

National College of Ireland

BSc in Computing

2016/2017

Conor Keenan

X13343806

Conor.keenan@student.ncirl.ie

In Time

Technical Report

 ii

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Conor Keenan
Student ID:

x13343806
Supervisor:

Adriana Chis

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

I confirm that I have read the College statement on plagiarism (summarised overleaf and printed in
full in the Student Handbook) and that the work I have submitted for assessment is entirely my own
work.

Signature: ___ Date: _______________

NB. If it is suspected that your assignment contains the work of others falsely represented as your
own, it will be referred to the College’s Disciplinary Committee. Should the Committee be satisfied
that plagiarism has occurred this is likely to lead to your failing the module and possibly to your
being suspended or expelled from college.

Complete the sections above and attach it to the front of one of the copies
of your assignment,

 iii

What constitutes plagiarism or cheating?

The following is extracted from the college’s formal statement on plagiarism as quoted in the
Student Handbooks. References to “assignments” should be taken to include any piece of work
submitted for assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into your own words
and crediting the source. This is acceptable academic practice provided you ensure that credit is
given to the author. Plagiarism refers to copying the ideas and work of another and
misrepresenting it as your own. This is completely unacceptable and is prohibited in all academic
institutions. It is a serious offence and may result in a fail grade and/or disciplinary action. All
sources that you use in your writing must be acknowledged and included in the reference or
bibliography section. If a particular piece of writing proves difficult to paraphrase, or you want to
include it in its original form, it must be enclosed in quotation marks and credit given to the author.

When referring to the work of another author within the text of your project you must give the
author’s surname and the date the work was published. Full details for each source must then be
given in the bibliography at the end of the project

Penalties for Plagiarism

If it is suspected that your assignment contains the work of others falsely represented as your own,
it will be referred to the college’s Disciplinary Committee. Where the Disciplinary Committee
makes a finding that there has been plagiarism, the Disciplinary Committee may recommend

• that a student’s marks shall be reduced
• that the student be deemed not to have passed the assignment
• that other forms of assessment undertaken in that academic year by the same student be

declared void
• that other examinations sat by the same student at the same sitting be declared void
Further penalties are also possible including

• suspending a student college for a specified time,
• expelling a student from college,
• prohibiting a student from sitting any examination or assessment.,
• the imposition of a fine and
• the requirement that a student to attend additional or other lectures or courses or undertake

additional academic work.

 iv

Technical Report

Revision History

Date Version Action Contributor

28/11/2016 1 Created Conor Keenan

08/12/2016 2 Updated for Mid-Point Presentation Conor Keenan

03/01/2017 3 Updated after Mid-Point Presentation Conor Keenan

06/05/2017 4 Prepared for Final Upload Conor Keenan

Distribution List

Name Title/Role

Eamon Nolan Lecturer

Adriana Chis Project Supervisor

 v

Table	of	Contents	
EXECUTIVE	SUMMARY	..	-	1	-	

1	 INTRODUCTION	..	-	2	-	

1.1	 BACKGROUND	..	-	2	-	

1.2	 AIM	...	-	3	-	

1.3	 MARKET	RESEARCH	..	-	4	-	

1.3.1	 Never	Late	..	-	4	-	

1.3.2	 wUp	Traffic	Alarm	Clock	..	-	4	-	

1.3.3	 Puzzle	Alarm	Clock	...	-	4	-	

1.4	 TECHNOLOGIES	..	-	5	-	

1.4.1	 Mobile	Application	...	-	5	-	

1.4.2	 Web	Application	..	-	5	-	

1.4.3	 Testing	...	-	6	-	

1.4.4	 APIs	..	-	6	-	

2	 SYSTEM	..	-	7	-	

2.1	 REQUIREMENTS	..	-	7	-	

2.1.1	 Functional	requirements	..	-	7	-	

2.1.2	 Non-Functional	Requirements	...	-	14	-	

2.2	 DESIGN	AND	ARCHITECTURE	...	-	16	-	

2.2.1	 Architecture	Level	0	...	-	16	-	

2.2.2	 Architecture	Level	1:	Android	App	...	-	17	-	

2.2.3	 Architecture	Level	1:	Web	Application	...	-	20	-	

2.3	 IMPLEMENTATION	..	-	22	-	

2.3.1	 Calculate	New	Travel	Time	..	-	22	-	

2.3.2	 Android	Smart	Alarm	...	-	24	-	

2.3.3	 Statistics	...	-	26	-	

2.3.4	 Web	Application	Build	Process	..	-	29	-	

2.3.5	 Host	Environment	Setup	..	-	29	-	

2.3.6	 Application	Programming	Interfaces	(API)	..	-	30	-	

2.4	 TESTING	..	-	35	-	

2.4.1	 Web	Application	Testing	..	-	35	-	

 vi

2.4.2	 Android	Application	Testing	...	-	36	-	

2.5	 GRAPHICAL	USER	INTERFACE	(GUI)	...	-	38	-	

2.6	 CUSTOMER	TESTING	...	-	43	-	

2.6.1	 Use	Case	1:	Add	Basic	Alarm	...	-	43	-	

2.6.2	 Use	Case	2:	Add	Smart	Alarm	..	-	43	-	

2.6.3	 Use	Case	3:	Add	Location	...	-	44	-	

2.6.4	 Survey	..	-	44	-	

2.7	 EVALUATION	..	-	46	-	

3	 CONCLUSIONS	..	-	47	-	

4	 FURTHER	DEVELOPMENT	OR	RESEARCH	...	-	48	-	

4.1	 MOBILE	APPLICATION	...	-	48	-	

4.2	 WEB	APPLICATION	..	-	48	-	

5	 REFERENCES	...	-	49	-	

6	 APPENDIX	..	-	52	-	

6.1	 PROJECT	PROPOSAL	..	-	52	-	

6.1.1	 Objectives	..	-	52	-	

6.1.2	 Background	..	-	52	-	

6.1.3	 Technical	Approach	...	-	53	-	

6.1.4	 Special	Resources	Required	...	-	54	-	

6.1.5	 Project	Plan	..	-	54	-	

6.1.6	 Technical	Details	..	-	55	-	

6.1.7	 Evaluation	..	-	56	-	

6.2	 PROJECT	PLAN	...	-	57	-	

6.3	 MONTHLY	JOURNALS	..	-	58	-	

6.3.1	 September	..	-	58	-	

6.3.2	 October	..	-	59	-	

6.3.3	 November	..	-	60	-	

6.3.4	 December	...	-	61	-	

6.3.5	 January	..	-	62	-	

6.3.6	 February	...	-	63	-	

6.3.7	 March	..	-	64	-	

 vii

6.4	 OTHER	MATERIAL	USED	..	-	65	-	

6.4.1	 Customer	Testing	Templates	...	-	65	-	

 - 1 -

Executive Summary
According to Brooks (2015), traffic is the most common reason why employees

are late for work. This is an issue that is hard to avoid for even the most punctual

people.

A proposed solution to this is “In Time”, an Android alarm application that is

designed to reduce/overcome this problem. In Time checks current and predicted

traffic conditions before one wake up in order to adjust the alarm activation time if

needed. This means that if there is particularly bad traffic one morning, the alarm

will activate early to reduce the chances of one being late.

This functionality works for both public and private travelling methods and is

aimed at commuters living in the greater Dublin region. The system works by

combining the transport waiting times from the Dublin Real-Time Passenger

Information(RTPI) Application Programming Interfaces (API) to the direction

provided by Google’s Directions API.

This mobile application is built in conjunction with a NodeJS based web

application that performs the logical calculations and expose them in the form of

a RESTful API. This allows for separations of concerns between the mobile

application and the journey time update calculations.

This separation also allows for statistics to be gathered anonymously from the

user. These statistics can then be used later to potentially increase the accuracy

of the system. As of 5th May 2017 the system has an overall accuracy of 87%,

meaning all travel time estimates are within 13% of the actual travel time.

 - 2 -

1 Introduction
It is important to arrive to work on time for various reason including appointments,

meetings, contractual agreements, etc. Some of the cause that could potentially

cause one to be late is traffic, public transport scheduling issues among many

other factors.

In Time is a smart alarm system, designed to solve this issue. It uses real time

public transport information and traffic conditions to adjust the alarm time. For

this project a system has been developed that helps users arrive at work on time,

particularly during periods of unforeseen traffic conditions.

The target market for this application is people living and working/studying in

Dublin, Ireland. It will however be usable by all people requiring an alarm, but

some of its functions may be limited. For example, the public transport

information will be restricted to Dublin due to limitations of the RTPI Api. Other

functions such as basic alarm and smart alarm with private transport should be

fully functional.

1.1 Background

There are several reasons why I want to develop this application. The first being

that there is a need for this application. After doing some research I found that

“traffic is the most common cause for employee lateness” (Brooks, 2015).

According to Mercer (2012), in the UK there are nearly 600,000 workers late for

work on a daily basis, costing the British economy approximately £9 million.

Although this is a study done in the UK, Ireland has a very similar culture and

would produce similar results. Statistically this means that roughly 1% of People

are late every day making it a target market of roughly 46,000 people. This could

potentially be greater if you consider that fact that it would not be the same

people being late every day.

Another reason is that I am a very punctual person and tend to be on time, if not

early. During workplace I noticed that certain days of the week or months of the

 - 3 -

year seemed to cause differences in travel conditions, this often made it hard to

predict what time to leave at. Another factor, that was even less predictable, was

car accidents. Depending where these happened they seemed to cause a near

standstill in traffic.

In addition to these points, this project gives me the chance to develop upon my

existing Android development knowledge, which is currently at a basic to

intermediate level. I have previously worked with Android application during my

second year project and have since developed an interest in the area. Recently, I

have been researching about mobile development and look forward to applying

the knowledge that I have gained.

Finally, the complexity of this project gives me a chance to apply the web

development knowledge that I gained during my work placement. Although I do

not plan on using the same web stack that I worked with in AOL, I still have

knowledge of concepts and good practices that I will apply, while also learning a

new technology.

1.2 Aim

The aim of this project is to develop a mobile application that will help commuters

arrive at work/college on time. This application will be essentially a smart alarm

that extends the features of the stock android alarm. It will use current, historical

and predicted traffic conditions to calculate commuting time and change the time

of the alarm accordingly.

The target market for the app is anyone living in Dublin and travels to work and/or

college. Although it is aimed to be used in Dublin it will be designed to work

internationally for private travel, such as a car, but may have limitation for public

commuting.

The project will consist of two main parts, a mobile application and a web based

application. The mobile application will be used to set any alarms and locations,

while the web based application will perform all the logic for traffic predictions and

 - 4 -

expose the results in the form of a RESTful API. This web based application will

also provide the user with the ability to view statistics gathered by the system.

1.3 Market Research

While researching my idea I found three other similar applications that would be

in competition with In Time. They are as follows:

1.3.1 Never Late

Never Late is an alarm application that claims to adjust its time depending on

traffic and weather conditions. When trying out this application I found that I was

unable to add in my location as it seemed to only pick up American addresses,

making it unusable in Ireland. I also did not find the UI very pleasing to the eye

and I intend to improve this using Androids material design. (Never Late Smart

Alarm, 2015).

1.3.2 wUp Traffic Alarm Clock

wUp also uses traffic to predict the time for the alarm. In this case however you

enter the time u wish to arrive, opposed to a base alarm time. The issue with this

app is that it does not include public transport and only works when driving to

work/college. (wUp, 2015)

1.3.3 Puzzle Alarm Clock

This alarm would not be in direct competition as it does not change time but

instead offers the ability to add puzzles when deactivating an alarm. I am noting

this here for two reasons. The main one being that it has an appealing UI that is

similar to how In Time looks. The second is that the puzzle feature is interesting

and could be a stretch goal or evolutionary feature that could be added to In

Time. (Wro Claw Studio, 2016)

 - 5 -

1.4 Technologies

Grouped into four main categories the technologies that are used to develop this

system are as follows:

1.4.1 Mobile Application

Apple IOS and Android were both considered when choosing a mobile platform

for this project. Android was chosen as it has the largest market share. In the

third quarter of 2015 it had a market share of 83.4% versus 13.4% that IOS had.

(IDC, 2016)

The android application was developed using the base Android stack which

includes Gradle, Java and Xml. To help with development of this app I have also

used some dependencies, these are listed below.

• Butter Knife: Used to for view injection in Android. (Wharton, 2013)

• OkHttp: Used to make HTTPS requests to the server. (Square.github.io,

2016)

• Gson: Used for conversions between Java objects and JSON. (GitHub,

2008)

1.4.2 Web Application

Many Web frame works were considered for this project such as Ruby on Rails,

Django, asp.Net, etc. I chose to use ExpressJS + NodeJS as it is a lightweight

framework that does not require a lot of boilerplate code. The web application is

primarily designed to be an API meaning, it does not require the creation of many

elaborate front end elements. The front end of the web app will be designed for

two main purposes, firstly as a means to advertise the mobile app and secondly

to allow visualization of the anonymous data collected from the users. NodeJS

still allows for more complex and elaborate front end elements if the application

evolves over time.

NodeJS is a JavaScript based environment that is designed to be able to run on

server side. I have deployed this Web Application to Digital Ocean and it is

 - 6 -

currently hosted at InTimeAlarm.com. This Digital Ocean droplet is set up using

Ubuntu 14.04 as its Operating System and using Nginx as its Http Server.

NodeJs uses Npm to manage its dependencies. The dependencies/libraries I

have used are as follows:

• Express: This is a web framework for NodeJs. (Express, 2016)

• Google/Maps: This is used for making requests to the Maps Api. (Google

Developers, n.d.)

• Moment: Used for converting timestamps. (Moment, n.d.)

• Request: Used to make network requests. (GitHub, 2004)

• Yaml-config: Used to store global variable in a YAML file. (Jyo, 2011)

• Bower: Used as a package manager for front end libraries. (Bower.io,

2012)

• MongoDB: A NoSQL database used to store trip information for

evaluation. (MongoDB, 2017)

• Pug: Used for html templating. (GitHub, n.d.)

• Mocha: Testing framework for NodeJS. (Mocha, 2017)

• Supertest: Library for testing express server APIs. (Holowaychuk, 2014)

• Gulp: Manages builds during development. (Gulp, 2013)

1.4.3 Testing

Testing is done on the web application using the Mocha and Supertest node

dependencies that are listed above. The mobile written using JUnit and Mockito

to mock native java classes.

1.4.4 APIs

The APIs used in this system to get information about travel times are Google

Map’s Directions API and the real-time passenger information (RTPI) API. The

project also implements its own custom API for the android application to make

requests to.

 - 7 -

2 System
In Time is a complex system that features both a mobile and web application.

This section discusses in detail the requirements, design, architecture,

implementation and testing of the system. These are the main stages of the

software development lifecycle (Sommerville, 2016).

2.1 Requirements

2.1.1 Functional requirements

• Create alarm, it could be basic or smart.
• Perform logic on external APIs to calculate new time.
• Make web service request from Android device.
• Stop Alarm.
• Add a location.

2.1.1.1 Use	Case	Diagram	

 Figure 1: Use Case Diagram	

 - 8 -

Figure 1 illustrates a high level of the main use cases for this project. It shows the

main functions that a user can perform. Namely these are to create an alarm, add

a location and stop an alarm. It also shows the use case of the application

making a request to the service to get an updated alarm time.

2.1.1.2 Requirement	1:	Create	Alarm	
Description

This is the main function for the user. It allows them to create an alarm on their

smartphone, which will activate at a specific time.

Use Case

Scope

The scope of this use case is for the creation of an alarm. This could be either a

basic alarm or smart alarm.

Description

This use case describes a user making an alarm on their device.

Flow Description

Precondition

The application is open on the android device.

Activation

This use case starts when a user clicks the “create alarm” button.

Main flow

1. The user enters a time.
2. The user selects days for the alarm to go off.
3. The user selects the smart alarm radio button (See A1)
4. The user chooses a start location (See E1)
5. The user chooses a target location.
6. The user enters usual time to get ready.
7. The user enters their due time at the target location.
8. The user clicks Save.

 - 9 -

Alternate flow

A1: User is creating Basic alarm
1. The user does not select smart alarm box.
2. The use case continues at position 8 of the main flow.

Exceptional flow

E1: User has no locations to choose
1. The user clicks add location option.
2. The user performs the Add a location use case.

Termination

The System returns to main home screen.

Post condition

There is a new alarm in the android system waiting to activate.

2.1.1.3 Requirement	2:	Preform	Logic	on	APIs	
Description

This is the use case that performs an algorithm, that is run by the web application

to calculate the new time for the alarm. It is essentially what makes the alarm

smart.

Use Case

Scope

The scope of this use case is to calculate the best possible time for the alarm to

activate in order for the user to arrive at work on time.

Description

This use case describes the web service calculating the new alarm time.

 - 10 -

Flow Description

Precondition

The web service is in a waiting state and there is a pending alarm set on the

user’s device.

Activation

This use case start before the activation of the alarm. The android device sends

a request to the service to get updated information.

Main flow

1. The user’s device sends a GET request to the web service.

2. The web service requests information from Google Directions API. (See

A1)

3. The web service parses these to extract relevant data.

4. The web service uses this data to calculate a new alarm time.

5. The web service returns this information in JSON format.

Alternate flow

A1: User is traveling by public transport.

1. The web service requests information from Google and RTPI APIs.

2. The use case continues at position 3 of the main flow.

Termination

The web service returns to a waiting state.

Post condition

The alarm on the user’s device is updated accordingly.

 	

 - 11 -

2.1.1.4 Requirement	3:	Make	Web	Service	Request	
Description

This is the use case of the android application sending a request to the web

service to get an updated alarm time.

Use Case

Scope

The scope of this use case is to send a request to the webserver containing all

the relevant information needed to calculate a new alarm time.

Description

This use case describes the android app updating the alarm time.

Flow Description

Precondition

The android application has a pending smart alarm set.

Activation

This use case start before the activation of the alarm.

Main flow

1. The user’s device wakes before the pending alarm is due to activate.

2. The device sends a request to the server containing initial time, mode of

transport, end location and start location.

3. The device checks response is error free. (See E1)

4. The device updates the alarm according to the response.

5. Alarm activates at new set time.

Exceptional flow

E1: Response contains error code.

1. Alarm activates at original time.

2. User is informed about a problem updating Alarm time.

 - 12 -

Termination

The application waits for next pending smart alarm.

Post condition

The alarms time is updated and activates at new time.

2.1.1.5 Requirement	4:	Stop	Alarm	
Description

This is the use case of a user stopping an activated alarm.

Use Case

Scope

The scope of this use case is the user stopping an alarm that has been activated.

Description

This use case describes a user stopping an alarm.

Flow Description

Precondition

The android device must have a pending alarm.

Activation

This use case starts when the system time on the device is equivalent to that of

the pending alarm.

Main flow

1. The user’s device begins to play an alarm tone.

2. It displays a button to the user to stop the alarm.

3. The user clicks the button.

Termination

The application waits for next pending smart alarm.

 - 13 -

Post condition

The alarm has successfully lived its lifecycle.

2.1.1.6 Requirement	5:	Add	a	Location	
Description

This is the use case of a user adding a new location to their app. The location

can be used for both the start and end of an alarm and it is chosen at time of

creating an alarm.

Use Case

Scope

The scope of this use case is the user adding a location to their list of saved

destinations.

Description

This use case describes a user adding a location.

Flow Description

Precondition

The android application must be active.

Activation

This use case starts when the user clicks the “Add Location” button.

Main flow

1. The user search for the desired address. (See A1)

2. The user selects their address from the autocomplete list.

3. The user confirms their address by viewing on a map and a textual

representation of the full address.

4. The user clicks save.

Alternate flow
A1: User chooses their address using the map.

1. The user uses the embedded google map to choose a location

 - 14 -

2. The use case continues at position 3 of the main flow.

Termination

The application returns to the screen that initiated the request.

Post condition

A location has successfully been added to the users list of saved locations.

2.1.2 Non-Functional Requirements

2.1.2.1 Data	requirements	
All the data sent between the application and the service is done using HTTPS in

order to secure the location information.

2.1.2.2 User	requirements	
In order to use this application the user is required to have an android device

running a minimum SDK version of 21, which equates to Android 5.0 (Lollipop).

They must also be reasonable technologically literate in order to be able to

understand and use its functions.

2.1.2.3 Usability	requirements	
Although the user is required to have some technological literacy, the application

will be designed to be as simple to use as possible. It will feature reasonable

sized buttons and will not over-crowd the screen with information.

2.1.2.4 Reliability	requirement	
The Android application should be reliable to the user. If an alarm is set the app

should provide the user with confidence that the alarm will activate at that time or

possible earlier. The device should also automatically re-enable alarms once the

device has been restarted

2.1.2.5 Efficiency	requirement	
The application should be efficient with the mobile resources. In particularly

power and network usage. The efficiency for network usage will be implanted by

 - 15 -

only performing one network call to the web service. The web service will then

make all other necessary API calls and perform the logic on the results. This

reduction in network calls will also help reduce power consumption. Power

consumption will also be saved by developing the alarm using android best

practices. This will stop it constantly running in the background until the set time

is reached.

2.1.2.6 Availability	requirement	
The alarm application should be available to the user regardless of network

connection. If the user’s device does not have internet connection during the

period before alarm activation, it will not be able to update the time. In this case

the alarm will activate at its original set time.

2.1.2.7 Accuracy	requirement	
The algorithms run by the web service to calculate a new alarm time should

produce an accurate result. This will be achieved by continuously testing the

algorithm and evolving it if any inconsistencies arise.

2.1.2.8 Security	requirement	
The requests made to the web service by the application should be done over

HTTPS. This will encrypt the network traffic so that the user’s location will not be

revealed. To do this a SSL certificate is installed on the server. This certificate is

provided by the certification authority Let’s Encrypt.

The API key for all third party APIs will be stored on the web service. This will

protect them if someone tries the reverse engineer application apk file.

2.1.2.9 Maintainability	requirement	
The code should be written in a maintainable way so that if bugs are found or

features are added it is easy to do so. Both the web and mobile applications will

be built while conforming to their relevant coding best practices. The android

developer website (Android Depevelors, 2017) for information on Android best

practises. The web application will also be built by modularising its components

to all easy code maintainability

 - 16 -

2.2 Design and Architecture

The following presents high level architectural diagrams that illustrate the

communication between the system components.

2.2.1 Architecture Level 0

Figure 2 illustrates at a high level how the system works. It consists of two main

components, an application installed on a user’s android device and a web

application hosted under the domain of InTimeAlarm.com. When the application

is nearly due to activate it sends a request to the server, which responds with an

approximate travel time to the user’s location. The web application calculates this

time by combining data from third party APIs, namely Google Directions (Google

Developers, n.d.) and RTPI (Data.gov.ie, 2014). The system uses Google

Directions to get information about the route including travel time between stops.

It then uses RTPI to calculate how long the user will have to wait once s/he

reaches a stop. By adding these durations together one will receive an accurate

time that the trip will take.

Figure 2: Level 0 Architecture

 - 17 -

2.2.2 Architecture Level 1: Android App

Figure 3 illustrates the architecture of the mobile application. The application is

composed of several Activities, Services and Adapters among other Java classes

that allow the application to function.

Figure 3: Level 1 App Architecture

The Main Activity (Home Screen) is the first activity which the user interacts with.

This activity presents the user with a list of their current alarms both active and

inactive. It provides the user with the ability to interact with these alarms by

enabling/disabling them, deleting them and opening them up to edit. The Alarm

Recycler Adapter is used to populate the list of alarms and communicates any

changes to the alarms state to the Database Helper. The Main Activity also

provides means for the user to navigate to the Add Alarm Activity and the

Locations Activity.

The Location Activity is a simple recycler view that allow the user to add, view

and delete saved locations. The Location Recycler Adapter is used to populate

this list and communicate between the Database Helper and the Location

Activity. When adding a new location, the app uses the Add Location Activity

which uses Google Places Api. This provides both the user with a standard user

 - 18 -

interface that they are familiar with, and the app with formatted location data.

These locations are then saved to the SQLite3 database, using the Database

Helper class.

The Database Helper class provides an interface for all the CRUD functionality to

the database. It provides methods such as “getAllAlarms()” and “addAlarm(Alarm

a)”. The Alarm Recycler Adapter and Add Alarm Activity also communicates with

the Database Helper in order to add a new alarm and to update current alarms.

The Add Alarm Activity allows the user to both create new alarms and edit

existing ones. It provides a user interface for users to choose the activation time,

if it is a repeating alarm, if it is smart or basic etc. Once the user clicks save the

alarm, the information is either added or updated in the database and it is set to

active.

The Alarm Controller provides all the functionalities for setting and stopping

alarms. When setting an alarm, the controller categorizes it into one of four

categories:

1. Single Alarm: This is a basic alarm that will activate at the user’s chosen

time and then deactivate.
2. Single No Disable: This is a single alarm that will remain flagged as

active in the database after activation. This type of alarm is set by the

smart repeating alarm.
3. Repeating Alarm: This is a basic alarm that will activate at the user’s

chosen time and day. This alarm will repeat on the relevant days until it is

manually disabled by the user.
4. Smart Single Alarm: This alarm will wake the device up silently, before

the activation time, to make a request to the server. From the server’s

response, the device will then set a single alarm that will activate at or

before the user’s chosen time. After activation of the single alarm the

alarm is deactivated.
5. Smart Repeating Alarm: This alarm works in a similar way to the smart

single alarm but repeats for the user’s chosen days. However, unlike the

 - 19 -

smart single alarm, when the response is received by the server this

alarm sets a single no disable alarm to prevent the system from disabling

the smart repeating alarm.
6. Statistics Alarm: This alarm is only ever set if the user agrees to provide

anonymous information when they install the app. If they do agree, this is

set in conjunction with the smart alarms. This alarm activates at the time

when the user should be at their destinations. It then checks their location

with the Location Service.

The Alarm Receiver class extends the Android broadcast receiver and is

activated when an alarm (any type) activates and when the device is turned on.

By default, when an Android device is turned off it disables all system alarms.

The Alarm Receiver class is responsible for resetting all the active alarms when a

device is turned back on. It is also responsible for performing the appropriate

alarm that activates. For instance, if a single alarm activates it will notify the

Ringtone Service and Notification Helper. If it is a smart alarm that is received,

then the receiver sends it to the Network Service to make a request to the server

before setting a new alarm.

The Network Service is responsible for making and parsing requests to the

server. This is done on a background thread to prevent it from blocking the user

interface. It is also highly likely that the user will not be using their device when

this request is being made as it happens before the activation time. This means

no user interface is need for it.

The Requests class contains methods that build the relevant OkHttp requests for

the given parameters. This class is used by the network service.

The Ringtone Service and Notification Helper are both called when an alarm is

activated to notify the user. The Ringtone Service plays the devices default alarm

tone and the Notification Helper displays a notification that gives the user the

ability to disable the alarm and stop the ringtone.

 - 20 -

The Location Service is responsible for getting the devices current location using

Google Services. Once it gets the location it compares it to where the device

should be at that particular time. It creates a statistic from the result of this

comparison. This object is then converted to JSON using Google’s GSON library

and sent to the web application using the Request class.

2.2.3 Architecture Level 1: Web Application

Figure 4 provides a high level view of the architecture of In Time’s web service.

All requests made to intimealarm.com begin at index.js. This class sets up the

express server to listen for requests and send them to their corresponding route

class. For instance, if a request is sent to “/api/*” it will be sent to API.js.

Figure 4: Level 1 Web Architecture

The routes folder contains two classes, API.js and Stats.js. The Stats.js provide

routing for requests for the adding and view the statistics of In Time. If a POST

request is sent to “/stats”, the JSON body is saved in the MongoDB database and

the user is redirected to GET “/stats”. This GET request makes a request to the

MongoDB to retrieve all the trip records.

 - 21 -

These records are then sent to the stats.js class, located under the controller’s

folder. This class contains a method to calculate the accuracy of the trips which is

returned to the routing file. This information is then displayed using the view files,

with the relevant styling and JavaScript from the Public folder. The view files for

this web site are written using Pug, a templating engine for HTML.

The second class in the routes folder, API.js, provides the ability to get the

calculated travel time between two destinations, via a GET request to

“/api/updatetime/*”. It gets the parameters from the request and checks that the

departure time is not in the past. If it is a successful request, it returns the result

from the Result.js controller. Otherwise, it returns an error message.

The Results.js controller provides two main functions. First it uses the Request.js

controller to make a request to the Google Directions API. It then passes the

result of this request to the corresponding controller, Public.js for public transport

and Private.js for private transport. Private.js checks for error in the response and

formats it appropriately. Public.js is a more complex class. It uses the Google

response to find out which forms or transport are used during the journey. The

supported forms are walking, Dublin Bus, Luas and the Dart. For each stop in the

journey the system uses the Request.js controller to get the waiting time if any. If

there are no waiting times available, the system defaults to 0 minutes waiting. It

then calculates a new waiting time by adding the relative waiting times and travel

times together.

The Request.js controller contains all the methods necessary to access both

third-party APIs and the static resources that are stored in the resources folder.

The Helper.js controller provides many utility functions that are used in all the

other controllers. These include functions such as converting a string duration to

a timestamp in milliseconds. E.g. “10 mins” = 60000.

 - 22 -

2.3 Implementation

2.3.1 Calculate New Travel Time

Once the web app receives a request for a public journey travel time it makes a

request to Google Directions in order to find out what route will be taken to the

destination. It then makes requests to RTPI for each step of the journey that

requires public transport. The system is then able to use this data to calculate the

waiting times for each stop, relative to when the user arrives at them. This can

then produce a new total travel time by including all waiting times.

Figure 5 shows the “addWaitingTime” function that performs a crucial part of this

process. Before this function is ran, a request has already been made to Google

Directions and the “data” object has been populated with important information

such as journey steps, departure time and public transport stop numbers.

Lines 86-89 declare and initialize variables that will be used throughout the

function. Most notable from these are the “minTilActivation” and “travel_time”.

The “travel_time” variable begins at 0 and each waiting time and travel time

between steps will be added to it, resulting in the total travel time of the trip. The

same process happens to the “minTilActivation” variable, however this starts at

the length of time, in minutes, between when the server received the request and

the departure time sent by the mobile app. For instance, if the user is meant to

depart at 9:30am and a request is made at 9:00am the value of “minTilActivation”

would be 30. This is done as the RTPI API produces the arrival times of public

transport in real-time and the calculated waiting time needs to be relative to when

the user arrives at the stop.

Lines 91-111 preform the actual logic of this function. The function uses the map

function provided by the async dependency (McMahon, 2010) This method is

used to map each step of the journey to the “getWaitingTime” method which

returns the data from RTPI or -1. The results for each are added to a result array

and passed to the callback function. This allows the asynchronous requests to be

made to RTPI while ensuring that the results are processed in the order of travel.

 - 23 -

The callback function loops through each of the objects in the results array and

adds the duration of the step to “travel_time” and “minTilActivation”. If a step is

public transport a helper function is used to calculate the waiting time, relative to

when the user arrives at that stop, and adds it to the “travel_time” and

“minTilActivation” variables.

If there have been no errors, then the “data” object is updated with the new travel

time. If there has been an error the data is updated via the “setErrorJson”

method. The data is then returned to the user by using the “sendResponse”

function.

Figure 5: Add Waiting Time Method

 - 24 -

2.3.2 Android Smart Alarm

When a smart alarm activates, it uses the Network Service class to make

requests and parse the response from the web application. The code for this can

be seen in Figure 6. The Network Service makes an instance of the Network

Tread class that implements Runnable to perform its tasks on a background

thread. The “run” method of this class, seen on lines 66 -74, extracts the relevant

information from the database and creates a request to the web application.

When a response is received it is parsed, lines 76-87, using an instance of the

JSON Parser class. During the parsing, the status of the request is checked and

the arrival time updated if the request was successful. Otherwise, the arrival time

is set to -1. Once the arrival time variable is set it is sent to the Alarm Controller

class, line 85, to calculate the time for the alarm activation.

Figure 6: Smart Alarm Request

 - 25 -

Figure 7 shows the process of setting a new alarm based on the information

received from the server. Lines 36-37 shows the method checking if the arrival

time has been set to -1. If it has been set than the method skips the logical

calculation and sets the alarm according to the original activation time. If the

arrival time is not equal to -1, the method compares it to the alarm due time. If the

arrival time is greater than the due time it means that the user would arrive late.

In this case it gets the difference between the times. This difference is subtracted

from the original activation time, resulting in the alarm activating early. As a

precaution the system also checks that the new activation time is not older than

the current time as this would result in the alarm being set in the past. This

process can be seen on lines 45-52. Lines 60-65 set the new alarm and applies

the relevant alarm type depending on if it is a single or repeating alarm.

Figure 7: Set New Alarm

 - 26 -

2.3.3 Statistics

This system implements the ability to collect anonymous data from users. This

data can be used to assess the reliability of the travel predictions by viewing the

statistics of previously made trips. In addition, this data could be used in the

future to increase accuracy and view any trends in user journeys. In order not to

intrude users’ privacy, when installing the mobile application, the user is asked if

they wish to supply this data. If they choose to supply this data, then every time a

smart alarm activates it will enable a statistics alarm. This alarm is set to activate

at the user’s due time, i.e. when they are meant to be at their desired location.

The code for this can be seen in Figure 8. Lines 122 – 132 show the app

checking the user’s preference of whether they wish to supply statistics and

setting the alarm accordingly.

Figure 8: Alarm Receiver - Smart Alarm

 - 27 -

When a statistics alarm activates it starts the Location Service class which gets

the devices current location using the Google Service Fused Location Provider. It

then compares this location to the destination which the user is traveling to. If

they are in within a radius of approx. 200 meters of their location then the journey

is seen as a success, otherwise the journey is a failure. The Location Service

class then creates a statistic object that contains the to and from location as well

as if it is public transport that if the trip was successful. The process of checking

this location is seen in Figure 9.

Figure 9: Check Location

 - 28 -

Figure 10 illustrates the application using OkHttp to send a post request to the

web application containing the newly created statistic object, in JSON format.

This process runs on a background thread in order to prevent the request from

blocking the user’s UI thread.

Figure 10: OkHttp Statistics POST

 - 29 -

2.3.4 Web Application Build Process

In order to increase the efficiency of developing features for this application Gulp

was incorporated to automate the build process. It allows many mundane tasks

to be ran automatically using a single command. The tasks that this project uses

Gulp for are as follows:

• Minifying front end JavaScript files.

• Compiling SCSS and LESS files.

• Watching files to recompile/minify if any changes are made.

• Running Nodemon when developing to restart the local server

automatically after changes are made.

These functions can be run individually by using the “gulp” command followed by

their respective method name, or they can all be ran using “gulp” on its own.

2.3.5 Host Environment Setup

In Time is hosted on a Virtual Private Server (VPS) provided by Digital Ocean.

This VPS is using Ubuntu 14.04 as its Operating System and Nginx as its web

server. NodeJS, NPM, Git, Bower and PM2 were installed manage different

aspects of the deployment.

• NodeJs is used to run the web application code on the server.

• NPM is used to manage the NodeJs packages.

• Git is used to pull the latest code changes onto the server.

• Bower is used to manage front end libraries used by the application.

• PM2 is a process manager for NodeJs that allows the application to

always remain running.

The web application is HTTPS enabled using a SSL certificate from Let’s Encrypt

(2017). A Let’s Encrypt Certificate is only ever valid for 90 days; however, they

can be renewed using their provided Certbot Client. This client is set to run on a

chron job to ensure the certificate always stays in date.

 - 30 -

2.3.6 Application Programming Interfaces (API)

This application uses several third party APIs as well as its own custom API.

2.3.6.1 Third	Party	APIs	

• Google Places API – This is used to give a user the ability to search for
locations. These locations are then being saved and used by the smart
alarm.

• Google Maps Directions API – This is used by the web service to
calculate the travel time for the journey between the start and end location.

• RTPI API – This is used in conjunction with the directions API to
accurately calculate the travel time when using public transport in Dublin.

2.3.6.2 Custom	API	
This mobile application required the development of a custom API. The main

purpose for this API is for updating an alarm call, the app will make a request to

the API, which in turn will make requests to third party APIs. All the logic to

calculate a new alarm time is performed by the web service and the result

returned to the device in JSON format. This means that the mobile device will

save on network activity by only making a single request. It is also responsible for

communication with the MongoDB as well as to view the front end elements of

the web application. The web application is hosted at intimealarm.com and has

several URL routes listed in Tables 1 to 7.

Table 1: Route - In Time

API Name In Time

Description: This route returns the web apps homepage.

URI: /

HTTP verb GET

Parameters: n/a

Resource Contents: Index (HTML)

Pre-Conditions: n/a

Post-Conditions: Homepage is displayed

 - 31 -

Table 2: Route - In Time Statistics

API Name In Time Statistics

Description: This route returns the web apps statistics page.

URI: /stats

HTTP verb GET

Parameters: n/a

Resource Contents: Statistics (HTML)

Pre-Conditions: n/a

Post-Conditions: Statistics is displayed to the user.

Table 3: Route - Insert In Time Statistics

API Name Insert In Time Statistics

Description: This route inserts the anonymous data gathered from the
user into the database.

URI: /stats

HTTP verb POST

Parameters: n/a

POST Body

{
 arrivedOnTime: Boolean,
 from: String,
 isPublic: Boolean,
 to: String
}

Resource Contents: Redirects to Statistics Page

Pre-Conditions: n/a

Post-Conditions: An new Trip object is inserted into the database.

 - 32 -

Table 4: Route - In Time Evaluation Statistics (Accuracy)

API Name In Time Evaluation Statistics (Accuracy)

Description: This route is used when a user is redirected by nginx after
making a POST to /eval over HTTP

URI: /stats/eval

HTTP verb GET

Parameters: n/a

Resource Contents: Redirects to Statistics Page

Pre-Conditions: n/a

Post-Conditions: Statistics is displayed to the user.

Table 5: Route - Insert In Time Evaluation Statistics (Accuracy)

API Name Inset In Time Evaluation Statistics (Accuracy)

Description: This route inserts a trip accuracy object into the database

URI: /stats/eval

HTTP verb POST

Parameters: n/a

POST Body

{
 actual: String,
 estimated: String,
 from: String,
 isPublic: Boolean,
 time: String,
 to: String
}

Resource Contents: Redirects to Statistics Page

Pre-Conditions: n/a

Post-Conditions: An new trip accuracy object is inserted into the database.

 - 33 -

Table 6: Route - Get In Time Statistics (ajax)

API Name Get In Time Statistics (ajax)

Description:
This route returns the web apps statistics that is
automatically collected from if they agree to provide
anonymous data.

URI: /stats/ajax

HTTP verb GET

Parameters: to (String, Optional), from(String, Optional)

Resource Contents:

A JSON array of all the trip objects. If the ‘to’ and/or ‘from’
parameters are specified it returns only objects where there
is a full or partial match with their respective fields. The
format of the response is as follows:
 [{
 _id: String
 arrivedOnTime: Boolean,
 from: String,
 isPublic: Boolean,
 to: String
},…]

Pre-Conditions: There are records that have a full and/or partial match to the
‘to’ and/or ‘from’ parameters

Post-Conditions: A JSON array of trip objects is returned to the user.

Table 7: Route - Update Alarm

API Name Update Alarm

Description: This route is used to get the calculated length of time that a
trip should take.

URI: /api/updatetime/api/:transport (Public or Private)

HTTP verb GET

Parameters:
time (String, Required), to (String, Required), from(String,
Required), debug (Boolean, Optional), mock (Boolean,
Optional), tmodes (JSON String Array, Optional)

Resource Contents: If debug is true the raw Google Directions result is returned.
If mock is true the calculations are performed on a mocked

 - 34 -

Google Directions result.
A JSON object of the calculations, with the format:
 {
 status: String
 origin: {
 address: String
 lat: Double,
 lng: Double
 },
 destination: {
 address: String
 lat: Double,
 lng: Double
 },
 distance: String
 duration: String
 calculated_duration: String
 original_time: String
 timeStamp: Long,
 approx_arrival: String
 newTimeStamp: Long,
 type: String
}
if it is public transport it also contains an array containing
information about each step of the journey.
If there are any errors the follow in returned:
{
 status: String,
 error_code: Integer,
 external_status: String,
 message: String
}

Pre-Conditions: n/a

Post-Conditions: A JSON object is returned to the user.

 - 35 -

2.4 Testing

Automated tests were written and ran on both the mobile application and the web

application. These tests ensure that the functionality that is crucial to the system,

is working as required.

2.4.1 Web Application Testing

Testing of the web service consisted of automated tests written using Mocha and

Supertest. There is a total of 125 tests ran and a report printed to show passed

and failed cases. Tables 1 and 2 show the summaries of the tests that ran on 17th

April 2017.

There are two type of tests run on the web application, API tests and unit tests.

API tests ran on the services custom API to ensure it is returning a correct

response. These work by making a series of requests to a selection of different

location and checking the response. The tests check the response for both valid

and invalid inputs to ensure that the system will respond appropriately to all

inputs. Table 8 shows the summary of these tests. The results show that all tests

were successful.

Table 8: Web API Test Summary 17/04/2017

TEST RESULT (#Pass / #Total)

Respond 200 29 / 29

Respond with JSON 28 / 28

Respond with status: ERROR 14 / 14

Respond with status: Ok 14 / 14

Return a New Timestamp 14 / 14

Return an Error Code 14 / 14

TOTAL 113 / 113

 - 36 -

The Unit tests are run on the main helper functions to verify that they are

producing the correct result for the given input. For each of the main functions, 4

tests are run to validate its acts appropriately to both expected inputs and their

respective edge cases. The summary of these can be seen in Table 9. The

results show that all tests were successful.

Table 9: Web Unit Test Summary 17/04/2017

TEST RESULT (#Pass / #Total)

Convert Duration String to Timestamp 4 / 4

Add Two Timestamps Together 4 / 4

Drop the Decimals of a Float 4 / 4

TOTAL 12 / 12

2.4.2 Android Application Testing

Testing of the Android application was done using JUnit and Mockito. These unit

tests were written to test all of the methods in the Helper java class. This class

contains methods which are used repeatedly throughout the application and it is

imperative that they perform as designed. There are a total of 15 tests, all of

which passed successfully. These tests are listed in Table 10.

Table 10: Android Unit Tests 02/05/2017

TEST RESULT (PASS or FAIL)

Get Hour from Time String PASS

Get Minute from Time String PASS

Array to String PASS

String to Array PASS

 - 37 -

Get Active Days PASS

Integer ArrayList to String PASS

Calendar to Short Time String PASS

Time Printout to Calendar PASS

Calendar to Time Printout PASS

Alarm to Time Printout PASS

Add Leading Zero (True) PASS

Add Leading Zero (False) PASS

Check Fields are Completed (True) PASS

Check Fields are Completed (False) PASS

Calendar From Short Time String PASS

 - 38 -

2.5 Graphical User Interface (GUI)

There has been GUIs developed for both the web and mobile application. As

mentioned previously the web application does not require an elaborate GUI as it

is mainly designed as a back end service. However, there are still several

reasons why a front end is necessary. One reason is to provide the functionality

for the user to be able to visualize the anonymous data collected. Figure 11

shows the statistics page where the user can view the data. The large pie chart in

the center shows the overall ratio between trips that arrived on time and trips

which did not. This can be filtered using the search bars above which allows one

to view the ratio between two specific destinations. These search bars are

enabled with auto-complete/suggestions functionality so the user can view the

locations which have had data collected. The graph to the right depicts the

accuracy of trips in regards to actual travel time versus estimated travel time.

This is discussed further in the evaluation section of this report.

Figure 11: Statistics Page (As of: 02/05/2017)

 - 39 -

The Android application is the main point of contact between the user and the

system and requires a more interactive GUI than the web application. When

designing the user interface (UI) for the mobile app Clifton (2013), it was used as

a point of reference for best practices along with the Android Developer’s website

(Android Developers, 2017).

Figure 12 shows the home screen of the application. It provides a quick and easy

way to view all alarms and the main information about them such as their

activation time, destinations and whether they are active or not. This screen will

be the main screen that the user interacts with. This screen provides the ability

for the user to interact with the alarms by means of sliding to delete, clicking to

edit and clicking power image to enable/disable. It also provides access to other

areas of the application with the floating action button (FAB) for adding alarms

and a button to the Locations Activity in the collapsed menu at the top.

Figure 12: Home Screen

 - 40 -

Figure 13 shows the screen that appears when you click on the add alarm FAB.

This screen uses the default Android time picker dialog to allow the user to set a

time using a 24-hour clock. The default time picker was chosen as it should

provide a standard experience that the user is already familiar with.

Figure 13: Add Alarm

 - 41 -

When a time has been chosen, the user is brought to the smart alarm screen,

Figure 14. This screen provides the user with extra options such as setting the

alarm to repeat on a particular day and making it smart. Other options that can be

set are the desired transport type and the locations traveling to and from. This

screen is also used when editing an alarm, the difference being that all the

information is prefilled out with the alarms current settings.

Figure 14: Add Smart Alarm

 - 42 -

Figure 15 shows the lock screen notification presented to the user when an alarm

has activated. When an alarm activates it plays the phones alarm notification

ringtone and displays a notification to the user. Upon clicking the “Stop Alarm”

button on the notification, the ringtone is stopped and the alarm is disabled

(unless it is a repeating alarm). If the device is not locked when the alarm

activates, then the notification will be located in the notification drawer at the top

of the devices screen.

Figure 15: Stop Alarm

 - 43 -

2.6 Customer Testing

In order to get an understanding of the usability of this system, ten potential

users were given various use cases to perform along with a short survey to

answer. Their actions during these use cases were recorded and templates of

these documents can be found in the appendix. The use cases that were tested

were adding a basic alarm, adding a smart alarm and adding a new location.

These use cases were chosen as they are likely to be the most regularly used by

all users.

2.6.1 Use Case 1: Add Basic Alarm

Of the total participants 80% of them successfully created a basic alarm with the

required parameters. 70% of the total done this without any difficulty while 10%

were unsure as to how to correctly use the time picker. This resulted in them

clicking back and having to reopen the time picker to reset it.

The remaining 20% set alarms with the incorrect parameters. Most notably from

these mistakes were the 10% who assumed the repeating days’ button started

on Sunday. This caused them to choose Tuesday through Saturday as the week

days. This issue could be solved by providing an option of what day the user

would like the week to start on.

2.6.2 Use Case 2: Add Smart Alarm

When creating a Smart Alarm 60% of the participants successfully created it

without error in the parameters. However, during the process 20% tried to click

on the due time text to change it, instead of the provided button. This suggests

that the due time should be able to be edited inline. A solution to this issue was

implemented by making the text clickable, meaning it acts the same as when the

user clicks the designated button.

The other 40% had a mixture of small errors including not setting the alarm to

repeat or not setting the due time. This could be caused human error or

potentially the user being overpowered by options. The latter of these however,

 - 44 -

could be disregarded from the findings of the survey discussed under section

2.6.4.

2.6.3 Use Case 3: Add Location

This use case had the lowest percentage of users performing it in the desired

way at only 30%. The remaining 70% added a location but in the process also

created a new alarm. It is important to mention that the order in which these test

ran could have affected this outcome. This could be because during the other

use cases the user seen the “<Add Location>” option, for the smart alarm, in the

dropdown menus and assumed this was the only way, when in fact this is a

secondary way to add a location. This resulted in them not checking the

collapsed options menu at the top of the Main Activity, which contained a link to a

designated Locations Activity. If the tests where ran in a different order it could

have altered the findings of this test.

A solution to this issue was put in place by only collapsing the menu if there is no

room on the screen to show the locations button. This means that on a standard

sized phone the button to the Location Activity will always be shown.

2.6.4 Survey

The survey consisted of four questions that assessed the user’s opinion of the

mobile and web app’s design. The first two of which were used to get a general

opinion as to whether the user liked the overall design. Figure 16 illustrates the

general opinion that users have of both the mobile and web app. Both

applications have a peak rating of 5, showing that the users have a strong liking

towards the design of the system.

 - 45 -

Figure 16: Survey Ratings Graph

When asking the users what their favorite design aspect of the app was, 40%

replied with its simplicity and ease of use. This feedback confirmed that we

successfully implemented the non-functional requirement of usability.

When asking for their least favorite design aspect, 40% replied with a dislike

toward the android time picker, 30% being specifically because it was a 24-hour

time picker. This design issue could be resolved by adding in an option to choose

between 24/12-hour time formats.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6

N
um

be
r	o

f	C
us
to
m
er
s

Design	Rating

System	Design	Rating

Web	App Mobile	App

 - 46 -

2.7 Evaluation

The system is evaluated based on the accuracy of its estimated travel time. This

evaluation was achieved by creating an evaluation activity on the application.

The application made a request to the server before making a trip, between any

two locations, and then compared the estimated travel time to the actual travel

time once the journey was made. The accuracy is represented as a percentage

of how close the actual travel time was to the estimated time. For instance, if the

actual travel time is 20 minutes with an accuracy of 75% the estimated time will

be either 15 or 25 minutes. At the time of writing, the accuracy of the system was

86.74%. Figure 17 shows the breakdown of this accuracy to each individual trip,

each bar in the chart represents one trip. The y axis being accuracy percentage

and the x being the trip date.

Figure 17: Evaluation Graph

 - 47 -

3 Conclusions
This system was designed to solve the common issue of lateness from traffic that

affects approximately 46,000 Irish people every day. This means there is

potentially a larger target market for this product, as it is unlikely that it will be the

same people consistently late every day. The main functionality of this system is

to allow a user to set a smart alarm. This smart alarm uses current and predicted

traffic conditions to calculate a travel time and wake the user early if s/he would

otherwise be late. In addition to this, the system allows to user to view statistics

on the reliability of the previously made trips between any two locations.

To provide these users with a sense of reliability and correctness the system was

tested extensively to ensure that it functions correctly. A total of 140 automated

tests are ran on the system and they can quickly identify any issues that could

arise. These tests are run each time a change is made to the system to ensure

that it is always working correctly before the update is pushed to GitHub and the

Digital Ocean VPN.

Furthermore, the system was evaluated to assess accuracy. The results show

that the application has an accuracy of 87% meaning that the travel time

estimated will be within 13% of the actual travel time. This provides the user with

peace of mind knowing that the system will produce an accurate travel time result

and get them to work/college on time.

To conclude, In Time has the potential to reduce lateness by providing an

accurate and reliable alarm that will wake up an user early if there are any heavy

or unforeseen traffic circumstances.

 - 48 -

4 Further development or research
There are many ways that this project could evolve, I will split the possible

evolutions into two categories, Web and App.

4.1 Mobile Application

This application could be evolved by adding more intelligent functionalities to it.

One of these features could be expanding internationally to support public

transport in other countries. The system could also integrate Uber or other taxi

services to possible provide pricing of the journey.

Another function that could be added is puzzles to disable alarm upon activation.

These Puzzles could be similar to those seen in Puzzle Alarm Clock (Wro Claw

Studio, 2016). If a user has multiple devices, they may wish to be able to sync

alarms across them. Advertisements could be added in to monetize the

application.

4.2 Web Application

One possible way that the web application could evolve is to expand

internationally to allow public transport to be supported in various countries.

Some other ways are by adding additional APIs to continuously improve travel

time predictions, adding functionality to return more detailed information about

travel plan, such as exact route and time between stops. Furthermore, this could

link in to be used with maps for directions to the location and not just alarm

predictions. Finally, the API could be opened up to the public and charge a fee

for its usage by third parties.

 - 49 -

5 References
Android Developers. (2017). Android Developers. [online] Available at:
https://developer.android.com/index.html [Accessed 2 Jan. 2017].

Bower.io. (2012). Bower. [online] Available at: https://bower.io/ [Accessed 5 May
2017].

Brooks, C. (2015). The Real Reasons Employees Are Late for Work. [online]
Business News Daily. Available at: http://www.businessnewsdaily.com/7725-
employees-late-for-work.html [Accessed 8 Dec. 2016].

Clifton, I. (2013). Android user interface design. 1st ed. Upper Saddle River, New
Jersey: Pearson Education, Inc.

Data.gov.ie. (2014). Real-time Passenger Information (RTPI) for Dublin Bus, Bus
Eireann, Luas and Irish rail. [online] Available at: https://data.gov.ie/dataset/real-
time-passenger-information-rtpi-for-dublin-bus-bus-eireann-luas-and-irish-rail
[Accessed 10 Jan. 2017].

Express. (2016). Express - Node.js web application framework. [online] Available
at: http://expressjs.com/ [Accessed 5 May 2017].

GitHub. (2004). request/request. [online] Available at:
https://github.com/request/request [Accessed 5 May 2017].

GitHub. (2008). google/gson. [online] Available at: https://github.com/google/gson
[Accessed 5 May 2017].

GitHub. (n.d.). pugjs/pug. [online] Available at: https://github.com/pugjs/pug
[Accessed 5 May 2017].

Google Developers. (n.d.). Google Maps Directions API | Google Developers.
[online] Available at:
https://developers.google.com/maps/documentation/directions/ [Accessed 10
Jan. 2017].

Gulp. (2013). gulp.js. [online] Available at: http://gulpjs.com/ [Accessed 5 May
2017].

 - 50 -

Holowaychuk, T. (2014). visionmedia/Supertest. [online] GitHub. Available at:
https://github.com/visionmedia/supertest [Accessed 5 May 2017].

IDC (2016). IDC: Smartphone OS Market Share. [online] Available at:
https://www.idc.com/prodserv/smartphone-os-market-share.jsp [Accessed 8 Dec.
2016].

Jyo, R. (2011). Yaml-config. [online] npm. Available at:
https://www.npmjs.com/package/yaml-config [Accessed 5 May 2017].

Let's Encrypt. (2017). Let's Encrypt - Free SSL/TLS Certificates. [online]
Available at: https://letsencrypt.org [Accessed 4 May 2017].

McMahon, C. (2010). async. [online] Caolan.github.io. Available at:
http://caolan.github.io/async/ [Accessed 5 May 2017].

Mercer, D. (2012). Staff lateness 'costs the economy £9 billion every year'.
[online] The Independent. Available at:
http://www.independent.co.uk/news/business/news/staff-lateness-costs-the-
economy-9-billion-every-year-8191289.html [Accessed 8 Dec. 2016].

Mocha. (2017). Mocha - the fun, simple, flexible JavaScript test framework.
[online] Available at: https://mochajs.org/ [Accessed 5 May 2017].

Moment. (n.d.). Moment.js | Home. [online] Available at: https://momentjs.com/
[Accessed 5 May 2017].

MongoDB. (2017). MongoDB for GIANT Ideas. [online] Available at:
https://www.mongodb.com/ [Accessed 5 May 2017].

Never Late Smart Alarm. (2015). Never Late Smart Alarm. [online] Available at:
https://play.google.com/store/apps/details?id=com.project.neverlate&hl=en
[Accessed 2 Oct. 2016].

Sommerville, I. (2016). Software engineering. 1st ed. Harlow: Pearson Education.

Square.github.io. (2016). OkHttp. [online] Available at:
http://square.github.io/okhttp/ [Accessed 5 May 2017].

 - 51 -

Wharton, J. (2013). Butter Knife. [online] Jakewharton.github.io. Available at:
http://jakewharton.github.io/butterknife/ [Accessed 5 May 2017].

Wro Claw Studio. (2016). Puzzle Alarm Clock. [online] Available at:
http://wroclawstudio.com/ [Accessed 2 Oct. 2016].

wUp. (2015). wUp. [online] Available at: http://wupapp.com/ [Accessed 2 Oct.
2016].

 - 52 -

6 Appendix

6.1 Project Proposal

6.1.1 Objectives

The main objective of the project is to develop a mobile application that will help

commuters arrive at work/college on time. This application will be essentially a

smart alarm that extends the features of the stock android alarm. It will use

current, historical and predicted traffic conditions to predict commuting time and

change the time of the alarm accordingly.

The target market for the app is anyone living in Dublin and travels to work and/or

college. Although it is aimed to be used in Dublin it will be designed to work

internationally for private travel, such as car, but may have limitation for public

commuting.

The project will consist of two main parts, a mobile application and a web based

application. The mobile application will be used to set any alarms and locations,

while the web application will perform all the logic for traffic predictions and

expose the results in the form of a RESTful API.

6.1.2 Background

There are three of reasons why I want to develop this application.

1. I am a very punctual person and tend to be on time, if not early. During

workplace I noticed that certain days of the week or months of the year

seemed to cause differences in travel conditions, this often made it hard to

predict what time to leave at. Another factor, that was even less

predictable, was car crashes. Depending where these happened they

seemed to cause a near standstill in traffic.

2. This project gives me the chance to develop upon my existing Android

development knowledge, which currently are only at a basic to

intermediate level. I have previously worked with Android application

 - 53 -

during my second year project; and since have developed an interest in

the area. Recently, I have been researching about mobile development

and look forward to applying the knowledge that I have gained.

3. The complexity of this project gives me a chance to apply the web

development knowledge that I gained during my work placement. Although

I do not plan on using the same web stack that I worked with in AOL, I still

have knowledge of concepts and good practices that I will apply while also

learning a new technology.

6.1.3 Technical Approach

To approach this from a technical standpoint I have split it into two main sections,

the web application and the mobile application.

Web Application

• Receive request from the mobile application with all the required

parameter. E.g. fromLocation, toLocation, alarmTime, etc.

• Send requests to several APIs including Google Maps and RTPI (Real-

Time Passenger Information).

• Perform logical operations to combine the results from the APIs and

calculate a new time for the alarm to go off.

• Expose all relevant information to the android app, in the form of a

RESTful API.

Mobile Application

• Provides the user with the CRUD functions for the alarms.

• Allows the users to create both normal alarms and smart traffic based

alarms.

• Sends request to the web application to retrieve data about updating the

alarms.

• Incorporates Google Maps to help with location searching and selection.

• Uses system notifications to display useful information to the user.

 - 54 -

6.1.4 Special Resources Required

Software

• Android Studio IDE

• Atom Text Editor

• Various Java and Node.js Libraries

Hardware
• Web Server (Digital Ocean)

• Android Devices

Other
• Google Play Developer license

6.1.5 Project Plan

 - 55 -

6.1.6 Technical Details

I plan on using various technologies to create this project. I will list them below

but these are subject to change when doing further research and requirements

gathering.

Android Application
• Base Android Stack (Gradle, Java, xml, etc.)

• Butter Knife, Android Java library for view Injections

Web Application

• Express, a Node.js web application framework

Testing

• JUnit, Java testing framework

• Mockito, a mocking framework for unit tests in Java

• Mocha, a Behavior-Driven testing framework

• Supertest, Express server testing framework.

APIs

• Google Maps

• RTPI (Real-Time Passenger Information)

 - 56 -

6.1.7 Evaluation

To evaluate this project, I intend to write a series of tests throughout the

development process. These tests will be written in Mocha and SuperTest.js for

the web application and JUnit and Mockito for the android application. They will

test that the functions perform as intended and without error.

I also plan to implement a manual testing strategy, to evaluate the accuracy of

the application. This will be done by giving friends and family a beta version of

my application to use. I will then be able to use this information to analyze

predicted vs actual journey

 - 57 -

6.2 Project Plan

 - 58 -

6.3 Monthly Journals

6.3.1 September

My Achievements
This month I began to research my idea and develop upon my initial plans. For context

my idea is a ‘smart’ alarm, called “In Time”, that adjusts depending on traffic conditions. I

researched into how alarms work on the android platform and how I would go about

implementing the Google maps directions and RTPI APIs.

I have also researched into NodeJS and plan on using the express framework to set up

a server to proxy my API calls through. This will be done for three reasons:

1. Hide my API keys from the users’ device.

2. Reduce network activity on the device.

3. Preform majority of the logic on the server to make it easier if there ever

needs to be changes made.

I also had my project pitch which went well so I began to write my project proposal

document to explain in detail what I intend to develop for my project.

My Reflection
I am happy with the research I have done and have purchased a few books about

android development including Android User Interface Design by Ian G. Clifton and

Android Development Patterns by Phil Dutson.

I do however feel that I have spent too long in deciding if the project is a good enough

idea and could have spent that time in more productive research to develop it, instead of

doubting it.

Intended Changes
Next month I will set my first meeting with my supervisor (who has not been assigned

yet). I will hopefully finish my project proposal document and begin working on the

project requirements. I also intend on creating the initial structure for the project such as

a GitHub repo.

 - 59 -

6.3.2 October

My Achievements
This month I finished my project proposal and began to work on my requirements

documentation. I have done more research for my project and have the bulk of the

requirements document completed. The sections I have left to complete are evolution

and system architecture. I have a bit more research to do in order to create a system

architecture diagram.

I also made progress on my web service. I have set up a GitHub repo and a simple file

structure for it. I used NodeJS with various npm packages such as express.js. I also

added in the Frisby.js test framework to do some API testing. This framework is based of

Jasmine (which I also intend on using). I have also purchased the domain

InTimeAlarm.com, which will be used to host the service.

As well as the GitHub repo for the web service I also set up a repo for the Android app.

This has been initiated with just the basic Android app skeleton that is built for you by

Android Studio. These repos are called InTime_Web and InTime_App.

My Reflection
I am happy with the progress I have made this month and feel that I am ahead of

schedule in my project plan. I have also scanned through some of the books I purchased

and have seen some good points in them but have not read them fully. I will do this

when I begin development.

Intended Changes
Next month I will finalize my requirements document and make any changes to it, if

necessary, after my first meeting with my supervisor, Adriana Chis. I will then continue

my development in preparation for the prototype due in December.

Supervisor Meetings

Date of Meeting: 28/10/2016
Items discussed: My motivations for the project, functional and non-functional

requirements.

Action Items: Email draft of my requirements document to be reviewed.

 - 60 -

6.3.3 November

My Achievements
This month I finished my requirements document. I am in the process of combining all

the documentation I have done so far and adding it to my technical report, which is to be

uploaded by 09/12/16.

This month I have also developed a prototype for my mid-point presentation. I mainly

focused on the web server side of the project. I have finished the logic for making

requests when traveling by car. I have also set up the public requests however currently

this is just returning the raw google response. This server has also been deployed to

digital ocean using an Ubuntu OS and using Nginx for the server. It is registered at

intimealarm.com.

To complement the web service prototype, I made an activity in my android app to allow

me to make requests to the server and print out the response. I also added in a List View

to show how I plan to display the alarms to the user.

My Reflection
I am happy with the progress I have made for this project, this month. However, other

modules have been more stressful. I feel that, even with several difficulties and bugs I

had making this prototype, I am in a good position for my presentation in December.

Intended Changes

Next month I will finalize my technical report and create slides for my presentation. I will

also prepare my demo and decide how I am going to go about show all the features that

I have developed. I also Intend to enquire about feed back of my report from Adrian as

well as asking her opinion of my prototype.

Supervisor Meetings
Date of Meeting: 14/11/2016
Items discussed: Had a group meeting with the other students with the same

supervisor and shared all our ideas.

Action Items: Continue to work on my technical report.

 - 61 -

6.3.4 December

My Achievements

This month I completed the required sections of my technical report. This required

combining all previous documentation into a single report and making alterations and

adding in any more relevant information.

I also continued to work on my prototype and was able to add in logic to calculate

duration when traveling by public transport. This is currently only implemented for Dublin

Bus but will be update at a later stage to work for other method of public transport.

The mid-point presentation took place this month and required me to make presentation

slide and present my project in front of my supervisor and another lecturer.

My Reflection

I feel that I have made a lot of progress so far, in particularly with the web server. I done

a lot of refactoring to the structure of my web server as I found that the original structure

needed duplicate codes and was limiting the potential of the project. This refactor should

make it easier to continue development and make it easier to make changes or add

functionality.

 A lot more work needs to be done to the Android side of the project and that will be my

main focus for the upcoming semester.

The pace that I was working on the project has slowed slightly dues to the holidays but I

believe that after the exams in January I will get back on track.

Intended Changes

Next month might also be a slow month for progress as my main focus will shift towards

the exams. However, any time that I do get to work on the projects will be targeted at the

Android App and get its basic functionality working.

Supervisor Meetings

Date of Meeting: 12/12/2016
Items discussed: Got feedback on my technical report and discussed the prototype I

was going to demonstrate at the mid-point presentation.

Action Items: Made changes to my technical report and got my prototype ready for

demonstration.

 - 62 -

6.3.5 January

My Achievements

This month I made developments to both the application and the web service.

On the web service I implemented https by using letsencrypt.org to generate an SSL

certificate. I then made changes to the Nginx configuration file to redirect traffic from http

on port 80 to https port 443. I also implemented a basic statistics page that calculates

the accuracy of the travel time estimation. This supports the POST and GET methods to

add all and retrieve the trip statistics respectively. These trips are stored in a mongo

database that resides on the same server on port 27000.

On the application I made a lot of advancements, I added in a basic alarm system that

the user can set which activates an android notification. The user can set both a single

and repeating alarm. I also added in the ability for the user to add and save a location.

This implements an intent to the google place picker API. As well as these

advancements I have updated the prototype to use a recycler view instead of a list view,

allowing better actions in regards to alarm enabling/disabling and deleting alarms.

My Reflection

The semester 1 exams were at the beginning of this month, so all my attention were on

them. Once they were over I focused entirely on the project and feel that I have made

great progress. The speed of this progress has slowed slightly now that I am back in

college and have other assignments but I am still doing it at a maintainable pace and am

on track with my plan.

Intended Changes

Next month I intend to finalize the basic alarms by adding in a ringtone service and

making the notification aesthetically pleasing. I also intend on adding in a page that will

allow me to send trip details to the web service for testing. I will then begin to work on

the smart alarm feature.

Supervisor Meetings

Date of Meeting: N/A
Items discussed: N/A

Action Items: I have not met my supervisor since before the semester break but have

sent an email to arrange one.

 - 63 -

6.3.6 February

My Achievements

This month was a very productive month in terms of making progress on my project.

For the application I have finished the functionality of both the basic alarm and smart

alarm. I have also added in the notification and ringtone. The ringtone however is

currently commented out, to prevent a constant noise while testing. The smart alarm

work by setting an alarm before the time which the user set it for. This is currently set for

1 minute before hand to aid it testing. It then makes a request to the server and set a

new alarm based on the results.

For the Web Server I have added in Luas information to increase the accuracy of the

travel time. I have also implemented a MongoDB database to store trip data that is used

for the evaluation of the accuracy of the project. This evaluation works by the app getting

an estimate of the travel time and then reporting back with the actual travel time once

the journey is made. I have also added in unit tests to ensure all helper methods work as

intended as well as testing the response from numerous requests. Finally, I have also

added in a simple front end to the web site using a bootstrap template and charts JS.

Gulp has been implemented to manage my builds.

My Reflection

I feel I have made huge progress this month and am ahead of schedule in regards to

completing the project. I am however behind in completing the documentation as this

has not been updated since the mid-point.

Intended Changes

Next month I have to add unit tests for the application and also clean up the user

interface. I also have to add in train data to the webserver, which will be the final source

of public transport that will be supported. I also have to begin to update my technical

report.

Supervisor Meetings

Date of Meeting: 14th & 28th Feb 2017
Items discussed: Testing, Timeline, General Discussion

Action Items: I have met with my supervisor several times this month and have

discussed the project time line and testing.

 - 64 -

6.3.7 March

My Achievements

This month I have finished the implementation of the web service Api. This was

completed with the addition of train data, specifically the dart. I had originally thought

that I would have to use the train specific Api but with research found out that the

information is also accessible through the same RTPI endpoint as Dublin Bus.

I have also added in unit tests for the android application, these unit tests cover the

Helper class which is used by many other classes throughout the application.

Lastly, I have looked over my technical report from the mid-point presentation and

updated areas that no longer match the end product. I have also added in information

about testing but this is not yet finished.

My Reflection

The productivity has slowed slightly this month due to various CAs and deliverables for

other modules. However, now with the semester officially over and only a hand full of

deliverables left I should be able to finish the project in no time.

Intended Changes

Next month, being my final month, I intend to fully finish the project. To do this I have to

finish the testing and user interface of the Application. I also have to complete the

technical report to accompany the project.

Supervisor Meetings

Date of Meeting: 21st March & 4th May 2017
Items discussed: Testing, Evaluation, General Discussion

Action Items: During the meetings with my supervisor, she has recommended that I add

in another feature for complexity after I finish the project.

 - 65 -

6.4 Other Material Used

6.4.1 Customer Testing Templates

Task No.

Task Goal Create Basic Alarm: 7:30 – Repeat Weekdays
Start Time

End Time

Expected
Behaviour

1. Click on Floating action button.
2. Select Time
3. Select Repeating Days
4. Click Save

Actual
Behaviour

Notes

 - 66 -

Task No.

Task Goal Create Smart Alarm: 7:30 – Repeat Weekdays – From Home – To Work
– Due at 9:00

Start Time

End Time

Expected
Behaviour

1. Click on Floating action button.
2. Select Time
3. Select Repeating Days
4. Select Smart
5. Select Public or Private
6. Set to Location
7. Set from Location
8. Set Due Time
9. Click Save

Actual
Behaviour

Notes

 - 67 -

Task No.

Task Goal Add Location – National College of Ireland

Start Time

End Time

Expected
Behaviour

1. Select My Location from Menu
2. Click Floating Action Button
3. Select Location Confirm

 OR

1. Select Add Alarm
2. Select Smart Alarm
3. Select to or from drop down
4. Select <Add Location>
5. Confirm
6. Save

Actual

Behaviour

Notes

 - 68 -

Task No.

Task Goal Survey

Questions

How would you rate the design of the Mobile App?

 Very 1 2 3 4 5 6 Very

 Bad Good

How would you rate the design of the Web App?

 Very 1 2 3 4 5 6 Very

 Bad Good

What is your favourite design aspect of the Mobile App?

What is your least favourite design aspect of the Mobile App?

Notes

