
National College of Ireland

Final year Software project

Smartmove

Anthony Bloomer
BSc in Computing (Data Analytics)

Student Number: x13114271
Email: anthony.bloomer@student.ncirl.ie

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Student ID:

Supervisor:

SECTION 2 Confirmation of Authorship

The acceptance of your work is subject to your signature on the follow-
ing declaration:

I confirm that I have read the College statement on plagiarism (summarised
overleaf and printed in full in the Student Handbook) and that the work I
have submitted for assessment is entirely my own work.

Name:

Date:

1

Abstract

Smartmove is a data platform which aims to provide businesses and con-
sumers with insight into the property market in Ireland and the United
Kingdom. Smartmove is made up of several software components. The main
features include a Data Warehouse, REST API and in-depth data analysis
using R. The platform retrieves data from multiple sources including Daft.ie,
Zoopla and the Property Price Register. ETL tools for retrieving and pro-
cessing data from these sources have been made as part of this project. The
REST API allows third-party developers to use Smartmove data in their
own applications. The endpoints include features such as the ability to re-
trieve JSON data that can easily be consumed by the Google Charts API.
Smartmove is an open source project and all of the software components are
available on Github.

The potential users of Smartmove include:

1. Businesses who wish to gain intelligence on how to better target areas.

2. Consumers who intend to research property prices before purchasing.

3. Developers who wish to use Smartmove data in their own applications.

Contents

0.1 Introduction . 3
0.1.1 Background . 3
0.1.2 Aims . 3
0.1.3 Technologies . 4
0.1.4 Structure . 4

0.2 Methodology . 5
0.3 Data Sources . 5

0.3.1 Daft.ie . 5
0.3.2 Zoopla.co.uk . 6
0.3.3 Property Price Register 6

0.4 Requirement Specification . 6
0.4.1 Functional Requirements 6

0.4.1.1 REST API Requirements 6
0.4.1.2 Display Descriptive Charts 7
0.4.1.3 Predict Future Prices 7
0.4.1.4 Retrieve data from the Property Price Register 7
0.4.1.5 Retrieve data from Zoopla.co.uk 7
0.4.1.6 Scrape data from Daft.ie 7
0.4.1.7 Persist Data 7
0.4.1.8 Sign-Up . 7
0.4.1.9 Login . 8
0.4.1.10 Create Application 9

0.4.2 Nonfunctional Requirements 10
0.4.2.1 API Rate Limiting 10
0.4.2.2 API Authentication 10
0.4.2.3 Unit Testing 11
0.4.2.4 Data Recovery 11
0.4.2.5 Software Documentation 11
0.4.2.6 Open Source 11
0.4.2.7 Portability 11
0.4.2.8 Availability 11

0.5 Data Warehouse . 11
0.5.1 Operational Database Design 11
0.5.2 Data Warehouse Schema 12

1

0.5.3 Data Transformation 13
0.6 REST API . 14

0.6.1 Rate Limiting . 14
0.6.2 Authentication . 15
0.6.3 Endpoints . 15

0.6.3.1 Properties 15
0.6.3.2 Towns . 15
0.6.3.3 Countries . 15
0.6.3.4 Counties . 16
0.6.3.5 Charts . 16

0.7 Graphical User Interface (GUI) Layout 16
0.7.1 REST API . 16
0.7.2 Homepage . 18

0.7.2.1 Login . 18
0.7.2.2 Register . 19
0.7.2.3 Create Application 20
0.7.2.4 List Applications 21

0.7.3 KPI Dashboard . 22
0.7.3.1 Dashboard User Interface 22

0.8 Implementation . 24
0.8.1 ETL Process . 24
0.8.2 REST API . 28
0.8.3 Data Analysis / Visualization 30

0.9 Testing . 34
0.9.1 Blackbox Testing . 34
0.9.2 Unit Testing . 34

0.10 Installation / Usage Manual 35
0.10.1 Load Scripts . 35

0.10.1.1 Retrieving Real-time Data 36
0.10.1.2 Property Price Register Notifier 36

0.10.2 REST API . 36
0.10.3 Smartmove Website 36
0.10.4 Daftlistings . 37
0.10.5 Zoopla . 40

0.11 Future Work . 41
0.12 Conclusion . 41
0.13 Bibliography . 42
0.14 Appendix . 42

0.14.1 Project Proposal . 42
0.14.2 Monthly Reflective Journals 45

0.14.2.1 September 45
0.14.2.2 October . 46
0.14.2.3 November . 47
0.14.2.4 December . 48

2

0.14.2.5 January . 48
0.14.2.6 February . 49
0.14.2.7 March . 50

0.1 Introduction

0.1.1 Background

Smartmove was initially known as Incomestack. The initial idea was to
provide businesses with housing price data such that they can better target
areas. Overtime, more use cases have been found including a REST API
that allows third-party developers to include Smartmove data in their own
applications. Smartmove fills a niche in the market with a unique idea with
very little competitors in this space. The Central Statistics Office (CSO)
does provide property sale information but it is not easy to use and is not
as granular in the results it gives back. For example, the CSO provides sale
pricing for County Dublin but not cities within Dublin such as Blackrock,
Blanchardstown, Tallaght, etc. Smartmove solves this problem by breaking
down property sale statistics by town, county and country. This data can
then be retrieved by third party developers using the Smartmove REST
API. Smartmove also provides real-time data using the Zoopla API as well
as scraping data from Daft.ie since they do not provide a public API.

0.1.2 Aims

The aim of this project is to provide businesses and consumers with intel-
ligence enabling them to gain insight into the property market in Ireland
and the UK. Smartmove not only aims to be a successful software project
but also a viable product that consumers find valuable. Smartmove aims
to provide third party developers with the ability to retrieve data using the
Smartmove REST API. The API includes several endpoints including the
ability to retrieve JSON data that can easily be consumed by the Google
Charts API.

Use cases for Smartmove

• Targeted Advertising

• Investing

• House Price Prediction

• Mobile Applications

3

0.1.3 Technologies

The following technologies are used in the Smartmove platform.

Python 2.7

Python is a general purpose programming language that is widely used in
software development as it is mature, easy to use and has a wide range of
third party libraries available for it. For the REST API, Smartmove uses
Flask. Flask is a micro-framework written in Python. Flask includes many
extensions that extend the functionality of Flask. Flask-restplus is an ex-
tension that provides useful features that help in API development such as
the ability to automatically generate API documentation.

MySQL

MySQL is an open source Relational Database Management System (RDBMS).
MySQL is used for the operational database as well as the Smartmove Data
Warehouse.

RStudio

R is an open source programming language for statistical computing. R
provides R Studio which is a environment that allows users to write code
which provides instant feedback. For example, users can write code to cre-
ate a chart and the output is displayed automatically in the environment.
R and the RStudio IDE was used in the data analysis component of this
project.

0.1.4 Structure

This section will briefly discuss the structure of this report. In section 0.2,
the methodology employed will be introduced. Section 0.3 will briefly in-
troduce the reader to the data sources used in the Smartmove platform.
In Section 0.4, the requirement specification will be discussed including the
functional and nonfunctional requirements. Section 0.5 discusses the data
warehouse architecture. In section 0.6, the reader is introduced to the tech-
nical details of the REST API. Section 0.7 presents the Graphical User
Interface of the Smartmove platform. In section 0.8, a technical overview
of the implementation is discussed including the REST API, ETL process
and the Data Analysis and Visualization component of this project. Section
0.9 discusses the testing methodologies used. Section 0.10 provides the in-
stallation and usage manual for the components of the Smartmove platform
including the ETL scripts for the Smartmove databases, the REST API,

4

and the Daftlistings and Zoopla libraries built as part of this of this project.

0.2 Methodology

The Smartmove platform has been developed using an iterative model. ”The
iterative model does not start with a full specification of requirements. It
begins by specifying and implementing just part of the software, which can
then be reviewed in order to identify further requirements. This process
is then repeated, producing a new version of the software for each cycle of
the model.” (Level et al., 2017) The following figure illustrates the iterative
approach.

0.3 Data Sources

This section will briefly discuss the data sources used as well as the ETL
tools built to assist in retrieving data from those data sources.

0.3.1 Daft.ie

Daft.ie is Ireland’s largest property website. Unfortunately, Daft do not
provide a public API. This problem led to the development of Daftlistings.
Daftlistings is a python library Smartmove has created. It enables pro-
grammatic interaction with Daft. Users can filter properties by location,
sale type, price and property type. The library is open source and has
gained considerable developer traction. Please refer to section 0.10.4 for the
libraries usage manual.

5

0.3.2 Zoopla.co.uk

Zoopla is a leading property price website in the United Kingdom. Zoopla
provide a public API that allow developers to create applications using hy-
per local data on 27m homes, over 1m sale and rental listings, and 15 years
of sold price data. (Developer.zoopla.com, 2017)

Smartmove has developed a Python wrapper for the Zoopla API as it enables
an easy way to interact with the API. The library includes helpful methods
including the ability to search property listings, retrieve average area sold
prices, area zed indices, etc. This library has been made open source and
is available on Github. Please refer to section 0.10.5 for the libraries usage
manual.

0.3.3 Property Price Register

The Residential Property Price Register is produced by the Property Ser-
vices Regulatory Authority (PSRA) pursuant to section 86 of the Property
Services (Regulation) Act 2011. The property price register includes the
date of sale, price and address of all residential properties purchased in Ire-
land since the 1st January 2010, as declared to the Revenue Commissioners
for stamp duty purposes.(Property Price Register, 2016). The Property
Price Register frequently update their website with new property sales. The
user can download this data in CSV format. ETL scripts have been written
to extract the PPR data and load into the Smartmove operational database.

0.4 Requirement Specification

0.4.1 Functional Requirements

0.4.1.1 REST API Requirements

This section will present the functional requirements for the REST API.

Properties

The system shall provide a properties endpoint enabling the user to re-
trieve data on properties and filter by sale type, location and price.

Charts

The system shall provide a charts endpoint enabling the user to retrieve
data that can easily be consumed by the Google Charts API.

Towns

6

The system shall provide a towns endpoint enabling the user to retrieve
town sale statistics.

Counties

The system shall provide a counties endpoint enabling the user to retrieve
county sale statistics.

Countries

The system shall provide a counties endpoint enabling the user to retrieve
country sale statistics.

0.4.1.2 Display Descriptive Charts

The system shall allow the user to view charts using a KPI dashboard.

0.4.1.3 Predict Future Prices

The system shall allow the user to view predicted sale prices.

0.4.1.4 Retrieve data from the Property Price Register

The system shall retrieve and process the PPR data once it is publicly
available.

0.4.1.5 Retrieve data from Zoopla.co.uk

The system shall regularly retrieve and process property sale information
from Zoopla.co.uk.

0.4.1.6 Scrape data from Daft.ie

The system shall regularly scrape and process property sale information
from Daft.ie.

0.4.1.7 Persist Data

The system shall store the data collected from the data sources in an oper-
ational database.

0.4.1.8 Sign-Up

The user shall have the ability to register at Smartmove.

7

Sign Up Use Case

Sign up

Scope

The scope of this use case is to allow a user to sign up at Smartmove.

Description

This use case describes the sign up process.

Flow Description

Precondition
None

Activation
This use case starts when the user visits the sign up page.

Main flow

• The user enters their desired their username and password.

• The system validates the users details.

• The user is redirected to the homepage.

Alternate flow
-

Exceptional Flow
-

Termination
-

Post condition
The system goes to a wait state.

0.4.1.9 Login

The user shall have the ability to login at Smartmove.

Login Use Case

8

Scope

The scope of this use case is to allow a user to login

Description

This use case describes the login process.

Flow Description

Precondition
None

Activation
This use case starts when the user visits the login page.

Main flow

• The user enters their their user name and password.

• The system validates the users details.

• The user is redirected to the homepage.

Alternate flow
-

Exceptional Flow
-

Termination
-

Post condition
The system goes to a wait state.

0.4.1.10 Create Application

The user shall have the ability to create a new application. Creating an
application provides the user with an API Key that can be used authorizing
requests to the API.

Create Application Use Case

Scope

9

The scope of this use case is to allow a user to create a new application.

Description

This use case describes the process of creating a new application.

Flow Description

Precondition
The user is logged in.

Activation
This use case starts when the user visits the application creation page.

Main flow

• The user enters their their applications name and description.

• The system creates an API key using UUID.

• The system stores the users application details.

• The user is redirected to their applications page.

Alternate flow
-

Exceptional Flow
-

Termination
-

Post condition
The system goes to a wait state.

0.4.2 Nonfunctional Requirements

0.4.2.1 API Rate Limiting

The Smartmove API should including rate limiting. The API should allow
2,000 requests per day and 100 requests per hour.

0.4.2.2 API Authentication

The Smartmove API should require authentication. To use the Smartmove
API, you must include an API key when loading the API.

10

0.4.2.3 Unit Testing

The software components should be tested to guarantee stability.

0.4.2.4 Data Recovery

The system should perform daily backups of the Smartmove data.

0.4.2.5 Software Documentation

The software components should include documentation.

0.4.2.6 Open Source

The software components should be made open source.

0.4.2.7 Portability

The software components should be portable meaning the components run
across different operating systems and hardware.

0.4.2.8 Availability

The REST API should experience very little downtime.

0.5 Data Warehouse

As defined by Bill Inmon, a Data Warehouse is a ”subject-oriented, inte-
grated, time-variant, non-updatable collection of data used in support of
management decision-making processes.” Data is extracted from multiple
data sources and loaded into the Smartmove Data Warehouse. The data
warehouse breaks down sales figures by counties, towns and dates.

0.5.1 Operational Database Design

The operational database stores data from multiple sources including Daft.ie,
Zoopla and the Property Price Register. The Operational database schema
is presented below.

11

0.5.2 Data Warehouse Schema

Below you can find the schema for the data warehouse. The data warehouse
stores aggregated house price information and breaks data down by town,
county and year.

12

0.5.3 Data Transformation

This section will briefly discuss the data transformations and SQL proce-
dures required in order to build and load the data warehouse. Several SQL
procedures have been written to compute statistics from the data in the
operational database and then load into the data warehouse. For example,
the following code snippet computes descriptives for each county and stores
the aggregated data in the data warehouse.

DELIMITER //

CREATE PROCEDURE counties()

BEGIN

DECLARE done BOOLEAN DEFAULT FALSE;

DECLARE _id VARCHAR(40);

DECLARE cur CURSOR FOR SELECT id FROM smartmove.counties;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done := TRUE;

OPEN cur;

testLoop: LOOP

FETCH cur INTO _id;

IF done THEN

LEAVE testLoop;

END IF;

CALL insert_county(_id);

END LOOP testLoop;

CLOSE cur;

13

END

//

DELIMITER //

CREATE PROCEDURE insert_county(IN _county_id INT(11))

BEGIN

INSERT INTO smartmove_data_warehouse.fact_current_sales

(insert_datetime, county_id, total_number_of_sales,

average_sale_price)

SELECT CURDATE(), county_id, COUNT(*) AS total_number_of_sales,

ROUND(AVG(price), 2) AS average_sale_price

FROM smartmove.properties AS p

WHERE county_id = _county_id

AND sale_type = 2

AND country_id = 1;

END

//

CALL counties()

0.6 REST API

Web Services is software designed to support machine-to-machine commu-
nication and interaction over a network.(W3, 2017) The advantages of web
services include:

• Services offer an interface to access functionality.

• Open protocols are used for communication.

• Services can be distributed and are reachable over a network.

• Machine-to-machine interoperability.

The Smartmove API is built using the Flask micro-framework. The API
makes use of the Flask-restplus extension. Flask-restplus extends Flask
with functionality for quickly building REST APIs. The extension includes
features such as the ability to automatically generate API documentation
using Swagger.

0.6.1 Rate Limiting

The Smartmove API includes rate limiting. The API allows 2,000 requests
per day and 100 requests per hour. This feature is common in most web

14

APIs. It is useful from a security and business perspective as it prevents
users from sending too many requests to the API.

0.6.2 Authentication

The Smartmove API requires authentication. To use the Smartmove API,
you must include an API key when loading the API. This adds an extra
layer of security to the API and will allow Smartmove to monitor developer
usage. Please note this feature is disabled by default when running the API
locally.

0.6.3 Endpoints

In this section, the endpoints for the Smartmove API will be presented.

0.6.3.1 Properties

This endpoint provides the endpoints that allow the user to retrieve proper-
ties throughout Ireland and the UK. Users can filter by sale type, location
and date. The table below shows the endpoint information for the Properties
endpoint.

Method URL Description

GET /properties/ Get all properties

GET /properties/{id} Get a property by ID.

GET /properties/search/{term} Search properties

0.6.3.2 Towns

This endpoint provides endpoints to retrieve sale statistics for towns. The
table below shows the endpoint information for the Towns endpoint.

Method URL Description

GET /towns/ Get all towns

GET /towns/compare/ Compare sale statistics between two
towns.

GET /towns/{id} Get a town by ID.

0.6.3.3 Countries

This endpoint provides endpoints to retrieve sale statistics for countries. The
table below shows the endpoint information for the Countries endpoint.

Method URL Description

GET /countries/ Get all countries

GET /countries/{id} Get a country by ID.

15

0.6.3.4 Counties

This endpoint provides endpoints to retrieve sale statistics for counties. The
table below shows the endpoint information for the Counties endpoint.

Method URL Description

GET /counties/ Get all counties

GET /counties/compare/ Compare sale statistics be-
tween two counties.

GET /counties/{id} Get a county by ID.

GET /counties/{name}/{year} Get yearly sale statistics
for a given county.

0.6.3.5 Charts

This endpoint allows the user to retrieve JSON data that can easily be
consumed by the Google Charts API. The table below shows the endpoint
information for the Charts endpoint.

Method URL Description

GET /charts/counties/average-
sale-price

Get the average sale price
for each county

GET /charts/new-
dwellings/average-sale-
price

Get the average sale price
of new dwellings between
2010-2016.

GET /charts/new-
dwellings/number-of-sales

Get the number of sales
of new dwellings between
2010-2016.

GET /charts/table/ Get the average sale price
and total number of sales
for each town.

GET /charts/{name} Get the average sale price
for each year for a given
county.

0.7 Graphical User Interface (GUI) Layout

0.7.1 REST API

The REST API is built using Python with the Flask-restplus extension
which provides useful features such as automatically generating Swagger
documentation. The Swagger user interface allows users to view and test
the API. The screenshot below presents the Swagger initial screen.

16

Users can expand endpoints and enter query parameters. Below a screenshot
is presented showing how a user can test the Charts endpoint.

17

0.7.2 Homepage

The Smartmove homepage is intended to promote the Smartmove platform
as well as allow users to register an application to retrieve an API key for
the Smartmove API.

0.7.2.1 Login

This user interface allows the user to login at Smartmove.

18

0.7.2.2 Register

This user interface allows the user to register an account at Smartmove.

19

0.7.2.3 Create Application

This user interface allows the users to create an application.

20

0.7.2.4 List Applications

This user interface allows the users to view the applications they have cre-
ated.

21

0.7.3 KPI Dashboard

The KPI dashboard has been created using PowerBI. PowerBI is a tool
released by Microsoft that allows users to update their dataset to the service
and create interactive charts. It is a similar tool to Tableau. Users can also
gain insights where the program presents interesting facts about the data.
Below is a screen of the Smartmove KPI dashboard.

0.7.3.1 Dashboard User Interface

22

Users of the dashboard can focus on one of the charts and add filters such
as filtering a sale price less than a particular value. A demonstration of the
user interface is shown below.

23

0.8 Implementation

This section will discuss the implementation details of this project including
the ETL process and the main features of the REST API.

0.8.1 ETL Process

Smartmove uses data from multiple sources. This data is firstly staged
in the operational database. Then, data is transformed and loaded into
the Smartmove data warehouse. Several scripts have been written using
Python to perform the extraction of data. For example, Smartmove uses
the daftlistings library created as part of this project to scrape data from
Daft.ie and store the data in the database.

if __name__ == ’__main__’:

with connection.cursor() as cursor:

sql = "SELECT id, county_name, country_id " \

"FROM counties where country_id = 1"

cursor.execute(sql)

results = cursor.fetchall()

if results:

for result in results:

id = result[’id’]

cn = result[’county_name’]

ci = result[’country_id’]

24

scrape(id, cn, ci, options[’sale’])

print(’Done!’)

The script above loops through each county in the Smartmove database and
passes it to the scrape method. The scrape method takes four parameters:
the county id, the county name, the country name and a dictionary of pa-
rameters to be passed to the get listing function. For example, to retrieve
current sale information, we would pass the following dictionary.

{

’sale’: {

’listing_type’: ’properties’,

’sale_type’: ’sale’,

’sale_type_id’: 2,

’sale_agreed’: False

}

}

The scrape method then loops through each page of listings and stores the
house information in the Smartmove database. The algorithm described is
presented below.

25

def scrape(county_id, county, country_id, params):

d = Daft()

pages = True

offset = 0

while pages:

listings = d.get_listings(

county=county,

area=’’,

offset=offset,

listing_type=params[’listing_type’],

sale_type=params[’sale_type’],

sale_agreed=params[’sale_agreed’]

)

if not listings:

pages = False

for listing in listings:

address = listing.get_formalised_address()

price = listing.get_price()

price = calculate_price(country_id, price)

if not price or not address:

continue

address = is_sale_agreed(address)

address = address.lower().title().strip()

if not exists(address):

nbedrooms = listing.get_num_bedrooms()

nbathrooms = listing.get_num_bathrooms()

try:

nbedrooms = int(nbedrooms.split()[0])

except:

pass

try:

nbathrooms = int(nbathrooms.split()[0])

except:

pass

date_time = strftime("%Y-%m-%d %H:%M:%S", gmtime())

description = listing.get_dwelling_type()

insert([

date_time,

address,

county_id,

price,

description,

country_id,

params[’sale_type_id’],

nbedrooms,

nbathrooms

])

offset += 10

26

Once this data is loaded into the operational database, we can then aggregate
the data and load it into the data warehouse. Several SQL procedures have
been written to retrieve data from the operational database, aggregate it
then store in the data warehouse. For example, the following SQL procedure
loops through each county and computes the average sale price and number
of sales from 2010 to 2017.

DELIMITER //

CREATE PROCEDURE county()

BEGIN

DECLARE done BOOLEAN DEFAULT FALSE;

DECLARE _id VARCHAR(40);

DECLARE _year INT(11);

DECLARE cur CURSOR FOR SELECT id FROM smartmove.counties;

DECLARE CONTINUE HANDLER FOR NOT FOUND SET done := TRUE;

SET _year = 2010;

OPEN cur;

testLoop: LOOP

FETCH cur INTO _id;

IF done THEN

LEAVE testLoop;

END IF;

WHILE _year <= 2017 DO

CALL insert_year_stats(_id, _year);

SET _year = _year + 1;

END WHILE;

SET _year = 2010;

END LOOP testLoop;

CLOSE cur;

END

//

DELIMITER //

CREATE PROCEDURE insert_year_stats(IN id VARCHAR(20), IN year

INT(11))

BEGIN

INSERT INTO smartmove_data_warehouse.fact_year (year, county_id,

total_number_of_sales, average_sale_price)

SELECT year(date_time),

county_id,

COUNT(price),

AVG(price)

FROM smartmove.properties

27

WHERE sale_type = 1

AND county_id = id

AND year(date_time) = year

GROUP BY year(date_time);

END

//

CALL county()

0.8.2 REST API

As discussed, the Smartmove API uses the Flask micro-framework. The
Flask-restplus extension extends the Flask framework with additional func-
tionality such as decorators that allow us to define the API endpoint, query
parameters and error responses. For example, consider the following class
which gets a property by ID.

@api.route(’/<id>’)

@api.param(’id’, ’The property identifier’)

@api.param(’api_key’, ’Your API key.’)

@api.response(404, ’Property not found’)

@api.response(401, ’Invalid API key.’)

class GetPropertyById(Resource):

@api.doc(’get_property_by_id’)

@api.marshal_with(property_model)

def get(self, id):

"""

Description: Get a property by ID.

:return: JSON

"""

if request.args.get(’api_key’) and

validate_key(request.args.get(’api_key’)) or

settings.ENV == ’TESTING’:

sql = "select * from smartmove.properties as p " \

"join smartmove.counties as c " \

"on p.county_id = c.id " \

"where p.id = %s"

with conn.cursor() as cursor:

cursor.execute(sql, id)

data = cursor.fetchone()

return data if data else api.abort(404)

else:

api.abort(401)

The @api.route decorator specifies the endpoints URL. The @api.param

28

decorator specifies the query parameters and @api.response adds HTTP
response information if any error occurred. The Flask-restplus extension
also allows us to automatically generate API documentation by using the
@api.doc and @api.marshal with decorators within the class.

When a user makes a request to the API, the user must pass their API
key as a query parameter. When the system receives a request, it checks
to see if the API exists before returning any data. If the API key does not
exist it will return a 401 response.

Another requirement for the Smartmove REST API is rate limiting. Rate
limiting is useful as it allows us to limit how many requests a user can make
to the API. This is beneficial from a business and security perspective as it
prevents users from abusing the API. Rate limiting is implemented easily
using the Flask-limiter extension. With the extension, we can specify rate
limits for the application. For example:

limiter = Limiter(

app,

key_func=get_remote_address,

global_limits=["2000 per day", "100 per hour"]

)

The API includes many useful features such as the ability to retreive data
that can easily be consumed by the Google Charts API. For example the
following CURL command:

curl -X GET --header ’Accept: application/json’

’http://0.0.0.0:33507/api/v1/charts/<county_name>’

Returns the JSON below that can be consumed by the Google Charts API
to display a line chart of the average sale price for each year for a given
county.

{

"cols": [

{

"id": "Year",

"label": "Year",

"type": "number"

},

{

"id": "Price",

"label": "Price",

"type": "number"

}

],

29

"rows": [

{

"c": [

{

"v": 2010

},

{

"v": 333401

}

]

}

]

}

0.8.3 Data Analysis / Visualization

In this section, the data analysis and visualization implementation details
will be briefly discussed. One of the main goals of this project is to provide
information that people find valuable. The analysis was carried out using R
and MySQL. Consider the following code snippet that finds which type of
properties had the most sales in Dublin in 2016.

data <- get_data(

’select distinct(description) as d, count(*) as count

from properties

where sale_type = 1

and county_id = 9

and year(date_time) = 2016

group BY d’

)

summary(data)

p <- plot_ly(data,

labels = ~ d,

values = ~ count,

type = ’pie’) %>%

layout(

title = ’Dwelling Types with most sales in Dublin in 2016’,

xaxis = list(

showgrid = FALSE,

zeroline = FALSE,

showticklabels = FALSE

),

yaxis = list(

showgrid = FALSE,

zeroline = FALSE,

showticklabels = FALSE

)

)

30

print(p)

The get data function takes a SQL query as an argument, queries the
database and returns the data. The data returned from the query is then
passed into the plot ly function. Plotly is a library that allows us to create
charts using R. The above code outputs the following pie chart:

Another example of the analysis carried out is a chart displaying the total
number of new dwellings sold from 2010-2016.

31

The chart above is generated using the Plotly library. The code snippet for
this is presented below.

data <- get_data(

’select year(date_time) as py, count(*) as count

from properties

where description = "New Dwelling house /Apartment"

group by py’

)

head(data)

exclude <- data[0:7,]

exclude

plot_ly(

data = exclude,

x = ~ py,

y = ~ count,

type = ’scatter’ ,

mode = ’lines’

) %>%

layout(

title = ’Number of new dwellings sold from 2010-2016.’,

xaxis = list(title = ’Year’),

yaxis = list(title = ’Count’)

)

A final example to be presented is a heatmap of how the total number of

32

sales are distributed throughout Ireland.

data <-

get_data(

’select distinct c.county_name, c.latitude as lat, c.longitude

as lon, count(p.id)

from properties as p

join counties as c

on c.id = p.county_id

where sale_type = 1

and p.country_id = 1

group by c.county_name, lat, lon’

)

head(data)

Code Reference:

http://www.geo.ut.ee/aasa/LOOM02331/heatmap_in_R.html

map_location <-

c(lon = -8, lat = 53)

m <- get_map(location = map_location, zoom = 7)

ggmap(m, extent = "device") + geom_density2d(data = data,

aes(x = lon, y = lat), size

= 0.3) + stat_density2d(

data = data,

aes(

x = lon,

y = lat,

fill = ..level..,

alpha = ..level..

),

size = 0.01,

bins = 16,

geom = "polygon"

) + scale_fill_gradient(low

= "green", high =

"red") +

scale_alpha(range = c(0, 0.3), guide = FALSE)

The code above generates the heatmap presented below. It uses the ggmap
library which enables developers to use the Google Maps API in R.

33

0.9 Testing

This section will briefly discuss the testing methodologies used in the Smart-
move platform.

0.9.1 Blackbox Testing

The automatically generated Swagger documentation is ideal for testing the
main endpoints. The blackbox approach was carried out on each of the API
endpoints to ensure the API was sending the correct data.

0.9.2 Unit Testing

Unit tests have been written for each of the Smartmove software components.
The Smartmove API includes unit tests as well as the Zoopla and Daftlistings
library. This is made possible using the unittest library built into Python
2.7. Consider the following code which tests the properties endpoint.

class ApiTest(unittest.TestCase):

base = ’http://0.0.0.0:33507/api/v1/’

def call(self, method):

req = requests.get(url=self.base + method)

return req

34

class PropertyTest(ApiTest):

def test_properties(self):

self.assertTrue(self.call(’properties/’).status_code, 200)

def test_property_by_id(self):

r = self.call(’properties/6’).json()

self.assertTrue(r[’county_name’], ’Dublin’)

def test_property_search(self):

r = self.call(’properties/search/ballivor/’)

self.assertTrue(r.status_code, 200)

0.10 Installation / Usage Manual

The following technologies must be installed on the user’s system:

• Python 2.7

• Virtualenv

• Git

• MySQL

0.10.1 Load Scripts

This section will discuss the installation instructions for the database load
scripts.

1. First you’ll need to create a virtualenv and install the requirements.

cd smartmove-load-scripts

Create a virtual environment

virtualenv env

source env/bin/activate

Install the requirements

pip install -r requirements.txt

2. Create the databases. Run the database creation scripts in /queries/schema
to create the main Smartmove database and the data warehouse.

3. Update the configuration file with your database settings in config.py.

4. Execute the PPR script in ppr/ppr.py to load property price data
into the smartmove database.

35

5. Run the procedures found in /queries/procedures to compute the
statistics for the data warehouse.

0.10.1.1 Retrieving Real-time Data

To load current sale information into the Smartmove database run the Daft
and Zoopla load scripts. The load scripts for Daft and Zoopla are found in
daft/ and zoopla/. If you are retrieving data from Zoopla, you will need
to update the config file with your Zoopla API key.

0.10.1.2 Property Price Register Notifier

The load scripts includes a script to notify you when the Property Price
Register update their website. If it has the script will send an email to
notify you. Navigate to ppr/notifier.py and update the script with your
email, password and the recipient email address. The script checks whether
the site has been updated once a day. You will need to allow less secure
applications in your Gmail account.

0.10.2 REST API

In this section, the installation details for the API is presented.

cd smartmove-api

Create a new virtual environment

virtualenv env

source env/bin/activate

Install the requirements

pip install -r requirements.txt

Run the server

python app.py

0.10.3 Smartmove Website

The Smartmove website is intended to promote the platform and serve as a
portal for third party developers to register their application to retrieve an
API key. Below the installation process is presented.

cd smartmove

Create a new virtual environment

virtualenv env

36

source env/bin/activate

Install the requirements

pip install -r requirements.txt

Run the server

python run.py

0.10.4 Daftlistings

Daftlistings is a web scraper that enables programmatic interaction with
daft.ie. The library has been tested on Python 2.7 and Python 3.5.2. In
this section, usage examples and the libraries usage information will be pre-
sented.

Installation

pip install daftlistings

Examples

Get the current properties for rent in Dublin that are between 1000 and
1500 per month.

from daftlistings import Daft

d = Daft()

listings = d.get_listings(

county=’Dublin City’,

area=’Dublin 15’,

listing_type=’apartments’,

min_price=1000,

max_price=1500,

sale_type=’rent’

)

for listing in listings:

print(listing.get_formalised_address())

print(listing.get_daft_link())

Get the current sale agreed prices for properties in Dublin.

listings = d.get_listings(

county=’Dublin City’,

area=’Dublin 15’,

listing_type=’properties’,

37

sale_agreed=True,

min_price=200000,

max_price=250000

)

for listing in listings:

print(listing.get_formalised_address())

print(listing.get_daft_link())

The following script loops through each page of property listings for property
sales in Dublin 15.

offset = 0

pages = True

while pages:

listings = d.get_listings(

county=’Dublin City’,

area=’Dublin 15’,

offset=offset,

listing_type=’properties’

)

if not listings:

pages = False

for listing in listings:

print(listing.get_agent_url())

print(listing.get_price())

print(listing.get_formalised_address())

print(listing.get_daft_link())

print(’ ’)

offset += 10

Methods

get listings()
The get listings method accepts the following parameters.

• max beds: The maximum number of beds.

• min beds: The minimum number of beds.

• max price: The maximum value of the listing

• min price: The minimum value of the listing

38

• county: The county to get listings for.

• area: The area in the county to get listings for. Optional.

• offset: The page number.

• listing type: The listings you’d like to scrape i.e houses, properties,
auction or apartments.

• sale agreed: If set to True, we’ll scrape listings that are sale agreed.

• sale type: Retrieve listings of a certain sale type. Can be set to ’sale’
or ’rent’.

• sort by: Sorts the listing. Can be set to ’date’, ’distance’, ’price’ or
’upcoming viewing’.

• sort order: ’d’ for descending, ’a’ for ascending.

get address line 1()
This method returns line 1 of the listing address.

get address line 2()
This method returns line 2 of the listing address.

get town()
This method returns the town.

get county()
This method returns the county.

get formalised address()
This method returns the full address.

get listing image()
This method returns the URL of the listing image.

get agent()
This method returns the agent name.

get agent url()
This method returns the agent URL.

get daft link()
This method returns the URL of the listing.

get dwelling type()

39

This method returns the dwelling type.

get posted since()
This method returns the date the listing was posted.

get num bedrooms()
This method returns the number of bedrooms.

get num bathrooms()
This method returns the number of bathrooms.

get price()
This method returns the price.

0.10.5 Zoopla

zoopla is a python wrapper for the Zoopla API. Below you will find usage
examples for the library.

Examples

Retrieve property listings for a given area.

from zoopla import Zoopla

zoopla = Zoopla(api_key=’your_api_key’, debug=True,

wait_on_rate_limit=True)

search = zoopla.search_property_listings(params={

’maximum_beds’: 2,

’page_size’: 100,

’listing_status’: ’sale’,

’area’: ’Blackley, Greater Manchester’

})

for result in search:

print result.price

print result.description

print result.image_url

Retrieve a list of house price estimates for the requested area.

zed_indices = zoopla.area_zed_indices({

’area’: ’Blackley, Greater Manchester’,

’output_type’: ’area’,

’area_type’: ’streets’,

’order’: ’ascending’,

40

’page_number’: 1,

’page_size’: 10

})

print zed_indices.town

print zed_indices.results_url

Generate a graph of values for an outcode over the previous 3 months and
return the URL to the generated image.

area_graphs = zoopla.area_value_graphs(’SW11’)

print area_graphs.average_values_graph_url

print area_graphs.value_trend_graph_url

Retrieve the average sale price for houses in a particular area.

average = zoopla.get_average_area_sold_price(’SW11’)

print average.average_sold_price_7year

print average.average_sold_price_5year

0.11 Future Work

Future work would include incorporating other metrics to improve the pre-
dictive model as well as including pricing information from other countries.
Smartmove uses data from Ireland and the UK.

0.12 Conclusion

In this paper, the system architecture and components of the Smartmove
platform has been discussed including the Data Warehouse and the REST
API. The opportunities of this project include:

• A platform that can fill a certain niche in the market and fill a business
and consumer need.

• A REST API that allows developers to use Smartmove in their own
applications regardless of the programming language or hardware de-
vice.

• A data warehouse with a scalable architecture to allow for further data
sources to be incorporated.

Learning curve:
Rather than focusing on one research area, Smartmove implements a Data

41

Warehouse, REST API and a data analysis using R. Thus, researching sev-
eral research areas have been difficult. If I was to complete this project
again, I would have focused on one research area instead of focusing on sev-
eral research areas.

Blockers encountered:
The main blockers encountered was trying to build a good regression model.
There was little correlation found in the data set. Incorporating other data
points including the number of businesses for a given area improved the
accuracy of the model. Another blocker encountered was hosting. Heroku
offer a free tier but you are limited to the amount of data you can store.
This was the limitation as Smartmove processes large amounts of data.

0.13 Bibliography

Property Price Register. (2017). Residential Property Price Register -
Home Page. [online] Available at: https://www.propertypriceregister.ie/
[Accessed 6 May 2017].

W3. (2017). Web Services Glossary. [online] Available at:
https://www.w3.org/TR/2004/ [Accessed 7 May 2017].

Developer.zoopla.com. (2017). Zoopla Property API - Welcome to the
Zoopla Developer Network. [online] Available at: http://developer.zoopla.com
[Accessed 7 May 2017].

Level, I., Tutorial, A., Dates, 2., Tests, I., Us, C., Policy, P., Use, T. and Us,
A. (2017). What is Iterative model- advantages, disadvantages and when to
use it?.[online] Available at: http://istqbexamcertification.com/ [Accessed
7 May 2017].

Iterative Lifecycle. (2017).[image] Available at: https://praxisframework.org/
[Accessed 7 May 2017].

0.14 Appendix

0.14.1 Project Proposal

Objectives

The objective of this project is to build a real time dashboard that will
display statistics on property prices in Ireland and the UK. The goal is
to provide intelligence to businesses so they can better target areas. Data

42

will be extracted from various sources and will be loaded into the IncomeS-
tack data warehouse where we can perform statistical computations for the
dashboard. The project will feature an Application Programming Interface
(API) so third party developers can utilize the data in their own applications.

Background

One way businesses can determine household income in a given area is to
look at property prices. IncomeStack aims to provide intelligence to busi-
nesses so they can better target areas. The Central Statistics Office (CSO)
does provide property sale information but it is not easy to use and is not
as granular in the results it gives back. For example, CSO provide data
for County Dublin but not cities within such as Blackrock, Blanchardstown,
Tallaght, etc. IncomeStack will try solve this problem by displaying statis-
tics in an easy to use format as well as aggregated property price information
at a granular level. The project will feature a KPI dashboard, REST API,
tools for extracting and loading data into the database and a data ware-
house. The technical details of these components will be detailed in section
three of this proposal. I will briefly discuss some use cases for a project such
as this. One use case for a project such as this would be Pay-per-click (PPC)
advertising. Ive managed the Google AdWords campaigns for my families
company for two years. When we set up the AdWords campaign we were
primarily targeting all areas within Dublin. I performed some calculations
on the property price data I attained, grouping each town within Dublin
by average sale price. I changed our campaign to only target areas with
the highest sale average. The company seen an increase in 12% to 16.8% in
conversion rates in just under six months. Another use case is to generate
custom reports for a given area. In my previous internship, my employer
was aware of the project I was working on and asked could I retrieve prop-
erty price information for cities within Manchester. Using the Zoopla API
and the Python wrapper I wrote for it, I was able to compute the statistics
needed and export as .CSV. Monetization is an area being considered and
details are outlined in section 8 of this proposal.

Technical Approach

Data Sources

Zoopla API wrapper

Zoopla is a leading resource for property sale prices in the United Kingdom.
Zoopla provide a public API that allow developers to create applications
using hyper local data on 27m homes, over 1m sale and rental listings, and
15 years of sold price data. (Developer.zoopla.com, 2016) I have developed

43

a wrapper around the Zoopla API which allows us to easily call the various
API methods using Python. This wrapper is open source and is available
on Github and the Python Package Index (PyPi). I aim to model some of
IncomeStack REST API off of Zooplas API methods. For example, Zoopla
have an API method called Average Area Sold Price which returns the av-
erage sale price for properties in a given area.

Daft.ie Web Scraper

Daft.ie is one of Irelands largest property websites. Unfortunately, Daft
do not provide a public API so I have developed a web scraper that allows
to scrape real time property price information from the Daft.ie website. The
scraper has been written in Python and makes use of the Beautiful Soup
library. Beautiful Soup is a Python library used for scraping data from web-
pages. The Daft.ie web scraper is open source and is available on Github
and The Python Package Index (PyPi). This library has already gained
developer traction.

Property Price Register

The Residential Property Price Register is produced by the Property Ser-
vices Regulatory Authority (PSRA) pursuant to section 86 of the Property
Services (Regulation) Act 2011. (Property Price Register, 2016) The data
provides the date of sale, price and description of properties sold between
2010 and 2016. The Property Price Register provides downloadable access
to this data in .csv format. Using Python, we can load each .csv file into
the IncomeStack database for further data analysis.

KPI Dashboard

The KPI dashboard is the face of this project. It is where the business
intelligence will be consumed by end users. The dashboard will use the
JavaScript Google Charts library and consume data from the JSON REST
API currently under development.

JSON RESTful API

IncomeStack aims to provide third party developers with a JSON API to
utilize the data in their own applications. I propose to develop a REST
API so that the data could be used in other applications and on hardware
devices such as mobile and tablet devices. The REST API will be developed
in Django.

Data Warehouse

44

Data will be extracted from multiple sources and will be sent to the data
warehouse. I consider the data warehouse to be one of the most important
components of this project. I aim to build a data warehouse that is scalable
and future proof for any further data sources or models we wish to incorpo-
rate.

Special resources required

No special resources are required for this project.

Project Plan

Please find the project plan attached.

Technical Details

Languages: Python, JavaScript, MySQL
Libraries: Google Charts, Google Visualization API, Django, Bootstrap

Evaluation

The components of this project will be tested using the Unit Testing library
built into Python. I have wrote test cases for the Zoopla API and Daft.ie
web scraper. I hope to gain feedback from others and will be distributing
surveys and user testing. The dashboard will feature internal analytics using
the Mixpanel library so we can see how users use the system and ways in
which to increase its usability.

Monetization

Monetization is still an area being actively considered at this point. The
goal of IncomeStack is to provide businesses with intelligence that they find
is valuable. One way in which monetization could work is a subscription
model where users pay a monthly fee of 10 to access the dashboard as well
as providing access to the private API.

0.14.2 Monthly Reflective Journals

0.14.2.1 September

My Achievements
This month, I attended the project pitch where I presented my fourth year
project idea. Thankfully, the judges accepted my proposal. I am pleased

45

that the research I have done and the components I have built over the sum-
mer months has value and can be used. I can now dive deeper into further
research and development of my project.

My Reflection
I feel the project pitch went well. Initially, I was nervous to some extent but
once we started talking back and forth about the project idea I felt more
confident and at ease. The judges suggested important areas in which to
focus on such as the importance of a good data warehouse implementation,
other data sources to explore and the user friendliness of the dashboard. I
am really grateful of the advice the judges gave me. I plan to research and
implement their suggestions over the coming months.

Intended Changes
This month I will continue to focus on researching data warehouse design.
I have built a simple star schema for the data I have already collected but
still have a lot to learn and implement. I plan to collect more data such
as population and crime data and populate the data warehouse with that
information. I plan to make a start on the initial dashboard user interface.

0.14.2.2 October

My Achievements
This month, I have made progress with the properties database schema. I
have decided to collect data by sale type: sold, for sale and sale agreed. I
think this this approach will allow me to categorise the data better. Before
I was just collecting property prices without including a sale type. This is a
problem because how would I know which sale type the property price refers
to. I have continued my research into data warehouse design. I watched one
course on data warehouse design on Pluralsight which gave me an under-
standing of warehousing basics. I have started the design of my data ware-
house. There is some questions I still need answered so I plan to continue
research and development over the following month. I have decided that I
will use Django for the API and dashboard implementation. Django is a web
application framework written in Python. This framework will suit me well
as most of the tools I have built are written in Python. I have researched
the JavaScript charts libraries and have decided to use the Google Charts
API.

My Reflection
This month I have decided on how I plan to implement some of the com-
ponents of my fourth year project and finalised on platforms and libraries
I intend to use. There is still some aspects in regard to data warehouse I
am unsure of so I look forward to speaking to my project supervisor to get

46

feedback.

Intended Changes
This month I will continue to focus on researching data warehouse design.
I have built a simple star schema for the data I have already collected but
still have a lot to learn and implement. I plan to collect more data such
as population and crime data and populate the data warehouse with that
information. I plan to make a start on the initial dashboard user interface.

0.14.2.3 November

My Achievements

This month, I started to work on the Application Programming Interface
(API). I changed from my initial plan to develop the API in Django to Flask.
Flask is a Python micro-framework that allows developers to add compo-
nents as they are needed. It isnt as heavy as Django as there isnt as much
needed to learn. Building the API in Flask allows me to develop quickly
and in time for the prototype presentation on the 19th of December. One
notable change this month is that I changed the name of the platform from
Incomestack to Smartmove. As I have started developing my project, I have
been able to think of new use cases for the platform. Initially, Smartmove
was a platform for businesses to gain intelligence into the property market.
Now, this platform could also appeal to first-time buyers and curious con-
sumers who wish to gain insight into the property market. With the API
under development, this platform also appeals to third party developers. I
have continued my research into Data Warehouse design and have developed
a prototype data warehouse built on the snowflake model. I have fact tables
for county statistics, country statistics and overall sale statistics. Ive set up
my load scripts to scrape data from the multiple sources on weekly intervals.
My Reflection

Im happy that my idea has evolved over time and is becoming a platform
that appeals to not just businesses but developers and consumers wishing
to gain insight into the property market. Switching from Django to Flask
for the API was a good decision as it allows me to develop the API faster
in preparation for the prototype presentation. One concern I have now is
that as my dataset is becoming larger I am considering database hosting
providers. Ive looked at Azure and Amazon AWS

Intended Changes

Next month, I intend to research further statistics I can use for the property
data obtained. I plan to implement forecasting which I have learned about

47

in my Business Data Analysis course. I will continue to work on the data
warehouse research and development, and continue work on the API in time
for the prototype presentation.

0.14.2.4 December

My Achievements

I attended the midpoint presentation which went well. The judges advised
me on features to research and implement. My Reflection I felt the pre-
sentation went well and I was really grateful of the helpful advice and the
positive remarks the judges gave me. The judges pointed out things I was
missing in the midpoint technical report which I will keep in mind for the
final report. They gave me helpful suggestions on features to research and
implement which I intend to do in the upcoming months.

Intended Changes

I will now focus on researching and implementing the features the judges
advised me to. I am going to research forecasting algorithms so we can
predict property prices in a given area and research market trends on top-
ics such as what factors influence property prices. I intend to complete
the REST API, including API methods to generate charts based on given
query parameters and start working on the graphical user interface for the
KPI dashboard. Next semester, I will be studying Advanced Business Data
Analysis and Data and Web Mining. I intend to apply knowledge learned
in these modules for my Software Project.

0.14.2.5 January

My Achievements

This month I continued to work on the Smartmove API. I made really
good advancements with the API and work is almost complete. The pre-
vious version of the API worked but I wasnt happy with the structure of
it. Everything was in one file app.py. I researched folder structure for large
Flask applications and found some good documentation on developing scal-
able Flask applications. I found an extension for Flask called Flask-restplus
which is a framework for developing REST APIs. The great thing about
flask-restplus is that you can add decorators to your classes that will docu-
ment your API and the API documentation is shown when you browse to
your root API url. Another great achievement this month is that I got the
API hosted on Heroku. Its not 100% complete as I had to take some code
out for it to work but Im slowly adding the features back in. Heroku offer

48

free MySQL databases but they are only 5mb which is too small for what
I need so I am using Microsoft Azure which offers 20mb databases for free
which should suffice for now. I have started the groundwork for the KPI
dashboard. Right now the backend is written using Laravel. I choose this
PHP framework because it is the framework I am most experienced with
and I also wanted to show the benefit of developing REST APIs is that
it doesnt matter what technology the API is written in, it is compatible
across programming languages and frameworks. However I do think Laravel
is overkill for the dashboard and I am currently looking at other solutions.

Intended Changes

• Complete API.

• Start working on the KPI dashboard.

• Apply some knowledge learned in Business Data Analysis and Data
Web Mining to my project.

0.14.2.6 February

My Achievements

This month I focused worked on fixing some issues with the smartmove
rest API. I have fixed most of them but I am still having issues on the
Heroku live app. I have decided to not build a dashboard from scratch but
instead use PowerBI for data analysis and visualisation. Building the dash-
board is yet another software component and if I spend the remainder of
the semester doing that I won’t have much time to focus on the analysis.
PowerBI is an amazing tool released by Microsoft. It allows you to upload
the datasets and then create visuals. It also has a gain insights feature
where it will analyze the data and present facts about the data that I would
not have considered beforehand. The insights it presented, I was able to
incorporate into the Smartmove API. As well as that I focused on applying
some knowledge learned in the Business Data Analysis module into an in-
depth R analysis I am focusing on. I have basic descriptive and inferential
statistics, regression, testing the dataset for normality and removing outliers.

My Reflection

I feel I have made the right decision focusing on the data analysis instead
of working on more software development components of my project.This
has allowed me to gain insights and gather interesting facts about the data
instead of focusing on the software development process.

49

Intended Changes

I intend to focus on more data analysis this month. I plan to incorpo-
rate knowledge learned in the Data and Web Mining module. Right now
I’m just doing simple multiple linear regression but I intend to use some
machine learning techniques to gain better sales predictions for properties.
I also intend to prepare for the project showcase. I am currently working
on the poster and thinking about the best way to demonstrate the project
to interested attendees at the showcase.

0.14.2.7 March

My Achievements

Wow, time flies! This is my last reflective journal! This month, I started
to research building a predictive model to predict house prices. I applied
knowledge learned in my Data and Web Mining module and looked at some
advanced regression models built into Scikit-Learn including Random For-
est Regression and Gradient Boosting Regression. Scikit-Learn is a Python
library for Machine Learning and includes classification and regression al-
gorithms that are useful in building predictive models. This month, I also
completed the task of designing the poster for the showcase.

My Reflection

I carried out some pre-processing on the data to make the dataset more
suitable for the task of building the predictive model. Unfortunately, the
datasets features produce a very low accuracy score using the R2 score func-
tion. I could not find high correlations between the variables In my dataset.
The data from the property market register does not include needed features
so I will need to research other factors that contribute to predicting house
prices.

Intended Changes

Next month, I intend to research new features to build a better predictive
model. I used the Yelp API to find the total number of businesses operating
in a given area. This feature has the highest correlation with the sale price.
I will need to look at other features in building a predictive model.

50

