
 - 1 -

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name: Ian Cunningham

Student ID: x13114425

Supervisor: Dr. Paul Stynes

SECTION 2 Confirmation of Authorship
The acceptance of your work is subject to your signature on the following
declaration:
I confirm that I have read the College statement on plagiarism (summarised
overleaf and printed in full in the Student Handbook) and that the work I have
submitted for assessment is entirely my own work.

Signature: Ian Cunningham
Date: 10/05/2017

 - 2 -

National College of Ireland

BSc in Computing

2016/2017

Ian Cunningham

X13114425

Ian.Cunningham@student.ncirl.ie

Scriba-College

Technical Report

 - 3 -

Table of Contents

Executive Summary .. 8

1 Introduction .. 9

1.1 Background .. 9

1.2 Aims ... 10

1.3 Technologies.. 10

1.3.1 Java ... 10

1.3.2 XML ... 11

1.3.3 PHP ... 11

1.3.4 MySQL .. 11

1.3.5 JSON ... 11

1.3.6 Android Studio IDE .. 11

1.3.7 Android Bluetooth LE API .. 12

1.3.8 Cloud Convert API ... 12

1.3.9 API.AI .. 12

1.3.10 GitHub ... 12

1.4 Structure .. 13

1.4.1 System .. 13

1.4.2 Conclusions ... 13

1.4.3 Further Developments or Research .. 13

1.4.4 References .. 13

2 System ... 14

2.1 Requirements... 14

2.1.1 Functional requirements .. 14

2.1.2 Non-Functional requirements .. 26

2.1.3 Data requirements ... 28

2.1.4 User requirements ... 29

2.1.5 Environmental requirements.. 30

2.1.6 Usability requirements ... 31

2.2 Design and Architecture ... 32

2.2.1 Assumptions / Constraints / Standards ... 32

2.2.2 Architecture Design ... 33

 - 4 -

2.2.3 System Design .. 39

2.3 Implementation .. 42

2.3.1 Upload a file to the server ... 42

2.3.2 Retrieve user files .. 46

2.3.3 Create a note... 49

2.3.4 Add a quiz question ... 51

2.3.5 Connect to Scriba stylus .. 54

2.3.6 Highlighting text with Scriba .. 54

2.4 Graphical User Interface (GUI) Layout ... 55

2.5 Testing ... 58

2.5.1 Unit testing .. 59

2.5.2 Integration testing .. 61

2.6 Customer testing .. 64

2.6.1 Tasks to be completed by tester.. 64

2.6.2 Questionnaire .. 65

2.7 Evaluation .. 65

3 Conclusions ... 73

4 Further development or research ... 74

5 References .. 75

6 Appendix .. 76

6.1 Project Proposal... 76

6.1.1 Objectives.. 78

6.1.2 Background ... 79

6.1.3 Technical Approach ... 79

6.1.4 Special resources required .. 80

6.1.5 Project Plan ... 81

6.1.6 Technical Details ... 82

6.1.7 Evaluation.. 83

6.2 Project Plan ... 84

6.3 Monthly Journals .. 87

6.3.1 Reflective Journal (September) ... 87

6.3.2 Reflective Journal (October) .. 89

 - 5 -

6.3.3 Reflective Journal (November) .. 91

6.3.4 Reflective Journal (December) .. 93

6.3.5 Reflective Journal (January) .. 95

6.3.6 Reflective Journal (February) .. 97

6.3.7 Reflective Journal (March)... 100

6.4 Other Material Used ... 103

6.5 Document References ... 106

6.6 Key Terms ... 107

 - 6 -

Table of Figures

Figure 1: Scriba College Use Case Diagram .. 14

Figure 2: Create and View Notes Use Case ... 15

Figure 3: Generate Quiz Use Case ... 18

Figure 4: Login and Registration Use Case .. 20

Figure 5: Create Mind Map Use Case ... 23

Figure 6: Create Study Plan Use Case ... 25

Figure 7: Scriba College class diagram .. 33

Figure 8: Scriba College hardware architecture diagram 34

Figure 9: Scriba College software architecture diagram 35

Figure 10: Scriba College Communication Diagram ... 37

Figure 11: ERD of the Scriba College Database system 39

Figure 12: Login Activity .. 55

Figure 13: Signup Activity ... 55

Figure 14: Upload Activity ... 56

Figure 15: Files Activity………………………………………..................................56

Figure 16: View File Activity……..57

Figure 17: Scriba Connect Dialog……………………………..................................57

Figure 18: Notes Activity………………………………………….............................58

Figure 19: Quiz Activity…………………………………………...............................58

Figure 20: HashUtil unit test result…….………………………...............................60

Figure 21: QuizQuestion unit test result………………………...............................61

Figure 22: SignupActivity automated test result…………….................................63

Figure 23: LoginActivity automated test result………………………………………64

Figure 24: Email containing link to questionnaire ……………...............................66

Figure 25: Question one results ………………………………...............................67

Figure 26: Question two results.………………………………................................67

file:///C:/Users/Ian%20C/Google%20Drive/4th%20Year/Semester%202/Software%20Project/Final%20Report/Technical%20Report-Scriba%20College.docx%23_Toc482111957
file:///C:/Users/Ian%20C/Google%20Drive/4th%20Year/Semester%202/Software%20Project/Final%20Report/Technical%20Report-Scriba%20College.docx%23_Toc482111960
file:///C:/Users/Ian%20C/Google%20Drive/4th%20Year/Semester%202/Software%20Project/Final%20Report/Technical%20Report-Scriba%20College.docx%23_Toc482111961
file:///C:/Users/Ian%20C/Google%20Drive/4th%20Year/Semester%202/Software%20Project/Final%20Report/Technical%20Report-Scriba%20College.docx%23_Toc482111962
file:///C:/Users/Ian%20C/Google%20Drive/4th%20Year/Semester%202/Software%20Project/Final%20Report/Technical%20Report-Scriba%20College.docx%23_Toc482111963
file:///C:/Users/Ian%20C/Google%20Drive/4th%20Year/Semester%202/Software%20Project/Final%20Report/Technical%20Report-Scriba%20College.docx%23_Toc482111964

 - 7 -

Figure 27: Question three results …………………………….................................68

Figure 28: Question four results ………………………………...............................69

Figure 29: Question five results ………………………….......................................69

Figure 30: Question six results …………………………….....................................70

Figure 31: Question seven results …………………………...................................70

Figure 32: Question eight results …………………………….................................71

Figure 33: Question nine results ……………………………...................................72

Figure 34: Question ten results ……………………………….................................72

 - 8 -

Executive Summary

Each and every day thousands of students attend college and are the owner of an

Android device. The way in which students currently interact with their college

material to create notes is to either create documents of notes or write out their

notes on paper. This project aims to eliminate these tiresome tasks to promote a

new way of creating notes for the student’s college material by interacting the

college material on their Android device and annotating the content via the Scriba

stylus to create notes.

The intended audience of the project are students that are the owners of an

Android device and an a Scriba stylus. The idea is that students will have access

to their college documents and presentation slides by having these documents and

slides stored on a remote server. While in class or at home, students may create

notes with their Scriba stylus.

The project idea has been proposed and the requirements have been gathered

while in consultation with David Craig, CEO Dublin Design Studio LTD. The

necessary requirements for the project are documented in the requirements

section of this report. The technologies that would best suit the projects

requirements have been identified.

This project is necessary in this field as it will improve a student’s interaction with

their college material by providing a useful mobile app to store unique notes and

view at any time and any place. The application will also contain an option to

create quizzes based on the recorded notes, which adds a unique feature not

seen in other applications in the same field.

The key benefit of this application is that it will increase student engagement and

knowledge of college material by providing a fun and intuitive way of recording

notes. The application will offer quizzes based on questions created by the user.

 - 9 -

1 Introduction

1.1 Background

The stylus product “Scriba” is an award winning new stylus, which is designed by

Dublin Design Studio. Scriba is designed around the movements of the hand to

make it as comfortable as possible to use. Supporting both left and right handed

users, Scriba works with mobile and tablet devices and contains a squeeze motion

technology to increase control and offer an innovative experience. Scriba’s body

bends to the users every touch and movements are detected allowing the user to

access different application functionality.

Students often find it hard to recall important information from class material or

leave it to the last minute to gather all their notes together for studying purposes

before exams or continuous assessments. This application will allow students to

have their notes all stored in one location. Students will record notes during class

and these notes will be saved to accompany the specific document. Therefore,

when the student takes important notes in class, the student will know when it

comes to exam time that these notes are important and can be easily accessed.

The student can then read over their notes anywhere and anytime. The application

will provide a way for users to increase engagement with the class content,

therefore gaining better and more understanding of the class material. The

application will also test the students’ knowledge of their college material by

providing quiz’s.

It was decided to create an Android application as numerous of other android

applications had been developed for the Scriba stylus by Dublin Design Studio.

The application will be created using Java and the Android Studio IDE. Data will

be stored in a MySQL database. The user’s files will be stored on a remote server

and can be accessed via the application.

 - 10 -

1.2 Aims

The purpose of this project is to create a functional Android application that

provides students access to their college material. The aim is to increase student

engagement with college material by using a Scriba stylus to annotate the

information in a way that will make it easier for them to recall important sections or

clarify their own understanding of the content, that will provide benefits for the

student. The application will aim to serve as a study tool for exams and continuous

assessments.

The application will allow the user to store and access their college material, which

will be files such as word documents, PDF files and PowerPoint presentation files.

The application will integrate Bluetooth connectivity so as to connect to the Scriba

stylus, which connects to devices via Bluetooth Low Energy. The Scriba will have

functions for interacting with the college material including functions such as

highlight text, change text colour, underline text, etc. All functions will result in a

note been created.

The application will also enable the student to create quizzes based on questions

that the user can create themselves. The user can choose to create a quiz for an

individual subject. The application will implement a AI personal tutor using Googles

API.ai. The application will also provide the student the option of creating mind

maps based on the notes. The student will also be able to create and store study

plan’s.

1.3 Technologies

1.3.1 Java

The programming language that will be used to implement the Android application

will be Java. Java will be used to implement the logic and the functionality on the

client side of the application. Java is a primary language for Android development

but is not the only language used for Android development.

 - 11 -

1.3.2 XML

XML (Extensible Markup Language) is used in every Android application is a

standard when developing Android applications. XML is used for creating the user

interface in an Android application. The advantage of using XML is that it separates

the presentation from the logic, which helps Android applications follow the Model-

View-Controller pattern. XML will be used to represent the presentation of my

application.

1.3.3 PHP

PHP (PHP: Hypertext Preprocessor) is a server side scripting language. PHP

scripts are stored and executed on the server. PHP will be used in the application

for controlling user access, sending and receiving data from the database and

sending files to be stored on the server. PHP will be responsible for the server side

of the application and directly communication with the database.

1.3.4 MySQL

The database chosen to communicate with the application is a MySQL database.

MySQL is a relation database management system that provides good

functionality with PHP. The database will data such as user’s information, file

information and stored notes.

1.3.5 JSON

JavaScript Object Notation (JSON) is a lightweight data-interchange format that is

human readable and machine readable. JSON will be used in the application for

transmitting data between the application and the server.

1.3.6 Android Studio IDE

The Android Studio Integrated Development Environment is the official Android

IDE for Android development offered by Google, which is based on IntelliJ IDEA.

The IDE comes with the Android SDK built in with the required libraries, debugger

and emulator. Real Android devices will be used for testing the application as this

is a faster process than testing on the emulator and this will also give me a feel of

 - 12 -

how the application will look and function on a real Android device. This is the IDE

that will be used for the development of the application.

1.3.7 Android Bluetooth LE API

The Android BLE API provides support for Bluetooth Low Energy. This enables

Android applications to communicate with BLE devices. This API will be used in

the application to provide communication between the application and the Scriba

stylus as this is a BLE supported device.

1.3.8 Cloud Convert API

The Cloud Convert API is a RESTful API that provides the ability to convert multiple

file types to a HTML file type. A call to the API enables a user’s file to be converted

to HTML file and then rendered in an Android WebView.

1.3.9 API.AI

The API.ai is a Conversational User Experience Platform that enables developers

to integrate intelligent conversation interfaces within applications. This enabled the

application to implement an intelligent personal assistant that will be trained to

respond to computer science related questions and will be trained in other areas

in the future.

1.3.10 GitHub

GitHub is a web-based version control system were developers store their projects

and collaborate. GitHub is a requirement for this project and therefore, will be used

for version control in this project as their will be constant updates and changes.

Also in the case of anything going wrong there will be a need previous revisions of

the project. GitHub will keep record off all changes to a project and store all

versions of a project in single repository.

 - 13 -

1.4 Structure

1.4.1 System

This chapter will discuss and describe the necessary requirements for the project

such as functional and non-functional requirements. This section will discuss the

process of each functional requirement in detail. Also documented are the data

requirements, the user requirements, environmental requirements and usability

requirements.

This chapter will also discuss and present the design and architecture of the

application. Mock-ups of the application will be also presented within this section

and details about the various methods that will be used for testing the application.

1.4.2 Conclusions

This chapter will describe and discuss in detail the advantages of the project and

the disadvantages of the project. This section will also examine the opportunities

and limitations of the project.

1.4.3 Further Developments or Research

This chapter will discuss any further developments of the project and how the

project could expand. This section will also describe any research undertaken to

support the any further developments for the project and detail what type of

environments this application can expand into.

1.4.4 References

This chapter will list all references used for the necessary research for the project

and all documents referenced with this document.

 - 14 -

2 System

2.1 Requirements

2.1.1 Functional requirements

This section lists the functional requirements in ranked order.

2.1.1.1 Use Case Diagram

The Use Case Diagram provides an overview of all functional requirements.

 Figure 1: Scriba College Use Case Diagram

 - 15 -

2.1.1.2 Requirement 1 <Create and View Notes>

2.1.1.2.1 Description & Priority

This use case describes the how a note is created by uploading a document and

annotating the document via the Scriba stylus and then viewed by the user. This

use case is the most important in the application as it is the core functionality The

priority of this use case is high.

2.1.1.2.2 Use Case

ID

UC02

Scope

The scope of this use case is to create notes that can be later retrieved for

viewing by user.

Description

This use case allows a user to create and view a note.

Use Case Diagram

 Figure 2: Create and View Notes Use Case

 - 16 -

Flow Description

Precondition

The user must have a registered account and be signed into the application.

Activation

This use case starts when a user uploads a document to the application.

Main flow

1. The user presses the select file button and selects a file from device
storage

2. The user presses the upload file button and file is sent to server
3. The system responds with a success or fail message (See E1)
4. The user selects the file to view
5. The system presents the selected file
6. The system prompts the user to connect to a Scriba stylus
7. The user connects their Scriba stylus to their device (See A1)
8. The user annotates the content in the file such as highlight, draw,

erase depending which mode the Scriba stylus is presently in.
9. The system generates notes on the annotated information and stores

these notes in the database.
10. The user views the generated notes.

Alternate flow

A1: <Scriba stylus not connected>
1. The user unsuccessfully connects their Scriba stylus
2. The system prompts the user to reconnect their Scriba stylus.
3. The use case continues at position 7 of the main flow

Exceptional flow

E1: <Server response fail>
4. The system responds with an error message that the file was not

uploaded to the server.
5. The user selects a file to upload
6. The use case continues at position 3 of the main flow

Termination

The system presents the user with the main activity screen.

 - 17 -

Post condition

The system stores the notes on the database if the use case was successful

2.1.1.3 Requirement 2 <Generate Quiz>

2.1.1.3.1 Description & Priority

This use case describes how a quiz is generated from the saved notes on the

database. A quiz can be generated based on user-created questions for different

subjects. The priority of this use case is high.

2.1.1.3.2 Use Case

ID

UC03

Scope

The scope of this use case is to create a quiz based on the users created

questions.

Description

This use case describes process of generating a quiz.

 - 18 -

Use Case Diagram

 Figure 3: Generate Quiz Use Case

Flow Description

Precondition

There must be existing notes in the database.

Activation

This use case starts when a user selects a subject to generate a quiz on.

Main flow

11. The system identifies the user’s selection of subject (See E1)
12. The system returns a quiz based on chosen subject
13. The user answers a serious of questions
14. The system records the users grade (See A1)
15. The user exits the quiz

 - 19 -

Alternate flow

A1: <Grade not greater than highest grade>
7. The users grade is not greater than the current stored grade for the

current quiz.
8. The grade is not recorded
9. The use case continues at position 15 of the main flow.

Exceptional flow

E1: <Invalid/No subject entered>
10. The user has not entered a valid subject or has left the subject field

blank.
11. The system responds with an error message stating that a subject

must be entered.
12. The use case continues at position 11 of the main flow.

Termination

The system presents the user with the main activity screen.

Post condition

The system stores the user grade on the database if the use case was

successful.

2.1.1.4 Requirement 3 <Login and User Registration>

2.1.1.4.1 Description & Priority

This use case describes how the user is able to create an account for the

application by providing a unique username and password that will be stored on

the database. When an account has been created, the user shall be able to login

into the application. The user will enter their unique credentials that will be

compared to credentials stored in the database. Access to application is granted

upon successful comparison of user credentials. This use case is essential and

the priority of this requirement is high as a user needs to create an account and

login to have access to the applications features.

 - 20 -

2.1.1.4.2 Use Case

ID

UC01

Scope

The scope of this use case is to create a user account and allow access to

the system.

Description

This use case describes the process of a user signing into the system.

Use Case Diagram

 Figure 4: Login and Registration Use Case

Flow Description

Precondition

An internet connection is required to create an account and login.

 - 21 -

Activation

This use case starts when a user clicks the login button.

Main flow

16. The system prompts the user to create an account or login
17. A new user will be prompted to enter their credentials for their

account
18. The system stores the new user’s credentials on the database See

E1)
19. The system prompts an existing user is prompted to login
20. The user enters their credentials (See A1)
21. The system checks the users entered credentials against the

database for verification.
22. The system grants access to the user and redirects the user to the

main activity screen.

Alternate flow

A1: <Wrong user credentials>
13. The user enters the incorrect credentials
14. The system displays a message stating that the entered details are

incorrect
15. The use case continues at position 19 of the main flow

Exceptional flow

E1: <User already exists>
16. The user enters existing credentials for an existing account.
17. The system responds with an error message stating that an account

already exists with those credentials
18. The use case continues at position 16 of the main flow

Termination

The system presents the user with the main activity screen.

Post condition

The system stores the user’s credentials on the database if the use case is

successful.

 - 22 -

2.1.1.5 Requirement 4 <Create Mind Map>

2.1.1.5.1 Description & Priority

This use case describes how the user can create mind maps, based on the notes

stored on the database, for study purposes. A mind map can be created for

different subjects, with all their notes or for single notes. This use case is of medium

to low priority as this function is an alternative to studying the created notes and

taking the quiz’s.

2.1.1.5.2 Use Case

ID

UC04

Scope

The scope of this use case is to allow the user to create a mind map based

on specific notes.

Description

This use case describes the process of creating a mind map.

 - 23 -

Use Case Diagram

 Figure 5: Create Mind Map Use Case

Flow Description

Precondition

The system must have notes stored

Activation

This use case starts when a user clicks the create mind map button.

Main flow

23. The user selects a subject and note(s) for mind map rendering (See
E1).

24. The system identifies the user’s selection of subject and note(s) (See
A1)

25. The system renders the mind map and stores on the server

Alternate flow

A1: <Invalid/No selection of subject or note(s)>
19. The user enters invalid/selects no subject or note(s)

 - 24 -

20. The system responds with a warning message that a subject or
note(s) must be entered.

21. The use case continues at position 24 of the main flow.

Exceptional flow

E1: <No notes present>
22. The user has no existing notes in the application
23. The system displays an error message stating that no notes are

present and that a mind map cannot be created.
24. The use case continues at position 23 of the main flow

Termination

The system presents the user with the Mind Map Activity with a list of created

mind maps.

Post condition

The system stores the mind map on the server and stores name and path off

the mind map on the database.

2.1.1.6 Requirement 5 <Create Study Plan>

2.1.1.6.1 Description & Priority

This use case describes how the user can create a study plan. A study plan can

be created in a way to suit the users time management. This use case is of medium

to low priority.

2.1.1.6.2 Use Case

ID

UC05

Scope

The scope of this use case is to allow a user to create a study plan by entering

subjects and assigning allocated times to these subjects.

 - 25 -

Description

This use case describes the process of creating a study plan.

Use Case Diagram

 Figure 6: Create Study Plan Use Case

Flow Description

Precondition

The user must be signed into the application.

Activation

This use case starts when a user clicks the create study plan button.

Main flow

26. The system prompts the user to enter details
27. The user enters the subjects and assigns a time slot to each subject

(See A1)

 - 26 -

28. The system generates a new study plan image (See E1)
29. The user views the study plan.

Alternate flow

A1: <Invalid/No details entered>
22. The user does not enter valid details.
23. The system responds with a warning message stating that no invalid

details have been entered.
24. The use case continues at position 26 of the main flow

Exceptional flow

E1: <Image not generated>
25. The system displays a warning message stating that the study plan

was not created and to try again.
26. The user re-enters the details
27. The use case continues at position 28 of the main flow

Termination

The system presents the user with the Study Plan Activity providing a list of

viewable study plan’s.

Post condition

The system stores the study plan image on the server and stores the image

name and path on the database, if the use case is successful.

2.1.2 Non-Functional requirements

2.1.2.1 Performance/Response time requirement

The application should be fast and responsive to all device screen sizes. The

application shall switch between activities in minimal time. The login process

should take no more than 5 seconds and interaction with the Scriba stylus should

be performed in a seamless manner.

 - 27 -

2.1.2.2 Availability requirement

The application will available at anytime and anywhere, once installed on the user’s

device. An internet connection is needed for connection to the database for access

and retrieval of files, grades, mind maps and study plans. Unfortunately, if the user

has no internet connection they will not be able to access the application and their

stored content.

2.1.2.3 Recover requirement

The applications files stored on the remote server and the data saved on the

hosted database shall be backed-up to multiple locations to prevent loss of data

and to keep the application live in the case of a disaster. A set of policies and

procedures should put in place for the recovery process.

2.1.2.4 Robustness requirement

The application should be designed in a way that will prevent the app from

crashing. The application should not crash due to invalid request but rather

respond with an error message to the user.

2.1.2.5 Security requirement

The application will connect to the database which is hosted on a remote server,

hence security will be an important factor to consider for the application. The

application will encrypt private user information such as the user’s password.

2.1.2.6 Reliability requirement

In mobile applications, reliability is an important factor to consider. If the application

keeps crashing, this will affect the overall reliability of the application resulting in

poor reviews of the application. The system should be able to manage minor issues

such as interference with the Bluetooth connection between the Scriba stylus and

the application.

2.1.2.7 Maintainability requirement

The applications code should be written in a way that is easy to read and

understand. This will provide the application with the ability to be easily maintained

and make it easy for applying new updates. The application should be designed in

 - 28 -

a way that splits the application into separate sections i.e. separation of

concerns (SoC).

2.1.2.8 Portability requirement

As the application is an Android application, it will need to be downloaded on an

Android smartphone/tablet and will not be downloadable to Windows/Apple

devices. The application will also need to installed on devices that support

Bluetooth Low Energy (BLE) as the Scriba stylus will connect with the user’s device

via BLE. The application should be portable with Android OS 5.0 Lollipop.

2.1.2.9 Extendibility requirement

The application should be designed and implemented in way that will take into

consideration future growth. This will provide the application the ability to extend

the system and a good design will enable the application to be easily extended

with additions such as new functions.

2.1.2.10 Reusability requirement

The applications code should be written in a way that will enable reusability. The

application can then be reusable in different environments. For example, the

application can be reused as a workplace tool.

2.1.2.11 Resource utilization requirement

The application should utilize the Android Bluetooth API for supporting BLE

connections with the Scriba stylus and utilize embedded tools for opening the

different types of files within the application resulting in third party file manager

applications not been required to open the files.

2.1.3 Data requirements

2.1.3.1 MySQL

A MySQL database will be used to store the user’s information, all uploaded files

information and all the user’s notes. The database will be hosted on a remote

server.

 - 29 -

2.1.3.2 JSON

The data received from the server will be in JSON format will be parsed to plain

text within the application to display to the user.

2.1.4 User requirements

The purpose of the Scriba College Android application is to provide students with

a way to interact with their college material with a Scriba stylus to aid study and

recollection of notes.

The main user requirement of the Scriba College Application is to provide an app

that will increase student engagement with college material and serve as a study

tool to the user.

The user is required to be the owner of an Android device in order to be able to

install the application.

The user’s Android device must be running the operating system Android 4.3 Jelly

Bean (API Level 18) in order to run the application.

The user is required to have internet access on their devices in order to create an

account and login to the application.

The user is required to be the owner of a Scriba stylus, which will enable the user

to annotate their college material.

The system shall allow the user to upload college documents in the form of word

files, pdf files and power point files etc. and provides users the option to view their

uploaded files.

The app shall allow the user to annotate the college material with the Scriba stylus

in a manner that will make it easier for them to recall important sections or clarify

their own understanding of the content by saving content that was highlighted or

drawn over as note.

Each user shall be able to save notes to accompany the specific document they

relate to and have an option for viewing these notes.

 - 30 -

The app shall allow the user to create a user account with a unique username and

password and the option to login in using their unique user account credentials.

The app shall be easy for the user to navigate and shall provide the user access

to functionality quickly through interaction with the Scriba stylus.

Each user shall be able to select functionality within the app i.e. highlight, font color,

underline, etc. by using Scriba’s squeeze motion technology.

The application shall allow for the creation of quizzes based on the users created

questions.

The application shall provide a chatbot in the form of a personal tutor. The chatbot

shall respond in timely manner to the user’s verbal questions.

The user shall be able to create mind maps based on their notes and create study

plans.

2.1.5 Environmental requirements

2.1.5.1 Android Devices

Multiple Android devices will be required for testing purposes. Using multiple

devices to test the application will visually show how the application will be

presented on different types of Android devices. These devices will be required to

be running at least operating system Android 4.3 Jelly Bean (API Level 18) as this

the API level where Bluetooth low energy support for Android was first introduced.

2.1.5.2 Android Studio IDE

The Android Studio IDE will be used to create the application using the Java

programming language. This IDE also includes the Android SDK built in, which

includes the required libraries for developing Android applications. The IDE also

provides support for debugging and testing.

2.1.5.3 Hosting Service

A hosting service will be required for storing files on the server and for hosting the

database. The hosting service that will be used for the project is X10 Hosting. This

 - 31 -

will be the hosting service used for the finished product as the development

process used XAMPP for a web server solution.

2.1.5.4 Scriba Stylus

A Scriba stylus will be required for testing the communication between the

application and the Scriba for monitoring if the correct values are being sent from

the Scriba stylus to the application. Also this will be needed mainly for testing the

functionality within the app that requires a Scriba, such as the highlight, draw and

erase functions.

2.1.6 Usability requirements

2.1.6.1 Efficiency

The application will be effective in accomplishing its task is reasonable time. The

application functions will work as expected and in the case of an error, the user will

be notified.

2.1.6.2 Intuitiveness

The applications user interface should be intuitive, easy to follow and navigate. All

messages displayed to the user should be presented in an understandable

manner.

2.1.6.3 Workload

The application should appear user friendly and easy to use rather than being

perceived to have a hard to use and frustrating user interface.

2.1.6.4 Scriba Instructions

The application will provide the user with a dialog box of instructions to instruct the

user on how to use the Scriba stylus with the application.

 - 32 -

2.2 Design and Architecture

2.2.1 Assumptions / Constraints / Standards

2.2.1.1 ASSUMPTIONS

 The user of the application will be the owner of an Android

device.

 The Android Studio IDE will be used to develop the application.

 The application will be intuitive.

 The application depends on a login system.

2.2.1.2 CONSTRAINTS

It will be necessary to design and develop the application aimed at a specific

Android API. The application will be aimed at minimum Android Jelly Bean

(API Level 18). This is necessary as this is the first API to introduce support

for Bluetooth Low Energy (BLE) support.

It is necessary for the user to purchase a Scriba stylus device to fully interact

with the Scriba College application. The user will also have to be the owner

of an Android device to install the application on their devices.

2.2.1.3 STANDARDS

The application will be designed using the Android theme “Material Design”.

Material design is a new theme that provides new system widgets and

advanced animations. The theme allows developers to customize the look

and feel of their applications by enabling control over a color palette, which

in turn enables the developers set their specific colors to the action bar and

the status bar using specified attributes for the theme (Android Developers,

2017).

 - 33 -

2.2.2 Architecture Design

This section outlines the system and hardware architecture design of the

system that is being built.

2.2.2.1 Logical View

Figure 7: Scriba College class diagram

 - 34 -

The above class diagram illustrates the classes that comprise the system. The

diagram shows all the required classes necessary to construct the system and

exhibits the relationships and dependencies between the classes of the system.

2.2.2.2 Hardware Architecture

Figure 8: Scriba College hardware architecture diagram

 - 35 -

The application will utilize a three-tier architecture between client and server. The

Android device (client) will send a HTTP request to the web server. The web server

will then run the PHP scripts to connect to the MySQL database and make a

request for data. The database will send a response back to the web server with

the requested data. The PHP scripts on the web server will convert the received

data into JSON and sends this data to the Android device (client). The client

receives the data and parses this data into plain text and displays on screen. When

viewing a file, the client will send a request to the Cloud Convert API, which in turn

will make a request to the web server for the specified file. The web server

responds with the requested file and the Cloud Convert API responds with the

converted file.

2.2.2.3 Software Architecture

Figure 9: Scriba College software architecture diagram

 - 36 -

The above diagram exhibits the software architecture for the Scriba College

application. The system will utilize a three-tier architecture (Presentation, Logic

and Data) and follow the MVC (Model-View-Controller) architectural design pattern

for developing software. The application will be partitioned into three main

components, the Model, the View and the Controller. The model is responsible for

the data logic and contains object classes to be stored as data, while the view is

responsible for the user interface logic and relates to the layout files, which are in

XML format. The controller acts as an interface between the model and the view

and is responsible for the business logic of the application. The controller relates

to the Activity classes of the application that handle the user input from the view,

update the database and updates the view accordingly.

2.2.2.4 Security Architecture

The application should uphold security for the system and the applications users

by requesting permissions before the application can integrate with the user’s

device data and system features. The application should request the user to grant

permission.

The login and registration system should be designed in a secure manner using

the HTTPS (Hypertext Transfer Protocol Secure) protocol, which is a combination

of HTTP (Hypertext Transfer Protocol) and SSL (Secure Sockets Layer).

Communication between client and server should be encrypted and all user’s

passwords should be encrypted using the Secure Hash Algorithm (SHA) 256. The

uploading and retrieval of files should also make use of the HTTPS protocol.

 - 37 -

2.2.2.5 Communication Architecture

Figure 10: Scriba College Communication Diagram

The client device must establish a connection to the internet first in order to

communicate with the web server. The web server will host the PHP scripts that

will send and read to and from with the database system. The client will also make

a request to the Cloud Convert API to convert a file and the API will respond with

a HTML version of the file ready to be viewed by the client device.

 - 38 -

2.2.2.6 Performance

The performance of the Scriba College will be dependent on response time,

memory and scalability. The function for loading all the files from the server should

retrieve all files within five seconds. Also, when uploading a file to the server, the

task should take no more than five seconds. Creation of a quiz should take at

maximum five seconds. The application should be fast and responsive to all device

screen sizes. The application shall switch between activities in minimal time.

The applications database should provide sufficient storage memory to hold all

user registration and login details, uploaded file information, all the created notes,

questions, quizzes, mind maps and study plans.

The system should be scalable by offering the same functionality and response

time as more users are added to the system and the volume in usage increases.

 - 39 -

2.2.3 System Design

2.2.3.1 Database Design

Figure 11: ERD of the Scriba College Database system

 - 40 -

The database system for the Scriba College application will consist six table. The

seven tables are as follows:

 User

 File

 Note

 Question

 Mind map

 Study Plan

The user table will store all the user’s information such as name, email, username,

and password. The file table will store information regarding the files uploaded by

the user such as the name of the file and path of the file on the server. The

relationship between the user table and the file table is a one-to-many relationship,

as a user can have many files. The note table will store the content of the notes

taken by the user from files. The relationship between the file table and the note

table is a one-to-many relationship, as a file can have many notes associated with

it. The question table holds all questions created by the user for future quizzes.

The mind map table will contain the mind maps image name and the path of the

mind map image on the server. The note table and the mind map table will form a

many-to-one relationship, as many notes can be contained in a mind map. The

study plan table will store information such the study plan’s name and the path of

the study plan file located on the server.

2.2.3.2 Data Conversions

There is a need for files to be accessible and viewable within the application and

not with the assistance from any third-party applications e.g. the native Android

PDF Reader.

 - 41 -

Conversion of pdf and office files into different file formats (html) to enable viewing

of document within Android web view, which also enabled text extraction from the

file. The Android device (client) will send a request to the Cloud Convert API with

the API key, file extension and URL path to the file as parameters and will respond

with a converted file viewable in the Android web view.

The Android device (client) will send a HTTP request to the web server. The web

server will then run the PHP scripts to connect to the MySQL database and make

a request for data. The database will send a response back to the web server with

the requested data. The PHP scripts on the web server will convert the received

data into JSON and sends this data to the Android device (client). The client

receives the data and parses this data into plain text and displays on screen.

2.2.3.3 Application Program Interfaces

Cloud Convert API – Cloud Convert API provides a RESTful API for converting

multiple file types into HTML file formats.

Bluetooth Low Energy API – The Android Bluetooth Low Energy provides

communication between Android devices and BLE devices.

Nordic Semiconductor Container application as a library – Contains the Android

BLE API and methods for connection with the Scriba stylus.

2.2.3.4 User Interface Design

The application will follow the Android Material Design guidelines. Material design

provides a new theme, new widgets and API’s for designing Android applications.

Documentation regarding Material Design can be found at the following link:

https://material.io/guidelines/

https://material.io/guidelines/

 - 42 -

2.2.3.5 Performance

The application should thrive to produce smooth user interface performance. The

application should provide user interface responsiveness by optimizing layout

hierarchies to cater for every screen size on many different devices. The user

interface elements such as buttons should respond immediately to user interaction

and carry out the required functions. Dialogs should appear when necessary to

inform user of any changes of state or any background tasks. The user interface

should also be dynamic and make visible/invisible user interface elements that are

applicable or not at the given time. Once an action is performed, user interface

elements may appear or disappear.

2.2.3.6 Section 508 Compliance

The application will aim to be Section 508 compliant. The application will make use

of text and images with high color contrast. The application should use incorporate

complementary colors from the color wheel to design the user interface to

accommodate for users with vision impairment’s and color deficiencies. The

application should also ensure all navigation elements are noticeable to the user.

2.3 Implementation

2.3.1 Upload a file to the server

The UploadActivity class contains the logic for uploading the files to the server.

The below code shows the implementation of the uploadFile(final String

selectedFilePath) method, which uploads a file to the server. The method expects

a file path of string type to be passed as a parameter. An integer value is returned

that represents the server’s response code i.e. 200-OK.

 - 43 -

/*

 * method that uploads file to server

 * @param selectedFilePath

 * @return serverResponseCode

 */

public int uploadFile(final String selectedFilePath){

 int serverResponseCode = 0;

 HttpURLConnection connection;

 DataOutputStream dataOutputStream;

 String lineEnd = "\r\n";

 String twoHyphens = "--";

 String boundary = "*****";

 int bytesRead,bytesAvailable,bufferSize;

 byte[] buffer;

 int maxBufferSize = 1 * 1024 * 1024;

 File selectedFile = new File(selectedFilePath);

 String[] parts = selectedFilePath.split("/");

 final String fileName = parts[parts.length-1];

 if (!selectedFile.isFile()){

 dialog.dismiss();

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 tvFileName.setText("Source File Doesn't Exist: " +

selectedFilePath);

 }

 });

 return 0;

 }else{

 try{

 FileInputStream fileInputStream = new FileInputStream(selectedFile);

 URL url = new URL(Config.UPLOAD_URL);

 connection = (HttpURLConnection) url.openConnection();

 connection.setDoInput(true);//Allow Inputs

 connection.setDoOutput(true);//Allow Outputs

 connection.setUseCaches(false);//Don't use a cached Copy

 connection.setRequestMethod("POST");

 connection.setRequestProperty("Connection", "Keep-Alive");

 connection.setRequestProperty("ENCTYPE", "multipart/form-data");

 connection.setRequestProperty("Content-Type", "multipart/form-

data;boundary=" + boundary);

 connection.setRequestProperty("uploaded_file",selectedFilePath);

 //creating new dataoutputstream

 dataOutputStream = new

DataOutputStream(connection.getOutputStream());

 //writing bytes to data outputstream

 dataOutputStream.writeBytes(twoHyphens + boundary + lineEnd);

 dataOutputStream.writeBytes("Content-Disposition: form-data;

name=\"uploaded_file\";filename=\""

 + selectedFilePath + "\"" + lineEnd);

 dataOutputStream.writeBytes(lineEnd);

 - 44 -

 //returns no. of bytes present in fileInputStream

 bytesAvailable = fileInputStream.available();

 //selecting the buffer size as minimum of available bytes or 1 MB

 bufferSize = Math.min(bytesAvailable,maxBufferSize);

 //setting the buffer as byte array of size of bufferSize

 buffer = new byte[bufferSize];

 //reads bytes from FileInputStream(from 0th index of buffer to size

of the buffer)

 bytesRead = fileInputStream.read(buffer,0,bufferSize);

 //loop repeats till bytesRead = -1, i.e., no bytes are left to read

 while (bytesRead > 0){

 //write the bytes read from inputstream

 dataOutputStream.write(buffer,0,bufferSize);

 bytesAvailable = fileInputStream.available();

 bufferSize = Math.min(bytesAvailable,maxBufferSize);

 bytesRead = fileInputStream.read(buffer,0,bufferSize);

 }

 dataOutputStream.writeBytes(lineEnd);

 dataOutputStream.writeBytes(twoHyphens + boundary + twoHyphens +

lineEnd);

 serverResponseCode = connection.getResponseCode();

 String serverResponseMessage = connection.getResponseMessage();

 Log.i(TAG, "Server Response is: " + serverResponseMessage + ": " +

serverResponseCode);

 // response code of 200 indicates the server status OK

 if(serverResponseCode == 200){

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 tvFileName.setText("File Upload completed”);

 }

 });

 }

 //closing the input and output streams

 fileInputStream.close();

 dataOutputStream.flush();

 dataOutputStream.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 runOnUiThread(new Runnable() {

 @Override

 public void run() {

 Toast.makeText(UploadActivity.this,"File Not Found",

Toast.LENGTH_SHORT).show();

 }

 });

 } catch (MalformedURLException e) {

 e.printStackTrace();

 Toast.makeText(UploadActivity.this, "URL error!",

Toast.LENGTH_SHORT).show();

 } catch (IOException e) {

 e.printStackTrace();

 - 45 -

 Toast.makeText(UploadActivity.this, "Cannot Read/Write File!",

Toast.LENGTH_SHORT).show();

 }

 dialog.dismiss();

 return serverResponseCode;

 }

}

The uploadFile(final String selectedFilePath) method is invoked when the upload

button is clicked. The method validates that s file has been selected to upload by

ensuring the string variable selectedFilePath contains a valid file path. The method

requires a variable of type View, which in this case is the attachment icon.

@Override

public void onClick(View view) {

 if(view == attachment){

 // click show file chooser on attachment icon click

 showFileChooser();

 }

 if(view == buttonUpload){

 // if a file path is selected on upload button Click, upload file

 if(selectedFilePath != null){

 dialog = ProgressDialog.show(UploadActivity.this, "", "Uploading

File...", true);

 new Thread(new Runnable() {

 @Override

 public void run() {

 // new thread to handle Http Operations

 uploadFile(selectedFilePath);

 }

 }).start();

 }else{

 Toast.makeText(UploadActivity.this,"Please choose a File First",

Toast.LENGTH_SHORT).show();

 }

 }

}

The showFileChooser() method is used to send an intent to display all pickers for

files with mime type set by the setType() method. This enables the user to pick a

file to upload from their Android device.

private void showFileChooser() {

 int PICKFILE_RESULT_CODE=1;

 Intent intent = new Intent(Intent.ACTION_GET_CONTENT);

 intent.setType("*/*");

 - 46 -

 startActivityForResult(intent,PICKFILE_RESULT_CODE);

}

The below code is the server side PHP script for inserting document information

into the File table in the database.

<?php

session_start();

$userid = $_SESSION['userid'];

if (is_uploaded_file($_FILES['uploaded_file']['tmp_name'])) {

 $uploads_dir = './uploads/';

 $tmp_name = $_FILES['uploaded_file']['tmp_name'];

 $file_name = $_FILES['uploaded_file']['name'];

 move_uploaded_file($tmp_name, $uploads_dir.$file_name);

 require_once('dbConnect.php');

 mysqli_query($con,"INSERT INTO `File` (filename,filepath,ownerid) VALUES

('".$file_name."','".$uploads_dir.$file_name."','$userid')") or

 trigger_error($con->error."[$sql]");

 mysqli_close($con);

} else{

 echo "File not uploaded successfully.";

}

?>

2.3.2 Retrieve user files

The MyFilesActivity class contains the logic for retrieving files from the server that

belong to a specific user. The below code shows the implementation of the

RetrieveJSONData class, which extends AsyncTask to complete operations in the

background, is contained within the MyFilesActivity class. This class contains the

method doInBackground(String… params), which uses the HttpURLConnection

class to read all the data specified by the URL. When the operation is complete,

the onPostExecute(String result) is invoked and assigns the JSON result to a string

variable and calls the showList() method.

class RetrieveJSONData extends AsyncTask<String, Void, String> {

 @Override

 protected String doInBackground(String... params) {

 - 47 -

 InputStream inputStream = null;

 String result = null;

 try {

 URL url = new URL(Config.RETRIEVE_FILES_URL);

 HttpURLConnection con = (HttpURLConnection) url.openConnection();

 inputStream = new BufferedInputStream(con.getInputStream());

 BufferedReader reader = new BufferedReader(new

InputStreamReader(inputStream, "UTF-8"), 8);

 StringBuilder sb = new StringBuilder();

 String line = null;

 while ((line = reader.readLine()) != null)

 {

 sb.append(line + "\n");

 }

 result = sb.toString();

 } catch (Exception e) {

 }

 finally {

 try{if(inputStream != null)inputStream.close();}catch(Exception

squish){}

 }

 return result;

 }

 @Override

 protected void onPostExecute(String result){

 myJSON=result;

 showList();

 }

}

The below code shows the implementation of the showList() method. This

method creates a JSON array, which appends the results from the response. The

JSON array holds the list of files in JSON format. Each file reference is then

extracted to string variables, which in turn is added to a File object and add to an

List of type File.

protected void showList(){

 try {

 JSONObject jsonObj = new JSONObject(myJSON);

 jsonFiles = jsonObj.getJSONArray(TAG_RESULTS);

 for(int i = 0; i< jsonFiles.length(); i++){

 int id = 0;

 String filename = null;

 String filepath = null;

 try {

 JSONObject c = jsonFiles.getJSONObject(i);

 {

 - 48 -

 }

 id = c.getInt("id");

 filename = c.getString(TAG_FILENAME);

 filepath = c.getString(TAG_FILEPATH);

 } catch (JSONException e) {

 e.printStackTrace();

 }

 filesMap = new HashMap<String,String>();

 filesMap.put(TAG_FILE_ID, String.valueOf(id));

 filesMap.put(TAG_FILENAME, filename);

 filesMap.put(TAG_FILEPATH, filepath);

 File file = new File(id, filename, filepath);

 filesList.add(file);

 }

 CustomAdapter adapter = new CustomAdapter(MyFilesActivity.this,

R.layout.files_listview_item, filesList);

 list.setAdapter(adapter);

 } catch (JSONException e) {

 e.printStackTrace();

 }

}

The below code is the server side PHP script for retrieving files for a specific user

from file table in the database.

<?php

 session_start();

 $userid = $_SESSION['userid'];

require_once('dbConnect.php');

$sql = "SELECT id, filename, filepath FROM File WHERE ownerid = '$userid'";

$res = mysqli_query($con,$sql);

$result = array();

while($row = mysqli_fetch_array($res)){

array_push($result,

array('id'=>$row[0],

'filename'=>$row[1],

'filepath'=>$row[2]

));

}

 - 49 -

echo json_encode(array("result"=>$result));

mysqli_close($con);

?>

2.3.3 Create a note

The WebViewActivity class contains the logic for creating a note. The below code

is used to extract the selected text from the Android WebView widget. As the

WebView does not support the native Android text selection feature, it was

necessary to implement a JavaScript function extract the selected text and return

in string format. The addNote(String noteContent) method is then invoked and is

pass the selected text as a parameter.

web.evaluateJavascript("(function(){return window.getSelection().toString()})()"

,new ValueCallback<String>() {

 @Override

 public void onReceiveValue(String selectedText) {

 Log.d("LogName", selectedText);

 content = selectedText;

 }}

);

addNote(content);

The below code shows the implementation of the addNote(String noteContent)

method, which sends a POST request to the specified URL with the required

parameters and listens for a server response to inform the user if a note was

successfully created or not by displaying a message on screen.

private void addNote(String noteContent){

 StringRequest stringRequest = new StringRequest(Request.Method.POST,

Config.INSERT_NOTE_URL,

 new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

Toast.makeText(WebViewActivity.this,response,Toast.LENGTH_LONG).show();

 }

 },

 new Response.ErrorListener() {

 @Override

 - 50 -

 public void onErrorResponse(VolleyError error) {

Toast.makeText(WebViewActivity.this,error.toString(),Toast.LENGTH_LONG).show();

 }

 }){

 @Override

 protected Map<String,String> getParams(){

 Map<String,String> params = new HashMap<String, String>();

 params.put(KEY_CONTENT, noteContent);

 params.put(KEY_FILE_ID, String.valueOf(file.getId()));

 return params;

 }

 };

 RequestQueue requestQueue = Volley.newRequestQueue(this);

 requestQueue.add(stringRequest);

}

The below code is the server side PHP script for inserting a note into the note table

in the database.

 <?php

if($_SERVER['REQUEST_METHOD']=='POST'){

 $content= $_POST['content'];

 $fileid= $_POST['fileId'];

 if($content == ''){

 echo 'nothing selected';

 }else{

 require_once('dbConnect.php');

 $sql = "INSERT INTO Note (content, fileid) VALUES('$content', '$fileid')";

 if(mysqli_query($con,$sql)){

 echo 'Note Successfully Created';

 }else{

 echo 'Oops! Something went wrong. Please try again!';

 }

 }

 mysqli_close($con);

}else{

echo 'Error';

}

?>

 - 51 -

2.3.4 Add a quiz question

The QuizQuestionActivity class contains the logic for creating questions for

quizzes. The below code shows the implementation of the createQuestion()

method, which sends a POST request to the specified URL with the required

parameters and listens for a server response to inform the user if a question was

successfully created or not by displaying a message on screen.

private void createQuizQuestion(){

 final String subject = editTextSubject.getText().toString();

 final String question = editTextQuestion.getText().toString();

 final String optionOne = editTextOptionOne.getText().toString();

 final String optionTwo = editTextOptionTwo.getText().toString();

 final String optionThree = editTextOptionThree.getText().toString();

 final String optionFour = editTextOptionFour.getText().toString();

 final String answer = editTextAnswer.getText().toString();

 final QuizQuestion quizQuestion = new QuizQuestion(subject, question,

optionOne, optionTwo, optionThree, optionFour, answer);

 quizQuestion.setSubject(editTextSubject.getText().toString());

 quizQuestion.setQuestion(editTextQuestion.getText().toString());

 quizQuestion.setOptionOne(editTextOptionOne.getText().toString());

 quizQuestion.setOptionTwo(editTextOptionTwo.getText().toString());

 quizQuestion.setOptionThree(editTextOptionThree.getText().toString());

 quizQuestion.setOptionFour(editTextOptionFour.getText().toString());

 quizQuestion.setAnswer(editTextAnswer.getText().toString());

 StringRequest stringRequest = new StringRequest(Request.Method.POST,

Config.INSERT_QUESTION_URL,

 new Response.Listener<String>() {

 @Override

 public void onResponse(String response) {

Toast.makeText(QuizQuestionsActivity.this,response,Toast.LENGTH_LONG).show();

 }

 },

 new Response.ErrorListener() {

 @Override

 public void onErrorResponse(VolleyError error) {

Toast.makeText(QuizQuestionsActivity.this,error.toString(),Toast.LENGTH_LONG).sh

ow();

 }

 }){

 @Override

 protected Map<String,String> getParams(){

 Map<String,String> params = new HashMap<String, String>();

 params.put(KEY_SUBJECT, quizQuestion.getSubject());

 params.put(KEY_QUESTION, quizQuestion.getQuestion());

 params.put(KEY_OPTION_ONE, quizQuestion.getOptionOne());

 params.put(KEY_OPTION_TWO, quizQuestion.getOptionTwo());

 params.put(KEY_OPTION_THREE, quizQuestion.getOptionThree());

 params.put(KEY_OPTION_FOUR, quizQuestion.getOptionFour());

 params.put(KEY_ANSWER, quizQuestion.getAnswer());

 - 52 -

 return params;

 }

 };

 RequestQueue requestQueue = Volley.newRequestQueue(this);

 requestQueue.add(stringRequest);

}

The QuizQuestion model class contains the information for structuring a quiz

question. This class contains variables such as subject, question, the four options

for the user to pick from and the actual answer. Also provided are the getter and

setter methods for each variable.

**

 * @author Ian Cunningham

 */

public class QuizQuestion {

 private String subject;

 private String question;

 private String optionOne, optionTwo, optionThree, optionFour;

 private String answer;

 public QuizQuestion(String subject, String question, String optionOne,

String optionTwo, String optionThree, String optionFour, String answer) {

 this.subject = subject;

 this.question = question;

 this.optionOne = optionOne;

 this.optionTwo = optionTwo;

 this.optionThree = optionThree;

 this.optionFour = optionFour;

 this.answer = answer;

 }

 public String getSubject() {

 return subject;

 }

 public void setSubject(String subject) {

 this.subject = subject;

 }

 public String getQuestion() {

 return question;

 }

 public void setQuestion(String question) {

 this.question = question;

 }

 public String getOptionOne() {

 return optionOne;

 }

 public void setOptionOne(String optionOne) {

 this.optionOne = optionOne;

 - 53 -

 }

 public String getOptionTwo() {

 return optionTwo;

 }

 public void setOptionTwo(String optionTwo) {

 this.optionTwo = optionTwo;

 }

 public String getOptionThree() {

 return optionThree;

 }

 public void setOptionThree(String optionThree) {

 this.optionThree = optionThree;

 }

 public String getOptionFour() {

 return optionFour;

 }

 public void setOptionFour(String optionFour) {

 this.optionFour = optionFour;

 }

 public String getAnswer() {

 return answer;

 }

 public void setAnswer(String answer) {

 this.answer = answer;

 }

}

The below code is the server side PHP script for inserting a quiz question into the

question table in the database.

<?php

if($_SERVER['REQUEST_METHOD']=='POST'){

 $subject= $_POST['subject'];

 $question= $_POST['question'];

 $optionOne= $_POST['optionOne'];

 $optionTwo= $_POST['optionTwo'];

 $optionThree= $_POST['optionThree'];

 $optionFour= $_POST['optionFour'];

 $answer= $_POST['answer'];

 require_once('dbConnect.php');

 - 54 -

 $sql = "INSERT INTO Question (subject, question, optionOne, optionTwo,

optionThree, optionFour, answer) VALUES('$subject', '$question', '$optionOne',

'$optionTwo', '$optionThree', '$optionFour', '$answer')";

 if(mysqli_query($con,$sql)){

 echo 'Question Successfully Created';

 } else{

 echo 'Oops! Something went wrong. Please try again!';

 }

 mysqli_close($con);

} else{

echo 'Error';

}

?>

2.3.5 Connect to Scriba stylus

The ability to connect and communicate with the Scriba stylus is made easy by

importing the nRF-Toolbox library into the project and adding a reference to the

library in the dependencies within the project.

public void bluetooth(MenuItem item) {

 Intent intent= new Intent(this, HRSActivity.class);

 startActivity(intent);

}

2.3.6 Highlighting text with Scriba

The below code is the JavaScript function that highlights the selected text from a

file via the Scriba stylus if in highlight mode. The code retrieves the current selected

text by the user, finds the range of the selected text and then highlights the text

yellow.

document.getElementById(\"page-container\").onclick = function() {\n" +

 "\t\t// Get Selection\n" +

 " sel = window.getSelection();\n" +

 " if (sel.rangeCount && sel.getRangeAt) {\n" +

 " range = sel.getRangeAt(0);\n" +

 " }\n" +

 " // Set design mode to on\n" +

 " document.designMode = \"on\";\n" +

 " if (range) {\n" +

 " sel.removeAllRanges();\n" +

 - 55 -

 " sel.addRange(range);\n" +

 " }\n" +

 " // Colorize text\n" +

 " document.execCommand(\"BackColor\", false, \"yellow\");\n" +

 " // Set design mode to off\n" +

 " document.designMode = \"off\";\n" +

 " \n" +

 " return window.getSelection().toString();\n" +

 " }

2.4 Graphical User Interface (GUI) Layout

Figure 12 shows the design of the Login page. The user will enter there email

address and password, then press the sign in button. The user will then be

redirected to the Upload File page which is shown in Figure 14. Alternatively, the

Figure 13: Signup Activity Figure 12: Login Activity

 - 56 -

user can create an account if they do not have an existing account. By pressing

the join now button, the user will nbe redirected to the registration page shown in

Figure 13. This page will require the user to enter their first anme, last name, email

address and select a password.

Figure 14 shows the Upload file page the user is redirected to upon successful

login. By pressing the button in the middle of the page the user will be able to

attach a file to upload. When a chosen file is selected, the user will upload by

pressing the button labelled upload. The bu tton at the bottom right of the page will

take the user to their uploaded files on the My Files page as seen in Figure 15.

The My Files page will list all the users files and the user can view a files by simply

pressing on one of the listed files.

Figure 15: Files Activity Figure 14: Upload Activity

 - 57 -

Figure 16 shows the file that was selected by the user for viewing. By pressing the

bluetooth icon on the toolbar, a dialog will prompt the user to connect their Scriba

stylus as seen in Figure 17. When a Scriba is connected to the application, the

user will annotate the content at their own will by simply drawing over the screen

with the Scriba.

Figure 16: View File Activity Figure 17: Connect Scriba Dialog

 - 58 -

Figure 18 shows the notes activity were the notes that the user recorded for the

specific file are shown.The user can then select to generate a quiz based on these

stored questions and a quiz will be genrated as seen in Figure 19.

2.5 Testing

The Android Studio IDE was designed to make testing simple buy providing a built-

in JUnit test framework. With Android, there is two types of unit tests, Local unit

tests and Instrumented unit tests. Local unit tests are run on the local Java Virtual

Figure 18: Notes Activity Figure 19: Quiz Activity

 - 59 -

Machine (JVM), while Instrumented tests are run on an Android device or an

Android emulator (Energy, 2016).

The tests will concentrate on testing the logic of the application, which will consist

of many unit tests. Unit tests will be used to establish if the functionality of

components is functioning as expected. Both local and instrumented testing will be

applied to the application as their will be a need for testing individual functions

without Android dependencies (local) and there will also be a need for testing

functions that rely on the Android API (instrumented). Integration testing will be

used to verify that the application behaves in a way that is expected such as user

interactions and user input. Automation testing will also be used to simulate user

interactions with application such as the sign up and login functions.

2.5.1 Unit testing

The JUnit Test Framework is a unit testing framework that provides testing

functionality for the Java programming language. Provided below are unit test

cases for the HashUtil class and the QuizQuestion model class.

2.5.1.1 HashUtilTest

/**

 * @author Ian Cunningham

 */

public class HashUtilTest {

 private String expected =

"5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8";

 private String input = "password";

 private String output;

 @Test

 public void sha256() throws Exception {

 output = HashUtil.sha256(input);

 assertEquals(expected, output);

 }

}

 - 60 -

2.5.1.2 QuizQuestionTest

/**

 * @author Ian Cunningham

 */

public class QuizQuestionTest {

 @Test

 public void getSubject() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "Distributed Systems";

 quizQuestion.setSubject("Distributed Systems");

 String output = quizQuestion.getSubject();

 assertEquals(expected, output);

 }

 @Test

 public void getQuestion() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "Which of the following is a falacie of distributed

computing";

 quizQuestion.setQuestion("Which of the following is a falacie of

distributed computing");

 String output = quizQuestion.getQuestion();

 assertEquals(expected, output);

 }

 @Test

 public void getOptionOne() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "The network is reliable";

 quizQuestion.setOptionOne("The network is reliable");

 String output = quizQuestion.getOptionOne();

 assertEquals(expected, output);

 }

 @Test

 public void getOptionTwo() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "The network is reliable all the time, whatever the

situation";

 quizQuestion.setOptionTwo("The network is reliable all the time,

whatever the situation");

 String output = quizQuestion.getOptionTwo();

Figure 20: HashUtil unit test result

 - 61 -

 assertEquals(expected, output);

 }

 @Test

 public void getOptionThree() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "Topology always changes";

 quizQuestion.setOptionThree("Topology always changes");

 String output = quizQuestion.getOptionThree();

 assertEquals(expected, output);

 }

 @Test

 public void getOptionFour() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "There is two administrators";

 quizQuestion.setOptionFour("There is two administrators");

 String output = quizQuestion.getOptionFour();

 assertEquals(expected, output);

 }

 @Test

 public void getAnswer() throws Exception {

 QuizQuestion quizQuestion = new QuizQuestion();

 String expected = "The network is reliable";

 quizQuestion.setAnswer("The network is reliable");

 String output = quizQuestion.getAnswer();

 assertEquals(expected, output);

 }

}

2.5.2 Integration testing

The integration tests were performed using the Expresso testing framework. The

Expresso testing framework functions with the AndroidJUnitRunner and provides

an instrumentation-based API that provides support for automated UI testing.

Presented below are the automated tests for simulating user actions for registering

with the application and signing into the application.

Figure 21: QuizQuestion unit test result

 - 62 -

2.5.2.1 SignupActivityTest

@LargeTest

@RunWith(AndroidJUnit4.class)

public class SignupActivityTest {

 @Rule

 public ActivityTestRule<LoginActivity> mActivityTestRule = new

ActivityTestRule<>(LoginActivity.class);

 @Test

 public void signupActivityTest() {

 pressBack();

 ViewInteraction appCompatTextView = onView(

 allOf(withId(R.id.linkSignup), withText("No account yet? Create

one")));

 appCompatTextView.perform(scrollTo(), click());

 ViewInteraction appCompatEditText = onView(

 withId(R.id.editTextFirstname));

 appCompatEditText.perform(scrollTo(), replaceText("Lee"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText2 = onView(

 withId(R.id.editTextSurname));

 appCompatEditText2.perform(scrollTo(), replaceText("McCarthy"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText3 = onView(

 withId(R.id.editTextEmail));

 appCompatEditText3.perform(scrollTo(), replaceText("lmac@gmail.com"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText4 = onView(

 withId(R.id.editTextUsername));

 appCompatEditText4.perform(scrollTo(), replaceText("lmac"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText5 = onView(

 withId(R.id.editTextPassword));

 appCompatEditText5.perform(scrollTo(), replaceText("password"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText6 = onView(

 allOf(withId(R.id.editTextPassword), withText("password")));

 appCompatEditText6.perform(pressImeActionButton());

 ViewInteraction appCompatButton = onView(

 allOf(withId(R.id.buttonRegister), withText("Register"),

 withParent(withId(R.id.content_main))));

 appCompatButton.perform(scrollTo(), click());

 }

}

 - 63 -

2.5.2.2 LoginActivityTest

@LargeTest

@RunWith(AndroidJUnit4.class)

public class LoginActivityTest {

 @Rule

 public ActivityTestRule<LoginActivity> mActivityTestRule = new

ActivityTestRule<>(LoginActivity.class);

 @Test

 public void loginActivityTest() {

 ViewInteraction appCompatEditText = onView(

 withId(R.id.editTextEmail));

 appCompatEditText.perform(scrollTo(), replaceText("lmac@gmail.com"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText2 = onView(

 withId(R.id.editTextPassword));

 appCompatEditText2.perform(scrollTo(), replaceText("password"),

closeSoftKeyboard());

 ViewInteraction appCompatEditText3 = onView(

 allOf(withId(R.id.editTextPassword), withText("password")));

 appCompatEditText3.perform(pressImeActionButton());

 ViewInteraction appCompatButton = onView(

 allOf(withId(R.id.buttonLogin), withText("Login")));

 appCompatButton.perform(scrollTo(), click());

 }

}

Figure 22: SignupActivity automated test result

 - 64 -

2.6 Customer testing

The application was tested by the Customer David Craig, CEO Dublin Design

Studio LTD and feedback was acquired. The application was also tested by a host

of people such as fellow students to gain an understanding of the usability of the

application, as this application is aimed at students. A set of tasks to be completed

during the test was devised and a questionnaire was devised for the testers to

complete to give their overall feedback on the application. An email was sent to

the participants asking of them to participate in the testing process. A date was

scheduled with testers that accepted the invitation to take part in the test. As all

participants, would require a Scriba stylus to access all functionality within the

application, it was necessary for a Scriba stylus be provided and thus all

participants were required to participate in the test at a specific location. The

application will also be deployed to the Google Play Store in the future.

2.6.1 Tasks to be completed by tester

 Upload a file to the server

 Open a file from the server

 Create a note

 Create a quiz question

Figure 23: LoginActivity automated test result

 - 65 -

2.6.2 Questionnaire

The questionnaire comprised of ten questions. The questions put forward to all

participants during the testing process are as follows:

1. What is your background?

2. What is your gender?

3. Do you engage with smartphone applications regularly?

4. Are you familiar with Android operating system and Android devices in general?

5. What is your preferred learning style?

6. Have you previously used any study tool applications?

7. Did you find that the design of the application was user-friendly?

8. Did you find the application easy to use and navigate?

9. Do you have any recommendations for the application?

10. Would you use this application for studying purposes in the future?

2.7 Evaluation

The system was evaluated using several different techniques such as unit testing,

integration testing and customer testing. As shown above all unit tests passed.

Integration testing allowed to test how different parts of the application works with

components of the application such as the MySQL database. The integration tests

allowed for the ability to simulate user interactions with the application. All

integration tests passed successfully.

An email was sent to 10 students to establish if they would be interested in

participating in testing the Scriba-College application. The recipient of the email

was informed on the process of the test, which included a set of steps to complete

within the application and then a questionnaire to be completed, which focuses on

the user’s perception of the application. Unfortunately, out of the ten emails sent,

only six responded with an acceptance email. Below is an example email sent to

 - 66 -

a participant after they have tested the application, which contains a link to the

questionnaire.

Figure 24: Email containing link to questionnaire

The results of the questionnaires from the six participants were recorded and

analysed, which generated a view on the usability of the application. Another email

was sent to the test participants to thank them for their participation and to inform

them that their feedback is valued. All ten questions were completed by the six

participants.

Question One

The results showed that 100% of the respondents were students.

1. What is your background?

 - 67 -

Figure 25: Question one results

Question Two

The results also showed that 66% of the respondents were male and 33% female.

2. What is your gender?

Figure 26: Question two results

 - 68 -

Question Three

The results also show that every participant that took the test were aware of

smartphone applications and engage with smartphone applications on a regular

basis. 100% of the respondents answered yes.

3. Do you engage with smartphone applications regularly?

Figure 27: Question three results

Question Four

There was a 66.67% familiarity of the Android operating system. Out of the 6

respondents, four were familiar with Android platform as they currently owned an

Android device. The other two respondents, 33.33% of the respondents, were

current owners of an iPhone and had always used Apple devices.

4. Are you familiar with Android operating system and Android devices in general?

 - 69 -

Figure 28: Question four results

Question Five

Out of the six respondents, 33.33% preferred visual learning, 33.33% preferred

verbal learning and 33.33% preferred physical learning.

5. What is your preferred learning style?

Figure 29: Question five results

 - 70 -

Question Six

The results show that 66.67% of the respondents have previously used a current

study tool application. One respondent mentioned the iTunes University study tool.

33.33% of the respondents have not previously used a study tool application.

6. Have you previously used any study tool application?

Figure 30: Question six results

Question Seven

Out of all the respondents, 100% found that the design of the application was user-

friendly.

7. Did you find that the design of the application was user-friendly?

Figure 31: Question seven results

 - 71 -

Question Eight

66.67% of the respondents found the application easy-to-use and navigate, while

33.33% did not find the application easy to use and navigate. Reasons mentioned

included not being familiar with the Android operating system and Android devices.

Also, a respondent mentioned that it wasn’t obvious as to where all navigation

buttons are located. This will be rectified to eliminate any future confusion when

using the application.

8. Did you find the application easy to use and navigate?

Figure 32: Question eight results

Question Nine

Once again, 66.67% of the respondents gave a recommendation for the

application. 33.33% of the respondents did not make a recommendation. Some of

the recommendations included be more obvious with the navigation and different

colors used. For example, a respondent did not like the yellow on the input boxes

9. Do you have any recommendations for the application?

 - 72 -

Figure 33: Question nine results

Question Ten

All participants of the questionnaire responded that they would use this application

for studying purposes in the future.

10. Would you use this application for studying purposes in the future?

Figure 34: Question ten results

 - 73 -

3 Conclusions

The advantages of the Scriba College application are that it will increase student

engagement with college material by providing a new and intuitive way of creating

and storing college notes. The student’s notes will be stored in centralised area

with ease of access to the student at anytime and anyplace. The application will

enable the student to annotate the college material in a way that that will make it

easier for student to recall important sections and clarify their own understanding

of the study material. The application will also test the student on their knowledge

of their college material by providing quiz’s.

The disadvantages of the application include the necessity that the user must own

an Android device. This will mean that owners of Apple and Windows phones will

not be able to make use of the application. Another disadvantage of the application

is that the user is required to purchase a Scriba stylus to enable full functionality

from the application.

 - 74 -

4 Further development or research

The application over time could evolve into a tool that could be utilized in a

workplace and school environment. There are many different types of scenarios

where this application could be useful and does not have to be constrained to just

a college environment. Also, multi-language support functionality could be

implemented to attract interest globally.

The application could also be further expanded in the future by creating a version

of the application for the Apple platform and Windows platform, or build a cross-

platform application that would run on all three platforms.

 - 75 -

5 References

Energy, B. (2016). Bluetooth Low Energy | Android Developers. [online]
Developer.android.com. Available at:
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
[Accessed 6 Dec. 2016].

Testing, G. (2016). Getting Started with Testing | Android Developers. [online]
Developer.android.com. Available at:
https://developer.android.com/training/testing/start/index.html [Accessed 6
Dec. 2016].

Usabilityfirst.com. (2016). Usability First - About Usability - Requirements
Specification | Usability First. [online] Available at:
http://www.usabilityfirst.com/about-usability/requirements-specification/
[Accessed 3 Dec. 2016].

Using the Material Theme | Android Developers. 2017. Using the Material Theme
| Android Developers. [ONLINE] Available at:
https://developer.android.com/training/material/theme.html. [Accessed 12
February 2017].

 - 76 -

6 Appendix

6.1 Project Proposal

Project Proposal

Scriba College

Ian Cunningham

X13114425

Ian.Cunningham@student.ncirl.ie

BSc (Hons) in Computing – BSHCSD4

Software Development

Date : 21/10/2016

 - 77 -

Contents

6.1.1 Objectives ... 78

6.1.2 Background... 79

6.1.3 Technical Approach .. 79

6.1.4 Special resources required ... 80

6.1.5 Project Plan .. 81

6.1.6 Technical Details .. 82

6.1.7 Evaluation ... 83

 - 78 -

6.1.1 Objectives

The goal of this project is to create a scalable mobile application that runs on the

Android platform. The application will aim to serve as study tool for students, which

makes accessing and interacting with class content easier. The app will allow the

user to annotate the information received in a manner that will make it easier for

them to recall important sections or clarify their own understanding of the content.

The application will store the student’s presentation or study documents in the form

of files such as docx, pdf, ppt etc. The app will integrate the Scriba stylus to allow

them to quickly interact with the learning content. Depending on what mode the

Scriba is in users will be able draw, highlight or erase. When highlight or draw

mode the content that is selected will be saved as a note to accompany the

presentation. The student will also be able to share their notes with their class

mates.

The project is aimed at students using Android devices so that in class they can

bring their device and Scriba and record important notes while in class from the

class material. The application will provide an original method of interacting with

study material that focuses the user’s attention on the learning process rather and

aids future study and recollection.

Objective 1: Serve as a study tool

Objective 2: Increase student engagement with class content

Objective 3: Enhance users understanding of the class content

Objective 4: Develop a way of accessing class notes on the go

Objective 5: Aid future study and recollection

Objective 6: Encourage student-to-student engagement by sharing notes with

class mates

Objective 7: Also, serve as a cloud storage solution for college material.

 - 79 -

6.1.2 Background

The stylus product “Scriba” is an award winning new stylus, which is designed by

Dublin Design Studio. Scriba is designed around the movements of the hand to

make it as comfortable as possible to use. Supporting both left and right handed

users, Scriba works with mobile and tablet devices and contains a squeeze motion

technology to increase control and offer an innovative experience. Scriba’s body

bends to the users every touch and movements are detected allowing the user to

access different application functionality.

Students often find it hard to recall important information from class material or

leave it to the last minute to gather all their notes together for studying purposes

before exams or continuous assessments. This application will allow students to

have their notes all stored in one location. Students will record notes during class

and these notes will be saved to accompany the specific document. Therefore

when the student takes important notes in class, the student will know when it

comes to exam time that these notes are important and can be easily accessed.

The student can then read over their notes anywhere and anytime. The application

will provide a way for users to increase engagement with the class content,

therefore gaining better and more understanding of the class material.

I am comfortable in Android Development and have created numerous Android

applications in previous projects. I have also created Android applications for a

company while on work placement and these applications also integrated

functionality with the Scriba stylus.

6.1.3 Technical Approach

In order to have the most effective impact on interacting with the students, an

Android mobile application would best suit the needs of the project. I have chosen

to develop for Android devices as it used the most widely used operating system

in the mobile market. I am experienced in Android Development and have created

numerous Android applications for college projects and work placement projects.

 - 80 -

Also another important factor that made look in the direction of Android was the

matter of cost-effectiveness for the student as Android devices can purchased from

as little as €50.

The files that the user uploads to the application will be stored in a file folder on

the server and the filename and path to the file on the server will be stored in a

MySQL database hosted on a cloud hosting service called “x10 Hosting”. The files

will be saved and retrieved from the server using PHP. The file data will be

retrieved in JSON format. The JSON string will then be parsed to display the name

of each file in an Android List View.

Following a lot of research regarding opening files within my Android application, I

have concluded that best solution would be to use an Android Web View for

containing the opened files and use Googles free embed tool called GView for

displaying the files content. This allows to view all your files in a Google Drive

preview. This can be achieved by placing http://docs.google.com/gview?url= in

front of the full path URL to the file.

The Implementation is described in detail in Technical Details, although this may

change over time.

6.1.4 Special resources required

Bluetooth Low Energy (BLE) API - For this project, the app is required to interact

with the Scriba stylus via BLE.

Scriba Stylus – For communicating with the BLE API and coordinating user

functions within the application

Android Device – For testing purposes as Android emulator not reliable

Android Studio – The IDE that will be used for the development of this project will

be Android Studio, as I am experienced with this IDE from previous projects.

http://docs.google.com/gview?url=

 - 81 -

6.1.5 Project Plan

Gantt chart using Microsoft Project with details on implementation steps and

timelines

 - 82 -

6.1.6 Technical Details

Frontend

 Android – Java

 XML – for design and layout

 JSON for representation of the data

Bluetooth Connectivity

 Bluetooth Low Energy (BLE) API for Android

Database Management System

 MySQL

 - 83 -

Server Side Language

 PHP

Hosting Server

 X10 Hosting

Libraries

 May configure the Nordic Semiconductor application “nRF Toolbox” into a

library to include in the project. This app provides a BLE API for connecting

BLE devices. Nordic Semiconductor are the manufacturers of the chipset

included in the Scriba stylus.

6.1.7 Evaluation

Android Studio was designed with testing in mind and makes testing simple by

providing a JUnit test framework. I will perform unit tests on the functions and

methods by using Android’s JUnit test framework.

I will perform integration tests to insure different aspects of the application work

together correctly, ensure Bluetooth connectivity works and also perform system

testing to ensure stable communication between the application and the server,

the application and the Scriba stylus and the application as a system.

I will evaluate the system with an end user by testing the application on an Android

device and on the Android Emulator provided by Android Studio. I will also deploy

the application to the Google Play Store when complete. I will purchase a Google

Play Developer Console as this is needed for deploying apps to the Google Play

Store. Users can rate the app and leave their reviews of the application.

Ian Cunningham 21/10/2016

Signature of student and date

 - 84 -

6.2 Project Plan

 - 85 -

 - 86 -

 - 87 -

6.3 Monthly Journals

6.3.1 Reflective Journal (September)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: September 2016

My Achievements

After countless time of thinking about my 4th year software project I now think I

have an idea suitable for my 4th year project. This month, I have been involved in

a lot research in relation to my project idea to iron out any issues that may arise

further down the line. From this research, I have concluded that my project is a

feasible idea to achieve and I am confident of achieving an efficient end result. My

contributions to the project this month included researching the various techniques

and technologies that would best suit the needs of my project.

My Reflection

I feel that this project is definitely achievable and should be attempted as it provides

functionality seen in disparate applications to create a new application. The project

will be an Android application that will serve as a study tool for students. The app

is aimed at students using Android devices so that in class they can bring device

and Scriba and record important notes from class as over marks to the

presentation material. Scriba is a new stylus product and the app will allow the user

to annotate the information received in a manner that will make it easier for them

to recall important sections or clarify their own understanding of the content. The

app will store presentation or study documents received on a server, in the form of

files such as docx, pdf, ppt etc. The app will integrate the Scriba stylus to allow

them to quickly interact with the learning content. Depending on what mode the

 - 88 -

Scriba is in users will be able draw, highlight, etc. When in highlight or draw mode

the content that is selected will be saved as a note to accompany the presentation.

I feel this will be challenging as it involves developing an application that combines

several different functionalities such as saving documents to a server, displaying

documents from a server, drawing/highlighting over the documents, generating

notes from the documents, storing the generated data, embedding framework

software and Bluetooth connectivity. This project is different to others in the same

area as the app will integrate the functionality seen in different kinds of applications

to create a new learning tool. The app also takes advantage of a new stylus product

which provides the user quick access to functionality of the app, unlike other

offerings which require drop down menus and settings.

Intended Changes

Next month, after the project has been pitched to a panel and if the project has

been accepted I will immediately get to work on my Project Proposal Document

and Requirements Specification Document. I will also aim to do a bit more research

in relation to the application and get started on a prototype.

Supervisor Meetings

I am currently awaiting confirmation of whether my project idea has been accepted

or rejected and will be notified in the next few days. When the decision is made, I

will immediately get in contact with an Academic Supervisor.

Date of Meeting: N/A

Items discussed: N/A

Action Items: N/A

 - 89 -

6.3.2 Reflective Journal (October)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: October 2016

My Achievements

My project idea was pitched to a panel and was accepted with revisions. I then

started working on Project Proposal and this month I have successfully completed

my Project Proposal and have also been assigned my project Supervisor. My

Supervisor for the project will be Mr Paul Stynes. I have been involved in a bit of

research to refresh the mind regarding Requirements Specification documents. I

have now begun writing my requirements specification document and the process

of gathering the requirements of the project. I have been in consultation with David

Craig, CEO of Dublin Design Studio to gather the expected user requirements of

the project. My contributions to the project this month included completing and

uploading the Project Proposal document, gathering the requirements of the

project and getting started on writing the requirements specification document. I

have also identified my functional requirements and non-functional requirements,

therefore completing my use case diagram.

My Reflection

I feel that it made sense and was helpful to refresh the mind and do a bit of research

on Requirement Specification documents. It was especially helpful to refresh the

mind about UML diagrams such as class diagrams and use case diagrams. I also

found useful information on writing use cases effectively including their main flow,

alternate flow and Exceptional flow.

 - 90 -

I felt the meeting with David Craig helped iron out any issues or conflicts we had

about the project. This meeting also helped to identify the user requirements,

functional requirements and nonfunctional requirements for the application.

I feel that creating a project plan and following the Project Plan Gantt Chart

included in the Project Proposal is working well and is helping me keep on track

with my project deadlines.

Intended Changes

Next month, I will continue to complete the requirements specification document

including GUI mock-ups and the system architecture diagram. I will also aim to do

research regarding different technologies and API’S available to use for the

project. I also hope to get started on a prototype of the project.

Supervisor Meetings

When I was assigned my project Supervisor, I immediately got in contact with Paul

Stynes to arrange a meeting. Paul responded with a proposed meeting for two

days later which was pleasant as it meant we could start talking about the project

early.

Date of Meeting: 24th October 2016

Items discussed:

 Introduction to project/What type of application it will be

 How the project will work/what it will do?

 Gathering requirements

Action Items:

 Identify Requirements

 Create use case diagram

 - 91 -

 Continue Requirements Specification document

6.3.3 Reflective Journal (November)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: November 2016

My Achievements

This month I have started working on my technical report and have also begun the

development of a prototype for the Mid-Point Presentation on the 19th December

2016. I have also continued with previous research for the project, while

researching new topics for the project. These new topics include researching ways

in which to the implement the functionality of generating a quiz based on the users

stored notes using natural language processing. This is a new area to me and will

obviously take some time to gain a proper understanding of the area but I will

obviously give it my best shot. The topics of interest for research include natural

language processing, OWL ontology and an online OWL tutorial called the Pizza

tutorial. This month I successfully completed and uploaded the requirements

specification document.

My Reflection

I feel that the workload in other modules with Continuous Assessments and

projects has slightly held backed the focus on the project as I would of liken more

time to focus on this project. I have been successful in getting each deliverable for

this project uploaded on time, even with the workload from the other modules.

 - 92 -

I feel that if I can get the functionality of generating quizzes based on the users

notes working, this would be a fantastic achievement and a very unique feature to

my project. Similar applications in this area do not offer this feature.

Intended Changes

Next month, I will continue to complete the Technical Report for upload. I will also

continue to develop my prototype and prepare for the Mid-Point Presentation. I

also aim to do research regarding the new functions pitched and continue to plan

ahead for the project. I will also look into the other functionality ideas for the project

such as creating mind maps and study plans.

Supervisor Meetings

This month I had two meetings with my project Supervisor. In the first meeting we

mainly discussed about new functionalities that could be added to the project such

as the generation of quiz’s using natural language processing. We also discussed

and I was given advice on applying the finishing touches to the Requirements

Specification document.

During the second meeting we mainly discussed the generating quiz functionality

and was advised on a few items to research and a tutorial to complete to gain an

understanding of the technologies needed to fulfil this functionality.

Date of Meeting: 2nd November 2016

 14th November 2016

Items discussed:

 Completing the Requirements Specification

 New functionalities for the project

 - 93 -

Action Items:

 Research technologies behind natural language processing

 Start Technical Report and prototype

 Complete online Pizza tutorial for to try gain understanding of what is
needed for the generate quiz functionality.

6.3.4 Reflective Journal (December)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: December 2016

My Achievements

This month I have completed and uploaded the Technical Report. I have also

created a prototype of the project consisting of a few project functions. This was

necessary for demonstration purposes for the Mid-Point Presentation. On the 19th

December 2016, I presented my project Mid-Pont Presentation and demonstrated

the functions of my project prototype to my project supervisor Paul Stynes and

Mohammad Iqbal.

This month I also planned to do more research related to the project, but due to

other module projects and uploads, was unable to perform as research as I would

of liken to. I will now start the development of the final project by extending my

current project prototype.

My Reflection

I thought that the Mid-Point Presentation went well and I was pleased with

feedback given. I am also pleased with the grade I have received for the Mid-Point

 - 94 -

Presentation. I feel that the project is going according to the project plan, which is

also contributing to keeping on track with all project related uploads.

Intended Changes

Next month, I will continue to do more research for certain functions for the

application. I will also start the development of the final project by creating the

database needed for the application and implement the overall design and style of

the application. As the project is a mobile application, design is also an important

factor to consider and it is important to provide users with a user-friendly and easy

to navigate application. I will also start to implement the function of connecting to

and interaction with the Scriba stylus within the application as this is the next step

in functionality to extend from the current prototype.

Supervisor Meetings

This month there was two meetings scheduled with my project supervisor, but for

some reason one was cancelled and then I unfortunately could not make the other

meeting. In January, when the exams are finished and the new semester is

beginning I will organize a meeting with my supervisor. I will also seek help from

my supervisor regarding the function of generating quiz using natural language

processing and OWL ontology.

Date of Meeting: 5th December 2016 - Cancelled

 12th December 2016 – Not Present

Items discussed:

 Meeting Cancelled

 Not Present

 - 95 -

Action Items:

 Research technologies behind natural language processing

 Complete online Pizza tutorial for to try gain understanding of what is
needed for the generate quiz functionality

 Create Database for application

 Design Graphical User Interface

 Extend current implemented functions for final project

 Implement documented functions, such as interaction with the Scriba stylus
and Create and View Notes

6.3.5 Reflective Journal (January)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: January 2017

My Achievements

This month I have been successful in designing the user interface of the system

and implementing the database for the application. The database is a MySQL

database which will communicate with the application with the assistance of PHP

scripts for server side code. The database currently consists of three tables User,

File and Note but as the project progresses, there will be a need to add tables to

store the generated quiz’s, the created mind maps and study plan’s. I have also

begun the process of writing my project analysis and design document, which will

describe and define the necessary information required to effectively provide a

description of the architecture and design of the system for the purpose of the

software development process.

This month I have also done some research regarding Ontologies and web

semantics. I was advised to have a look at the Pizza tutorial by my project

supervisor, which was available as a sample project with a downloadable ontology

 - 96 -

tool called “Protégé”. I have downloaded this tool and am currently investigating

the provided sample ontologies.

My Reflection

I feel that the project is going well and this week have a made a few breakthroughs

in the project in terms of functionality and file conversion. The tools used in the

project such as Google’s GView Embed Tool will not be needed in the project

anymore for the purpose of viewing files. When using this tool, it would allow the

viewing of a document but did not support Android’s native text selection feature

in the way that suffice for the project. I have been successful in finding an

alternative solution that supports the sort of functionality that is needed for the

project. I have found an API called Cloud Convert API which converts documents

into many different file formats. In the project, when the user selects a file to view,

a request is sent to the API with parameters specifying the current file type and the

file type you want to convert to. In my case, all files will be converted to html files

and displayed in an Android Web View.

Intended Changes

Next month, I will continue writing my project analysis and design document and

aim to have it completed by the 24th February. I will also create a library for the

project to call functions necessary to communicate with the Scriba stylus. The

library is an application provided by Nordic Semiconductor, the creators of the

Scriba’s SoC (System on a Chip. I will transform this android application into a

library that can be used as a dependency in my project. I also aim to start creating

my ontology for the Quiz function.

Supervisor Meetings

This month there were no meetings with the supervisor due to exams and

Semester 2 beginning on the 23rd January 2017. I have been in touch with my

 - 97 -

Supervisor and on the 6th February, we had a meeting to provide feedback from

the mid-point presentation and explain exactly where I gained and lost marks. We

also discussed how the project was progressing. My supervisor has also arranged

a meeting for the 13th February 2017.

Date of Meeting: 6th February 2017

 13th February 2017 - Arranged

Items discussed:

 Individual feedback from mid-point presentation

 Ontologies and Web Semantics, the best approach

Action Items:

 Further research on Ontologies and Web Semantics

 Extend Database for application

 Finish Project Analysis and Design document

 Integrate documented functions, such as interaction with the Scriba stylus

 Create Library for the project

6.3.6 Reflective Journal (February)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: February 2017

My Achievements

This month I have been successful in uploading the project analysis and design

specification. I have also fully implemented the database for the application with

 - 98 -

all the necessary tables and the relationships between these tables have been

configured. The database consists of six tables, User, File, Note, Quiz, Mind map

and Study Plan. I have also created a library for the project to provide functions

that are necessary for interaction with the Scriba stylus. The library was created

using an android application provided by Nordic Semiconductor, the creators of

the Scriba’s SoC (System on a Chip). The application was transformed into a

library using tools provided in the Android Studio IDE. This enabled me to add the

library as a dependency in my project.

This month I have also done more research regarding Ontologies and web

semantics but not as much as would have liked due to other projects. I was advised

to have a look at web sematic dictionaries by my project supervisor, which could

help with putting meaning to the students stored notes within application. I have

also started researching this topic.

My Reflection

I feel that project is going according-to the plan and I am coming across new

options in terms of technologies and platforms for the project. I am currently

considering integrating Firebase into the project to provide the database and

storage facility. Firebase is a platform mobile and web applications that provides

many tools for building high-quality applications. Firebase provides many services

such as Authentication, Real-time Database, Storage, Cloud Messaging, Hosting

and many more.

Intended Changes

Next month, I aim to implement functionality with the Scriba stylus by using the

library created and develop the necessary Scriba functions that will be contained

within the application. Such features include highlighting document text which will

then be stored automatically as a note and drawing over document content which

 - 99 -

will give the user the option to store an image of the current page of the document

that has been drawn over.

Supervisor Meetings

This month there was weekly meetings with my project supervisor. Each week I

provided details about my current standing in relation to the project and was given

set goals to reach for each week. New ideas were devised such as using a web

dictionary to apply meaning to the text saved as a note. I have also been advised

to keep investigating web semantics and ontologies for the generation of quizzes

as this would be a unique feature not seen in a study tool application.

Date of Meeting: 6th February 2017

 13th February 2017

 20th February 2017

 27th February 2017

Items discussed:

 Individual feedback from mid-point presentation

 Ontologies and Web Semantics, the best approach

 Progression of project

 Web dictionary’s

 Consider implementing functionality with Firebase

Action Items:

 Further research on Ontologies and Web Semantics

 Researching web dictionary’s

 Research Firebase for Android

 Implement functionality with the Scriba library for the project

 Develop Scriba in-app functions

 - 100 -

6.3.7 Reflective Journal (March)

Reflective Journal

Student name: Ian Cunningham

Programme: BSHCSD4 – Software Development Stream

Month: March 2017

My Achievements

This month I have explored implementing Firebase for Android into my application

for authentication, cloud storage and database. This was going well until I

encountered a problem with rendering the files stored on Firebase cloud storage.

When receiving the URL of the file intended to be viewed there is an issue with

displaying the document with the Cloud Convert API needed for converting the files

to html files to enable the files to be viewable within an Android WebView widget.

I could not find a solution to this problem as most Firebase tutorials provided have

only dealt with storing and retrieving images specifically on the Firebase cloud

storage and have found it hard to find an example of storing and retrieving

documents on Firebase cloud storage. I have therefore reverted to my original

storage and database source using XAMPP, MySQL and PHP. XAMPP server will

be used during the development process and then deployed to a live hosting

service when project is complete.

This month I have started developing the AI chat bot within the application using

API.ai. API.ai is a platform for building conversational interfaces for applications.

The chat bot will be trained to react to questions from the user, specifically trained

to react to questions about computer science. I have also started developing the

quiz functionality where the user can create quiz questions for studying purposes.

I have also started writing the final technical report for the final project upload.

 - 101 -

My Reflection

I feel the project is going well but was slowed down with the attempt to integrate

functionality with Firebase cloud storage and database. As mentioned above the

issue with displaying the URL of the file from Firebase storage within an Android

WebView widget. I feel that the original source for file storage and data storage

works better for this project and seems better in performance terms and the

rendering of the documents.

Intended Changes

From this point until the final upload of the project I plan to implement all remaining

functionalities and carry out my testing of the project. Several testing methods will

be carried such as unit testing, integration testing and customer testing. When my

final technical report is complete I intend on having the document proof-read by

my project supervisor.

Supervisor Meetings

This month there was weekly meetings with my project supervisor. Each week I

provided details about my current standing in relation to the project and was given

set goals to reach for each week. New ideas were devised such as using a AI chat

bot within the application rather than the web semantic quiz generation as there

were many issues encountered trying to implement the automatic quiz generation

as the area of web semantics was new to me. I have also been advised to get a

start on the final technical report for the final project upload.

Date of Meeting: 6th March 2017

 13th March 2017

 20th March 2017

 27th March 2017

 - 102 -

Items discussed:

 Replacing web semantic quiz with AI chat bot embedded within app

 Implement Firebase for Android

 Progression of project

 Reverting to original source of file and data storage

 Getting started on the final technical report

Action Items:

 Implement AI chat bot to embed within application

 Functionality to enable user to create quizzes with questions created by
them

 Writing the final technical report

 Develop Scriba in-app functions

 Other functionality such as creating mind maps and study plans

 - 103 -

6.4 Other Material Used

 - 104 -

 - 105 -

 - 106 -

6.5 Document References

The following table summarizes the documents referenced within this document.

Document
Name and

Version

Description Location

Material Design
Specification

Guidelines for using
Material Design within
your Android applications

https://material.io/guidelines/

https://material.io/guidelines/

 - 107 -

6.6 Key Terms

The following table provides definitions for terms relevant to this document.

Term Definition

Scriba The next generation stylus created by Dublin Design
Studio Ltd.

API Application Programming Interface. Cloud Converter
API for converting documents to html files for viewing in
a web view.

BLE Bluetooth Low Energy that provides communication
with the Scriba stylus.

REST Representational State Transfer. A RESTful API
enables interoperability and communication between
client and server.

MVC Model-View-Controller is a design pattern used in
software development.

HTTPS Hypertext Transfer Protocol Secure is a protocol that
enables communication over the internet with an
encrypted connection.

HTTP Hypertext Transfer Protocol is a protocol that enables
communication over the internet.

SSL Secure Sockets Layer is the standard security
technology that provides an encrypted connection
between client and server.

SHA Secure Hash Algorithm 256 is a cryptographic hash
function that generates a unique 256-bit hash.

