

National College of Ireland

BSc in Computing

2016/2017

Graham Murray

13504987

graham.murray@student.ncirl.ie

Supervisor: Mr Vikas Sahni

Making social network analysis available to everyone. A social

network analysis platform in the cloud.

Exograph

Technical Report

Exograph Technical Report

1

Project Declaration

SECTION 1

Name: Graham Murray

Student ID: 13504987

Supervisor: Vikas Sahni

SECTION 2: Confirmation of Authorship

I confirm that I have read the College statement on plagiarism and that the work I have

submitted for assessment is entirely my own work.

Signature: ___________________________________ Date: ____________

Exograph Technical Report

2

Table of Contents

Executive Summary .. 8

1 Introduction .. 9

1.1 Background .. 9

1.2 Aims ... 10

1.3 Technologies.. 10

1.3.1 Python .. 10

1.3.2 Neo4J.. 11

1.3.3 NodeJS .. 11

1.3.4 Jade .. 11

1.3.5 Data Driven Documents (D3.js) ... 12

1.4 Structure .. 12

2 System .. 13

2.1 User Requirements .. 13

2.1.1 Friendliness .. 13

2.1.2 Self Intuitive ... 13

2.1.3 Pages Must Load Within 5 Seconds ... 13

2.1.4 Delete and Restore Graphs .. 13

2.1.5 Interactive Visualisations ... 13

2.1.6 Work Seamlessly Across Major Browsers .. 14

2.1.7 Export a Graph as an Image or in Raw Format .. 14

2.1.8 Provide a Charted Summary of a Graph .. 14

2.2 Functional Requirements .. 15

Requirement 1 <User Authentication> .. 15

Requirement 2 <Import Data> ... 18

Requirement 3 <Manipulate Graph> ... 21

Requirement 4 <Export Graph to Image> .. 24

Requirement 5 <View Charted Summary> ... 27

Requirement 6 <Edit User Account> .. 29

2.3 Non-Functional Requirements .. 31

2.3.1 Performance Requirement .. 31

2.3.2 Recovery Requirement .. 31

Exograph Technical Report

3

2.3.3 Scalability Requirement ... 31

2.3.4 Reliability Requirement ... 32

2.3.5 Security Requirement .. 32

2.3.6 Maintainability Requirement .. 32

2.3.7 Usability Requirement ... 32

2.3.8 Reusability Requirement .. 33

2.3.9 Interoperability Requirement .. 33

2.4 Design and Architecture .. 34

2.4.1 Design Approach and Standards Overview ... 34

2.4.1.1 Bottom up Approach ... 34

2.4.1.2 Service Encapsulation .. 34

2.4.1.3 Single Responsibility .. 34

2.4.1.4 Data Representation Standards ... 35

2.4.1.5 Communication Standards .. 35

2.4.2 Architecture Design ... 36

2.4.2.1 Class Diagram ... 36

2.4.2.2 Sequence Diagram ... 37

2.4.2.3 Hardware Architecture .. 38

2.4.2.4 Software Architecture .. 39

2.4.2.4.1 UI Server.. 39

2.4.2.4.2 Extractor Service ... 40

2.4.2.4.3 Security Architecture .. 42

2.4.2.4.4 Communication Architecture ... 43

2.4.3 Database Design .. 44

2.4.3.1 Neo4J Schema .. 44

2.4.3.2 MySQL Extractor Service Schema .. 45

2.5 Implementation ... 46

2.5.1 Twitter Crawler .. 46

2.5.2 LinkedIn Crawler .. 48

2.5.3 Bulk Loader .. 50

2.5.4 UI Server Generating a D3 Graph Model. .. 52

2.6 Graphical User Interface ... 53

Exograph Technical Report

4

2.6.1 Import Graph ... 53

2.6.2 Graph Dashboard ... 54

2.6.3 Graph View .. 55

2.6.4 Graph Analytics .. 56

2.6.5 Graph Trash ... 57

2.6.6 User Profile .. 58

2.7 Testing ... 59

2.7.1 Unit Testing ... 59

2.7.1.1 Extractor ... 60

2.7.1.2 UI Server ... 61

2.7.2 Integration Testing .. 62

2.7.2.1 Extractor ... 62

2.7.2.2 UI Server ... 63

2.7.3 Customer Testing .. 64

2.7.3.1 Import your LinkedIn Network. ... 65

2.7.3.2 View the Newly Imported Graph ... 66

2.7.3.3 Send a Graph to Trash ... 68

2.7.3.4 Final Customer Testing .. 69

2.8 Evaluation .. 70

2.8.1 Performance Testing .. 70

2.8.1.1 LinkedIn Crawler Import without Caching ... 70

2.8.1.2 Twitter Crawler Import without Caching ... 71

2.8.1.3 Twitter Crawler Import with Caching .. 72

2.8.1.4 Twitter Import Caching Comparison ... 73

2.8.1.5 Neo4j Query Performance ... 74

2.8.2 User Satisfaction March ... 75

2.8.3 User Satisfaction May .. 76

2.9 Deployment ... 77

3 Conclusions ... 78

4 Acknowledgements .. 79

5 Further Development ... 80

5.1 Advanced Analytics .. 80

Exograph Technical Report

5

5.2 Micro Services .. 80

5.3 Graph Merging ... 80

5.4 Custom Graphs .. 80

6 References .. 81

7 Appendix ... 82

7.1 User Manual .. 82

7.1.1 Importing a Graph .. 82

7.1.2 Viewing an Imported Graph ... 83

7.1.3 Deleting a Graph ... 84

7.1.4 Accessing Graph Analytics .. 85

7.1.5 View Executed Jobs .. 86

7.1.6 Updating Account Information ... 87

7.1.7 Changing a Profile Image .. 88

7.2 Project Proposal .. 89

7.3 Monthly Journals .. 94

7.3.1 September .. 94

7.3.2 October ... 96

7.3.3 November ... 100

7.3.4 December ... 103

7.3.5 January .. 104

7.3.6 February .. 107

7.3.7 March .. 110

Exograph Technical Report

6

Table of Figures

Figure 1: User Authentication Use Case ... 15

Figure 2: Import Data Use Case Diagram ... 18

Figure 3: Manipulate Graph Use Case Diagram ... 21

Figure 4: Export Graph to Image Use Case Diagram .. 24

Figure 5: View Charted Summary Use Case Diagram .. 27

Figure 6: Edit User Account Use Case Diagram ... 29

Figure 7: System Class Diagram ... 36

Figure 8: System Sequence Diagram ... 37

Figure 9: System Hardware Architecture ... 38

Figure 10: UI Server Software Architecture ... 39

Figure 11: Extractor Service Architecture .. 40

Figure 12: Exograph Security Question .. 42

Figure 13: System Communication Architecture ... 43

Figure 14: Neo4J Database Schema ... 44

Figure 15: Extractor Service Database Schema ... 45

Figure 16: Gathering a User’s Twitter Friends ... 46

Figure 17: Retrieving Twitter Friends of Friends ... 47

Figure 18: Creating a List of Edges ... 47

Figure 19: Configuring Local Cookie Opener ... 48

Figure 20: Automated LinkedIn Login .. 49

Figure 21: Requesting a User’s LinkedIn Connections ... 49

Figure 22: Bulk Loader Generating Node Insert Statements ... 50

Figure 23: Bulk Loader Generating Edge Statements .. 51

Figure 24: UI Server, Generating a D3 Graph Representation .. 52

Figure 25: Import Graph Page .. 53

Figure 26: Dashboard Page .. 54

Figure 27: Viewing a Graph .. 55

Figure 28: Graph Analytics Page .. 56

Figure 29: Trash Page, Delete and Restore .. 57

Figure 30: Profile Pagwith Profile Image Upload ... 58

Figure 31: Extractor Python Unit Test .. 60

Figure 32: UI Server User Model Unit Test .. 61

Figure 33: Extractor Integration Test ... 62

Figure 34: UI Server Selenium Login Integration Testing .. 63

Exograph Technical Report

7

Table of Tables

Table 1: Customer Testing LinkedIn Import Results .. 65

Table 2: Customer Testing View Graph Results ... 67

Table 3: Customer Testing Sending a Graph to Trash Results .. 68

Table 4: Total LinkedIn Network Import Time no Caching ... 70

Table 5: Total Twitter Network Import Time no Caching ... 71

Table 6: Total Twitter Network Import Time with Caching ... 72

Table 7: Twitter Import Time Caching Performance Improvement .. 73

Table 8: Neo4j Sub Graph Retrieval Response Time ... 74

Table 9: User Satisfaction Ratings on Key Pages in March .. 75

Table 10: User Satisfaction Ratings in May .. 76

Exograph Technical Report

8

Executive Summary

This project involved the implementation of a social network analysis system that facilitates

Recruitment Consultants when finding potential candidates for a role. The primary aim of

the project was to implement a functional system that meets the needs of a Recruiter in a

high paced role. This report describes and evaluates a range of different areas relating to

the overall chosen solution. A lack of commercially available solutions to the problem were

identified early on during various brainstorming sessions. The solution is called Exograph.

Initially, differing sources that would provide data to the application were identified. Small

proof of concept programs written in Python were then developed to test the application

and estimate the level of effort required to carry out the task on a production scale.

Problems were encountered gaining access to the required data from LinkedIn during the

early stages. User Interface prototypes were developed to test the integration of a data

visualisation framework and ensure it had all the required functionality to meet the needs of

the functional requirements outlined in the Requirements Specification. During this time,

alternative solutions were evaluated. An alternative solution to the original problem was to

change the targeted end-user if access to the LinkedIn professional network was not

acquired. The alternative solution allows anyone interested in visualising their social

network to have access to the system to perform such a task. As the size of a person’s

network can differ depending on their popularity, this is a factor that has an impact on

performance in a production environment.

Exograph Technical Report

9

1 Introduction

1.1 Background

Social Network theory has been in existence for a long time. People have been analysing

social networks since medieval times. With the rise of the digital age, the capabilities of such

analytics have become more accessible. The application of the area is used extensively by

historians, sociologists, and economists alike.

In today’s world, millions of people connect with each other using social network mediums

such as Facebook, Twitter, LinkedIn and Instagram. Social Networks can be described as a

graph of people who come in contact with each other through such a medium. Everyday

there are massive amounts of User generated data as a result of such relationships. People

constantly rely on these mediums to keep in contact with each other and meet new people,

forging new relationships. From a Computer Science aspect this opens a world of

possibilities to exploit such data. Graph theory is a very powerful mathematical concept

which can be applied to solving such problems and representing relationships between

groups of people.

From the point of view of a Recruitment Consultant looking to hire someone, it can be a

tedious process manually attempting to see who they are connected to and finding people

who are connected with the same profession to find a suitable person for a role. A Recruiter

would be a prime example of a person who would connect with people in a cohesive way.

As the old saying goes, good people know other good people.

Data visualisation is the graphical representation of data in an all-inclusive way. It enables us

to perceive things that would not be otherwise possible. By combining such social network

graphs and visually representing them, we can get new insights from data about

relationships that we did not even know existed.

Exograph Technical Report

10

1.2 Aims

The main aim of the Project was to develop an application that enables Recruitment

Consultants and others to visually analyse their social connections. The solution helps

Recruiters to understand how they are connected with other people. From the perspective

of a Recruiter, the solution facilitates them when finding people who are commonly

connected to either themselves or others in order to identify a suitable person for a job they

may be hiring for. The system is also available to anyone wishing to explore their networks.

The solution utilises multiple channels such as LinkedIn and Twitter as data sources. The

project demonstrates multiple Computer Science concepts such as Graph Theory, Parsing,

Distributed Computing, and Data Visualisation. The process of gathering and performing

computations on the data should be transparent to the end-user. From the time they launch

an import to when the graph is rendered they are unaware of anything regarding the

process. The application is based around Software as a Service model in a cloud

environment and is available to Users at anytime, anywhere.

1.3 Technologies

1.3.1 Python

Python is a functional programming language that is both easy to learn and use. The first

part of the project focused on extracting data from third party APIs. This required a

powerful functional language that could process data swiftly in an environment with

minimal resource requirements. This component is the most vital as it needs to perform

efficiently and scale as the load on the application grows. There is an abundant amount of

community developed libraries for interacting with APIs such as those provided by Twitter.

An example is Tweepy which provides a wrapper around the Twitter API and abstracts away

the complexities associated with it (Roesslein, J. et. al 2009). There are other functional

programming languages such as Lisp and R. They were not chosen as research revealed that

there are more Python libraries available that meet the needs of the project.

Exograph Technical Report

11

1.3.2 Neo4J

The domain concept of the project focuses on graphs and graph oriented data structures.

Neo4J is a scalable graph database management system that provides the data persistence

tier in the application stack. It works most effectively when storing highly connected

elements and therefore meets the needs of the non-functional requirements of the system

as it supports a distributed clustering architecture and exhibits low latency (Holzschuher, F.

and Peinl, R. et. al 2013). Neo4J is a core component in the stack, the data that exists within

the Exograph system is highly connected data. For this reason, Neo4J was selected over

other solutions such as MySQL and MongoDB. Mongo was the primary potential databases

researched in depth but did not fit the needs of the project due to the nature of the data

being stored. The same is true for MySQL, query performance would have been an issue as a

large amount of foreign key relationships would have been required which would diminish

query performance due to complex joins.

1.3.3 NodeJS

Python and Neo4J perform the roles of extracting the data and storing it, but this is only a

small part of the solution. A server side technology is needed to support the client side

interactions with the system. This is where NodeJS comes in, Node is a JavaScript based

runtime environment that allows server side components to be written in JavaScript. It

provides a diverse range of packages that could be integrated into the heart of the

application to support technologies such as Neo4j and the D3 visualisation framework.

Various other server side technologies were evaluated but Node came out on top. PHP was

considered but eventually discarded due to the fact it is a low level programming language

compared to Node.

1.3.4 Jade

The above technologies cover the essential server side components, but Jade is another key

component that provides a view into the system for a User. Jade is a server side templating

engine that runs on top of Node allowing mark-up to be written in a simple, elegant

manner. The components built with Jade are fully reusable and allow views to be developed

quickly while supporting concepts usually seen in programming languages such as loops and

conditional statements. Other templating engines such as Handlebars and Eco were

investigated and tested. Jade was selected due to its maturity and performance benefits

over the other technologies.

Exograph Technical Report

12

1.3.5 Data Driven Documents (D3.js)

D3 is a powerful data visualisation library that produces interactive client side visualisations.

It integrates excellently with Node as there is a set of packages built specifically around

incorporating D3 into the ecosystem. D3 provides a rich set of features that gives power to

the developer to create complex, custom visualisations. A number of different data

visualisation libraries were analysed during the early stages of the project. Vis.js was a

potential option but focused on many different visualisations and tried to everything well.

D3 was selected because of its rich set of functionality and high level of control over the end

visualisation result.

1.4 Structure

Section 2 (System) outlines the system, describing what it should do and how it should do it.

It includes User Requirements, Functional Requirements, Non-Functional Requirements,

Design and Architecture and the Graphical User Interface. There is a sub section that focuses

on testing, mainly in the areas of Unit Testing, Integration Testing and Customer Testing. An

evaluation section presents the results of system analysis in a number of areas.

Section 3 (Conclusions) summarises the findings outlined in the paper.

Section 4 (Acknowledgments) a section dedicated to thanking the people who made the

project possible.

Section 5 (Future Developments) discusses the possible future developments of the project

if more resources were available

Section 6 (References) is a list of all references used during the development of the project.

The style of referencing used is the Harvard style.

Section 7 (Appendix) consists of four sub sections. The User Manual, Project Proposal

document, Monthly Learning Reflection Journals and the Project Plan that was followed to

complete the project.

Exograph Technical Report

13

2 System

2.1 User Requirements

2.1.1 Friendliness

The system shall be friendly for the end-user. This should be achieved by having an

attractive and elegant User Interface (UI). The UI should be menu drive such that it

empowers a User to find everything they require through a menu driven interface.

2.1.2 Self Intuitive

The system shall not require any complicated manuals. A User should be familiar with the

system before they use it. This should be achieved by designing the system using UI design

patterns which a User would have seen previously while using other consumer applications.

2.1.3 Pages Must Load Within 5 Seconds

The system shall ensure that all pages’ load within a maximum of 5 seconds or less. Users

often get annoyed if the page response time is too long. Therefore, the system must

perform within a defined threshold of 5 seconds.

2.1.4 Delete and Restore Graphs

The system shall allow a User to send items to a trash bin and subsequently allow them to

choose further actions including delete and restore. The trashed graphs should be viewable

in one location to compliment the requirement of friendliness.

2.1.5 Interactive Visualisations

The system shall allow Users to interact with graph visualisations by highlighting

neighbouring nodes along with their edges to help easily view the relationships. Nodes

should be moveable when a User drags them.

Exograph Technical Report

14

2.1.6 Work Seamlessly Across Major Browsers

The system shall work in the exact same manner across different supported browsers. The

browsers the system should work on are Google Chrome, Firefox and Internet Explorer 12.

The behaviour and interactions should not change across different browsers.

2.1.7 Export a Graph as an Image or in Raw Format

The system must allow a User to export the current state of a graph. The supported export

formats should be Scalable Vector Graphics (SVG). An exported image should be of

acceptable quality such that all the contained components are preserved.

2.1.8 Provide a Charted Summary of a Graph

The system shall provide a consolidated summary of the information contained within a

graph. This should be achieved using graphs and tables to display metrics such as total

number of nodes, categorize different groups, degree of connectivity, reciprocity, and

degree of separation.

Exograph Technical Report

15

2.2 Functional Requirements

Requirement 1 <User Authentication>

FIGURE 1: USER AUTHENTICATION USE CASE

Description & Priority

The system shall provide an authentication and registration mechanism to provide Users

with access to the system. This priority has the highest priority of 10/10.

Use Case

Scope

The scope of this Use Case is to demonstrate the behaviour of the system for a User

who needs to gain access to the system prior to using it.

Description

The Use Case describes how a User will register if they do not have an account and

shows how they will login to be authenticated.

Exograph Technical Report

16

Use Case Diagram

The actor in this case is a User who is wishing to authenticate. They appear as a green

silhouette. The blue ovals indicate the actions performed by the actor.

Flow Description

The User first must first register if they do not already have an account, they will then

be required to enter their credentials before being authenticated.

Precondition

1. The system currently does not have a User already authenticated from a

previous session.

2. The User has an active internet connection.

Activation

The Use Case begins when a User needs to login to the system to use any of the

provided functionality.

Main flow

1. The system is at the login screen <See A1>.
2. The User enters their username and password.
3. The User clicks the login button.
4. The system checks the user exists (See E1).
5. The system verifies the password is correct (See E2).
6. After the User is finished they logout.

Alternate flow

A1: <Unregistered User>
1. The User enters their details.
2. The system checks they do not already have an account.
3. The main flow continues at #2.

Exograph Technical Report

17

Exceptional flow

E1: <Incorrect Username>
1. The system is at the login screen.
2. The system generates a message warning the User.
3. The User re-enters their username.
4. The main flow continues at #2.

E2: <Incorrect Password>
1. The system is at the login screen.
2. The system displays a warning message.
3. The User re-enters their password.
4. The main flow continues at #2.

Termination

The system takes the User to the Dashboard.

Post condition

The system waits for a User to perform an action.

Exograph Technical Report

18

Requirement 2 <Import Data>

FIGURE 2: IMPORT DATA USE CASE DIAGRAM

Description & Priority

This requirement shall allow a User to import their data from supported sources. The

procedure of importing data should appear the same for each data source and be

transparent to a User. This requirement has a priority of 9/10.

Use Case

Scope

The scope of this Use Case is to illustrate how a User can import data into the system

by detailing the flow of events that are required to fulfil the requirement and

describes the state of the system after each action is performed by a User.

Description

This Use Case demonstrates the actions a User can perform and the behaviour of the

system when they want to import data into Exograph from third party data sources.

Use Case Diagram

The actor in this case is a User who wishes to import data into the system for analysis.

They appear as a green silhouette, blue ovals indicate the actions performed.

Exograph Technical Report

19

Flow Description

The User can choose a data source which is supported by the system. They will need

to provide their account credentials in the case of a LinkedIn import. When a target is

selected, the data is pulled into the system via the Extractor.

Precondition

1. A User must be authenticated within the Exograph system (Requirement 1).

2. A valid internet connection is required.

Activation

This Use Case starts when a User chooses to import data.

Main flow

1. The system is awaiting a User to choose a data source.
2. The User selects a data source.
3. The system makes a call to the API for the User to authenticate.
4. The User enters their details for the third party.
5. The system sends the credentials to the third party.
6. The system is notified whether authentication was successful or not. (See E1).
7. The system makes a request for the data (See E2).
8. The third party API then returns the requested data.
9. The system stores the data.
10. The User then views a generated graph.

Exograph Technical Report

20

Exceptional flow

E1: <Incorrect Credentials>
1. The system has received a notification that third party authentication failed.
2. The system displays a warning message to the User.
3. The User re-enters their credentials.
4. The main flow continues at #4.

E2: <Data Request Failure>
1. The system receives a warning message.
2. The system goes into a waiting state.
3. After 5 seconds it sends another request.
4. If it fails again a warning is displayed to the User.
5. The flow terminates.

Termination

Upon termination the graph is store and an email notification is sent to the User.

Post condition

The system waits for a User to perform an action.

Exograph Technical Report

21

Requirement 3 <Manipulate Graph>

FIGURE 3: MANIPULATE GRAPH USE CASE DIAGRAM

Description & Priority

The system shall allow the manipulation of a rendered graph. This gives the end User

greater power when visualising graphs and allows them to explore their networks in depth.

This requirement is rated 8/10.

Use Case

Scope

The scope of this Use Case is to show the actions a User can perform on the system

while interacting with a generated graph. It details the flow of events that are

required to complete this requirement and describes the state of the system after

each action is performed.

Exograph Technical Report

22

Description

This Use Case details the actions that can be performed by a User when viewing a

graph in order to improve their understanding of the relationships contained within a

graph.

Use Case Diagram

The actor in this case is a User who wishes to manipulate the graph that is initially

generated upon the successful importation of data from a third party.

Flow Description

Precondition

1. A User must be authenticated with the Exograph system. (Requirement 1).

2. A valid internet connection is required.

Activation

The Use Case starts when a User selects a data source by either importing new data or

retrieving a previously stored social graph.

Main flow

1. The system is waiting for a User to select a data source.
2. The User selects to import a new data source (See A1).
3. The User selects to retrieve a stored data source from a previous session.
4. The system generates a graph.
5. The User then edits the graph.
6. The system makes the required changes.
7. The system updates the graph model.
8. The system updates the rendered graph.

Exograph Technical Report

23

Alternate flow

A1: <Import from Existing Source>
1. The system takes the User to the import data section (Requirement 1)
2. The User then chooses the newly imported data
3. The Use Case continues at main flow #4

Termination

Upon termination the system will take the User to view all graphs within the system.

Post condition

The system waits for a User to perform an action.

Exograph Technical Report

24

Requirement 4 <Export Graph to Image>

FIGURE 4: EXPORT GRAPH TO IMAGE USE CASE DIAGRAM

Description & Priority

The system shall allow an end-user to export a graph in a supported image format. This is an

important requirement that was requested by potential Users. It facilitates the ease of

sharing graphs so they can be included in other external documents such as Word

documents. This requirement has a rating of 7/10.

Use Case

Scope

The scope of this Use Case is to demonstrate the flow of actions and behaviours when

a User is exporting a graph as an image. It shows a high level overview of the flow

detailed below.

Exograph Technical Report

25

Description

Exporting of images is important as it provides a means of viewing a graph at anything

without needing to login to the system to view it. In this Use Case there are two main

Actors. The User who is requesting an image and the service that generates the image.

Flow Description

The main flow initiates after a User selects a data source, next they can choose various

options for customising the final image before downloading it.

Precondition

1. A User must be authenticated with the Exograph system. (Requirement 1).

2. A User must have a graph already in the system.

3. A valid internet connection is required.

Activation

The Use Case begins when a User selects the export to image option while viewing a

graph.

Main flow

1. The system is waiting for a User to select a data source.
2. The User selects a data source and chooses to “Export to Image”.
3. The system prompts the User to set the size of the image.
4. The User then sets the size (See E1).,
5. The system generates a preview of the image.
6. The User selects if they want to generate it (A1).
7. The image service generates the image.
8. The User then downloads the image.

Alternate flow

A1: <Re Edit Image>
1. The system is prompting the User if they are satisfied with the preview.
2. The User selects No.
3. The system takes the User to main flow #3.

Exograph Technical Report

26

Exceptional flow

E1: <Invalid Image Size>
1. The system receives and image size too large.
2. The system warns the User.
3. The Use Case return to main flow #3.

Termination

Upon termination system returns to the visualisation.

Post condition

The system waits for a User to perform an action.

Exograph Technical Report

27

Requirement 5 <View Charted Summary>

FIGURE 5: VIEW CHARTED SUMMARY USE CASE DIAGRAM

Description & Priority

The system shall provide a charted summary of graphs for the purpose of gaining an

overview of the data contained within. This should be achieved using charts and tables to

display metrics such as total number of nodes, categorize different groups, degree of

connectivity, reciprocity, and degree of separation. This requirement has a priority of 6/10

Use Case

Scope

The scope of this Use Case is to illustrate how a User can interact when wishing to

view a graphs metrics. It details a high level overview of the process. Below is a

description of the flows and the state after each action is performed.

Flow Description

The main flow initiates after a User selects the “Analytics” option on a graphs related

actions. The system uses a third party service to generate the charts before rendering

them.

Exograph Technical Report

28

Precondition

1. A User must be authenticated with the Exograph system. (Requirement 1).

2. A User must have a graph already in the system.

3. A valid internet connection is required.

4. A graph must be selected.

Activation

This Use Case begins when a User selects the “Analytics” option on a graph.

Main flow

1. The User selects “Analytics”.
2. The system sends the data to a Google Charts (See E1).
3. The chart service generates the charts.
4. The chart service sends the charts back to the system (See E2).
5. The system renders the charts.
6. The User views the charts.

Exceptional flow

E1: <Chart service unavailable>
1. The system tries to send the data to the chart service.
2. The chart service doesn’t respond.
3. The system retries.
4. The main flow continues at #3.

E2: <Failed to receive chart>

1. The system didn’t receive a chart back from the chart service.
1. The system retries.
2. The main flow continues at #3.

Termination

Upon termination the system will return to the Dashboard.

Post condition

The system waits for a User to perform an action.

Exograph Technical Report

29

Requirement 6 <Edit User Account>

FIGURE 6: EDIT USER ACCOUNT USE CASE DIAGRAM

Description & Priority

The system shall provide the required functionality to empower end-users with the

functionality to modify their existing accounts. This includes uploading an avatar, change

their name and other associated information. This requirement will only be available to

Users who already hold a valid active account. This requirement has a priority of 5/10.

Use Case

Scope

The scope of this Use Case is to illustrate how the User can interact with the system to

make changes to their existing Exograph account. It is beyond the scope of this Use

Case to detail how the system will perform the process in-depth.

Flow Description

The main flow initiates after a User chooses the “Account” option located in the

header of all pages.

Exograph Technical Report

30

Precondition

1. A User must be authenticated with the Exograph system (Requirement 1).

2. A valid internet connection is required.

Activation

The Use Case begins when a User selects an option to change their account.

Main flow

1. The system displays all the current data to a User.
2. The User changes their name (E1).
3. The User changes their country.
4. They User then uploads an avatar (E2).
5. The User confirms the changes.

Exceptional flow

E1: <Invalid Input>
1. The system receives invalid input.
2. The system warns the User.
3. They User makes the required change.

E2: <Unsupported Image Format>

1. The system receives an unsupported image format.
2. The User is shown an error.
3. The User uploads a supported format.

Termination

Upon termination the system will display a message of completion.

Post condition

The system waits for a User to perform an action.

Exograph Technical Report

31

2.3 Non-Functional Requirements

2.3.1 Performance Requirement

The system shall perform to a minimum set threshold measured in response time. It is

important that any system conforms to certain performance requirements. Performance is

an issue that required addressing as the system relies heavily on third parties as a source of

data. As a result, it is imperative that the system responds to a User within a maximum of 5

seconds. This should be achieved by adopting multi-threading to parallelise the process of

requesting data. Caching of responses from third parties should be employed to avoid

requesting the same data multiple times.

2.3.2 Recovery Requirement

The system shall meet a set of recovery requirements. Recovery refers to the ability to

recover the system to a prior state after an incident. The ability to restore a system and its

data to a previous state ties in with good source code management (SCM). A contingency

plan is in place for disaster recovery in the event of an incident. The key to achieving this

requirement is redundancy. Regular backups must be made of User oriented data so that

there is minimal disruption. This requirement is measurable by down time. In the event of

an incident, the system should attempt to recognise such an event and respond

appropriately.

2.3.3 Scalability Requirement

The system shall be scalable as the User base broadens. Scalability refers to the ability of the

system to appropriately manage increasing or decreasing workloads. The system shall scale

horizontally according to the load it is experiencing. Scalability and Performance

requirements go hand in hand. In order for the system to perform efficiently it must scale

laterally. As the load increases more processing power is required. Therefore, the system

should recognise an increasing or decreasing workload and respond by incrementing or

decrementing the number of instances that the application is currently running on different

servers. Scalability is measurable by quantifiable testing in a production environment.

Exograph Technical Report

32

2.3.4 Reliability Requirement

The system shall be reliable in the event of increased workload or other unplanned events.

Reliability refers to the systems competency to perform to a minimum set of requirements

such as operational behaviour. Reliability is closely related to scalability and is measurable

by the time span of operational behaviours which the system can perform. To achieve true

reliability, a set of automated system tests should be used to verify that the system can

continue to meet the requirement as it evolves and grows.

2.3.5 Security Requirement

The system shall be secure to ensure Users are protected. Security refers to the system’s

ability to protect User’s data through three main means Privacy, Physical, and Access. The

privacy requirement should be met by encrypting data in transit. This protects Users and the

system from potential attacks such as man in the middle attacks. The physical security

requirement shall be fulfilled by using a Platform as a Service vendor. For the purpose of

achieving accessibility, the system should offer accounts that are only accessible to Users

who know the credentials associated with a particular account.

2.3.6 Maintainability Requirement

The system shall be maintainable as the size of the system grows and matures.

Maintainability is tightly related to code quality and cleanliness. If code becomes messy and

tangled, it become harder to maintain while costing more to upkeep. The system shall be

modularised so components are reusable. The main aim of creating a maintainable system is

to have high cohesion and low coupling. This requirement can be measured by the number

of anti-patterns and the cyclomatic complexity of the code.

2.3.7 Usability Requirement

The system shall conform to a set of usability requirements such as Learnability, Efficiency,

and high User Satisfaction. The system should be easy to use in terms of learnability. An

end-user should be familiar with the layout of the application before using it. This is because

certain interface design patterns are utilised that can be seen in other consumer

applications. A training manual should not be required to use the system, it should be self-

intuitive and easily learnable. The system should also be efficient in terms of the number of

actions required to complete a task. User satisfaction can be measured as the percentage of

customers who are satisfied vs those who are not during end-user testing and production

usage.

Exograph Technical Report

33

2.3.8 Reusability Requirement

The system shall utilize reusable components in order to compliment maintainability.

Reusability refers the ability to reuse system components of a similar composition to reduce

and conclusively avoid duplication and lower code complexity. The system should use

frameworks to reduced duplication and improve reusability. Reusability can be measured as

a percentage of reused requirements, design elements and tests.

2.3.9 Interoperability Requirement

The system shall be interoperable with other systems to exchange and make use of

information. Given the vast volume of information available externally to the system it is

vital to make use of such information. The system should be interoperable with other

systems such as Twitter and LinkedIn for the purposes of exchanging information in a

seamless and transparent manner such that end-users are unaware of what is happening

behind the scenes. Interoperability can be measured by the number of computer systems

Exograph interacts with.

Exograph Technical Report

34

2.4 Design and Architecture

2.4.1 Design Approach and Standards Overview

2.4.1.1 Bottom up Approach

The bottom up design approach begins with the fundamental components. Lower level

components are used to compose higher level components. The process is repeated until

the desired system is achieved. The system may not evolve as one single monolith. With

each higher level component, the level of abstraction is increased, hiding complexities.

Using “both top-down analysis and bottom-up design simultaneously is likely to lead to the

most robust software systems.” (Henderson-Sellers B. and Edwards J.M. et. al 1990). The

bottom up approach was utilized alongside top down analysis in the project as a means of

composing decoupled higher level components, creating a more robust system.

2.4.1.2 Service Encapsulation

In an architecture where components are distributed, it is necessary to ensure that each

service encapsulates its own data. Each service maintains an independent data store that is

exposed through well-defined interfaces. This reduces the dependencies among the services

and minimises the risk of breaking changes to other services while allowing the service to

exist autonomously.

2.4.1.3 Single Responsibility

The Single Responsibility Principle (SRP) states that a unit of code should have a single

responsibility over the entire system. Each unit or class encapsulates its data to reduce

unwanted exposure to external units which could cause unwanted dependencies therefore

making it harder and more expensive to make a change to a class without impacting the

consumers using it. The SRP is used extensively through the system and compliments the

non-functional requirement of maintainability and reusability.

Exograph Technical Report

35

2.4.1.4 Data Representation Standards

A common predefined messaging format is used for the exchange of information between

components. The common standard used is JavaScript Object Notation (JSON) which is a

human readable format that can be easily transmitted over a network with little overhead

due to its reduced verboseness compared to other data representation standards such as

XML. JSON can be easily serialised and de-serialised.

2.4.1.5 Communication Standards

All components in the system communicate using the Hyper Text Transfer Protocol (HTTP)

over a TCP/IP link to ensure a reliable connection. Each service exposes a RESTful interface

that makes use of the methods provided by HTTP to govern the type of interactions

between services.

Exograph Technical Report

36

2.4.2 Architecture Design

2.4.2.1 Class Diagram

FIGURE 7: SYSTEM CLASS DIAGRAM

Figure 7 details a high level view of the relationships within the Exograph system. A User is a

Person and therefore inherits their attributes and behaviours from the Person class. A User

can have 0 to many Graphs. A Graph is composed of Nodes and Edges. One Graph can have

1 to many Nodes while a Node can have 0 to many Edges. A Node has a Metadata object

which describes the data associated with a Node. Since a social network in real life is a

directed graph. The Class Diagram assumes all are direct weighted graphs.

Exograph Technical Report

37

2.4.2.2 Sequence Diagram

FIGURE 8: SYSTEM SEQUENCE DIAGRAM

The system sequence diagram in Figure 8 outlines the interactions a User has with the

system when generating a graph over a time series. The diagram presumes that a User has

already been authenticated with the system prior to the flow beginning. The flow begins

when a User requests to create a graph that is already stored in the system. The GUI

interacts with the graph object and makes a call to fetch it. The graph object then makes a

subsequent call to request the Nodes associated with that Graph. The Node object makes a

request to the edge object which returns all the edges for a given node. The node object

then returns all the nodes and edges to the graph object which is rendered and displayed to

a User.

Exograph Technical Report

38

2.4.2.3 Hardware Architecture

FIGURE 9: SYSTEM HARDWARE ARCHITECTURE

Figure 9 is an illustration of the Exograph hardware components hosted by the

Infrastructure as a Service (IaaS) vendor, Amazon Web Services (AWS). The core component

in the hardware stack is the UI Server running NodeJS that serves clients over a network.

The UI Server communicates directly with the Neo4j cluster using the bolt protocol. The

Extractor service is hosted on the same Virtual Machine (VM) and encapsulates job oriented

data in an SQL database hosted on the same VM. The Extractor service interacts directly

with the Neo4j cluster when bulk loading newly imported graphs.

Exograph Technical Report

39

2.4.2.4 Software Architecture

2.4.2.4.1 UI Server

FIGURE 10: UI SERVER SOFTWARE ARCHITECTURE

Figure 10 details a high level overview of the UI Server, acting as the orchestrator in the

stack. The UI Server is written in JavaScript and runs on the NodeJS Google V8 engine. In

order to achieve an appropriate level of abstraction between each layer in the UI Server, the

Model, View Controller (MVC) design pattern was used. The views consist of Jade based

templates which are rendered on the server side for client side performance reasons as

rendering the page on the client side can degrade the User Experience (UX) by increasing

page load time and causing choppiness when painting is being performed by the browser.

The routes are the entry point into the system, they use the Express framework to reduce

redundant boiler plate code. The appropriate controllers are called based on the incoming

requests, they handle interacting with the models to create, read, update and delete

entities. When all operations have completed on the models the controller renders the

template and responds to the client with the result of the execution. Security is handled at

the route level by the passport module performing session management. The UI Server also

communicates directly with the Extractor service to launch import jobs and query it for data

related to the jobs triggered by Users.

Exograph Technical Report

40

2.4.2.4.2 Extractor Service

FIGURE 11: EXTRACTOR SERVICE ARCHITECTURE

The Extractor service is the most complex component in the stack. Its role is to provide a

service that handles the interactions with third party APIs such as LinkedIn and Twitter. The

service is written in Python and exists independently of the UI Server albeit it is tightly

coupled to the Neo4j graph database. The service is composed of a number of different

layers with minimal dependencies on one another.

The bottom layer of the Extractor consists of the crawlers and models. The crawlers perform

the task of requesting data from the third party APIs, maintaining a cache of responses and

building up a graph data structure. There are two possible ways of performing the task of

building a graph data structure. The first way is to pull back all the data and build the data

structure by traversing nodes in the cache when all the data has been gathered to generate

a list of edges. The second way involves creating the graph data structure as the crawler is

executing. The first approach works well for the Twitter crawler while the second approach

was suited to the LinkedIn crawler.

The middle layer in the architecture are the controllers, they handle launching the crawlers

asynchronously and managing a job queue of concurrent threads that are running. The Bulk

Loader uses the resulting graph data structure from a crawler which is an object of two

arrays, one containing nodes and their attributes and the other for storing edges and their

Exograph Technical Report

41

attributes to generate a dynamic Cypher query which can be executed on Neo4j to load the

elements into the database.

The entry points to the service are provided by a Django API. Incoming requests call the

bound view which invokes the appropriate controller before interacting with the models

mapped to a SQL database using an Object Relational Mapper (ORM) framework provided

by Django. Controllers trigger the threads that the crawlers are executed on. When a

crawler is triggered, a JSON response is subsequently returned to the UI Server detailing the

information relating to the triggered job. The UI Server processes the response and sends it

to the client side to be rendered dynamically.

As mentioned previously, the aim was to achieve an autonomous service. The Extractor is

tightly coupled to the Neo4j database. A possible solution was to allow the UI Server to

retrieve a JSON representation of a graph and then delegate the loading of the graph into

Neo4j to the UI Server. On further investigation it soon became evident this would not work

well as NodeJS by nature is single threaded and makes extensive use of call-backs to

perform tasks asynchronously meaning it is not good at handling computationally expensive

operations, especially on large datasets. The solution implemented allows the Extractor

service to perform the loading using the Bulk Loader.

Exograph Technical Report

42

2.4.2.4.3 Security Architecture

FIGURE 12: EXOGRAPH SECURITY QUESTION

Security within any system is an important non-functional requirement. It ensures the

integrity and protection of User’s data. Figure 12 is an overview of the security mechanisms

used to ensure the system is secure. All communication over HTTP uses the Secure Socket

Layer (SSL) version of HTTP, HTTPS. This ensures data is encrypted while in transit to avoid

man in the middle attacks. At rest the data is not encrypted but important User data such as

passwords are encrypted using the BCrypt hashing algorithm.

When a User authenticates with their credentials, a session is started on the server side and

a cookie containing the session id is stored by the client, this is required to be passed back in

subsequent requests to allow a session to be retrieved from memory and be verified by the

Passport session management module. The session based approach does not scale well but

fits the requirements of the project. An alternative solution would be to use token based

authentication which would mean the server side would not need to store a session in

memory. The use of OAuth was investigated for system side authentication, due to time

limitation its implementation was decided against. This would have required developing a

separate authorization service adding unnecessary complexity.

The Extractor service uses token based authentication to authorize incoming requests. The

UI Server requests a token after authenticating and stores it in memory to be passed back in

each request. When a token has expired, a request is made for a new one. Both the SQL and

Neo4J databases are secured using basic username and password authentication.

Exograph Technical Report

43

2.4.2.4.4 Communication Architecture

FIGURE 13: SYSTEM COMMUNICATION ARCHITECTURE

In any software system, standardised communication mechanisms and formats are required

to ensure consistency throughout the system. The main format the system uses is JSON,

which is a lightweight interchange format that is easy to parse when compared with other

formats such as XML. The UI Server API communicates with the client using a mix of HTML

and JSON using Representational State Transfer (REST).

The Extractor service exposes an interface that requires JSON to be passed to it on POST

requests. It responds with a JSON structure that is consistent across all views. All

communication exchanges with the Neo4j database use the bolt protocol, this is handled by

the underlying libraries for connecting to it.

Exograph Technical Report

44

2.4.3 Database Design

The system contains two databases. A Neo4j Graph Database is accessible system wide by

both the UI Server and the Extractor service. Information relating to Users such as social

graphs along with their application oriented data is persisted in Neo4j. A MySQL relational

database is used by the Extractor service to store Job information relating to current and

previous crawler processes.

2.4.3.1 Neo4J Schema

FIGURE 14: NEO4J DATABASE SCHEMA

Figure 14 provides an overview of the entities (Nodes) along with the relationships (Edges)

that exist in the database. One User can have many Networks. Each Network contains a sub

graph that was imported into the system via the Extractor service. A Network is connected

to the root element in the sub graph of Connections (LinkedIn) or Followers (Twitter). A

Network is connected to the root node by the CONTAINS relationship. In a LinkedIn graph a

friend is represented by the ‘Connection’ label while for a Twitter graph a Follower is

represented by the ‘Follower’ label. The relationship between Connections is the

CONNECTED_TO relationship type while in a Twitter graph the relationship type between

followers is the IS_FOLLOWING type. Each Node has a set of key-value properties stored on

them. Edges can have properties associated with them, although this is not required.

Exograph Technical Report

45

2.4.3.2 MySQL Extractor Service Schema

FIGURE 15: EXTRACTOR SERVICE DATABASE SCHEMA

The Extractor service uses a simple relational schema. Two entities exist within the

database. The Job table stores data relating to the jobs executed. While the Job_Type

table is a lookup table containing data relating the types of jobs that can be ran. A job

type is associated with many Jobs.

Exograph Technical Report

46

2.5 Implementation

2.5.1 Twitter Crawler

The Twitter crawler is part of the Extractor and is written in Python. There was a vast

amount of challenges encountered throughout the implementation phase. These challenges

centred around initially finding the appropriate API endpoints to use and developing an

algorithm which could recursively gather the data in an efficient manner. The first

implementation was inefficient and slow due to request limitations imposed by Twitter.

FIGURE 16: GATHERING A USER’S TWITTER FRIENDS

Figure 16 demonstrates the implementation for retrieving a person’s friends. A limitation

restricts the number of friends gathered because performance issues were encountered due

to the number of API requests required to gather friends of friends growing exponentially.

Caching is implemented in order to not make requests for a Follower if they already exist in

the cache. This addition greatly improves the total import time.

Exograph Technical Report

47

FIGURE 17: RETRIEVING TWITTER FRIENDS OF FRIENDS

After the process of first retrieving a User and then getting their friends ids, recursion is

used to retrieve friends of friends using a depth first traversal until the max depth is

reached. Originally, it was intended to allow a User to set the maximum depth when

launching an import, but this was subsequently changed and the maximum depth was

restricted to 3. After all the data has been gathered and cleansed, the next stage in the flow

involves processing the cached data based on a seed node then processing their friends

recursively to generate a list of edges from which a graph data structure can be created. The

graph data structure is converted into a Neo4j Cypher query that can be loaded into Neo4j.

FIGURE 18: CREATING A LIST OF EDGES

Figure 18 illustrates how a list of edges is generated. The seed id passed into the function is

used as a starting point, on subsequent recursive calls it allows friends of friends to be

processed. The resulting list is a mapping between follower to followee, creating a directed

relationship between two nodes. The Bulk Loader is used to convert the graph data

structure into a single Cypher statement.

Exograph Technical Report

48

2.5.2 LinkedIn Crawler

The LinkedIn crawler was implemented prior to the Twitter crawler as it was the most

difficult to development since access to the LinkedIn API is hard to acquire. Access was not

granted which meant a web scraper had to be developed to gather data. The first challenge

was to login via the web client and store a session cookie locally to maintain account access

for the duration of a crawl.

FIGURE 19: CONFIGURING LOCAL COOKIE OPENER

Figure 19 demonstrates configuring the opener sent with each request. To work

successfully, both the urllib and cookielib are required to provide basic HTTP support. The

aim is to trick the LinkedIn backend into thinking the crawler was a web browser. This

allowed the JSON used to dynamically render the LinkedIn client to be requested. The urllib

allows data of any format to be requested seamlessly. This reduced the amount boilerplate

code needed meaning more time could be spent working on the crawler.

Exograph Technical Report

49

FIGURE 20: AUTOMATED LINKEDIN LOGIN

Figure 20 demonstrates the login code. The LinkedIn homepage is first requested and

parsed using the Beautiful Soup library. The Cross Site Request Forgery (CSRF) token is

parsed. A URL encoded string is created with the User’s authentication credentials and the

CSRF token. A POST request is made to submit the login data, upon successful login the

session cookie is stored in memory and the crawler can begin requesting a User’s

connections. The crawler first requests the homepage to gather the root node’s information

then it requests the raw JSON for a User’s connections list, paging the data until all

connections are gathered.

FIGURE 21: REQUESTING A USER’S LINKEDIN CONNECTIONS

Exograph Technical Report

50

The load connections function is used to load the connections for a User. The endpoint

exposed by LinkedIn uses paging and only returns a maximum of 10 items per requests. The

JSON response is parsed and the nodes are added into a graph data structure. The volume

of requests required to fetch every connection for a person is large. This is one factor that

has an impact on performance. When the crawler has finished executing, the graph data

structure is passed to the Bulk Loader which generates a Cypher statement. As of April 1st

2017, the LinkedIn crawler no longer works as LinkedIn released a new UI that is more

difficult to crawl.

2.5.3 Bulk Loader

The Bulk Loader enables a graph data structure to be converted into a Cypher query and

loaded efficiently into Neo4j. There are currently no open source Python libraries that can

support the loading of a large graph into Neo4j efficiently. Attempts were made to use an

Object Graph Mapping (OGM) tool but performance issues were encountered as there was

a high volume of interaction between the Extractor and Neo4j when loading nodes and

edges one at a time. After some considerable thought to devise a new solution, a blog post

by a Neo4j engineer was found detailing the best solution to perform the loading. The result

was an algorithm that could generate a bulk insert statement for nodes and edges in a graph

while preserving their attributes.

FIGURE 22: BULK LOADER GENERATING NODE INSERT STATEMENTS

The generate node statements function iterates over all the nodes in a graph and creates a

key-value representation of a node’s attributes and id set on a node. The statement is

indexed by a unique generated id which maps to a nodes label and attributes. Each node

statement is then added to a dictionary.

Exograph Technical Report

51

FIGURE 23: BULK LOADER GENERATING EDGE STATEMENTS

The generate edge statements function iterates over each edge in a graph and formats a

string containing an edges attributes, the final statement links two nodes with an edge in

the form (node)-[relationship]->(node). The edge defines the type of relationship that exists

between two nodes. The resulting statement is appended to a list of edge statements.

When all node and edge statements have been generated, a lambda is used to combine the

lists of node and edge statements into a single CREATE statement that can be executed on

Neo4j. The Bulk Loader was designed to work on any graph data structure and can therefore

be used when generating Twitter or LinkedIn bulk insert statements without the need for

different implementations.

Exograph Technical Report

52

2.5.4 UI Server Generating a D3 Graph Model.

The UI Client requires a JSON representation of a graph containing a list of nodes and edges.

The D3 visualisation framework uses this model to render the visualisation dynamically.

FIGURE 24: UI SERVER, GENERATING A D3 GRAPH REPRESENTATION

A custom Neo4j procedure written in Java performs a Breadth First Search (BFS) traversal of

a sub graph and retrieve all nodes and edges. The result is passed to the parse graph

function as seen in Figure 24. The function iterates overall nodes in the result set and adds

nodes based on their id to an array, the relationships a node has are added to an array of

edges. The returned model is composed of a list of nodes with their id, label and attributes

and a second list containing edges represented by id, relationship and attributes. D3

requires that each node is unique in the list and that the relationships refer to the array

index, not the id of the node. The domain specific terminology D3 uses is nodes and links

where links map to edges.

Exograph Technical Report

53

2.6 Graphical User Interface

2.6.1 Import Graph

FIGURE 25: IMPORT GRAPH PAGE

Importing a graph is made simple and easy. The page provides two separate import options,

LinkedIn and Twitter. To launch a LinkedIn job, the User must first enter a job name along

with their LinkedIn username and password. It is made clear to the User that their

credentials are not stored. The second option is launching a Twitter job, a User must enter a

job name and a screen name that corresponds to the Twitter account to be crawled. The

job name is used later to distinguish between multiple graphs. When they submit the form,

a modal appears detailing the information associated with the triggered job. The progress of

the import can be tracked by selecting the alert icon in the horizontal navigation bar, this

displays dropdown of the five most recent jobs ran, a link is displayed which redirects to a

page displaying all jobs executed in a coherent way. The overall layout of the page is

consistent with the standardised components used throughout the system. This makes the

system more learnable and compliments ease of use.

Exograph Technical Report

54

2.6.2 Graph Dashboard

FIGURE 26: DASHBOARD PAGE

The Dashboard is the focal point of the system, from here a User can view all their imported

graphs. The top container contains four coloured rectangles that provide information such

as total networks, number of current jobs running, how many items are in the trash bin, and

the number of system generated warnings due to import failures. The section located below

the alert boxes contains a listing of all a User’s imported graphs that are not located in the

trash bin or have been deleted. When a graph has been successfully imported an image is

generated for displaying in the UI. Each item contains an action button located in the right

side of the panel heading bar. When clicked, a dropdown menu is displayed, the options

include, view, analytics, send to trash and view import details. The action button was a key

design consideration that was added after many prototyping iterations allowing all the

actions that can be performed on a graph to be contained in an easy to find place, reducing

the number of steps required to otherwise perform such actions.

Exograph Technical Report

55

2.6.3 Graph View

FIGURE 27: VIEWING A GRAPH

The graph view page is accessible by selecting a graph on the Dashboard and is one of the

most complex pages within the UI. When the page is initially loaded the data for a graph

first needs to be retrieved and the visualisation rendered. While this is happening a loading

spinning is displayed to inform the User that their request is being processed. After loading

and rendering the page is displayed to the User. A force layout is used to render the graph in

an aesthetically pleasing way. D3 only provides the tools for loading a graph into the

Document Object Model (DOM) and event handlers to setup events based on different User

actions. How the visualisation works is up to the developer, this meant a lot of work was

involved in making the visualisation interactive. When a User zooms with the mouse wheel

more of the graph is visible. Click and drag is supported, this allows different areas of the

visualisation to be brought into focus. The toolbar located at the top of the page provides an

easy way to perform actions on a graph. When a node is hovered over, its neighbouring

nodes a highlighted to allow their connections to be easily identified. If User clicks and holds

on a node, its first degree neighbours are brought into the foreground and all other nodes

an edges are brought into the background and their opacity is reduced, all while highlighting

a ring around the focused nodes and edges. If a node is brought into focus my hovering over

it, if the enter key is pressed the node information container is loaded which displays the

attributes associated with that node. The blue button located to the left of the vertical

navigation bar provides a way to expand and collapse the navigation bar to avoid blocking

the visualisation.

Exograph Technical Report

56

2.6.4 Graph Analytics

FIGURE 28: GRAPH ANALYTICS PAGE

The Analytics page provides insights into both LinkedIn and Twitter graphs. The page is

accessible by selecting the analytics option in the actions dropdown of each graph on the

Dashboard. The overview panel shows key information such as total nodes and edge and

the mean degree centrality. The degree frequency distribution shows the total degree count

aggregated by the number of nodes. A pie chart located below the degree distribution

shows the top six node locations by their percentage. Each chart is interactive, when a User

hovers over key parts such as a point in the scatter plot, hidden information is displayed

showing the number of nodes that have a particular degree count. Similarly, when a sector

in the pie chart is hovered on, the percentage and location are shown in a popup.

Exograph Technical Report

57

2.6.5 Graph Trash

FIGURE 29: TRASH PAGE, DELETE AND RESTORE

The trash bin provides a listing of all graphs in a staging area prior to either deleting or

restoring them. The table is interactive and provides three User friendly ways of selecting an

item, if a row is clicked the item will be selected or the checkboxes can be checked by

directly clicking them. In the table header there is a select all checkbox which selects all the

listed items. Above the table is a count to inform the User how many items have been

selected. An actions button contained in the footer becomes enabled when one or more

items are selected, two options are contained within, one to restore and another to delete

the items. There are many benefits to the User by incorporating the multi action table. The

desired action can be applied to many items at once instead of individually. This is

particularly useful when there is a large amount of items in the trash bin.

Exograph Technical Report

58

2.6.6 User Profile

FIGURE 30: PROFILE PAGWITH PROFILE IMAGE UPLOAD

The Profile page is accessible by clicking the far right dropdown button located in the header

of any page. When the “Profile” option is selected, the Profile page will appear providing an

overview of the current User’s account details while providing an option to update the data

on the Account page where a User’s password and can be changed along with other account

settings. Located on the left hand side of the Profile page is an option to upload a profile

image. This can be triggered by selecting the “Change Image” button. When clicked, a modal

appears containing a form to upload a new image and provide a preview of the selected

image before being uploaded. Only PNG format images are accepted as they are resized by

the backend before being stored. In the event of an error, the User is informed.

Exograph Technical Report

59

2.7 Testing

In Industry today, Software Testing including manual and automated Quality Assurance

consumes a considerable portion of the development lifecycle. Testing is vital to ensuring a

system performs and behaves as expected.

2.7.1 Unit Testing

A Unit Testing methodology was employed for testing small components in isolation of

factors such as dependencies and the environment that the code will be executed in. Each

module includes a suite of unit tests that are executed each time a build is ran to ensure

there were no undesirable changes since the previous successful build. Data required by

each unit is mocked while external dependencies are stubbed.

Test Driven Development (TDD) and Behaviour Driven Development (BDD) are two primary

unit testing paradigms, each have advantages and disadvantages over one another. TDD was

selected as the paradigm to use. The key idea behind TDD is to develop test cases alongside

the software. Each time a change is made all the tests should be executed to validate each

unit of code behaves as expected. Both the UI Server and Extractor have a vast amount of

code, therefore providing a high percentage of code test coverage was priority. The testing

frameworks used differ as the UI Server is written is JavaScript while the Extractor is

implemented in Python, although the core idea behind the process does not change. The

use of mocking and stubbing is important. The two are different but easily confused.

Mocking allows dependencies to be removed. They are pre-programmed with expectations

that form a specification of calls expected to be received. To follow a true unit testing

methodology, each unit of code is tested in isolation as units often depend on other units.

Stubs provided set answers to method calls during a test, instead of executing a method the

predetermined result is returned (Venners B, et.al 2002). Travis is used to provide a

Continuous Integration (CI) build on each repository. Each time a pull request is made a

build runs on the feature branch and another on the merge to master. In the event of a

failure, a notification email will be sent and the branch highlighted as failing. The build logs

can be examined to determine the cause of the failure before fixing the issue.

Exograph Technical Report

60

2.7.1.1 Extractor

The Extractor uses standard Python libraries for Unit Testing, unittest and mock. The

unittest library provides a framework for setting up tests, executing the test cases and

cleaning up after execution is complete. The unittest.TestCase class provides functionality

for assertions to validate the result of a test and assert whether expected results match the

actual returned results. The mock framework is used in tandem with the unittest framework

to provide dependency mocking and stubbing. The Extractor has a code coverage

percentage of 68%.

FIGURE 31: EXTRACTOR PYTHON UNIT TEST

The unit test provided in the above example tests that a JSON response is returned when

the request JSON method is called on the reference object. Prior to the test being executed,

the HTTPResponse object from the http library is mocked along with the request field on the

LinkedInCrawler class. The two mocks are injected as arguments to the test before the

method being tested can be called. Methods are stubbed with predetermined return values

to avoid the crawler making real requests to LinkedIn for data. After the function call is

made on the reference, assertions are made to verify the expected behaviour.

Exograph Technical Report

61

2.7.1.2 UI Server

The same Unit Testing methodology is employed for testing units of code within the UI

Server, the only difference compared to the Extractor is the frameworks used. Writing

JavaScript unit tests was confusing at first. The UI Server uses a Model View Controller

(MVC) style approach to provide separation of concerns. This was a strategic design decision

from a testability perspective, components would be difficult to test without using an

architectural design pattern. Three testing tools were used, Mocha, Sinon, and Chai. Mocha

is an asynchronous testing framework for running tests, Sinon is a mocking and stubbing

framework while Chai is an assertion library.

FIGURE 32: UI SERVER USER MODEL UNIT TEST

Figure 32 provides an example of a UI Server test. The tests verify the getNetwork() function

associated with a User. The first test uses Sinon to stub the get() method on the network

model dependency. The callback passed to get() has the desired mock results injected as

parameters so the path executed can be controlled to verify a valid model is returned when

the Promise resolves and an error is returned if it fails and is rejected. Chai is used to assert

the expect property values in the results match the mocked property values. In total 50 Unit

Tests were written for the UI Server with a code coverage percentage of 78%.

Exograph Technical Report

62

2.7.2 Integration Testing

A further equally important testing methodology is Integrated Testing (I&T). I&T occurs after

Unit Testing and combines modules into a complete form to validate behaviour,

guaranteeing modules work together. This process can be done in a sandboxed

environment using a range of frameworks. Selenium is a browser automation framework

that allows the system to be tested from the perspective of a User. Selenium can automate

the actions and scenarios performed by a User therefore, validating the system as a whole

works as expected. The final solution includes a suite of Selenium integration tests that are

ran in a sandboxed environment prior to the system being deployed. The RESTful Extractor

API uses the Django testing framework to test the API views as if real requests were being

made.

2.7.2.1 Extractor

FIGURE 33: EXTRACTOR INTEGRATION TEST

Figure 33 provides an Extractor integration test using the Django I&T framework. Before

each test in the suite executes a test database is created and populated with mock data. The

Django client sends a request to the specified endpoint along with other optional data. The

response received from the API is subsequently validated to ensure the expect behaviour of

the API. In total 15 API integration tests were written.

Exograph Technical Report

63

2.7.2.2 UI Server

The UI Server utilised the WebDriverIO library which provides NodeJS bindings for the W3C

WebDriver protocol. This allows for the standalone selenium server written in Java to be

used. Mocha was employed as a test runner while Chai was used as the assertion library.

FIGURE 34: UI SERVER SELENIUM LOGIN INTEGRATION TESTING

Pages were represented as Objects. This allowed for the functionality each page possessed

to be encapsulated in one place. Page components such as Widgets were further

decomposed into component Objects allowing pages to be composed of different

components and reduce code duplication. The tests demonstrated in Figure 34 checks the

login functionality works as expected. The first test logs in with the correct credentials and

verifies that the page displayed is the Dashboard. The second test uses an incorrect

password and asserts that an error message display is displayed after submitting the form.

The same process occurs for the third test, instead using an incorrect username.

Exograph Technical Report

64

2.7.3 Customer Testing

User Acceptance Testing (UAT) is considered to be one of the final phases in the

development lifecycle. It is vital to validating that the system fulfils all the requirements

from an end User’s perspective. For the purpose of UAT, a number of testing scenarios were

created. They were used to verify the system by means of manual testing. A number of

Recruitment Consultants were contacted to test the system in March. This was prior to

when LinkedIn changed their UI which broke the LinkedIn crawler. It is important to bear in

mind that during the time of testing the system was still an early prototype. Out of 8

Recruiters contacted, 6 responded and agreed to trial the system. Each Recruiter was

provided with the aims and requirements of the system allowing them to decide if they felt

the system conformed to the outlined requirements and goals. Three different tasks were

developed to test key parts of the system. They include;

1. Import your LinkedIn network.

2. When the import has completed, view the newly import graph and interact with the

visualisation by clicking and dragging people.

3. Send a graph to the trash bin and use the grid to select items before choosing either

the delete or restore actions.

The system was tested over a period of three days. This gave vital feedback and insights into

usability issues never thought of during the design and prototyping phase. The results of

their findings are documents below in a summarised format. When the results were

received from each Recruiter, gratitude and gratefulness was show as the time they spent

evaluating the system led to major improvements. Unfortunately, the intended testing

period for the LinkedIn crawler and visualisation was cut short. After three days of testing,

LinkedIn rolled out their new UI, but the feedback gained over the first three-day period was

enough to gather information to improve the system.

Exograph Technical Report

65

2.7.3.1 Import your LinkedIn Network.

What is
 your opinion
of the import

page?

Did you
encounter
any issues
importing

your
network?

What
elements
did you

most like?

What
elements
did you
dislike?

What
changes

would you
recommend

if any?

Out of 100.
What is your

level of
satisfaction?

Recruiter A

The design is
clean and easy

to use.
Navigating to

the page
initially is

easy.

Restrictions
caused by
the job
name field.

The hints
to import

a graph on
the

dashboard
page

provided
great

guidance. None

Possibly add
icons to

each import
box to show
the type of

import. 96

Recruiter B

The page is
easy to

understand
but lacks

attractiveness. None

The job
import

summary
that is

displayed
after

launch.

The page
title font

doesn't fit
in with the

page.

Overall, the
page works
very well.

Change the
title font 93

Recruiter C

Easy to use, a
very

responsive

It took a
long time
to import

my
network.

The
simplistic
design.

There’s
lack of

consistency
with fonts

Make the
fonts

consistent
across the

system. 89

Recruiter D

Excellent
design and
very usable None

The popup
after

starting an
import

Having to
handover

my
LinkedIn

credentials. None 98

Recruiter E

Well-designed
which makes

the
experience.

After
clicking

submit the
system
froze

There was
clear

visibility of
system
status. None

Remove
restrictions

on the
import
name 88

Recruiter F

Very nice
layout and
easy to use None

Any errors
were

clearly
displayed None None 96

TABLE 1: CUSTOMER TESTING LINKEDIN IMPORT RESULTS

The results of importing a LinkedIn graph showed that overall the Recruiters were happy
with the design. One suggested that icons be added to the header of each form panel while
another suggested that the fonts be made consistent. These suggested changes were made.

Exograph Technical Report

66

2.7.3.2 View the Newly Imported Graph

What is your
opinion of
the graph

view page?

Did you
encounter
any issues?

What
elements
did you

most like?

What
elements
did you
dislike?

What
changes

would you
recommend

if any?

Out of 100.
What is

your level
of

satisfaction
?

Recruiter
A

The concept
is good but

improvement
s need to be

made

The graph
took a long

time to
settle

down and
was very

slow.

The zoom
and drag

functionality
.

The
choppines

s and
slowness.
My graph
had 1500
people in

it.

Improve
performanc
e and add a

way to
navigate 80

Recruiter
B

The
dashboard is
really cool.

The
visualisation

was really
good.

Trying to
see what

people are
connected

to each
other

because
there were

so many
lines.

The full page
view with
nothing

blocking the
network.

It was very
hard to
see who

was
connected

to who

Add
instructions
on the page

and
highlight
peoples

connections
somehow. 89

Recruiter C

It was a little
hard to use

because there
was no

instructions.

Mainly the
lack of

instruction
s for using

the
keyboard.

The side
panel for
showing

each
information
on people

No way to
easily see
who is in

what
groups of
people.

Add
instructions
and having a

way of
focusing on

different
groups of

people 92

Recruiter
D

Great effort. I
really like it.

Minor
issues

trying to
get back to

the
dashboard

The
interactivity

with the
network and

zoom and
pan.

There's no
way to

lock
people in

place.

Add a way
to lock

people in
position. 79

Recruiter E

It is still
primitive but
has potential.

My
network
was large

which
meant it
was slow
and froze

my PC

The fact
there was

no
obstructions

when
viewing.

No way to
get back

to the
dashboard

Try to make
it faster. 82

Exograph Technical Report

67

Recruiter F

Really good
idea but not
easy to use

The
network

kept flying
around the

page
initially

The dragging
of people.

The
network

seemed to
excited
when

clicking
people.

Stop the
network

going crazy
at first. 91

TABLE 2: CUSTOMER TESTING VIEW GRAPH RESULTS

The results of viewing the graph import demonstrated that there was still work that needed

to be conducted to improve the main part of the system. The testing took place at a stage

when the visualisation was not fully complete, planned functionality was still to be added

but some issues highlighted were never considered prior to the testing being conducted.

The number one issue always priority was performance of the page loading and graph

rendering. This was a known issue and was brought to attention. A number of changes took

place to enhance performance in a number of areas. A custom Neo4j procedure was written

in Java to perform a Breath First Search traversal when retrieving a sub graph as the default

way Neo4j handled queries of this kind was inefficient. The choppiness experienced in large

networks was attributed to rendering a graph as a Scalable Vector Graphic (SVG), the

solution implemented to solve this issue was reducing the number of DOM manipulations

and frequency of node and edge position calculations as the browser had to keep repainting

sectors of the page each time an elements coordinates were altered. Another problem

encountered was the initial positioning of elements in the graph on the same coordinates

causing the visualisation to become erratic and fly around the page. This was fixed by

randomly assigning nodes with an initial position. A number of Recruiters detailed an issue

with not being able to easily see a node’s connections due to the high density of edges. The

implemented solution now highlights a node’s 1st degree neighbours when a node is

hovered over with a mouse. A similar issue to this problem was not being able to focus on

different clusters in a graph. The now implemented solution changes the opacity of a node

an its neighbours when clicked. To release the opacity a restore the visualisation to normal,

the C key can be used. The most significant issue emphasised centred around the lack of

instructions, as the graph became more advanced in functionality used to keyboard to

perform actions on the visualisation the need for a help popup became apparent. A help

icon is now provided which details all the operations that can be performed on the

visualisation. A toolbar was added to the visualisation to expose the functionality using

buttons.

Exograph Technical Report

68

2.7.3.3 Send a Graph to Trash

What is your
opinion of
the trash

bin?

Did you
encounter
any issues?

What
elements
did you

most like?

What
elements
did you
dislike?

What
changes

would you
recommend

if any?

Out of 100.
What is your

level of
satisfaction?

Recruiter A

Nice piece of
functionality
and easy to

use.
No issues

found

Being able
to group
networks

before
deciding

an action.

Having to
select

items one
by one

Add a
checkbox for
selecting all

items 90

Recruiter B

The simple
design makes

it easy to
learn

Finding the
option to

trash a
graph took

a while

Being able
to view a

graph from
trash.

No way of
selecting
items by
click on a
row in the

table

Add
functionality

to select
items by

clicking on
them 95

Recruiter C

It works
really well
and is not

hard to use.

Sending
items to

trash one
by one is

slow.

Being able
to restore

items.

There was
no count
to show

how many
items are
selected.

Display the
number of
selected

items 80

Recruiter D

The page is
nice but lacks

more
advanced
features.

No issues
found

All the
actions
possible

are
contained

in one
place

There is
no way to
delete or
restore
multiple
items in
one go.

Add a feature
to delete or

restore
multiple

items in one
go. 87

Recruiter E

Cool feature
that adds

real value to
the project.

No issues
found All

The page
jumping

straight to
trash each

time a
graph is

selected.

Stop the
dashboard
jumping to

trash when a
graph is
trashed. 90

TABLE 3: CUSTOMER TESTING SENDING A GRAPH TO TRASH RESULTS

The results of the trash functionality testing yielded further vital information. Overall,

participants felt there was a need to improve performing multiple actions on trash items.

The implemented changes include showing a selected items count, selection by clicking a

row and the addition of a checkbox in the grid header to select all items. These changes

have greatly improved the UX of the trash bin.

Exograph Technical Report

69

2.7.3.4 Final Customer Testing

A final round of Customer Testing was conducted with 10 people from various backgrounds
in May aimed to see where the system needed further improvements. The same scenarios
were used from the first round of testing along with new ones for new parts of the system
that were not presented in March. The scenarios asked were;

1. Import your LinkedIn network.

2. When the import has completed, view the newly import graph and interact with the

visualisation through the provided toolbar.

3. Send a graph to the trash bin and use the grid to select items before choosing either

the delete or restore actions.

4. Upload a profile image.

5. View all jobs that you have ran.

6. Update your profile information.

The results gathered were a big improvement from previous. Overall, there were no issues
found with the graph visualisation. All participants felt that it performed beyond their
expectations. There were minor issues and bugs highlighted that were yet to be fixed but in
all the participants were satisfied with the system. The average satisfaction rate recorded in
March was 85%, this rose 8% to 93% User satisfaction.

Exograph Technical Report

70

2.8 Evaluation

System evaluation is an important process for any system. It allows the system to be
assessed in a number of areas such as Performance and User Satisfaction. The Exograph
system was evaluated on a number of different levels. The first level focused on
performance and stress testing on a component level and subsequently on components
when they are combined to form the complete system. The second level of evaluation
aimed to see what level of satisfaction Users got and to what degree they felt they system
conformed to the outlined goals and requirements. The evaluation results were gathered
and stored so they could be compared to ascertain whether changes to the system have
positively or negatively impacted previous result sets.

2.8.1 Performance Testing

Performance testing was conducted on both the LinkedIn and Twitter crawlers to assess the

total time required to gather the data to produce a graph model and load it into Neo4j. The

evaluations were carried out after the Bulk Loader was implemented which greatly

enhanced loading performance. The tests of both crawlers was conducted based on the size

of a network.

2.8.1.1 LinkedIn Crawler Import without Caching

TABLE 4: TOTAL LINKEDIN NETWORK IMPORT TIME NO CACHING

Based on the results presented in Table 4, the LinkedIn crawler has a mean import time of

491 seconds for a graph containing 473 nodes and 4263 edges. The mean increase in time

observed was 135 seconds for an average increase of 80 nodes and 1320 edges. The results

suggest a correlation between the number of edges and import time instead of the number

nodes. The LinkedIn crawler did not have caching fully implemented prior to LinkedIn

changing their UI.

80
143 186 235 432 564

1296 1765

4376
3238

7853

9214

136
215 478 391 786 943

1 2 3 4 5 6

No. Nodes No. Edges Total Time (seconds)

Exograph Technical Report

71

2.8.1.2 Twitter Crawler Import without Caching

TABLE 5: TOTAL TWITTER NETWORK IMPORT TIME NO CACHING

Table 5 provides metrics for the total Twitter network import time when caching is disabled.

The minimum observed import time was 5435 seconds (1 hour 30 minutes) for a graph with

342 nodes and 543 edges while the maximum observed time was 17646 seconds (4 hours 54

minutes) for a graph with 2242 nodes and 2383 edges. The mean time difference 2035

seconds (33 minutes) for a consistent average increase of 317 nodes and 307 edges. It was

clear early on that there would be considerable issues in a production environment if API

response caching was not implemented. There is a direct correlation between the number

of nodes and total import time as opposed to time and edges in the case of a LinkedIn

network. The difference can be associated with the implementation differences of each

crawler. There is a considerable difference in total import time when compared to the

LinkedIn crawler. This is as a result of Twitter imposing usage limitations meaning only 15

requests can be made on an API endpoint in a 15-minute window.

342 542 623 854 1323 1892 2242543 761 921 1149
2123 2623 2383

5435

7564
8434

11029

15923 16323
17646

1 2 3 4 5 6 7

No. Nodes No. Edges Total Time (seconds)

Exograph Technical Report

72

2.8.1.3 Twitter Crawler Import with Caching

TABLE 6: TOTAL TWITTER NETWORK IMPORT TIME WITH CACHING

Table 6 illustrates the total Twitter network import time when caching is enabled. From the

chart, it can be seen that there was a considerable reduction in the time taken to import a

graph when caching is enabled as opposed to not. The same 7 Twitter accounts were used

for both datasets as a control. There is a minor difference in node and edge count values as

the data was gathered one week after the dataset when caching was not enabled. The

minimum observed time was 3449 seconds (34 minutes) for a graph with 342 nodes and 543

edges while the maximum time was 9432 seconds (2 hours 37 minutes) for a graph with

2252 edges and 2393 edges. There was a mean consistent increase of 997 seconds (16

minutes) for an average increment of 307 nodes and 317 edges. Overtime with increasing in

the cache size, graph import time will be reduced further as a result of effective caching.

342 543 624 854
1323

1900 2252

543 768 905 1149
2123

2653
2393

3449

5565

6546 6543

7686 7865

9432

1 2 3 4 5 6 7

No. Nodes No. Edges Total Time (seconds)

Exograph Technical Report

73

2.8.1.4 Twitter Import Caching Comparison

TABLE 7: TWITTER IMPORT TIME CACHING PERFORMANCE IMPROVEMENT

Table 7 provides a metrical comparison between improved import performance time when
caching is not enabled and when caching is enabled. The table shows the total import times
as bars while the time reduction metric is represented by the grey line in percentage. The
blue bar represents the total time in seconds when caching is not in use, while an orange
bar shows the total time when caching is enabled. The datasets used for the comparison are
based on the results presented in section 2.7.1.2 and 2.7.1.3. The results show that there is
an improvement in import time across all 7 imported Twitter networks. The lowest
observed improvement difference was a 48% reduction on import time for graphs 5 and 6
while the highest observed reduction was 78% for graph number 3. The average reduction
in time across the board was 61%. After 7000 seconds there was drop in the improvement
of import time. Upon investigation, it was concluded that drop is related to the
disproportionate difference in times compared to when there is a continued increase in
improvement. Based on the results presented, it can be concluded that caching was a big
success in term of system wide advancement in ensuring that the system meets the non-
functional requirement of performance.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0

5000

10000

15000

20000

1 2 3 4 5 6 7

Twitter Import Time Caching Comparision

Total Time No Caching (seconds) Total Time with Caching (seconds)

Improvement Difference %

Exograph Technical Report

74

2.8.1.5 Neo4j Query Performance

TABLE 8: NEO4J SUB GRAPH RETRIEVAL RESPONSE TIME

Table 8 provides an insight into Neo4j’s query performance when retrieving a sub graph.

The results were recorded after the custom APOC procedure was implemented as it was not

possible to compare the current results without the custom procedure as small to medium

size graphs caused Neo4j to hang when using a standard Cypher query. From the results

presented in Table 8, it can be seen that the query response time is fast as the mean

response time was just shy of 1 second. The lowest observed time was 221 milliseconds for

a sub graph with 342 nodes and 543 edges, while the highest observed time was 1564

milliseconds for a sub graph with 1900 nodes and 2653 edges. The response time increases

in tandem with the increase in the number of nodes and edges until observation number 6,

but decreases slightly in observation 7. This was attributed to the reduction in the number

of edges contained in observation 7 compared to observation 6. The dataset gathered is

small and therefore does not show any intriguing patterns. It would be more interesting to

see the same visualisation on a larger dataset to find trends. The reason Neo4j was chosen

as the primary database was because of the performance it has over other offerings.

0

200

400

600

800

1000

1200

1400

1600

1800

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7

Neo4j Query Response Time

No. Nodes No. Edges Response Time (milliseconds)

Exograph Technical Report

75

2.8.2 User Satisfaction March

TABLE 9: USER SATISFACTION RATINGS ON KEY PAGES IN MARCH

Table 9 presents the findings of total combined User Satisfaction. The data was gathered

from the six Recruitment Consultants who tested the application in March. Users were

asked when testing the application to provide a rating between 1 and 100 based on whether

they felt the application met their needs based on the requirements. The data was gathered

on three key pages, Import page, Graph Visualisation page, and the Trash page. The results

yielded a good insight into what pages Users felt were better than others. The blue line

represents the Import page, while the orange and grey lines represent the Graph

Visualisation and Trash pages. The results show that Users were most satisfied with the

Import page as the mean rating percentage was 92%. The lowest rated page was the trash

page with a mean percentage of 85%. The graph visualisation which is the highlight of the

system and was the median rated page with an average rating of 88%.

0%

20%

40%

60%

80%

100%

120%

A B C D E F

User Satisfaction March

Import Page Graph Visualisation Trash Page

Exograph Technical Report

76

2.8.3 User Satisfaction May

TABLE 10: USER SATISFACTION RATINGS IN MAY

User Satisfaction ratings were recorded in May during a second round of Customer Testing.

Table 10 provides the results obtained from the four participants. The results contain two

additional pages that were not present during testing conducted in March. The results show

the highest rated page was Graph Visualisation with an average rating of 96%, this is an

increase of 8% compare to March. The lowest rated pages were the Trash and Profile pages

with an average rating of 91%. The Visualisation page had the highest increase. This can be

attributed to the vast amount of work that went into the page after the first round of

Customer feedback. No page had a decrease in rating.

84%

86%

88%

90%

92%

94%

96%

98%

100%

A B C D

User Satisfaction May

Import Page Graph Visualisation Trash Page

Profile Page Account Page

Exograph Technical Report

77

2.9 Deployment

Amazon Web Services (AWS) was selected as the chosen Cloud Platform to deploy the

project. AWS was chosen over other vendors due to the lower costs associated with running

an application. Prior to deploying the application there were a number of different areas

work needed to be conducted. Research was conducted into the instance types provided by

AWS and what capabilities they have. The system required an instance with a minimum of 8

gigabytes of RAM and a 2GHz processor. The instance type that met these needs was the

m4.xlarge from the m4 family of multipurpose instances. The m4.xlarge has 16GB of RAM

and a 2.4GHz Intel Xeon processor which is enough to host the application with a low to

medium level of traffic. The m4.large instance costs $0.20 an hour to run. One hundred

dollars of AWS credit was acquired on a Student development account this meant there was

enough credit to run the application for 20 days in total. CentOS version 7.3 was chosen as

the Operating System (OS). The goal of deployment was to automate the process as much as

possible which would reduce the time required to deploy changes into production. A series

of shell scripts were written for each repository that install all the required dependencies

and set the environment up prior to launching both the UI Server and Extractor service. The

scripts took a number of days to write as issues arose when trying to test the scripts which

took time to rectify. The scripts pull the latest code from each of the repositories master

branches and begin the setup. For the UI Server, all the modules dependencies are installed,

then the server is started to begin listening on port 80. A similar process occurs for the

Extractor service but instead, Pip which is the Python package manager is used to install a

list of requirements before starting the server on port 3000. The application is only

deployed once all unit and integration tests have passed on each repository’s Travis

Continuous Integration (CI) builds.

Exograph Technical Report

78

3 Conclusions

In this report, the aims of project which were to design and develop a social network

analysis system that facilitates Recruitment Consultants and others wishing to visualise their

social networks were discussed. The background to the project was outlined along with the

reasons why there is a need for this project which was primarily due to the fact there is no

commercially available product that provides the same services as the discussed solution.

The technologies that were used to develop the implemented solution were investigated in

depth along with their competitors to ascertain the best overall set of core technologies

that could meet the needs of the project. Section 2 defines the System, it included the

requirements of the system that were compiled and documented based on the needs and

wants of Users and gaps in the current market for such a product. During the requirements

gathering process, a lot of requirements were gathered but due time limitations not all

could be included and are therefore later documented in Future Developments section.

When the requirements gathering process was complete, the system architecture was

designed along with prototypes of the User facing elements of the system. An iterative

methodology was employed to strive for continuous improvement of the overall system

that lead to an implementation that meets the needs of Users. Sections 2.5 presented

specifics about how the system was implemented and explains some other algorithms used

in the system. The implementation details discussed were some of the more difficult aspects

of the system to implement due to the level of complexity.

Building great software requires dedication to testing at all stages throughout the lifecycle

of a project. In Section 2.7, there were three different levels of testing discussed, they

included low level Unit Testing, Integration Testing, and Customer Testing. The specifics of

how they were conducted along with the results from Customer Testing were presented.

They showed that out of 10 customers who evaluated the system, 94% were satisfied the

system meets the proposed goals and provides a User Experience that is easy to use and

learn. Performance issues were always high on the priority list, a range of different

approaches used to enhance the performance of the system were discussed, the metrics

based on the observed improvements were provided. They showed that the total time in

importing a graph was reduced by up to 78% by implementing caching. Graph visualisation

loading times were greatly reduced by the outlined performance enhancements.

Throughout the development of the project there were a number of different issues

encountered in gaining access to the LinkedIn API which lead to the use of web scraping to

gather the required data. Unfortunately, as of April 1st 2017, LinkedIn released a new User

Interface which made crawling the site more difficult than it previously was. These changes

mean the LinkedIn graph import functionality no long functions as outlined.

Exograph Technical Report

79

4 Acknowledgements

I would first like to thank my project supervisor Mr Vikas Sahni of the School of Computing

at the National College of Ireland. The door to Mr Sahni’s office was always open whenever I

ran into a trouble spot or had a question about my project or writing. He consistently

allowed this paper to be my own work, but steered me in the right the direction whenever

he thought I needed it.

I would also like to thank my family members especially my mother Karen who spent a vast
amount of time proof reading this paper and other documentation.

Finally, I would like to thank all the members of faculty at the School of Computing who
have given advice throughout my project.

Exograph Technical Report

80

5 Further Development

As of today, the system is continuing to grow and evolve. There is ample opportunity to

further add advanced functionality with more resources. Since there is a lack of

commercially available solutions, the project has the potential to become a feasible start up

with adequate funding.

5.1 Advanced Analytics

As the User base grows, so does the volume of data within the system. Functionality could

be included to allow multiple Users to combine their social graphs to visualise their network

and see how and whom they have mutual relationships with. This would be a very powerful

tool to a recruiter, potentially increasing their chances of finding a suitable person for a role.

5.2 Micro Services

Micro services are an architecture that allow complex systems of a service oriented field to

evolve from being large monoliths to smaller services that focus on doing one thing well.

Micro services are highly scalable but complex. They bring problems to the surface that

would not be encountered in a monolith architecture such as concurrency issues.

5.3 Graph Merging

As the system evolves, functionality could potentially be added for allowing related graphs

from different data sources to be merged into one graph to allow for more advanced

visualisations. A User may have a graph from Twitter and another from LinkedIn. It may not

be obvious to them at the time that there are hidden relationships which would not become

evident until they are combined.

5.4 Custom Graphs

As the system continues to advance, a useful feature could enable Users to create graphs

from scratch. This would have a lot of application areas such as profiling people and would

further compliment the system.

Exograph Technical Report

81

6 References

[1] Roesslein, J., 2009. tweepy Documentation.

Online] http://tweepy. readthedocs.io/en/v3, 5.

[Accessed 10 December 2016].

[2] Holzschuher, F. and Peinl, R., 2013, March. Performance of graph query languages:

comparison of cypher, gremlin and native access in Neo4j. In Proceedings of the Joint
EDBT/ICDT 2013 Workshops (pp. 195-204). ACM.

[3] Henderson-Sellers, B. and Edwards, J.M., 1990. The object-oriented systems life

cycle. Communications of the ACM, 33(9), pp.142-159.

[4] Venners, B., 2002. Test-driven development. A Conversation with Martin Fowler,

Part V (Retrieved 2017), http://www. artima. com/intv/testdrivenP. html.

Exograph Technical Report

82

7 Appendix

7.1 User Manual

7.1.1 Importing a Graph

Step 1

Navigate to the import page by selecting

the “Import” tab in the left vertical

navigation bar.

Step 2 (LinkedIn Import)

Complete the three text fields as can be

seen highlighted in red. The username

and password fields are your LinkedIn

credentials not Exograph, on input

complete click the “Submit” button

located at the bottom.

Step 2 (Twitter Import)

To launch a Twitter job, complete the job

name and screen name fields. Note the

screen name should not contain “@” at

the beginning, on field competition select

the “Submit” button located at the

bottom of the form.

Step 3

After selecting “Submit”, if the job was

successfully launched a popup will appear

containing summary information, in the

event of a failure an error will be

displayed.

7.1.2 Viewing an Imported Graph

Step 1

Navigate to the dashboard page by

selecting the “Dashboard” tab in the left

vertical navigation bar.

Step 2

After the page loads, the networks area

will become visible. Choose a network,

select the actions button located in the

top right corner of each network and

select view in the dropdown menu. A

loading spinner will appear and the graph

will be displayed once loaded.

Step 3

To view the vertical navigation bar, select

the blue button with a right point caret

which will enable the menu.

Step 4

To export a graph to an SVG image, select

the blue button with an image icon

located in the centre of the screen below

the horizontal navigation bar.

Step 5

The “Export Graph to Image” dialog will

now appear. Complete the “height” and

“width” fields and select “Download”.

Exograph Technical Report

84

7.1.3 Deleting a Graph

Step 1

Navigate to the Dashboard page by

selecting the “Dashboard” tab in the left

vertical navigation bar.

Step 2

After the page loads, the networks area

will become visible. Choose a network,

select the actions button located in the

top right corner of each network and

select “Send to Trash” in the dropdown

menu. The trash count located on the top

of the Dashboard will now be updated

with the current number of items marked

as trash.

Step 3

To view the trash bin, select the “Trash”

tab in the vertical navigation menu.

Step 4

The Trash page will contain a table with all

items marked as trash. To delete or

restore items, select the desired items by

clicking the checkboxes located in the last

row of the grid. Alternatively, items may

be selected by clicking a row. To select all

items, click the checkbox located in the

grid header.

Step 5

When one or more items have been

select, the actions button located in the

footer toolbar will become enabled. Click

the “Actions” button and select either

“Delete” or “Restore”.

Exograph Technical Report

85

7.1.4 Accessing Graph Analytics

Step 1

Navigate to the Dashboard page by

selecting the “Dashboard” tab in the left

vertical navigation bar.

Step 2

After the page loads, the networks area

will become visible. Choose a network,

select the actions button located in the

top right corner of each network. Select

“Analytics” in the dropdown menu and

wait for the page to load.

Step 3

The “Overview” table contains

information such as the total count of

nodes and edges in a graph, along with

displaying the mean node degree.

Step 4

The node degree distribution represents

the total number of outgoing and

incoming edges a node has. The x-axis of

the chart contains the aggregated total

degree while the y-axis represents the

number of nodes.

Step 6

The pie chart located at the bottom of the

page provides an analysis of the “Top 6

Locations”.

Exograph Technical Report

86

7.1.5 View Executed Jobs

Step 1

Navigate to the top horizontal navigation

bar located in the header of all pages and

select the bell icon as seen highlighted in

red.

Step 2

After clicking the bell icon, a dropdown

menu will appear. This contains a listing of

the last five jobs ran in ascending order.

Click the “See All Jobs” button located at

the bottom of dropdown menu as seen

highlighted in red.

Step 3

The Jobs page includes a listing of all

executed jobs order by the date ran in

ascending order. The progress of launched

jobs can be tracked from here.

Exograph Technical Report

87

7.1.6 Updating Account Information

Step 1

Navigate to the profile image button

located in the horizontal header

navigation bar of each page and select

“Account”

Step 2A – Update Details

To update your existing details, locate the

“Update Details” form which will be

populated with your existing data. Make

the required changes and click the blue

“Update” button.

Step 2B – Change Preferences

To change your preferences, change the

“Receive email notification of import

completion” checkbox and click the

“Change Settings” button to submit the

form.

Step 2C – Change Password

To change your password, enter your

current password in the top field, along

with your new password in the remaining

two fields. Click the “Reset” button to

persist your new password.

7.1.7 Changing a Profile Image

Step 1

Locate the profile image and click the
image in the top navigation bar, a

dropdown menu will appear. Select the
“Profile” option and wait for the Profile

page to load.

Step 2

Select the “Change Image” button.

Step 3

Choose browse files and select a PNG
format file, all other formats will not be

accepted.

Step 4

After selecting the image, click the

“Upload” button.

Step 5

The page will reload and your new image

will be available system wide.

Exograph Technical Report

89

7.2 Project Proposal

Objectives

The main objective of the Project is to design and develop an application that will enable

people to visually analyse social connections. The solution will enable recruiters to

understand how they connect with other people. From the perspective of a Recruiter, the

solution will facilitate them to find people who are commonly connected to either

themselves or others in order to locate a suitable person for a job they may be hiring for.

The solution will use multiple channels such as LinkedIn, Twitter and Facebook as data

sources. The project will demonstrate multiple Computer Science concepts such as Graph

Theory, Parsing, Distributed Computing, and Data Visualisation. The process of gathering

and performing computations on the data will be transparent to the end user. From the

time they set a target to when the graph is rendered they will not know anything about the

process. The application will be based around a Software as a Service model in a cloud

environment. Data that is imported and modified by Users will be stored and retrievable

from any location worldwide. Data privacy and ethics surrounding the project in the real

world environment could be problem. Therefore, such factors will be taken into account

appropriately.

Time management will play a vital role in meeting the required deadlines to ensure that the

project stays on track and that all requirements are fulfilled. The scope of the initial solution

will focus on getting one social media source working. Following on from that, the

application can then be extended to provide functionality for integrating with other data

sources.

Exograph Technical Report

90

Background

Social Network theory has been in existence for a long time. People have been analysing

social networks since medieval times. With the rise of the digital age, the capabilities of such

analytics have become more accessible. The application of the area is used extensively by

historians, sociologists, and economists alike.

In today’s world millions of people connect with each other using social network mediums

such as Facebook, Twitter, LinkedIn and Instagram. Social Networks can be described as a

graph of people who come in contact with each other through such a medium. Everyday

there are massive amounts of User generated data as a result of such relationships. People

constantly rely on social mediums to keep in contact with each other and meet new people,

forging new relationships. From a Computer Science aspect this opens a world of

possibilities to exploit such data. Graph theory is a very powerful mathematical concept

which can be applied to solving such problems as representing relationships between

groups of people.

LinkedIn currently have 450 million Users worldwide. Their domain area is connecting

professionals together. From the point of view of a Recruiter looking to hire someone it can

be a very tedious process manually attempting to see who they are connected to and

finding people who are connected with the same profession to find a suitable person for a

role. A Recruiter would be a prime example of a person who would be connected with

people in a cohesive way. As the old saying goes, good people know other good people.

Facebook’s domain area is connecting people for the purpose of personal relationships,

while Twitter is more oriented toward voicing opinions and following people based on ones’

interests rather than personal relationships. Twitter has more loosely cohesive relationships

compared to Facebook and LinkedIn. Combing such relationships over multiple social

network mediums could prove to be very effective as it allows more than one

comprehensive view to be taken on a dataset.

Data visualisation is the graphical representation of data in all-inclusive way. It enables us to

perceive things that would not be otherwise possible. By combing such social network

graphs and visually representing them, we can get new insights from data about

relationships that we didn’t even know existed.

Exograph Technical Report

91

Technical Approach

To date there are a vast number of research papers that discuss the topic of graphing and

analysing social distributions for the sociology purposes and investigating how groups of

people interact. From a technological perspective there are other solutions accessible but

not is a Software as a Service (SaaS) model in a cloud environment. The first stage of the

project deals with researching available data sources and how their Application

Programming Interfaces (APIs) work to ascertain what is possible and what is not. The initial

stage of extracting the data via a service’s API will involve a functional language that is fast

at processing data and capable of multi-threading.

From my findings, the best approach to use lean towards the Knowledge Discovery from

Data (KDD) technique used widely in the area of Machine Learning to build advanced

systems for Data Mining which has proven to be both robust and scalable. When all the data

is gathered it will need to be cleansed into a form that is representative of the domain.

Graph theory is a concept which I have come across briefly during my studies and I

therefore will need to conduct further research and learning surrounding the area before

jumping into designing and developing the application.

A further area research is how to store complex graph based models in a database that fits

the problem being solved. These findings are discussed more in the ‘Technical Details’

section. The frontend will require investigation around various different open source data

visualisation graph render frameworks that will integrate with the back end to visually

display the complex graph data structure models that can be mutated by end-users. The key

concept behind the application is that it should be a metadata driven application. A graph

can be represented in any data form. These models will be modified by a User and then

persisted in a graph oriented database. The metadata approach is one that has proven to be

scalable.

Syndio Social is an enterprise level application that already exists on the market. It allows

employers to visualise how their employees are connected using different data sources, and

includes integrated Data Visualisation tools to aid in the process.

Exograph Technical Report

92

Special Resources Required

There are numerous books and online resources required that are available at the National

College of Ireland’s Library. Research papers focusing on the area for the purpose of social

studies were identified, Algorithmic Problem Solving by Roland C is available at the library.

The book focuses on areas that are applicable to the project. Discrete Mathematics by

Johnsonbaugh R. is another resource required as it describes the core mathematical

theories behind graphs and will be a valuable asset with regards to further increasing

understanding of the discipline. “Analyzing Social Media networks with NodeXL” is a

research paper that was conducted at the University of Maryland alongside Microsoft in

2009. After reading the paper, it was clear it would be an excellent project resource as it

provides guidelines based on past experiences.

The final application will be deployed to Amazon Web Services (AWS). Therefore, access to

an AWS student account will be needed. AWS provide a number of different instance types

based on the required needs of a system although it won’t be known exactly the type of

instance required until certain performance metrics are gathered.

Exograph Technical Report

93

Technical Details

The first part of the project will focus on developing a script that will use the APIs exposed

by the Social Media platforms. This piece will require a functional language. Python is a good

fit as it is fast and efficient at process large volumes of data and has numerous libraries that

support web scraping such as Beautiful Soup and others for integrating with RESTful APIs.

Most of the data gathered will be JSON, Python supports the parsing of JSON and XML so

the options available are broad depending on the type of data being extracted from the

data sources. Python also has support for running computations over multiple processes or

even distributed over a network. The pre-processing of the data can also be implemented

using Python which has great backing for data manipulation.

MongoDB is a document oriented NoSQL database which is capable of storing large JSON

data structures. It has support for sharding and replication, therefore it would work well in a

distributed environment. Another storage mechanism that would work well is Neo4J. It’s a

graph oriented database it doesn’t work well with storing JSON structures, but works well at

storing groups of objects.

For the server side component of the web backend NodeJS fits the requirements well. It has

a diverse set of libraries available such as ones for working with MongoDB and Neo4J. There

are other libraries for spawning background processes for triggering the Python services to

fetch, parse and load the data into the database. Node has its own package manager for

installing application dependent libraries and takes the hassle out of managing such

dependencies manually. For the frontend piece a templating engine such as Jade or

Handlebars will be used alongside Bootstrap for the responsive layout and styling.

There are multiple data visualisation rendering engines available for graphs. One such

solution to the problem is VisJS which is a dynamic JavaScript browser based visualisation

library that can handle large volumes of data at any given time. It also allows for the

manipulation of the rendered graph which is a requirement of the project.

Exograph Technical Report

94

7.3 Monthly Journals

7.3.1 September

Achievements

This month the main achievement was to finalise the project idea and to conduct research

in the chosen areas domain. The project I have decided on is a Social Profiling Cloud

application which will use graph algorithms to represent people’s relationships and

friendships. This type of application will have many uses. It could be used by government

agencies such as police forces, airport security, private security to conduct checks on people

to see who they’re connected to using data visualisation. The architecture will be cloud

based, therefore any previously generated graphs can be re-rendered, viewed and edited. I

also researched the possibility of use artificial intelligence to flag any suspicious people,

something that could be extremely useful considering the heightened public security threat

after terrorist attacks such as the 2015 Paris bombings which took place near the Stade de

France. I spent a significant amount of time investigating the possible technologies at my

disposal which I haven’t used before as I want to challenge myself to learn a new

programming language for the purpose of the Software Project. The most prominent ones

being NodeJS and Java and Python. I have no real experience with NodeJS and think it would

fit really well into the problem being solve. It’s very useful for getting projects up and

running quickly and takes a lot of time out of writing boiler plate code while also being

extremely fast while on the other hand I have a vast amount of experience using Java and

feel competent using it.

Reflection

I feel that this month I achieved quite a lot in terms of deciding an idea. I’m very happy with

how the concept is evolving and am looking forward to starting to work on the Project

Proposal and Requirements documents. I feel that my project approval presentation went

very well, all three judges were very interested in the idea which gave me confidence in

knowing that it’s achievable. Other than that, I’m overall looking forward to what’s to come.

Intended Changes

During the presentation the judges suggested possibly using a static dataset to get the initial

project off the ground in case there are technical issues encountered. This is a very valid

point and is something that will be investigated.

Exograph Technical Report

95

Supervisor Meetings

For this month I haven’t had a meeting with a supervisor as I am yet to find one. I emailed

Michael Bradford in mid-September to discuss the possibility of him being my supervisor but

am yet to receive a reply. I have also thought about asking Ralf Beirig about being my

mentor and will email him once my project has been approved as I feel his area of expertise

applies to the problem.

Exograph Technical Report

96

7.3.2 October

Achievements

This month I achieved a lot in terms of research and completing the required

documentation. My focus for the beginning of the month was to find the appropriate

academic supervisor who has the skill set that the project requires. I looked through the list

of approved project ideas submitted by lectures and noticed the Vikas Sahni had an idea

that was similar to mine. I decided to contact him and see if he was available to further

discuss the idea and understand what the differences were between mine and his idea. This

was the real initial starting point in beginning to research what technologies fit the problem

and seeing what has already been developed in the field of social network theory. During

September I had already conducted some preliminary research to gain a footing in the area.

It was clear from the start a functional programming language such as Python or R would be

required for the data extraction process. I started learning Python in the Data Application

Development module which has given me a good refresher as it has been a while since I’ve

used it. I continued to research different storage mechanisms looking at a document

oriented NoSQL database such as MongoDB but it doesn’t really fit in well with the project

requirements. I concluded that a graph oriented database would work well in terms of

performance. Based on what I have seen from other projects of a similar nature I have

decided to use Neo4j. I looked into how it works and the advantages and disadvantages of

using it.

As the month progressed onwards, I began to work on the Project Proposal. I decided to do

a brainstorming session to ascertain some of the answers that would be required in the

proposal. This proved to very successful as it helped me to further gain an understanding

into what it is I’m trying to achieve. The proposal took me some time to complete as I still

had some unanswered questions that required further investigation. After I reflected on

what I felt I was doing wrong I took a different approach and looked at the questions from a

different perspective. I completed the project proposal a few days early and decided to

bring it to Vikas for a review before I submitted it. I wanted to get the proposal completed

early so I could start on the Requirements Specification as I was heading away on the

weekend of reading week and knew I would have a lot of new work from other modules to

complete over reading week.

For the Requirements Specification I completed the first two sections over the weekend of

the 22nd of September this ensured I wouldn’t be rushing to complete it as the deadline

approached. I made good progress on the requirements document and almost have it

completed one week early. A lot of time of time was spent further brainstorming what

functional requirements the project needed. It is almost a year since I’ve done any

requirements gathering as I was on work placement for six months. Eamon done a

requirements gathering seminar during one of the lectures. I found this to be of great help.

Exograph Technical Report

97

Task Log

Friday 14th

Research best data sources

Look into best functional programming

Start Project Proposal

Monday 17th

Search for available data visualisation frameworks

Research suitable backend technologies

Finalise Draft Project Proposal

Tuesday 18th

Meeting with Vikas at 1:30

Wednesday 19th

Polish and upload proposal documents

Research hosting platforms (Azure and AWS)

Thursday 20th

Uploaded project proposal

Saturday 22nd

Further research data sources and graph oriented databases

Monday 24th

Started on the requirements specification

Wednesday 26th

Applied to LinkedIn for API access

Complete first section of the requirements spec

Thursday 27th

Completed User Requirements Definition

Started October Reflective Journal

Conducted Research on Neo4J and Cytoscape

Friday 28th

Brainstorm Functional Requirements

Started Functional Requirements

Monday 31st

Completed Functional and Non Functional Requirements

Exograph Technical Report

98

Reflection

Overall I’m very happy with the progress being made. The deadlines I have set in the project

plan are being met ahead of time. As a result, the pressure of the workload has reduced as I

am completing it ahead of schedule. I feel that I could begin to work on getting some of the

basic functionality of the project setup such as a login system and begin to start testing the

technologies that were researched.

I am also very happy with my academic supervisor Vikas. He has been of great help in

guiding and pointing me towards different technologies that he’s familiar with and thinks

could work well.

Intended Changes

Before meeting with Vikas, my initial idea was to build a social network analysis tool that

would allow people to view other people’s social graph as well as their own. The APIs

provided by Facebook and LinkedIn don’t allow this unless you have permission from the

person who you want to conduct the analysis on. I decided to go with Vikas’s idea of

allowing a person such as a Recruiter analyse their own personal social graph.

One Data Visualisation framework researched was VisJS. At first it seemed like it had the

required functionality I needed but after further investigation it doesn’t. VisJS isn’t a graph

specific framework and therefore doesn’t have full support for allowing graphs to be

manipulated. I’ve decided that Cytoscape fits in well with the requirements instead of VisJS.

Exograph Technical Report

99

Supervisor Meetings

I emailed Vikas on the 11th of October to ask if he could be my academic supervisor. He

agreed so we organised our first meeting for Wednesday 12th of October. During this

meeting we discussed what was required for the project. Below are the minutes from the

meeting.

 Research best data source (LinkedIn, Facebook, Twitter, Instagram)

 Decide what functional language would suit the solution best (Python, R)

 Look into a data visualization rendering library. One that I came across was VisJS

 Research web app back-end and front-end technologies, possibly NodeJS, Jade, and

ReactJS.

 Next meeting Tuesday 18th Oct to review project proposal (Meeting Room 3)

The next follow up meeting we had was on Tuesday 18th of October. I had completed the

Project Proposal after our previous meeting. I met with Vikas at 1:30 to review the draft

project proposal. This was a very helpful meeting as I got to see some of the things I had

overlooked in the proposal that I would’ve missed if Vikas didn’t reviewed it.

The next meeting we had was on the 28th of October. During it we discussed how to do a

good Requirements Specification and what would be my plan for the coming week. Below

are the minutes from the meeting.

 LinkedIn require an application to be submitted in order to gain access to their

related-connections API. I have made an application to gain access which takes 15

days to be approved.

 I made the suggested changes to the Project Proposal and uploaded it to Moodle.

 I look into graph databases. The best solution that I feel fits the requirements is

Neo4J.

 Started to work on the Requirements Specification.

 I found a better data visualisation library that is graph specific. It's called

Cytoscape.js and has all the required functionality that is be detailed in the

Requirements Spec.

Exograph Technical Report

100

7.3.3 November

Achievements

This month was a difficult month due to the workload from other modules. At the beginning

of the month I took another look at the project plan and revaluated it to ensure that it took

into account my commitment to other modules. I set personal goals to be achieved by the

end of the month. The first goal was to make an application to gain access to the LinkedIn

API. As of recently, LinkedIn have tightly restricted access to their API. In order to gain

access to an end point an application needs to be submitted describing the purpose for

which access is required along with the uses cases. I spent some time putting this

application together with the hope that access would be grant for educational purposes.

Unfortunately, the application was unsuccessful. This posed a major problem as the primary

use case for the project focuses on professional networks for the purposes of helping

recruitment consultants find suitable candidates for roles they’re hiring. The problem was

discussed with Vikas and we decided that he would take over on resubmitting a new

application. Afterwards, the next goal was to take a deeper look into the Twitter and

Facebook APIs to make sure the project was still viable. The Facebook API also proved to be

a problem. A friends list can be accessed for the current User using authentication through

the API but not using App Authentication unless the person who the friends list is being

requested for gives the App permission to access the information.

As the time continued to pass, the next item on the agenda was to start working on the

prototype and technical report document. I always aim to have documents and projects

finished approximately a week early so time can be spent ensuring they’re of high quality

when submitting. The aim was to start doing an hour of work each day on the technical

report so it would be completed early. This approach worked well and the document was

compiled and on its first draft a week before the deadline. By this time, I had to temporarily

put it aside so I could focus on other projects and revisit it four days before the deadline.

Progress is going extremely well on my other projects. I was in a position where I could

dedicate two days of work on the prototype when the technical report was submitted. At

the beginning of the semester I had done some work in my spare time to get a NodeJS

instance up and running along with a basic User Interface so it would form the foundations

for the prototype.

Exograph Technical Report

101

Task Log

Monday 7th

Meeting with Vikas 3pm

Gather use cases for LinkedIn application

Research the API requirements

Thursday 10th

Finish LinkedIn application and submit

Saturday 12th

Setup NodeJS Server

Monday 14th

Finish configuring server

Technical report requirements section

Thursday 17th

Meeting with Vikas 1pm

Further research Twitter API

Saturday 19th

Play around with Facebook API

Monday 21st

Meeting with Vikas 10:15 am

Work on technical report

Thursday 24th

Work on technical report

Fix problems with NodeJS server

Saturday 26th

Finish technical report

Monday 28th

Write script to pull data from twitter

Tuesday 29th

Continue working on twitter script

Thursday Dec 1st

Meeting with Vikas 1:15pm

Exograph Technical Report

102

Reflection

Overall I feel this month was very stressful due to the workload and the high number of

hours I have had to put in to stay on top of all the work. The main thing that had me worried

for some time was trying to schedule in time for focusing on the prototype. I have a minimal

prototype already but only have a number of days to left to do more work on it for the

midpoint presentation.

Intended Changes

As of now, there are no intended changes but next month there could be if the second

application to gain access to the LinkedIn API is unsuccessful. This would possibly mean

changing either the targeted end-user or web scraping LinkedIn connections

Supervisor Meetings

The first meeting of November took place on Monday 7th of November. During this meeting

we reviewed the Requirements Specification document. Below are the minutes of the

meeting

 Make recommended changes to the Requirements Specification

 Discussed the application for LinkedIn access

The next follow up meeting took place on the 17th of December. During this time, we

discussed the response to the application made to LinkedIn and how to next approach the

project.

 Vikas took over dealing with the LinkedIn application

 Do more exploration on the Twitter and Facebook API and see if LinkedIn

connections could be scraped instead.

On the 21st of November we had another meeting. The findings from the further exploration

were discussed along with how to approach the technical report

 Start working on the technical report.

 Begin writing the Python scripts to gather the social network data.

 Continue to work on the prototype.

Exograph Technical Report

103

7.3.4 December

Goals & Achievements

This month the main goals and achievements were to finalise the prototype for the

midpoint presentation. At the beginning of the month I focused on cleaning up the User

interface to look well. Since LinkedIn wouldn’t give access to their API I found a way around

the problem by accessing the API using User Authentication instead of OAuth. This proved

to work well but means that there is more work required around cleansing the data. I

implemented the crawler in Python which took some time along with trial and error but

eventually got it working for the presentation.

The next goal was to prepare for the presentation I put together a set of provisional slides

and reviewed them with Vikas to see if anything else could be added. I started to practice

my presentation so I knew the contents of the slides and wouldn’t need to keep looking at

them in the presentation. This meant I could engage with the audience.

After the presentation on the 19th of December we put the project aside until the end of

semester exams are over.

Reflection

Overall I feel this month was very stressful due to the workload and the high number of

hours I have had to put in to stay on top of all the work. I had to manage finishing all my

projects along with working on the prototype. Time management was the key to this being

so successful for me. I’m extremely happy with how the midpoint presentation went and

feel that the hard work paid off with a grade of 99%.

Intended Changes

As of now, there are no intended changes as a way around the LinkedIn API was found.

Supervisor Meetings

At the beginning of the month I had a meeting with Vikas to talk about the presentation and

what to expect and prepare for.

 Finalise Prototype

 Understand the grading rubix.

For the remained on time before the presentation Vikas was in China so we kept in contact

via email.

Exograph Technical Report

104

7.3.5 January

Goals & Achievements

For the first two weeks of January, the project was put aside as my primary focus after

Christmas was to study for my end of semester examinations which took place the start of

January. The exam finished on the 14th of January. After having a well-deserved three-day

break afterwards, my attention was fully focused on hitting the ground running with

development. I had 10 days of free time before the final semester began. I wanted to make

the most of this time as there would be no distractions.

The next major hurdle of the project was to get the Extractor Service complete as this was

blocking me from developing the UI Server. I had anticipated that this would take

approximately 12 days of working for 9 hours a day. In the end I got a beta version of the

LinkedIn crawler complete in 4 days. Next I focused on exposing the crawler through a

RESTful API written in Python using the Django framework. I first began with modelling the

database since the Extractor has its own database separate from the primary Neo4J

database. The Extractor database is used to store job details so they can be efficiently

managed without polluting the main graph database. It was also a design decision as a

service should encapsulate its own data and only expose what is needed.

The Extractor API and LinkedIn crawler were completed in 8 days. I spent a further 2 days

writing a small unit test suite which is executed on a continuous integration build to ensure

there have been no undesirable changes since the last successful build. I wasn’t familiar with

unit testing using the Django framework. This proved to be problematic as conventional

mocking and stubbing wouldn’t work because Django needed to be running before any tests

could be executed. In the end I refactored the code to improve separations of concerns and

make the code more testable. I discovered that there is a Test Framework available to

specifically test Django APIs. I used this in the end to test the API views, controllers and

models. The month of January was almost nearing an end, which meant it was time to begin

my final semester. I continued to work on the UI Server as I was no longer being blocked by

the Extractor Service and spent the last few days of January writing the logic to consume the

Extractor Service. For February my plan of action is to continue working on development

which also completing the Design and Analysis documentation.

Reflection

I’m very pleased with the progress being made. I revisited the project plan which is now

three weeks ahead of schedule. The outlook of the project was looking bleak at the

beginning of December because of the problems with LinkedIn not providing access to their

API. I’m relieved now that I found a solution to the problem.

Exograph Technical Report

105

Intended Changes

As of January there have been no major intended changes. I have decided to use Tableau

and D3.js as the visualisation frameworks instead of Cytoscape as they are more

customisable.

Task Log

Saturday 14th Jan

Write Middleware for PassportJS Login Handler

Configure Routes to use Passport

Write Unit Tests

Sunday 15th Jan

Convert CSS to Sass

Configure Travis CI Build on Pull Requests

Monday 16th Jan

Add NetworkX Graph Data structure to Extractor

Wednesday 18th Jan

Unit Test LinkedIn Crawler

Write Neo4J Bulk Loader

Thursday 19th Jan

Fix bugs in Extractor

Setup Django

Friday 20th Jan

Write Django Models

Saturday 21st Jan

Write the API controllers

Write API Views

Sunday 22nd Jan

Configure Token based authentication using JWT

Unit and Integration Test API

Monday 23rd Jan

Write logic to run crawlers concurrently

Write image generator to create image of graph

Tuesday 24th Jan

Add more Unit Tests for the UI Server

Thursday 26th Jan

Write UI server middleware to consume Extractor

Meeting with Vikas 1pm

Friday 27th Jan

Exograph Technical Report

106

Unit Test UI Server

Add Jade Views to Launch LinkedIn job

Write reusable client side form validation logic

Saturday 28th Jan

Add dashboard views, routes and models

Unit Test new routes and models

Supervisor Meetings

The first meeting of January took place on the 23rd as I had exams. Below is a summary of

what was discussed.

 Plan how the project will be deployed

 Focus on wiring up all of the components so a beta version can go live in March for

User Acceptance Testing.

 Get Azure and Amazon credits.

 Keep the flame burning until the semester is complete.

 Look into the maximum number of API requests for a professional LinkedIn account.

Exograph Technical Report

107

7.3.6 February

Goals & Achievements

For the month of February, my primary goals and objectives were to continue working on

implementation along with completing the Project Design and Analysis document. I began

working on the Design and Analysis document in the beginning of February. My aim was to

spend one hour per day working on it until it was complete. It took approximately 14 hours

to complete and was complete one week earlier than it was due. Although it wasn’t a

mandatory submission I was eager to get it completed by February as it forms part of the

Technical Report and would have added further pressure later in the semester.

My next focus on the project was to implement the trash functionality along with improving

the visualisation piece and other functionality. This took time to do as there was a lot of

working involved in it. I aimed to dedicate two hours per day to project as based on my

project plan this is what will be required to complete it on time. I encountered performance

problems when reading a graph from Neo4j this was mainly attributed to inefficient cypher

queries. The solution which I devised was to write a custom procedure in Java that

performed a traversal using a breadth first search. This greatly improved performance and

reduced the original query time by 20 seconds. All the work I intended to complete was

finished on time.

Reflection

I’m very happy with the progress being made with the project and feel that everything is

continuing to go to plan.

Intended Changes

There are some minor changes to be made. An existing use case was to allow Users to edit

and manipulate a graph but the new visualisation library being used doesn’t support that

functionality. I was originally using Cytoscape which supported graph manipulation but

doesn’t fully fit the needs to the project therefore I have had to modify this requirement.

Exograph Technical Report

108

Task Log

Saturday 4th Feb

Fix login bug

Write cypher queries for retrieving graph

Sunday 5th Feb

Write Java A* Neo4J procedure

Monday 6th Feb

Client side visualisation

Wednesday 8th Feb

UI server piece for converting graph to D3 model

Write Neo4J Bulk Loader

Friday 10th Feb

Fix dashboard bugs

Setup controllers for handling D3 model

Saturday 11th Feb

Write client side visualisation

Sunday 12th Feb

Write client side visualisation

Monday 13th

Write client side visualisation

Wednesday 15th Feb

Write logic to run crawlers concurrently

Write image generator to create image of graph

Friday 17th Feb

Add more Unit Tests for the UI Server

Saturday 18th Feb

Start working sending item to trash bin

Sunday 19th Feb

Continue trash bin work

Monday 20th Feb

Add delete functionality from trash

Wednesday 24th Feb

Write client side multi action trash

Fix toolbar issues

Exograph Technical Report

109

Supervisor Meetings

The first meeting of February took place on the 10th of February. The goal of the meeting

was to discuss the project aims and objectives for the month.

 Look into deployment platforms more and getting credit.

 Start working on automating deployment

 Work on improving performance

 Start working on design and analysis document

The second meeting of February took place on the 24th of February. The goal of the meeting

was to discuss the issues with query performance.

 Look into algorithms to improve performance

 Continue working on trash and visualisation

 Start working on the manual

 Continue on documentation

Exograph Technical Report

110

7.3.7 March

Goals & Achievements

For the month of March my primary aims and objectives were to improve client side graph

visualisation, complete the trash functionality with a multi action grid that would make it

easier for Users to bulk delete and restore graphs, and deploy all the latest changes at the

end of March so vital feedback could be gained from Recruitment Consultants actively

working in the field. At beginning of the month, I started on the improving the graph

visualisation. This entailed adding more functionality such as:

 Panning and zooming

 Highlighting neighbouring nodes when a node is hovered on

 Reducing the opacity of non-neighbouring nodes when a node is clicked

 Mobile responsiveness

 Improving rendering performance.

This work took approximately one week to complete and was finished on the 7th of March.

From the second week of March onwards I began to work on the multi action trash

functionality. This took 6 days to complete and issues were encountered deleting

relationships in Neo4J this slowed up the process as it took time to research possible

solutions to the problem. I became ill mid-March as I had an allergic reaction to an antibiotic

I was prescribed which unfortunately meant I was out of action for two weeks. When I got

back to health I had to put the project work on hold as I had to work on projects for other

modules. I caught back up quickly as I was way ahead before I became sick.

The final week of March I focused on deploying the project to Amazon Web Services. Issues

were encountered as I was automating deployment using shell scripts and it took time to

fine tune the scripts. The project was successfully deployed on 29th of March I emailed

previous colleagues from a Recruitment Agency where I used to work as a Network

Administrator asking if they could test the project. One the first weekend of April, 6 people

began to test it and all was running smoothly. On Monday 3rd of April I received an email

from a tester informing that the LinkedIn import functionality no longer was working. I

spent that morning investigating the problem. It soon became apparent that the new

LinkedIn User Interface (UI) was only supporting newer browsers. The crawler’s user agent

was set to an older version of Firefox which meant it continued to receive the existing UI but

as of the 3rd of April LinkedIn rolled out changes that had a dramatic impact on the project

as they have now made it even harder to use web scraping on their site. The endpoints the

crawler previously exploited JSON data no longer exist. I contacted LinkedIn the first week of

April explaining that I really needed access to the data and as of the 07/04/17 I am still

awaiting a response. I have a backup of graphs which I previously imported so there won’t

be a problem with demonstrating the main application functionality.

Exograph Technical Report

111

Reflection

Overall I’m disappointed with the changes LinkedIn have made as the crawler took a lot of

effort and time to build, approximately 3 to 4 weeks in fact. I am happy with the continuing

progress that I am making and feel that the effort made is beginning to show. From a

general perspective the LinkedIn changes were out of my control. I hope that they do give

me access to the API as this is now the third time requesting access.

Intended Changes

If LinkedIn do grant access to the API the crawler will need to be rewritten to work with the
API instead of scraping html and JSON. Currently I intend to complete the Twitter crawler
which is about 50% complete as I left that part until now as the majority of the application is
complete and that is one of the final things to finish.

Exograph Technical Report

112

Task Log

Wednesday 1st March

Add panning functionality

Add zooming functionality

Thursday 2nd March

Improve mobile graph mobile responsiveness

Friday 3rd March

Reduce opacity on neighbour nodes when node is clicked

Saturday 4th March

Reduce opacity on neighbour nodes when node is clicked

Sunday 5th March

Reduce opacity on neighbour nodes when node is clicked

Monday 6th March

Highlighting neighbouring nodes on hover

Tuesday 7th March

Improve rendering choppiness

Wednesday 8th March

Start on multi action trash restore and delete

Thursday 8th March

Multi action trash restore and delete

Friday 9th March

Multi action trash restore and delete

Saturday 10th March

Multi action trash restore and delete

Monday 20th March

Write deployment scripts

Tuesday 21st March

Write deployment scripts

Wednesday 22nd March

Start on view all Jobs

Friday 24th March

Work on view all jobs

Exograph Technical Report

113

Supervisor Meetings

The first meeting of March took place on the 3rd of March. The goal of the meeting was to

discuss the project aims and objectives for the month.

 Begin on working on the User Manual

 Continue working on graph rendering

 Next to complete is the advanced trash functionality

The second meeting of March took place on the 10th of March.

 Add user account page

 Work on improving the visualisation UX

 Finalise Twitter crawler.

The third meeting of March took place on the 28th of March.

 Get elastic IP working

 Get Users using the application

 Work on Job summary page

