetables completely within their

Messenger app, an application that I’m sure every college student will have. Another

function that could be of use is a form builder, which was used in the Pizza Ordering

chatbot. Forms could be created for students to fill that could be done completely in the

Messenger app or with the web client. These could be personal circumstance forms or

other types of forms needed by the college. I believe that the college could make use of

the computing students and work together to create something that could benefit both

the students and the college.

 From researching into the area of intelligent chatbots, I’ve noticed that there are a lot

of startups setting up with the objective of creating chatbots for businesses and

organizations, allowing their customers to tailor the chatbot to their needs. I feel that it

would be worth my while and follow this scene as my experience creating this project

could give me the extra edge I need to get involved in one of these startups. For

example, I came across a startup with their office located in Berlin, (Which I am moving

to in June) called Job Pal. They specialise in creating chatbots that will interview

potential candidates for a job. They plan to automate the recruitment screening process

and hand if off to bots that can interview candidates 24/7 on platforms that they know

and trust. It cuts out the time wasted on screening irrelevant candidates. The company

is hiring for an intern position which I have applied for. I emailed them not too long ago

and managed to get a visit to the office to chat with one of their employees once I get

over to Berlin.

 - 50 -

References

Anon, (2016). [online] Available at: https://www.chatbots.org/ai_zone/ [Accessed 11
Dec. 2016].

Foundation, A. (2016). AIML - The Artificial Intelligence Markup Language. [online]
Alicebot.org. Available at: http://www.alicebot.org/aiml.html [Accessed 11 Dec. 2016].

Pandorabots.com. (2016). The Slashdot Interview. [online] Available at:
http://www.pandorabots.com/pandora/pics/wallaceaimltutorial.html [Accessed 11 Dec.
2016].

Vignesh Jayapalan, H. (2016). Android — Baking a simple ChatBot in 30 minutes (AIML).
[online] Medium. Available at: https://medium.com/@harivigneshjayapalan/android-
baking-a-simple-chatbot-in-30-minutes-aiml-ff43c3269025#.q9zghn2tl [Accessed 11
Dec. 2016].

Wallace, R. (2016). AIML 2.0 Working Draft. [online] Docs.google.com. Available at:
https://docs.google.com/document/d/1wNT25hJRyupcG51aO89UcQEiG-
HkXRXusukADpFnDs4/pub [Accessed 11 Dec. 2016].

www.tutorialspoint.com. (2016). AIML Tutorial. [online] Available at:
http://dev.tutorialspoint.com/aiml/index.htm [Accessed 11 Dec. 2016].

Turing, A. (1950). Computing Machinery and Intelligence. 1st ed. Mind.

Ankitbko.github.io. (2017). Chatbot using Microsoft Bot Framework - Part 4 · F5. [online]

Available at: http://ankitbko.github.io/2016/09/ChatBot-using-Microsoft-Bot-
Framework-Part-4/ [Accessed 26 April 2017].

Anon, (2017). [online] Available at: http://streamcode.io/luis-in-depth/ [Accessed 4 April
2017].

Anon, (2017). Speed Is A Killer - Why Decreasing Page Load Time Can Drastically Increase
Conversions. [online] Available at: https://blog.kissmetrics.com/speed-is-a-killer/
[Accessed 14 April 2017].

Blog.pal.chat. (2017). Everybody is ready for chatbots — is Facebook?. [online] Available
at: https://blog.pal.chat/post/everybody-is-ready-for-chatbots-is-facebook
[Accessed 1 May 2017].

Channel 9. (2017). Conversational UI using the Microsoft Bot Framework. [online]
Available at: https://channel9.msdn.com/Events/TechDaysOnline/MVP-Led-

 - 51 -

TechDays-Online-February-2017/Conversational-UI-using-the-Microsoft-Bot-
Framework [Accessed 7 May 2017].

Code.msdn.microsoft.com. (2017). Image Caption Bot using Microsoft Bot Framework
and Cognitive Services [C#] in C# for Visual Studio 2015. [online] Available at:
https://code.msdn.microsoft.com/Image-Caption-Bot-using-61974c49 [Accessed 1
April 2017].

Docs.botframework.com. (2017). Getting Started | Bot Builder SDK C# Reference Library
| Bot Framework. [online] Available at: https://docs.botframework.com/en-
us/csharp/builder/sdkreference/ [Accessed 12 February 2017].

Gary Pretty. (2017). Adding rich attachments to your QnAMaker bot responses. [online]
Available at: http://www.garypretty.co.uk/2017/02/23/adding-rich-attachments-
to-your-qnamaker-bot-responses/ [Accessed 3 April 2017].

Gary Pretty. (2017). BestMatchDialog for Microsoft Bot Framework now available via
Nuget. [online] Available at:
http://www.garypretty.co.uk/2016/08/01/bestmatchdialog-for-microsoft-bot-
framework-now-available-via-nuget/ [Accessed 3 April 2017].

Gary Pretty. (2017). Building conversational forms with FormFlow and Microsoft Bot
Framework – Part 2 – Customising your form. [online] Available at:
http://www.garypretty.co.uk/2017/01/10/building-conversational-forms-with-
formflow-and-microsoft-bot-framework-part-2-customising-formflow/ [3 April
2017].

Gary Pretty. (2017). Building conversational forms with FormFlow and Microsoft Bot
Framework – Part 1. [online] Available at:
http://www.garypretty.co.uk/2017/01/09/building-conversational-forms-with-
formflow-and-microsoft-bot-framework-part-1/ [Accessed 3 April 2017].

Gary Pretty. (2017). Creating your first bot with the Microsoft Bot Framework – Part 1 –
Build and test locally. [online] Available at:
http://www.garypretty.co.uk/2016/07/14/creating-your-first-bot-with-the-
microsoft-bot-framework-part-1/ [Accessed 3 April 2017].

Docs.botframework.com. (2017). Dialogs | Bot Builder SDK C# Reference Library | Bot
Framework. [online] Available at: https://docs.botframework.com/en-
us/csharp/builder/sdkreference/dialogs.html [Accessed 3 April 2017].

Docs.botframework.com. (2017). FormFlow | Bot Builder SDK C# Reference Library | Bot

Framework. [online] Available at: https://docs.botframework.com/en-
us/csharp/builder/sdkreference/forms.html [Accessed 3 April 2017].

GitHub. (2017). Microsoft/BotBuilder. [online] Available at:

https://github.com/Microsoft/BotBuilder [Accessed 15 March 2017].

 - 52 -

Gary Pretty. (2017). Forwarding activities / messages to other dialogs in Microsoft Bot

Framework. [online] Available at:
http://www.garypretty.co.uk/2017/03/26/forwarding-activities-messages-to-other-
dialogs-in-microsoft-bot-framework/ [Accessed 3 April 2017].

Gary Pretty. (2017). Using Scorables for global message handling and interrupting
dialogs in Bot Framework. [online] Available at:
http://www.garypretty.co.uk/2017/04/13/using-scorables-for-global-message-
handling-and-interrupt-dialogs-in-bot-framework/ [Accessed 3 April 2017].

Hargan, J. and Hargan, J. (2017). The Death of the SMS?. [online] KillBiller. Available at:
http://www.killbiller.com/blog/the-decline-of-the-sms [Accessed 4 May 2017].

Gatti, F. (2017). Bots shift towards AI and garner $24 billion of investment. [online]
VentureBeat. Available at: https://venturebeat.com/2017/03/27/bots-shift-
towards-ai-and-garner-24-billion-of-investment/ [Accessed 2 May 2017].

Osborne, R. (2017). Botframework Web Chat Embedding | Robin Osborne. [online]
Robinosborne.co.uk. Available at:
https://www.robinosborne.co.uk/2016/07/25/botframework-web-chat-
embedding/ [Accessed 27 March 2017].

Osborne, R. (2017). Create your first botframework bot in Azure! | Robin Osborne.
[online] Robinosborne.co.uk. Available at:
https://www.robinosborne.co.uk/2016/07/12/create-your-first-botframework-bot-
in-azure/ [Accessed 27 March 2017].

Osborne, R. (2017). Create your first QnA bot using botframework’s QnA Maker | Robin
Osborne. [online] Robinosborne.co.uk. Available at:
https://www.robinosborne.co.uk/2016/09/26/create-your-first-qna-bot-using-
botframeworks-qna-maker/ [Accessed 27 March 2017].

Osborne, R. (2017). Implementing LUIS Routing within BotFramework | Robin Osborne.
[online] Robinosborne.co.uk. Available at:
https://www.robinosborne.co.uk/2016/10/28/implementing-luis-routing-within-
botframework/ [Accessed 27 March 2017].

Oswalt, I. (2017). What Will a Chatbot Cost Me - And Is It Worth It?. [online]
Blog.21handshake.com. Available at: http://blog.21handshake.com/what-will-a-
chatbot-cost-me-and-is-it-worth-it [Accessed 28 April 2017].

 - 53 -

Appendix

Project Proposal

Project Proposal

Intelligent Chatbot
with Google

Karl Lyons

X13452508

Karl.Lyons@student.ncirl.ie

BSc (Hons) in Computing

Cyber Security

Date

 - 54 -

Objectives
To create an intelligent AIML based chat bot that can allow a human interacting with the

bot to have an ongoing, interesting and enriched conversation featuring looked up

information from Google.

Main Objectives

 Basic functionality – ability to respond to basic words/phrases

 Advanced logic – be able to talk about different topics

 Pull data from Google. E.g What’s the weather like etc, current news events

 The bot should be able to pick topics to talk about rather than waiting on user

input

Background
Most Chat Bots imitate conversation in a usually rather empty matter and the

conversation lacks any substance. With basic chat bots the conversation is never really

flowing, the bot always relies on the user to bring up topics which can make the

conversation feel like a chore. An inspiration for this project would be Apples “Siri”.

Although Siri isn’t really a chat bot it has the ability to search Google for you and display

data based on those searches. For example, football results from last night.

Technical Approach
The application will be developed using AIML 2.0, it is an XML-compliant language that is

used for creating natural language software agents. I will combine this with Java to run

the application.

Special resources required
No special resources required.

Project Plan

 - 55 -

Technical Details
The application will be written using AIML 2.0 to develop the responses to queries from

the user. The AIML is interpreted by the java library ProgramAB and outputted to the

android application. When search functionality is implemented the application will use

Google to source its data. Other websites may come into play depending on what topic

is being discussed in the conversation for example if the user asks the weather, the data

could be pulled from a weather forecast website. The application will be able to store

user details like Name, gender, age and possibly some other information depending on

the conversation. This data will be stored for conversation enhancement and will be

stored securely.

Evaluation
The system will be evaluated by test cases for each functional requirement.

The system will be evaluated to the end user by having a mock conversation and testing

each of the functional requirements.

Karl Lyons 21/10/16

Signature of student and date

Project Plan

 - 56 -

Monthly Journals
September Journal
Student name: Karl Lyons

Programme : BSc Computing

Month: September 2016

Introduction
This month I wasn’t able to decide on a final year project idea. I’m in the cyber security

stream and wanted to do a project based around cyber security. I had a few different

ideas but nothing solid that I wanted to commit to for a final year project. I waited for

the list of projects from the different lecturers and the Intelligent Chat Bot project

piqued my interest. I did some research into the idea and it seems like something I’d be

interested in and will enjoy working on throughout the year.

I’ve emailed Ralf, the lecturer who proposed the idea, and asked him to meet for a chat

about the project sometime next week.

Next month I’ll be a making a start on the project and working away at that.

Supervisor Meetings
I don’t have a supervisor yet so no meetings have been had yet.

 - 57 -

October Journal
Student name: Karl Lyons

Programme : BSc Computing

Month: October 2016

Introduction
This month I met with Ralf and decided I was going to go ahead with the Intelligent Chat

Bot project. I’ve been researching ways in which to do this and came across AIML 2.0

(Artificial Intelligence Markup Language) which is an XML-Compliant language. This is

what I’m going to be building my project with. It’s basically been created for making

chat bots so I think it’s perfect for my project. It’s really easy to understand and get the

hang of so I can get working on it straight away.

My Achievements
This month, I finished my project proposal and decided on a framework to build my

project off.

My Reflection
I feel it kind of took me too long decide on a project when I could’ve been working on it

earlier.

However, I have everything ready to go now so I can start working on it. I plan to get a

decent amount of work done next month in November.

Intended Changes
Next month I will allocate more time to the project and try to balance the workload

more evenly.

 - 58 -

Supervisor Meetings
Date of Meeting: 21st October

Items discussed: Accepting the Project, Project Goals etc

Action Items: Just talking about what the project should be like and the end goals of the

project.

November Journal
Student name: Karl Lyons

Programme : BSc Computing

Month: November 2016

Introduction
This month was tough as there was a lot of CA’s and deliverables throughout the month

so I didn’t have as much time as I would have liked to work on the project. I decided to

develop the project for Android as I couldn’t figure out way to get a GUI working with

the desktop version I had been working on. At the moment I’m working on getting up to

speed with Android Studio as I have never worked with it before. It seems very similar to

Java which I have worked with before so hopefully I will be able to get up to speed fairly

fast.

My Achievements
Finished the Requirements Spec

My Reflection
I managed to get the chatbot onto android so I’m quite happy with that.

Intended Changes
Next month I need to put a lot more work into the project as it has been neglected for a

while due to other modules taking priority, next semester I have less modules so I will

be able to dedicate more time to the project.

 - 59 -

December Journal
Student name: Karl Lyons

Programme : BSc Computing

Month: December 2016

Introduction
This month I was very busy with finishing off projects for my other modules. Ran into

some difficulty with Android studio getting my AIML files to load up properly for my

mid-point presentation. I had a command line chatbot running for my prototype which

could show off what is possible with AIML.

My Achievements
Finished the Requirements Spec and Technical Report, although I was not as happy with

it as I would like to be at least it is finished.

My Reflection
This month was tough because it was difficult to get a hold of my supervisor to review

my technical report.

Intended Changes
Next semester the workload is cut in half so I will have a lot more time to work on the

software project.

January Journal
Student name: Karl Lyons

Programme : BSc Computing

Month: January 2017

 - 60 -

Introduction
This month was mostly spent studying for the semester 1 exams. I took on board the

feedback from my mid point presentation and started to think about what I could do to

improve my project. I explored different technologies as the one I was using at the

moment wasn’t giving me the freedom to do what I wanted with it. I came across

Microsofts newly developed Bot Framework, which is pretty much designed for what I

wanted to create. As well as Bot framework I found WIT.AI and API.AI, owned by

Facebook and Google respectively.

My Reflection
I took Keith and Eugenes feedback and decided to make some changes with my project.

Keith made a point of saying that I shouldn’t try to create the next Siri or Alexa but

instead try to work on different areas and showcase what is possible with chat bots.

Although the advice was a bit blunt, I think I needed it as AIML just wasn’t able to do

what I needed and I feel that I wasted too much time messing around with that and it

reflected in my grade for the mid-point presentation. Eugene gave me feedback relating

to the security of chatbots so I will be keeping this in mind as get further into the

development of my project. A lot of the security relies on the platforms my chatbot is

hosted on so I’m not really sure how I can implement security into the chatbots

themselves. I’m sure I will figure something out as time goes by. I will be taking this

advice on board as I try to work with a new framework for my project.

Intended Changes
Next month I intend to explore bot framework, WIT.AI and API.AI and see what would

best suit my needs.

February Journal

Student name: Karl Lyons

Programme : BSc Computing

 - 61 -

Month: February 2017

Introduction
This month I explored Microsofts Bot Framework, WIT.AI, API.AI and tried to come up

with some ways to use it with my project.

I decided to go with Microsofts Bot Framework mainly because of the documentation

and that the platform mainly uses C#, a language that I am familiar with and have

completed many projects with over the years. API.AI seemed to be more geared

towards big development teams as a lot of the features were locked behind a paywall.

Although it did have a lot of cool features such as support for smart homes and smart

TVs, I just didn’t really like the feel of it.

WIT.AI is another framework that I looked at that. It was similar to bot frameworks LUIS

in that it looks to extract the intent from a users message. It had some nice features

similar to API.AI like the smart home and smart TV stuff but most of its development

was done with the web client which I wasn’t a fan of. The languages that it support were

Python, Ruby and Node.Js, all of which I am not familiar with and have never worked

with before so that was a big no from me. I decided to go with Bot Framework as it

suited me the best.

 After a good while of working with Bot Framework, I managed to develop a Q&A

chatbot using NCI’s FAQ page online. The bot is deployed Facebook Messenger so it

makes it really easy for me to test it and see how things are working. I’m using Microsoft

Azure to host my project and it works really well. I can test out my code using an

emulator on my PC and then when I think it’s ready to publish to the live Facebook

version it’s simply a click away. Since the Framework is relatively new it is hard to find

some help online with how to get certain features working but I’m sure I’ll find a way.

My Achievements
Got my chatbot hosted with Azure and published onto Facebook Messenger with its

own Page.

 - 62 -

My Reflection
This was a good month for my project as I got a functional Chat bot up and running and

hosted online. Looking forward to next month to get more work completed. Having the

chatbot hosted online with Bot Framework is so much better for me compared to using

AIML which I wasn’t able to host online. AIML was holding me back I feel and I’m glad I

switched over to Bot Framework. Really helps having it up online especially on Facebook

so I can send it to friends to test out and give me some feedback.

Supervisor Meetings

Date of Meeting: 16th Feb

Items discussed: Chatbot, Microsoft Bot Framework, Bot functionality (twitter search,

weather bot etc)

Action Items: More functionality.

March Journal

Student name: Karl Lyons

Programme : BSc Computing

Month: March 2017

Introduction
This month I was really able to get sunk into the project as I had a lot of my work from

other modules finished. I worked a lot with Bot Framework and have started to use

LUIS. LUIS is a natural language processor which is used to derive the intent from users

messages. I can use this recognize the intent from the users message without looking for

a certain phrase, it gives the users a good bit of flexibility with their phrasing. This helps

steer the conversations in a way so I can give the users what they need quite easily. I’ve

started working on a NCI bot. The one I have already has QnA features implemented and

 - 63 -

I plan on adding a service to check the timetables. Could also do this for exam

timetables I’ll think about adding that in later.

My other chatbots are the image caption bot which I think is really cool. You take a

picture and it will tell you what it thinks it is. It does this using Microsofts computer

vision API. Another one is the Pizza ordering chatbot, it allows users to order a pizza

entirely within the Messenger application and has some validation and message

handling.

I came across a tutorial online about how to implement global message handling, this

allows me to set a keyword that can cancel a conversation and return it to the root

dialog. This comes in handy if the user gets stuck or they typed the wrong message and

they need to go back. It just adds more flexibility to the bots and makes them a bit

easier to use.

Another feature I got in was the option to give feedback, I combined this with global

message handling so when the user types feedback they will be taken to a form to

submit user feedback. I used SendGrid API to send the emails. I only have a trial account

so hopefully that doesn’t cause any issues.

My Achievements
Developed the pizza bot and image caption bot and some other small ones but not fully

functioning just yet. I’m starting to get the hang of bot framework which is great.

My Reflection
This month was great as I got a lot of work done on the project. Bot framework has been

adding new features and some of the guys working on the development of it are putting

out tutorials which have been really helpful for me as some of the documentation is

outdated or just doesn’t really provide what I need. I reckon in the next year or two bot

framework will have so much more features and a lot more tutorials on how to add

functionality. Although it is hard working with this framework as it is still in the early

 - 64 -

stages of development, it’s been fun and interesting to develop my project on this

framework as it grows and grows every day.

Supervisor Meetings

Date of Meeting: 10th March

Items discussed: Chatbot, Microsoft Bot Framework, Bot functionality (Image Caption,

NCI Bot

Action Items: Make the bot more responsive, more features

