
X13118951 - JAMES ENGLISH | NATIONAL COLLEGE OF IRELAND | BSHCSD4

SOFTWARE PROJECT: TECHNICAL REPORT
GRADIENT WEBSITE

1. Executive Summary 2

2. Introduction 2
2.1 Background 2
2.2 Project Overview 2
2.3 Target Market 3
2.4 Possible Risks 3
2.5 Glossary 3
2.6 Technologies 3

2.6.1 PHP 4
2.6.2 JavaScript 4
2.6.3 Ajax 4
2.6.4 MySQL 4
2.6.5 Laravel 5 4
2.6.6 Bootstrap 4
2.6.7 Apache Server 4
2.6.8 Amazon Web Service (EC2) 4
2.6.9 GitHub 4
2.6.10 Hardware & Software 4

2.7 Project Breakdown 4
2.7.1 Breakdown 5
2.7.2 Delivery Stages 5

3. System 6
3.1 User Requirements Definition 6

3.1.1 Products Perspective 6
3.1.2 Product Functions 6
3.1.3 User Characteristics 6

3.1.4 Operating Environments 6
3.1.5 General Constraints 6
3.1.6 Assumptions & Dependencies 7

3.2 System Requirements Specification 7
3.2.1 External Interface Requirements 7
3.2.2 Functional Requirements 7
3.2.3 Non-Functional Requirements 10

3.3 Design & Architecture 11
3.3.1 Database Design 11
3.3.2 Activity Design 11
3.3.3 System Architecture 12

3.4 Graphical User Interface (GUI) 12
3.5 Implementation 13

3.5.1 Models, Views & Controllers 13
3.5.2 Grouping Algorithm 14
3.5.3 Colour Matching 15

3.6 Testing 16
3.6.1 Integration Testing 16
3.6.2 Load Testing 17

4. Conclusion 17

5. Further Development 17

6. References 18

7. Appendix 18

1

1. Executive Summary
This report details the development methods
and solutions involved in the production of
Gradient, a social media website. Gradient’s aim
is to reduce cyber bullying and the influx of
negative comments that come along with
posting on a social media platform. To achieve
this Gradient uses an algorithm to dynamically
share the contents of your status updates with
other like minded users and users with similar
interests.

Gradient is built using the Laravel 5 framework
on a PHP codebase and deployed on a Amazon
Web Service Server. Detailed information on
class structure and system architecture can be
found within this document. As well as some of
the more important code snippets.

We believe that the small change to how
relationships and content sharing works on our
website truly sets Gradient apart from the
competition in terms of safe spaces and friendly
user interaction. Gradient frees users from the
burden of being judged about their niche
interests and promotes freedom of self
expression.

2. Introduction
The goal of this project was to develop a
software product in an area of our choosing. The
software must offer useful functionality and have
a high level of innovation, either filling gaps in a
current technology area or branch into an
entirely new one.

2.1 Background

The idea for this project came to me as a result
of my own changing interests over the years.
Take Facebook for example, you add a friend on
Facebook and you receive all of their updates
and posts even posts you may not be interested
in. This leads to users posting updates that get
no likes, no comments and no views. Even more

so it opens up the opportunity for negative
comments or bullying from “friends” that do not
enjoy your posts about computer games or
obscure TV shows you enjoy.

The aim here is to create a space where users
can update their page and are guaranteed to
have it viewed by people with the same interests
regardless of friend or follower count.

2.2 Project Overview

Gradient is a social media website that
dynamically shares your content with other
users of the same interests. Every time a user
posts an update to their page we parse the text
and extract the most relevant keywords and data
from the text and use this data to determine who
to share this information with.

Likewise the user who shares content will
recieve content based on the contents of their
latest updates and or posts. This results in an
ever changing flow of relevant information based
on your current and up to date interests. There
are no friends or followers on this site, all
interactions are dynamic and ever changing.

All users will be dynamically placed in groups
based on the content of their post history.
Groups are formed based on a user’s top three
interests e.g. football, music, TV, if a user stops
talking about one of these topics they will
eventually be moved from this group and get
pushed into a different group e.g. football, golf,
TV.

Groups only form when two or more people
have the same interests. If there is no matching
group for a user’s three most common interests
they will be put into a group that most closely
matches their interests usually with a 2/3 match.
Users can only see posts from that group as
long as they remain in said group. The more
frequently you post about different topics the
more likely you are to move through different
groups.

2

The more you talk about a specific subject or
topic the more likely you are to see relevant
posts about that subject. The interesting thing
about this idea is that the user does not select
who the content is displayed to; that is all taken
care of in the back end. Because we keep track
of all your posts and interactions we know that
your interests have changed even if you don’t.

Each user is also given a colour based on their
current interest which is attached to their profile
and avatar. This colour is generated from their
three most common interests and their weights
using the RGB colour profile. This colour will
indicate how closely your interest match with
other people in your group at any given time.

2.3 Target Market

The target market for this website would be any
user that likes to engage in open discussions
about their hobbies or interests with like-minded
individuals. A place where your posts don’t live
and die by your popularity or friend count, but
rather by its content.

It’s also for those users that are threatened by
other social media sites where you actively have
to look for friends and followers. Our site takes
the pressure of finding like-minded people off
the user's shoulders and lets them focus on
what really matters, the message content.

2.4 Possible Risks

The main risk with this project is lack of privacy.
Users have no control over who views their
content because it is accessible by every other
user that is part of their group. Having said that,
this website is not for sharing private information
it is more of an open discussion forum.

2.5 Glossary

Term Definition

Database A collection of all information from
which the system can access and
store information.

User The person using the application.

Anonymous
User

A person who has not created an
account in the application.

PHP PHP is a server-side scripting
language designed primarily for web
development but also used as a
general-purpose programming
language.

JavaScript JavaScript is a full-fledged dynamic
programming language that, when
applied to an HTML document, can
provide dynamic interactivity on
websites.

Laravel 5 Laravel is a free, open-source PHP
web framework, created by Taylor
Otwell and intended for the
development of web applications
following the model–view–controller
(MVC) architectural pattern.

GUI Graphical User Interface

Post A small passage of text that the user
enters into the website to describe
something about themselves or their
daily lives.

Comment A small passage of text left by a
user on another user’s status.

Amazon
Web Server

Amazon Web Services is a
subsidiary of Amazon.com that
offers on-demand cloud computing
platforms.

2.6 Technologies

Most of the technologies used to develop this
application were chosen because of ease of use
and or familiarity. PHP was the exception as we
had no programming experience with this
scripting language.

Fortunately there was an abundance of
resources and documentation online on the

3

subject. The Laravel 5 framework was also a
great help as it simplified a lot of the boilerplate
work that goes into developing a website such
as this. Such as user accounts and sessions.
Below is a brief rundown of all the technologies
used throughout the development of the project.

2.6.1 PHP

The main bulk of the website was written in PHP
as it offers good performance and is easy to
integrate into most servers. PHP code is also
clean and easy to understand with lots of
resources available.

2.6.2 JavaScript

JavaScript was used to add some dynamic
elements on the front end as well as any client
side validation that needs to be done. JavaScript
libraries such as jQuery were used where
needed for design and accessibility features.

2.6.3 Ajax

Ajax was used to update portions of the website
dynamically. It was also used to add pagination
to a user’s news feed to improve load times and
responsiveness.

2.6.4 MySQL

An online MySQL database was used to store all
data pertaining to the project.

2.6.5 Laravel 5

Laravel 5 is a PHP framework that was used to
streamline some of the more common website
tasks such as sessions and cookies. It also has
a lot of helper functions to manage database
calls for saving, updating or displaying data.

2.6.6 Bootstrap

Where possible the website used the Twitter
Bootstrap framework to minimise HTML and
help the site respond to changing screen sizes.

2.6.7 Apache Server

A local Apache web server was used to run the
PHP code during the development of the
website.

2.6.8 Amazon Web Service (EC2)

Everything from the PHP to the database and
uploaded images was stored on an Amazon
cloud based server during the deployment
stage.

2.6.9 GitHub

GitHub was used to maintain and manage the
project's codebase.

2.6.10 Hardware & Software Requirements

● Desktop PC or Laptop
● Apache Server
● Sublime Text
● GitHub
● MySQL
● Amazon Server

This project was completed using a medium
spec desktop PC and or laptop computer. If
work had to be carried out during class time in
college the latest project files could easily be
pulled from GitHub. All development was carried
out on a local server.

The editor of choice for this project was Sublime
Text because it offered some nice plugins that
paired well with the Laravel framework. The
finished project was deployed to an Amazon
Web Server for presentation and testing
purposes.

2.7 Project Breakdown

Here is a brief overview of all the work carried
out during the product's development and how
much time was dedicated to each task.

4

2.7.1 Breakdown

Stages Tasks Hours

Stage 1 Analysis & Design

1.1 Mock Ups 6

1.2 Requirements Analysis 12

Stage 2 Dataset

2.1 Source suitable data for project
testing

6

2.2 Database Design 8

2.3 Extract, transform and load
selected data to storage.

18

Stage 3 Implementation

3.1 Website Design 40

3.2 Database functionality 20

3.3 Login and user management
functionality

30

3.4 Post, edit, delete and view
message functionality

24

3.5 Image and video uploading
functionality

20

3.6 Dynamic clustering of users and
messages functionality

40

3.7 Colour matching functionality 10

3.8 Additional pages of content,
browser support

12

Stage 4 Testing & QA

4.1 Website testing and bug fixing 24

4.2 Server side load and speed
testing

12

2.7.2 Delivery Stages

Stage 1 Analysis & Design

Tasks Sketch mock ups for UI design
and gather functional and
non-function requirements.

Deliverables Mock up feedback and
Requirements document

Total Hours 18

Estimated
Work

3 Days

Stage 2 Dataset

Tasks Source suitable dataset. Design
database schema. Extract,
transform and load data for
website testing.

Deliverables Working database of usable
relevant data.

Total Hours 32

Estimated
Work

5 Days

Stage 3 Implementation

Tasks Website design and functionality.
Database methods and
functionality for basic operations.
User login management. Sharing
and uploading of content.
Creation of grouping algorithm.
Colour matching algorithm.
Additional website features.

Deliverables Working website with possible
bugs.

Total Hours 196

Estimated
Work

25 Days

5

Stage 4 Testing & QA

Tasks Testing and bug fixing. Server
load tests.

Deliverables Fully working and responsive
website.

Total Hours 36

Estimated
Work

5 Days

Stage 5 Deployment

Tasks Deployment of website to web
server.

Deliverables Fully working website on
deployment server.

Total Hours 4

Estimated
Work

1 Day

3. System
Below is a breakdown of the whole system
starting with the requirements including
functional and nonfunctional. The system
architecture including database design, the GUI,
the system implementations and functions and
the system testing procedures and processes.

3.1 User Requirements Definition

The following is a detailed list of everything the
user should expect the system to do or perform.

3.1.1 Products Perspective

The aim of the website is to allow people to
share and receive content with other users
dynamically without adding them as a friend or
follower. Users of the website can interact with
all content that is relevant to them at any given
time. The content displayed to the user will
change based on the content of past and
present user updates. This means that all users
will only be shown content based on their
current interests.

3.1.2 Product Functions

● The website will dynamically share
content based on a user’s current
interests.

● Users can share text and images with
other users.

● Users can comment on any status
relevant to their interests.

● Users have full control over their profile
and can block other users.

3.1.3 User Characteristics

3.1.3.1 General User
● Has the ability to interact with all

functions of the website once an
account has been created and is logged
in.

3.1.3.2 Anonymous User

● Has to ability to create an account.
Anonymous users cannot access the
website without an account.

3.1.4 Operating Environments

● This website is designed to run on all
devices that have access to a web
browser. This includes but is not limited
to PC, laptop, mobile phone and tablet.

● This website with its database are
hosted on an Amazon web server due to
its fast and reliable service.

● Website development was carried out
using Sublime Text and an Apache
server package for local development.

3.1.5 General Constraints

● The website must work with a mouse
and keyboard.

● The website must work on a touch
screen i.e. mobile phone.

● The ability to interface with a database
must be implemented.

● The ability to save and load file must be
implemented.

6

3.1.6 Assumptions & Dependencies

● The user’s browser must support
JavaScript.

3.2 System Requirements Specification

A list of what the system requires to operate and
what the system shall provide for the user. This
list will be further broken down into external
interface requirements, functional requirements
and nonfunctional requirements.

3.2.1 External Interface Requirements

3.2.1.1 User Interface
● The user interface shall offer the user a

logical representation of what the
website is asking the user to do.
Drop-down menus and buttons should
be used where possible to aid the user.
Tooltips and other information should be
presented to aid user actions.

● The GUI should have the website logo
attached.

● The GUI should scale and respond to
the most common screen sizes
available.

● Certain optional features may be
omitted on smaller screen sized
devices.

● Allowances should be made for the
visually impaired.

● The GUI should have continuity
between pages and have a consistent
design throughout.

3.2.1.2 Hardware Interfaces

● The system should be operated with a
keyboard and mouse, with the mouse
being optional.

● The system should be fully operational
on any touchscreen device.

3.2.2 Functional Requirements

Figure 1. Complete use case diagram

3.2.2.1 User
● All users of the website shall have the

ability to create an account which can
be used to interact with the
website.

● User login is mandatory to access any
of the sites features.

3.2.2.2 Creating an Account

● The website should provide an easy to
use GUI for creating an account.

● The system should ask for a username
and password upon registration.

● Usernames must be unique and
passwords must be encrypted.

● The system should notify the user if any
invalid characters are used in either the
username or password field.

● The system should notify the user if
mandatory fields are left blank during
registration.

Figure 2. Create account use case diagram

7

Use Case
Element

Description

Use Case
Number

1

Application Gradient

Use Case Name Create Account

Use Case
Description

A user navigates to the website
URL and is prompted to create
an account.

Primary Actor Anonymous User

Precondition The system is deployed and
running.

Trigger The user navigates to the
website URL.

Basic Flow 1. This use case starts when
the user navigates to the
website URL and is
prompted to create an
account.

2. The user inputs a
username and password
into the allotted text
fields.[AF1]

3. The application notifies the
user that the account has
been created and grants
access to the application.

Alternate Flows 1. The user enters invalid
characters into the text field
or leaves them blank. The
system notifies the user of
their error.

3.2.2.3 Login

● The website should provide the user a
GUI to allow the user to login when
navigating to the website URL.

● The website should prompt the user to
enter both username and password into
the fields provided.

● If login details are incorrect the website
should notify the user of the error.

Figure 3. Login use case diagram

Use Case
Element

Description

Use Case
Number

2

Application Gradient

Use Case Name Login

Use Case
Description

The user logins to their
account.

Primary Actor User

Precondition The user has already created
an account.

Trigger Navigating to the websites
URL.

Basic Flow 1. This use case starts when
the user navigates to the
website URL and is
presented with a login GUI.

2. The user enters their
username and password
and is allowed access to
the system.[AF1]

Alternate Flows 1. The user inputs an
incorrect username or
password and is notified by
the system.

3.2.2.4 Logout

● The system should provide the user a
GUI to allow the user to logout of the
system.

8

3.2.2.5 Update Status
● The website shall provide the user with

means to update their status.
● Status updates can contain text and

images.
● The system should store all updates on

persistent storage.

Figure 4. Update status use case diagram

Use Case
Element

Description

Use Case
Number

3

Application Gradient

Use Case Name Update Status

Use Case
Description

The user updates their status.

Primary Actor User

Precondition The user has already created
an account and is logged in.

Trigger The user clicks the update
status button.

Basic Flow 1. This use case starts when
the user clicks the update
status button.

2. The user enters their status
update in the text box
provided by the GUI.[AF1]

3. The user clicks submit to
post their status to their
public profile.

Alternate Flows 1. The user adds an optional
image to the status.

3.2.2.6 Dynamic Grouping
● The system should group users together

based on the contents of their status
updates.

● User can only see updates from other
users in their group.

● Users will be removed from the group if
the content of their latest updates do not
match the group’s interests.

● The system shall move users from
group to group without any approval
from the user.

3.2.2.7 Upload Media

● The system shall provide the user with a
suitable GUI to upload images.

● All uploaded media should be stored on
persistent storage and should be readily
available to the user.

3.2.2.8 Comment

● The system shall provide the user with a
sufficient GUI for adding a comment to
another users status update.

● Comments can only contain text.
● All comments must display the user's

name, date and time.
● Only logged in users can comment.
● Users can choose to disable comments

on any status update.

Figure 5. Comment use case diagram

9

Use Case
Element

Description

Use Case
Number

4

Application Gradient

Use Case Name Comment

Use Case
Description

The user comments on their or
another users status.

Primary Actor User

Precondition The user has already created
an account and is logged in.

Trigger The user clicks the add
comment button on a status.

Basic Flow 1. This use case starts when
the user clicks the add
comment button.

2. The user enters their
comment in the text box
provided by the GUI.[AF1]

3. The user clicks submit to
add their comment to the
selected status.

Alternate Flows 1. The user has disable
comment on the selected
status.

3.2.2.9 Colour Matching

● The system should assign each user a
dynamic colour based on the weights of
their current interests.

● Colours are used to allow users to
identify other users with similar interests.

● Each user's colour should appear on
their profile and avatar in status updates
and comments.

3.2.3 Non-Functional Requirements

3.2.3.1 Portability

● The website should run on any device
with a capable web browser.

3.2.3.2 Reliability

● The system should be extremely reliable
and have an uptime of 99.999%.

3.2.3.3 Ease of Use
● The website should be user friendly. It

should take users no longer than 5
minutes to become comfortable and
familiar with the website GUI.

3.2.3.4 Speed

● Updating status and adding comments
should appear instant to the user.

● The GUI should be responsive and
snappy with no lag between pages and
button clicks.

● The users feed should fully load in no
more than five seconds.

3.2.3.5 Size

● The website should be no more than
100 mb in total excluding the database.

● All website images, JavaScript files and
CSS should be minified and
compressed for better performance and
resource conservation.

3.2.3.6 Privacy

● Any data retained by the system will be
in accordance with the Data Protection
Act 1988 and the Data Protection
(Amendment) Act 2003.

10

3.3 Design & Architecture

The system makes use of design best practises
where possible. This includes but is not limited
to UI design, database design and coding
patterns. The system is designed to be modular
which allows us to add new features and update
existing features with ease.

3.3.1 Database Design

A relational database is used to store all
persistent data throughout the system. This was
chosen as it allowed for complex queries to be
carried out with ease. It also provides more
efficient storage by reducing redundant data.
Figure 6. is a conceptual ERD of the entire
database.

Each table represents a logical section of the
platform i.e. users, posts and comments. The
group type table is a lookup tables which will
allow extra groups to be added without the need
for cascading updates across the database.
Currently the system only allows one image to
be attached to a post.

Figure 6. Conceptual ERD

3.3.2 Activity Design

Each function of the platform can be modelled
with an activity diagram. Figure 7. is a diagram
of the add new post activity. A user can choose
to add media to a post if they wish. When a user
adds media to the system the activity branches
and the system process slightly changes.

All media is stored on the server with the
associated URL added to the database post.
Either way the results is always the same for the
user. They are redirected to the post feed where
all the latest posts are found.

Figure 7. Create post activity diagram

11

3.3.3 System Architecture

The system uses the model view controller
(MVC) architecture design pattern. Enabling a
separation of concerns between the data, UI and
functionality. This was chosen because it
reduces the complexity of each component and
streamlines the testing process.

Figure 8. MVC architecture diagram

3.4 Graphical User Interface (GUI)

The login page is as simple as possible and will
be the only thing a user sees when navigation to
the websites sign in URL. The login form will ask
for the users username and password to be
entered before allowing them access to the rest
of the platform.

New users will also have the ability to register a
new account from this page too. Users who
forget their passwords can also request a new
password from this page.

Figure 9. Gradient login GUI

The main page of the site has a fixed navigation
bar at the top of the page with links to all major
parts of the site. This page also shows all
relevant posts to the user in a list ordered by
date posted starting from the latest.

Each post, along with all comments and media
will be bound by a border and separated from
the post below. Each post will feature a
thumbnail image, the post title, the name of the
author and date posted.

Figure 10. Gradient all posts page

Comments will be positioned in a nested fashion
under each post. Only the twenty latest posts
are shown to the user on page load. The post

12

page will feature pagination that will allow the
user to click through all posts available 20 posts
at a time.

A user can also create a new post from the main
page by clicking the new post button from the
top of the page. The new post interface will
present the user with a form to fill out. This form
will ask the user to add a post title, the post
content and an optional image. Users will also
have some extra option when posting a new
post such as disabling comments.

Figure 11.Gradient add new post form

Once a post has been submitted the user will be
returned back to the main page and will see their
post listed with all other posts from their group.
Each user will also have access to a dashboard
where they can see all their post history and
comments. Users can also delete any comments
or posts that they have created from their
personal dashboard.

3.5 Implementation

3.5.1 Models, Views & Controllers

The Laravel framework uses an MVC
architecture. The database is created with code
using migration files and relationships are
handled with models. Each table in the database

must have a corresponding model in the
framework.

Controllers are basic PHP files that manipulate
the database models using a series of functions
and return a collection of data to a specific view.
These functions can be access using the
web.php file through a series of routes. Routes
are responsible for the actions of a controller's
function when a specific URL is accessed.
Laravel uses RESTful routes to provide a
mapping between HTTP verbs and the controller
functions. A brief explanation of how posts are
displayed follows.

First a migration file is created that will build the
‘Posts’ database table. This migration file has all
the scheme information needed to build a fully
qualified MySQL table. When the command
‘$php artisan migrate’ is ran Laravel will call the
up() function and the framework will access that
database and create the table.

Figure 12. Post table migration file

Once the database is set up relationships can
be be defined in the ‘Post.php’ model file.
Laravel uses an ORM (Object-relational
Mapping) and active record approach to
database management. Several relationships
are set up between our ‘Posts’ model and other
models in our system.

13

Figure 13. Post model file

With the relationships firmly established data
can now be added to the database. To display a
list of all posts in the system a route must be set
up to call a function in our ‘PostsController’.
Routes map controller functions to URL’s. Here
we send a GET request to ‘/posts’ which will call
the index() function in the ‘PostsController’.

Figure 13. Post index route

The index() function in the ‘PostsController’ Will
grab a collection of all records from the
database posts table.

Figure 14. Post controller index() function

In the image above various queries are being
performed on the collection of data but the most
important part is the return statement. The return
statement returns a view which is a PHP file
located in ‘post/index.blade.php’ as well as the
collection of posts.

The view file ‘index.blade.php’ uses the Laravel
Blade templating engine which allows PHP and
HTML to interact. In this view we can access our
‘$posts’ variable and display the content.

@foreach($posts as $post)
 <h4>{{$post->title}}</h4>
 <p>{{$post->body}}</p>
 <small>{{$post->created_at}}</small>
@endforeach

3.5.2 Grouping Algorithm

The grouping algorithm is an implementation of
the Naive Bayes classification and is
incorporated into the project using the Bayes
PHP package [1]. We use the Naive Bayes
classification method to determine what topic the
users post should be classified as.

To achieve this the users post is compared to a
set of static training data which covers a range
of topics. The algorithm's job is to predict what
topic the post should fall under. When a user
submits a new post to the system we call the
getTopic() function.

14

https://paperpile.com/c/M1GzTC/AFyR

Figure 15. Get topic function

The text of the users post is passed as an
argument to the function, we also grab a
collection of all topics from the database (also
know as training data). A sample of the political
topic training data is shown below.

Topic Training Data

Politics Economic Aristotle

Diplomacy Nationalism

Populist Liberalism

Feminism Conservatism

The training data is then cleaned of all
punctuation and separated into tokens. From
here the post text is evaluated against the
training data and the topic probability is
determined. The topics id is then returned and
stored in the database along with the user's
post.

Now that each post has the most probable topic
attached to it we can use this information to
display specific posts to specific users. Here the
same algorithm is used again but this time it is
used to determine the most probable topics over
the user's last ten posts and update the
user_topics table in the database with the
information.

Now it's just a matter of comparing post topics to
the user's current topics and displaying the posts
that meet the query.

3.5.3 Colour Matching

The colour matching algorithm takes three
strings, in this case the user's current topics of
interest and converts each character of the
string into its ASCII value representation using
PHP’s ord() function [2]. The sum of each
character value is added until it reaches 255
where it resets to zero and the remainder is
added. The result of this algorithm returns three
values ranging between 0 - 255 which can be
used to represent an RGB (Red, Green, Blue)
colour code. This code is then used throughout
the website in various UI elements for the user.

Figure 16. Get colours function

15

https://paperpile.com/c/M1GzTC/CQZo

3.6 Testing

3.6.1 Integration Testing

Integration tests were written and performed
using PHPUnit. These integration tests were
written to verify the main components of the
system were active and engaging.

The main aim of these tests were to verify if the
database CRUD functionality using models and
controllers were working as intended. Create,
read and delete tests were written for both posts
and comments.

Figure 17. Create post integration test

In the above test a new user is created using a
factory to create dummy data. A new post is
then created with a relationship to the user.
Lastly the database is checked to assert if the
new post is available.

To test the delete post function an new user and
post are created. The database is then queried
to find the new post. Once the post is found the
post is deleted and the database is tested to
assert the post is missing.

Figure 18. Delete post integration test

To test the read functionality of the system a
new post was created. The new post was then
queried and tested to assert that the title string
was equal to the test string.

Figure 19. Read post integration test

All tests are carried out in a separate test
database. All database tables are created and
dropped before and after each test.

Figure 20. Test confirmation output

16

3.6.2 Load Testing

The load testing was carried out on an Amazon
EC2 T2 Micro instance running Ubuntu. The
Apache Benchmarking tool was used to perform
these tests [3]. The test was performed on a
page that had multiple CSS and Javascript
requests aswell a number of MySQL database
queries.

The tests aim was to determine how many
concurrent users and page hits the system could
handle before failing. The test options were set
as follows over the following tests:

$ab -l -r -n 600 -c 30 -k -H "Accept-Encoding:
gzip, deflate"
http://ec2-35-166-134-73.us-west-2.
compute.amazonaws.com/posts

1. 1 concurrent user / 100 page hits
2. 5 concurrent users / 10 page hits
3. 10 concurrent users / 10 page hits
4. 30 concurrent user / 20 page hits
5. 90 concurrent user / 30 page hits

Test one through four executed perfectly with no
errors. The results of test 4 is shown in Figure
21. This test simulates 30 concurrent users
doing 20 page reloads each.

Figure 21. Load testing output (Test #4)

Test number five is an enormous load to bare
and would cripple any site that didn’t employ
sophisticated caching. Running the test on the
Amazon EC2 instance crashed the server and

had to be restarted from the Amazon Web
Service Dashboard.

4. Conclusion
Looking back at the project objectively I would
say that the biggest problem with this project is it
simplicity. The aim of the project was to create a
place where users could post and read content
that were of interest to them. To this end the
project does the job perfectly but it is void of
many features that users have come to expect.

Removing the social aspect of friends and
followers and removing the arithmetic from posts
such as number of likes, number of shares or
view count severely limits the amount of
interaction a user can have with the site. Users
can only post, comment and read. Users who do
not post actively will also not get the benefits
that the site offers as the more posts a user has
the better able we are to determine their current
interests.

In theory the idea was sound, a social media site
void of ego and number counting would be great
but in reality it's just kind of dull. Having said
that, working on the project was a great
experience. I learned a lot about PHP and the
available PHP frameworks. I also got to spend a
lot of time working with databases and writing
queries which is always good to know.

5. Further Development
With more time and research I would like to
automate the topics identification system.
Currently the project uses manually created
training data which helps determine the user's
post topic based on a very specific set of topics.
New topics and training data must be manually
inserted into the database by the administrator.
This is both time consuming and monotonous.

A better alternative would be to use Topic
Modeling which is a machine learning technique
that scans large amount of textual data and
groups documents based on common word

17

https://paperpile.com/c/M1GzTC/XUKp

clusters and associations [4]. This is a fully
automated process with no need for training
data. The downside to this approach is the
massive resource cost. Each new posts must be
added to a corpus containing all posts in the
system to determine a specific topic. Performing
this operation on a database with millions of
posts would have a massive impact on the
server's performance.

A solution would have to be found that
incorporated both the Naive Bayes algorithm
using training data and the use of Topic
Modeling to automate the topic associations.

6. References

1. Boggiano J. fieg/bayes - Packagist
[Internet]. [cited 3 May 2017]. Available:
https://packagist.org/packages/fieg/bayes

2. PHP: ord - Manual [Internet]. [cited 3 May
2017]. Available:
http://php.net/manual/en/function.ord.php

3. ab - Apache HTTP server benchmarking
tool - Apache HTTP Server Version 2.4
[Internet]. [cited 5 May 2017]. Available:
https://httpd.apache.org/docs/2.4/programs/
ab.html

4. Topic Modeling [Internet]. [cited 6 May
2017]. Available:
http://mallet.cs.umass.edu/topics.php

7. Appendix
● Monthly Journals
● Project Proposal

18

https://httpd.apache.org/docs/2.4/programs/ab.html
https://packagist.org/packages/fieg/bayes
http://paperpile.com/b/M1GzTC/XUKp
https://httpd.apache.org/docs/2.4/programs/ab.html
http://paperpile.com/b/M1GzTC/WRJM
http://paperpile.com/b/M1GzTC/XUKp
http://paperpile.com/b/M1GzTC/CQZo
http://paperpile.com/b/M1GzTC/XUKp
http://paperpile.com/b/M1GzTC/AFyR
http://paperpile.com/b/M1GzTC/AFyR
http://php.net/manual/en/function.ord.php
https://paperpile.com/c/M1GzTC/WRJM
http://mallet.cs.umass.edu/topics.php
http://paperpile.com/b/M1GzTC/CQZo
http://paperpile.com/b/M1GzTC/WRJM

Reflective Journal

Student Name: James English Student Number: X13118951
Course: BSc in Computing Month: September

Journal #1
My idea is to build a social media site that will dynamically share your content with other users that

have shared interests. I pitched the idea at the project pitch presentation and the lectures seemed to

like the idea.

Next week I will write up the full project proposal where I will nail down all the features and

technologies that the project will have. Right now I’m thinking of using PHP to develop the site. I was

researching PHP frameworks and I like the look of Laravel 5. It has some handy build in functions that

can manage authentication and sessions for users which should come in handy down the line. It also

has a nice templating engine that speeds up page creation and design.

Apart from a small bit of research not much work has been carried out on the project as of yet. Looking

forward my biggest problem is going to be in the design of the database and also the most time

consuming. Because of the dynamic nature of the project there will be a lot of database calls so it will

have to be well designed and defined.

I’m actually really looking forward to working on this project as this will be the first time I have

undertook a website of this size. Most of my project to date have been desktop applications so this

will be an interesting experience.

Hopefully next month after I submit my project proposal and start working on the requirements I will

have more to share. But for now everything looks good, I feel confident and eager to get started.

Student Signature: James English Date: 08/10/16
Supervisor Signature: Date: 00/00/16

Reflective Journal

Student Name: James English Student Number: X13118951
Course: BSc in Computing Month: October

Journal #2
This month was spent working on my project proposal and project system requirements specifications

documents. The project proposal document has been submitted. The requirements documents is

almost complete, I just have to create some UI mock ups for the functional requirements.

Now that all pending documentation is out of the way for the time being I can concentrate on the next

phase of the project which is the Project Prototype. For the project prototype I am aiming to have the

main functionality of the project working. This will include the algorithm that displays all related

content to users based on their current interests.

For this phase of the project I will need design and implement a working data base filled with some

sample data. I’m aiming to gather this data from Twitter using the streaming Twitter API. I will gather

a couple of thousand tweets and store them in the database as random user posts. From here I can

implement and test the group sharing algorithm.

For the prototype I will demonstrate how the system dynamically shows the user relevant content

based on their current interests. During the live demo I will update certain user profiles to show how

the content they see is changed based on what they are currently talking about.

The main focus here is going to be all backend work but if I have time I will try and create a nice front

end page to handle the POST request that somewhat resembles the finished design of the website

(which has yet to be determined).

Next month I should have a lot more to share once I get started on the practical part of the project

and actually start some coding.

Student Signature: James English Date: 03/11/16
Supervisor Signature: Date: 00/00/16

Reflective Journal

Student Name: James English Student Number: X13118951
Course: BSc in Computing Month: November

Journal #3
This month wasn’t really as productive as I planned it to be. Unfortunately due to numerous CA’s,

project deadlines and the technical report there wasn’t a whole lot of time left to work on the project

prototype. However I did manage to get some smaller prototypes working for the presentation.

I have been doing some research into topic models and latent Dirichlet allocation, which is a statistical

modelling technique for discovering topics in a collection of text. I have been doing some tests using

R and R-Studio and it seems like this technique with some small adjustments will be perfect for

classifying user posts under a certain topic for my project. Getting this working as intended is the main

bulk of the grouping algorithm for the site going forward.

I also wrote a small algorithm in JavaScript to demonstrate the colour matching function of the

website. This algorithm generates three random strings and assigns them an RGB colour value based

on the strings Unicode value. This feature will be utilised in the website as to visually represent how

closely two different users interests relate.

So for the prototype I’m hoping to demonstrate how users are dynamically grouped together, how

each users is given a unique colour and some basic GUI front end navigation. Now that Christmas is

just around the corner and all my other projects have been submitted or are just about to wrap up I’m

going to make a big drive at getting some serious work done on the project in January and February.

Student Signature: James English Date: 11/12/16
Supervisor Signature: Date: 00/00/16

Reflective Journal
Student Name: James English Student Number: X13118951

Course: BSc in Computing Month: December

Journal #4
This month I managed to get all the posting, updating and deleting of posts and comments
implemented into the project. I also set up the user account service that allows users to register and
login to the website. At the moment adding new posts and comments have dedicated pages but I
will update this to be more dynamic using AJAX. My aim is to have all of the posting, commenting,
editing and liking all to happen dynamically on the one page without page refreshes.

I’m still having a bit of trouble finding the best solution for managing topics. I am researching the
Naive Bayes algorithm which looks promising. This algorithm works by comparing text against a
set of training data and returns a matching probability. It’s exactly what I need for my project but it
involves a lot of user management and overview to be effective. I would like to find a more
automated solution if possible.

I still need to settle on a design for the website because as of right now its still up in the air. I hope
to have a proper design nailed down next month.

Student Signature: James English Date: 11/01/17

Supervisor Signature: Date: 00/00/2017

Reflective Journal
Student Name: James English Student Number: X13118951

Course: BSc in Computing Month: January

Journal #5
Right now I have the post, edit post, liking and commenting all working and updating with AJAX as
intended in the same page. I have also went and implemented the Naive Bayes classifier algorithm
into the project and it appears to be working great so far after first impressions. Because the
algorithm needs training data I will have to create a back end module that can monitor and control
all the training data and add and modify data as needed.

This was not the original goal of the project but the Naive Bayes solution is the least resource
intensive solution at the moment. Next I will add the image upload feature to the site and also look
at adding user profile pictures or use Gravatar’s instead. Gravatar’s are globally recognised avatars
managed by a third party site (gravatar.com). Implementing this third party solution will reduce
development time and reduce resource and bandwidth cost for our server.

I’m also in the process of developing the user dashboard, where users can manage their posts,
comments and image uploads all in one place. This dashboard will also have some graphs with
historical data and a map of the topics and discussions a user was part of plotted on a timeline.
Users can also manage their account from here such as (deleting account, blocking other users).

Student Signature: James English Date: 11/02/17

Supervisor Signature: Date: 00/00/2017

Table of Contents
Project Description 2

Introduction 2

Project Overview 2

Background 2

Target Market 2

Possible Risks 2

Project Functionality 2

Dynamic Grouping 3

Colour Matching 3

Sharing 3

Accounts 3

Technical 3

System Architecture 3

Technologies 4

PHP 4

JavaScript 4

Ajax 4

MySQL 4

Laravel 5 4

Bootstrap 4

WAMP 4

Azure Cloud Server 4

Hardware & Software Requirements 4

Project Breakdown 5

Breakdown 5

Delivery Stages 5

References 6

Page 1 of 7

Project Description
Introduction
The goal of this project is to develop a software product in an area of our choosing. The software
must offer useful functionality and have a high level of innovation, either filling gaps in a current
technology area or branch into an entirely new one.

Project Overview
For this project we are going to create a social media website that dynamically shares your content
with other users of the same interests. Every time a user posts an update to their page we will parse
the text and extract the most relevant keywords and data from the text and use this data to
determine who to share this information with.

Likewise the user who shares content will recieve content based on the contents of their latest
updates and or posts. This should result in an ever changing flow of relevant information based on
your current and up to date interests. The more you talk about a specific subject or topic the more
likely you are to see relevant posts about that subject. There will be no friends or followers on this
site because all interactions are dynamic and ever changing.

Background
The idea for this project came to me as a result of my own changing interests over the years. Take
Facebook for example, you add a friend on Facebook and you receive all of their updates and posts
even posts you may not be interested in. This leads to users posting updates that get no likes, no
comments and no views. Even more so it opens up the opportunity for negative comments or
bullying from “friends” that do not enjoy your posts about computer games or obscure TV shows
you enjoy.

The aim here is to create a space where users can update their page and are guaranteed to have it
viewed by people with the same interests regardless of friend or follower count.

Target Market
The target market for this website would be any user that likes to engage in open discussions about
their hobbies or interests with like minded individuals. A place where your posts don’t live and die by
your popularity or friend count, but rather by its content.

It’s also for those users that are threatened by other social media sites where you actively have to
look for friends and followers. Our site takes the pressure of finding like minded people off their
shoulders and lets the users focus on what really matters, the message content.

Possible Risks
The main risk with this project is lack of privacy. Users have no control over who views their content
because it is accessible by every other user that is part of their group. Having said that, this website
is not for sharing private information it is more of an open discussion forum.

Project Functionality
This website will offer users a space to share content with other users who share the same interests.
The interesting thing about this idea is that the user does not select who the content is displayed to;
that is all taken care of in the back end. Because we keep track of all your posts and interactions we
know that your interests have changed even if you don’t.

Page 2 of 7

Dynamic Grouping
All users will be dynamically placed in groups based on the content of their post history. Groups are
formed based on a user’s top three interests e.g. football, music, TV if you stop talking about one of
these topics you will eventually be moved from this group and get pushed into a different group e.g.
football, golf, TV.

Groups only form when two or more people have the same interests. If there is no matching group
for a user’s three most common interests they will be put into a group that most closely matches
their interests usually with a 2/3 match. Users can only see posts from that group as long as they
remain in said group. The more frequently you post the more likely you are to move through
different groups.

Colour Matching
Each user will be given a colour based on their current interest which is attached to their profile and
avatar. This colour is generated from their three most common interests and their weights using the
RGB colour profile. This colour will indicate how closely your interest match with other people in
your group at any given time.

Sharing
Users will be able to share text, images and video in any post or comment. All posts are public to
their respective groups meaning you can see all post pertaining to or similar to your current
interests.

Accounts
All users will need to register an account to access the platform. Users will have full control of their
account including the editing or deleting of posts. All accounts require a username a password to
login to the system.

Technical
System Architecture
This website will use the classic MVC architecture using the Laravel 5 framework.

Figure 1 MVC request cycle in a Laravel 5 (Coleman, 2016)

Page 3 of 7

Technologies

PHP
The main bulk of the website will be written in PHP.

JavaScript
JavaScript will be used to add some dynamic elements on the front end as well as any client side
validation that needs to be done. JavaScript frame works such as jQuery will be used where needed
for design and accessibility features.

Ajax
Ajax will be used to update portions of the website dynamically. It will also be used to add
pagination to a user’s news feed to improve load times and responsiveness.

MySQL
An online MySQL database will be used to store all data pertaining to the project.

Laravel 5
Laravel 5 is a PHP framework that will be used to streamline some of the more common website
tasks such as sessions and cookies. It also has a lot of helper functions to manage database calls for
saving, updating or displaying data.

Bootstrap
Where possible the website will use the Twitter Bootstrap framework to minimise HTML and
respond to changing screen sizes.

WAMP
An all in one local server for running PHP, MySQL and Apache web servers.

Azure Cloud Server
Everything from the PHP to the database and uploaded images will be stored on an Azure cloud
based server during the deployment stage.

Hardware & Software Requirements
● Desktop PC or Laptop
● WAMP Server
● PHPStorm
● GitHub
● MySQL
● Azure Server

This project will be completed using my personal desktop PC and or laptop computer from home. If
work is to be carried out during class time in college I can easily pull the latest project files from
GitHub. All development will be carried out on a local server using WAMP. My IDE of choice for this
project will be PHPStorm because it offers some nice benefits when writing PHP code. The finished
project will be deployed to an Azure Server for presentation and testing purposes.

Page 4 of 7

Project Breakdown
Breakdown
Stages Tasks Hours
Stage 1 Analysis & Design

1.1 Mock Ups 6
1.2 Requirements Analysis 12

Stage 2 Dataset
2.1 Source suitable data for project testing 6
2.2 Database Design 8
2.3 Extract, transform and load selected data to storage. 18

Stage 3 Implementation
3.1 Website Design 40
3.2 Database functionality 20
3.3 Login and user management functionality 30
3.4 Post, edit, delete and view message functionality 24
3.5 Image and video uploading functionality 20
3.6 Dynamic clustering of users and messages functionality 40
3.7 Colour matching functionality 10
3.8 Additional pages of content, browser support 12

Stage 4 Testing & QA
4.1 Website testing and bug fixing 24
4.2 Server side load and speed testing 12

Stage 5 Deployment
5.1 Deploy to server 4

Delivery Stages
This project will be implemented in the following stages:

Stage 1 Analysis & Design
Tasks Sketch mock ups for UI design and gather functional and non-function

requirements.
Deliverables Mock up feedback and Requirements document
Total Hours 18
Estimated Work (Days) 3

Stage 2 Dataset
Tasks Source suitable dataset. Design database schema. Extract, transform

and load data for website testing.
Deliverables Working database of usable relevant data.
Total Hours 32
Estimated Work (Days) 5

Page 5 of 7

Stage 3 Implementation
Tasks Website design and functionality. Database methods and functionality

for basic operations. User login management. Sharing and uploading of
content. Creation of grouping algorithm. Colour matching algorithm.
Additional website features.

Deliverables Working website with possible bugs.
Total Hours 196
Estimated Work (Days) 25

Stage 4 Testing & QA
Tasks Testing and bug fixing. Server load tests.
Deliverables Fully working and responsive website.
Total Hours 36
Estimated Work (Days) 5

Stage 5 Deployment
Tasks Deployment of website to web server.
Deliverables Fully working website on deployment server.
Total Hours 4
Estimated Work (Days) 1

References
Coleman, A., 2016. Self-Thought Coders. [Online]
Available at:
https://selftaughtcoders.com/from-idea-to-launch/lesson-17/laravel-5-mvc-application-in-10-minut
es/
[Accessed 13 October 2016].

Page 6 of 7

