
	 1	

Transforming the CoderDojo Foundation into a Data Driven
Organization Through Data Warehousing

A report submitted as per the requirements for the reward of

BSc (hons)

In

Computing (Specialization in Data Analytics)

By

Adam Horrigan

Adam Horrigan | BSc Computing – Data Analytics | May 6th, 2017

	 2	

Declaration Cover Sheet for Project Submission

Name: Adam Horrigan

Student ID: x13735825

Supervisor: Simon Caton

SECTION TWO Confirmation of Authorship

The acceptance of your work is subject to your signature on the following declaration:

I confirm that I have read the College statement on plagiarism (summarized overleaf and printed
in full in the Student Handbook) and that the work I have submitted for assessment is entirely my
own work.

Signature: Adam Horrigan.

Date: May 6th, 2017.

	 3	

Abstract	
	

In	2017,	data	more	data	is	being	collected	than	ever	before.	Processing	and	interpreting	
large	volumes	of	data	can	be	a	difficult	business	process.	The	CoderDojo	Foundation	is	an	open-
source	charity	with	the	goal	to	teach	children	programming	skills.	The	primary	use	case	of	this	
project	is	to	serve	the	Foundation	with	a	platform	which	allows	the	organization	to	make	sense	
of	the	data	they	have	stored.	

	
Through	providing	a	well-designed	data	warehouse	architecture,	the	Foundation	will	have	

quick	access	to	primary	metrics	which	are	required	for	reporting.	By	using	open-source	Python	
libraries	and	top	visualization	tools	such	as	Tableau,	this	project	can	take	multiple	sources	of	data	
from	 the	 Foundation	 and	 present	 in	 a	 meaningful	 and	 informative	 format	 to	 grow	 the	
organization.	

	
Keywords;	Data	Warehouse,	Visualization,	Modelling,	Transformation.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 4	

Table	of	Contents	

Transforming the CoderDojo Foundation into a Data Driven Organization Through Data
Warehousing	...	1	

Abstract	...	3	

Introduction	...	7	
Motivation	for	this	project	...	7	
Challenges	..	8	

Background	and	literature	review	..	9	
Architecture	...	9	
Design	..	11	
Technologies	..	13	
Alternative	technologies	explored	..	13	

Methodology	...	14	
Early	Stages	..	14	
Requirements	gathering	...	15	

User	requirements	definition	..	16	
Environmental	requirements	..	22	
Use	case	diagram	...	22	
Architectural	view	..	23	
Data	warehouse	dimensions	...	24	

Implementation	..	25	
Setting	up	the	environment	..	26	
Connecting	to	the	sources	..	29	
Main	method	...	30	
Transformation	functions	...	32	
Insert	functions	..	33	
Starting	the	main	method	..	33	

Evaluation	and	testing	...	34	
Client	feedback	..	38	
Testing	methodology	..	38	
Non-Trivial	Queries	..	45	

Conclusions	and	future	work	...	49	

Appendix	...	50	
September	monthly	report	...	50	

Achievements	..	50	
Reflection	...	50	
Supervisor	meetings	..	50	

October	monthly	report	...	51	
Achievements	..	51	
Reflection	...	51	
Supervisor	meetings	..	51	

November	monthly	report	...	52	

	 5	

Achievements	..	52	
Reflection	...	52	
Supervisor	meetings	..	52	

December	monthly	report	..	53	
Achievements	..	53	
Reflection	...	53	
Supervisor	meetings	..	53	

January	monthly	report	..	54	
Achievements	..	54	
Reflections	...	54	
Supervisor	meetings	..	54	

February	monthly	report	..	55	
Achievements	..	55	
Reflections	...	55	
Supervisor	meetings	..	55	

March	monthly	report	..	56	
Achievements	..	56	
Reflections	...	56	
Supervisor	meetings	..	56	

Bibliography	..	57	
	

Table	of	Figures	
	
Figure	1	-	Data	Warehouse	Architecture	..	10	
Figure	2	-	Inmon	Data	Warehouse	Model	..	11	
Figure	3	-	Kimball	Data	Warehouse	Model	..	12	
Figure	4	-	Iterative	Life	Cycle	Approach	..	14	
Figure	5	-	System	Use	Case	Diagram	..	22	
Figure	6	-	System	Architecture	...	23	
Figure	7	-	Data	Warehouses	Cube	..	24	
Figure	8	-	Visual	Studio	Code	..	25	
Figure	9	-	Sources	of	Data	..	25	
Figure	10	-	Installation	of	Required	Tools	..	26	
Figure	11	-	Right	Click	on	Databases	..	27	
Figure	12	-	Click	on	New	Database	...	27	
Figure	13	-	Name	the	Database	and	Click	ok	..	27	
Figure	14	–	Clone	Repository	...	28	
Figure	15	-	Import	Data	Dump	...	28	
Figure	16	-	Configuration	Details	..	29	
Figure	17	-	Connecting	to	Sources	..	29	
Figure	18	-	Gathering	Source	Data	...	31	
Figure	19	-	Users	Source	Data	..	32	
Figure	20	-	Transformation	Function	..	32	

	 6	

Figure	21	-	Insert	Function	...	33	
Figure	22	-	Starting	the	script	...	33	
Figure	23	-	Events	Schema	...	34	
Figure	24	-	Dojos	Schema	...	35	
Figure	25	-	Users	Schema	...	36	
Figure	26	-	Data	Warehouse	Schema	...	37	
Figure	27	-	Unit	Tests	...	44	
Figure	28	-	Gender	Breakdown	by	Country	..	45	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 7	

Introduction	
	

A	data	warehouse	is	a	collection	of	transactions,	structured	to	best	aid	business	decisions	
within	an	organization.	Bill	Inmon	formally	defined	a	data	warehouse	as	follows:	

“A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of
data in support of management's decision making process.”

Typically, a data warehouse is not normalized, meaning that the data is not structured such
that data redundancy does not occur. The primary purpose of a data warehouse is to have optimal
read times, rather than optimal write times. Joins are computationally expensive, by reducing the
number of joins required, there will be a lower cost to reading. A lower cost, leads to an optimal
read. By not normalizing the data warehouse, the number of joins is reduced. This is a design
pattern which is suggested by Ralph Kimball. Kimball says:

“We are so used to thinking of n-way joins as “hard” that a whole generation of DBAs doesn’t
realize that the n-way join problem is formally equivalent to a single sort-merge. Really.”

 Data visualization is a key field when exploring data. It is easier for a human to interpret
data when charted than when represented through tables. Not all organizational metrics can be
visualized based on the structure on the source data. Queries can be simply impossible or not
feasible. Through a transformation of the data and reorganization, it can become possible to begin
visualizing metrics which were beforehand not possible. The primary queries that exhibit this
behavior are those which span several sources. At the end of the project, the initial sources will be
transformed and structured such that they will be suited by use for the CoderDojo Foundation.

Motivation	for	this	project	
	

Motivation for this project stems from the CoderDojo Foundation needing a frequent and
reliable process in which they can gather business facts, in conjunction with having limited
resources. The CoderDojo Foundations source data is housed in a badly designed schema, which
was rushed in development. This has led to poorly formatted data, without relationships between
appropriate tables. Reorganizing the data to an architecture which can be used for analysis, proves
a difficult task. The project was formally established through work placement.

The CoderDojo Foundation faces several problems with using their data.

1. Currently the data is stored in three production databases. Several of the key
business measures involve queries which span across the three sources. There
is no default method for cross database queries.

2. The relational database management system which is being used is
PostgreSQL. Despite the nature of the data being relational, a lot of it is saved
as JSON within relational columns. This further makes executing queries
difficult. PostgreSQL does have several JSON functions built in but they cannot
achieve everything.

	 8	

3. In the current schema, there is no primary keys on tables and as such, no foreign
keys linking table dependencies. This means that there is no referential integrity
between tables which slows down performance. It also leads to data being
removed in one table but not in another. This can lead to issues when joining.

4. Viewing the data. When the team does gather the statistics, there is no visually
appealing way to view the data. Instead it is simply imported into an excel sheet
where it can be read from.

5. Non-technical team members need to perform SQL queries. Only the
development team should need to execute queries against databases, however
as the reporting lead most frequently need statistics – they find themselves
executing queries.

The CoderDojo Foundation is a small team, consisting of two senior software developers.

By completing this project, the developers will be free to focus on user facing issues such as bugs
in the platform or new features. The project will also allow the organization to be data-driven and
have measures based on time and location granularity. The business measures are vital for the
CoderDojo Foundation to secure funding as many donors require measures to monitor growth.
This project will make these measures accessible at any point in time and improve reporting
organizationally wide.
	

Challenges	
	
There	are	several	key	challenges	which	pertain	to	this	project,	they	are	as	follows:	

1. Due	to	the	CoderDojo	Foundation	being	an	open-source	charity.	There	can	be	
no	tools	used	which	require	a	license	for.	These	rules	out	a	lot	of	standard	data	
ware-housing	tools	such	a	SQL	Server.	It	also	means	the	project	must	use	an	
open-source	management	system	to	house	the	data	warehouse.	

2. Missing	data.	Many	of	 the	 field	which	measures	are	 required	 for	 are	not	 a	
required	field	on	the	front	facing	user	platform.	This	leads	to	a	lot	of	missing	
data	in	the	source	data	which	can	skew	results.	The	missing	data	will	need	to	
be	handled	appropriately.		

3. Security.	As	the	CoderDojo	Foundations	primarily	data	source	pertains	to	users	
under	the	age	of	thirteen,	the	data	must	be	secure	such	that	no	one	can	access	
it	except	for	administrators.	

4. Time	 and	 location	 snapshots.	 The	 CoderDojo	 Foundation	 requires	 that	
measures	can	be	viewed	over	a	certain	time	and	location	period.	

5. Bulk	 and	 unformatted	 data.	 The	 three	 sources	 of	 data	 are	 large	 and	 often	
formatted	in	strange	formatting.	A	lot	of	time	will	be	spent	picking	out	target	
data	and	cleaning	it	such	that	it	can	be	used	for	proper	analysis.	

6. The	project	must	provide	visualization	of	the	business	measures	such	that	a	
non-technical	person	can	make	sense	of	the	data.	This	means	no	outputs	to	
terminal.	

7. No	primary	key	and	foreign	key	relationships	exist	 in	 the	source.	These	will	
need	to	be	established	for	the	first	time	in	this	project.	

	 9	

Background	and	literature	review	
	
“The	 key	 to	 success	 in	 scalable	 data	 warehouse	 development	 and	 the	 single	 factor	 that	
contributes	most	to	data	warehousing	success	is	a	data	warehouse	architecture.	The	architecture	
and	 design	 of	 an	 enterprises	 warehouse	 should	 reflect	 the	 performance	 measurement	 and	
business	requirements	of	the	enterprise.”	–	Alan	Perkins.	
	

In 2003, Alan Perkins published Critical Success Factors for Data Warehousing
Engineering and argued that the biggest characteristic that factors into a data warehouses success
is its architecture. This is agreed with by Michael A. Schiff who published “Data Warehousing –
The keys for a successful implementation.” Schiff believes that a successful architecture is a
“continuous journey” rather than a one-time event. Schiff states “while an organization’s overall
data warehouse architecture can encompass a variety of forms, each organization must decide
what is right for its own purposes”. There are several data warehousing architectural models but
each organization which build a model which is suited to their needs.

Architecture	
	

Data	warehousing	architecture	includes	several	key	components	(Weisensee et al):
1. Data Sources.
2. Data Warehouses.
3. Data Marts.
4. Publication Services.

An organization is likely to have many data sources, including several databases

and third party data accessed through application programming interfaces. These sources
may include, marketing, sales and customer support, (Ramsdale, 2001). A data warehouse is
where the source data resides after being cleaned and consolidated. It allows measures to be
viewed at several different granularities. A data mart can be thought of a subset of a data
warehouse, whereby it is limited to a specific branch of the warehouse. A data mart could be a
sales dimension which is only available to a finance department. Publication services allow the
end user to interact with the data warehouse, an example would be Tableau. Refer to Figure 1 for
a typical data warehouse architecture.

	 10	

	
Figure	1	-	Data	Warehouse	Architecture

Shaker	H.	Ali	El-Sappagh	agrees	with	this	architecture,	who	in	2011	published	“A	proposed	

model	for	data	warehouse	ETL	processes”.	The	process	of	extracting	from	sources	and	afterwards	
transforming	the	data	before	finally	inserting	to	the	data	warehouse	is	a	well-designed	approach.	
El-Shappagh	states	“Data	is	extracted	from	different	data	sources,	and	then	propagated	to	the	
DSA	where	it	is	transformed	and	cleansed	before	being	loaded	to	the	data	warehouse.”	

The	above	architecture	is	important	as	it	allows	for	several	key	activities	to	be	carried	out	
which	are	vital	to	the	success	of	the	data	warehouse.	

1. Specific	data	can	be	selected	from	the	source.	Not	all	data	in	the	sources	may	
need	to	be	processed	and	inserted	into	the	warehouse.	

2. The	data	can	be	transformed	before	being	 inserted	to	the	data	warehouse.	
Plain	 text	 is	 easier	 to	 analyze	 than	 JSON,	 for	 example.	 During	 the	
transformation	phase,	the	data	can	be	prepared	appropriately.	

3. The	process	gives	an	opportunity	to	re-structure	the	data	which	may	be	more	
appropriate	for	consumption.	The	data	does	not	need	to	be	inserted	into	the	
data	 warehouse	 with	 the	 same	 conditions	 and	 relationships	 which	 it	 was	
extracted	with.	

	
	
	
	
	
	
	
	
	

	 11	

Design	
	
"You can catch all the minnows in the ocean and stack them together and they still do not make a
whale." (Inmon).
“The data warehouse is nothing more than the union of all the data marts" (Kimball).

Within data warehousing, there are two main design models which can be implemented.
The Inmon model and Kimball model. Each offers their own advantage and disadvantage. Both
models use an ETL process to load the data warehouse. The important distinction between the two
is how the data structures are modelled, loaded and stored within the data warehouse.

The Inmon approach start by building a corporate data model. The purpose of the corporate
model is to identify the key subject areas and more importantly and the key entities that the
business operates. From the corporate model, a logical model is then created thereafter. A sales
entity would be architected, with all relevant details pertaining to that entity. The logical model is
responsible for capturing all business keys, attributes, dependencies and relationships. An
important note is that the entities are built in a normalized form and data redundancy is avoided as
much as possible. The final step is to build the physical model, which is also normalized. It is the
physical model which Inmon considers the ‘data warehouse’. The structure makes loading the data
less complex with the consequence that querying is difficult as there are many joins and tables
involved. To combat this, Inmon suggests building data marts for each entity. The data marts may
be de-normalized. The data warehouse must be the only source of data for the data mart, to ensure
referential integrity. Figure 2 shows a typical Inmon designed model.

	

	
Figure	2	-	Inmon	Data	Warehouse	Model	

	
	

	 12	

Kimballs approach to data warehouse model differs to that of Inmon. The Kimball
approach starts by identifying the key business questions which need to be answered by the data
warehouse. Importantly, the sources of data for the data warehouse are well documented and
analyzed. Using an ETL process, the data is extracted from the sources and inserted into a staging
area. By using a staging area, the dimension tables can be loaded more efficiently. It is at this stage
that there is a stark contrast to the Inmon design, the dimensions are not normalized. Kimball
proposes a star schema design. Within a star schema, there is a fact table which has the purpose of
holding all business measures. Surrounding the fact table there are dimension tables which are
used to describe the measures. It’s in important to note that the fact table holds all the foreign keys
to the dimension tables. By having the dimensions de-normalized, the user can explore the data
without the need for joining tables. Figure 3 shows how a typical Kimball designed model looks.

	

	
Figure	3	-	Kimball	Data	Warehouse	Model	

	
	
	
	
	
	
	
	
	
	

	 13	

Technologies	
	

Most work for this project has been completed using Python. Python is a general-purpose
programming languages, developed by Guido Van Rossum, it was released in 1991. Python is also
open source under the OSI-approved open-source license, meaning it adheres to the requirements
set out by the CoderDojo Foundation. Python was used to for the ETL process which makes up
the bulk of the project.

As per Python.org: “Python is powerful... and fast; plays well with others; runs
everywhere; is friendly & easy to learn; is Open.”.

Open source Pythons were also used to reduce complexity. By using existing libraries,

focus could be put on the architecture of the model rather than tasks which have an already well
established solution.

Additionally, technologies used include SQL. SQL is a structured query language which is

used against databases to perform operations. SQL was used to extract data from sources and insert
into the data warehouse.

For visualization, Tableau was used. Tableau is a visualization client which can connect to

data sources and process the data into visuals which are easy to interpret. Tableau is not open-
source but does have a license which charities can avail of.

As per Tableau.com: “Tableau can help anyone see and understand their data. Connect to

almost any database, drag and drop to create visualizations, and share with a click.”

Alternative	technologies	explored	
	

Several alternative technologies were explored for the execution of the project. In the early
stages of the project a data warehouse was not considered. Instead, the project would execute SQL
queries and graph the results through D3, an open-source Node.JS library. The CoderDojo
Foundation platform, Zen, is built in Node.JS. The dashboard would have been built into Zen’s
administration section.

Once it was established that several queries would not be possible with the current source

schema, it was decided that a data warehouse is the best approach for the project. Several well
accepted data warehousing technologies such as SQL Server, SiSense and PowerBI. However,
none of these would be used for the following reasons.

1. SQL Server does not have a charitable license and would be too expensive for
the CoderDojo Foundation to purchase a standard license.

2. A license for SiSense would also prove too expensive and does not have a
charitable license.

3. PowerBI could have been used as it is free. However, it requires the data source
to be hosted in Azure. Azure does not support PostgreSQL and as such could
not be used.

	 14	

Methodology	
	

The project will be built using an iterative approach. This allows for requirements to grow
and change, which is a very real possibility since organizational use cases can evolve. The iterative
approach was also suitable as the nature of the project goes against everything that has been
thought regarding structuring of databases. By using an iterative approach, there was scope to learn
data warehousing as the project progressed.

	
Figure	4	-	Iterative	Life	Cycle	Approach	

Ihris.org explain that the process builds in frequent and regular cycles. This allows for
feedback from stakeholders based on reactions from end-users to a working, although incomplete
system. The approach allows the development team to further their understanding of the system as
development progresses. The ultimate gain is that the final product will be one which meets the
current needs of the stakeholders. Figure 4 showcases that the methodology is a cycle, right up
until deployment. Each cycle showcases new features and fixes based on feedback from the
previous cycle.

Early	Stages	
	

Due to the project domain being a completely new concept, early stages of planning
underestimated the length of time each requirement would take to complete. It was through
frequent meetings with Dr. Caton that this was cleared up. Once development began, it became
clearer the length of time which would be required. Furthermore, difficult aspects of the project
could be identified and time was set aside accordingly for these requirements.

	 15	

Requirements	gathering	
	

Initial requirements were gathered while the student was still on work placement with the
CoderDojo Foundation. The requirements were gathered through meetings to see which business
measures are of importance. At this stage of requirement gathering, final measures were only
gathered. No requirements of implementation or architecture design were agreed upon at this stage.
It was in the next iteration of that the project started to shape up from an architectural point of view
and deciding on the technologies be used. Guillaume Feliciano, the CoderDojo Foundation
Technical Lead, had the following to say regarding architecture (November 2016).

“Well, you need a process to transform the data from Zen into the new DB, that's what the ETL is
for, or do you expect to simply transform the SQL dump/"flow" through triggers?
If you need to consolidate with other datasources, i'd consider that writing providers w/ a pre-
processing in R/python/whatever may be beneficial in term of maintenance or plug one of those
ETL thingy”

Additionally, Feliciano had the following to say regarding visualization (November, 2016).

“Hey Adam, I went through your links and a couple of documents regarding BI & OSS. I don't
believe any of those links you sent will suite considering i don't believe we'd go for thousands of €
to get a licence/support and expose our users data.”

It was through further meetings in which a technological stack was decided upon. As
mentioned in the technologies section, the stack consists primarily of Python, with use of SQL and
Tableau.

	 16	

User	requirements	definition	
	

The	CoderDojo	Foundations	community	platform,	Zen,	is	of	vital	importance	to	business	
needs.	As	such,	key	business	measures	come	from	this	domain.	Requirements	were	gathered	
based	on	the	measures	required	by	funding	partners.	The	project	has	a	direct	link	to	helping	the	
Foundation	secure	funding	through	reporting	the	key	business	measures	which	must	be	
showcased	as	a	funding	requirement.	As	such	the	below	preliminary	statistical	requirements	
have	been	set	out	for	this	project	~	July.	The	statistics	requirements	were	documented	by	
CoderDojo	based	on	metrics	required	by	funding	partners.	

	
Statistical
Requirement 1

Statistic Name Dojos by region,
language, frequency
or number.

Data Sources
Required

Cp-dojos-
development
database.

Importance Critical.

Target columns
from source

Country, languages,
count of rows.

Significance of
statistic to the
CoderDojo
Foundation

Allows the
CoderDojo
Foundation to target
specific regions for
growth incentives.

Target dimension
within data
warehouse.

dimDojos dimension.

	
	

	 17	

Statistical
Requirement 2

Statistic Name Users by type,
region, age, events
booked.

Data Sources
Required

Cp-users-
development
database.

Importance Critical.

Target columns
from source

Type, country, dob.

Significance of
statistic to the
CoderDojo
Foundation

Allows the
CoderDojo
Foundation to target
specific user
demographics for
growth incentives.

Target dimension
within data
warehouse.

dimUsers dimension.

	 18	

Statistical
Requirement 3

Statistic Name Tickets by user type,
availability,
acquisition,
cancelation, checked
in.

Data Sources
Required

Cp-events-
development
database.

Importance Important.

Target columns
from source

Ticket id.

Significance of
statistic to the
CoderDojo
Foundation

Allows the
CoderDojo
Foundation to see the
most popular ticket
types.

Target dimension
within data
warehouse.

dimTickets
dimension.

	 19	

On top of the statistical requirements, the below functional requirements have also been
set out.

	
Functional
Requirement 1

Requirement Name Data only accessible
to admins.

Data Sources
Required.

N/A.

Importance Critical.

How requirement
will be
demonstrated.

Only those with
database login can
access data. Only
those with Tableau
account can access
KPI dashboard.

Key Stakeholders Development team.

Description. The system must not
allow users other
than CoderDojo
Foundation members
to access the KPI
dashboard.

	 20	

Functional
Requirement 2

Requirement Name Filtering of data.

Data Sources
Required.

1. Dojos
database.

2. Events
database.

3. Users
database.

Importance Critical.

How requirement
will be
demonstrated.

Applying different
descriptive from
dimension onto a fact
from the fact table.

Key Stakeholders Reporting Lead.

Description. The dashboard must
be filterable using
dimensions.

	

Functional
Requirement 3

Requirement Name Prediction modelling.

Data Sources
Required.

1. Dojos
database.

2. Events
database.

3. Users
database.

Importance Low.

How requirement
will be
demonstrated.

Demonstrated
through the Tableau
dashboard.

Key Stakeholders Reporting Lead.

Description. The dashboard
should be able to
predict future
attribute values based
on historical data.

	 21	

	
Functional
Requirement 4

Requirement Name Adding external data
sources.

Data Sources
Required.

1. Dojos
database.

2. Events
database.

3. Users
database.

Importance Low.

How requirement
will be
demonstrated.

Create a new
dimension and insert
data from an API.

Key Stakeholders Reporting Lead.

Description. The data warehouse
should have the
ability to create
additional
dimensions from
external data sources.

	

Functional
Requirement 5

Requirement Name Display static
statistics.

Data Sources
Required.

1. Dojos
database.

2. Events
database.

3. Users
database.

Importance Critical.

How requirement
will be
demonstrated.

Demonstrated
through the Tableau
dashboard.

Key Stakeholders Reporting Lead.

Description. The dashboard
should display
descriptives such as
count and average.

	 22	

Environmental	requirements	
	

The data warehouse must be able to be hosted on an Amazon EC2 instance. Additionally,
the visualization software must be compatible with Mac OS. There are no Windows requirements
as the CoderDojo Foundations uses MacOS and Linux variants.

Use	case	diagram	
	

	
Figure	5	-	System	Use	Case	Diagram	

	
	
	
	
	
	
	
	
	
	

	 23	

Architectural	view	
	

	
Figure	6	-	System	Architecture	

Figure six depicts the system architecture. There are three sources databases. The project
starts by reading the target data from each source on a row by row basis. Each row is passed into
a transformation function. This is known as the ETL process. The purpose of the transformation
function is to modify the data to make it more suitable for persistence within the data warehouse.
An example of this is extracting values out of the source columns which are saved in JSON format.
Once the data warehouse is loaded, a connection is made to it from Tableau. Tableau consumes
the data warehouse such that the data can be used for visualization.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 24	

Data	warehouse	dimensions	
	

	
Figure	7	-	Data	Warehouses	Cube	

	
Figure 7 shows the data warehouse model. The three primary dimensions are users, events

and dojos. These can be represented in a cube model with each side taking up a different
dimension. By using this model, it allows statistics to be gathered by slicing the cube up, per say.
It allows for more complex querying which spans across multiple dimensions. An example would
which user attended how many events pertaining to Dojos which are in Ireland. Previously this
would be impossible as the data was spread across three different databases, with no relationships
between them.
	
	
	
	
	
	
	
	
	
	
	
	
	

	 25	

Implementation	
	

Primary aspects of the project will be described through code snippets.	All	the	code	was	
developed	through	Visual	Studio	Code,	a	lightweight	open	source	text	editor.	
	

	
Figure	8	-	Visual	Studio	Code	

	
The primary use case of the project involves reading data from the three source databases.

1. Cp-Events-Development.
2. Cp-Dojos-Development.
3. Cp-Users-Development.

Figure 8 shows the three databases from PgAdmin, an open-source client for PostgreSQL.
As can be seen, having the data persisted in three different databases is not ideal for analysis. It
makes gathering measures which span several dimensions extremely difficult. Additionally,
PostgreSQL does not support cross database queries. Cross schema queries would work but that is
not how the source is saved.

	
Figure	9	-	Sources	of	Data	

	
	
	
	
	

	 26	

Setting	up	the	environment	
	

The first step is to install the required tools for the project. These tools are:
1. Homebrew.
2. PostgreSQL.
3. PgAdmin3.
4. Python virtual environment.

All the tools can be installed by executing the following commands:

	
Figure	10	-	Installation	of	Required	Tools	

	
Once these tools have been installed, three empty databases need to be created in

PostgreSQL. It is important to name these three databases as follows. The databases can be created
through the terminal or through PgAdmin. For convenience, these instructions show how to create
the databases through PgAdmin.

1. cp-events-development.
2. cp-dojos-development.
3. cp-users-development.

The first step is to open PgAdmin. Once it is open:
1. Right click on databases.
2. Click on ‘new database’.
3. Name the database and click ‘ok’.

	 27	

	
Figure	11	-	Right	Click	on	Databases

	

	
Figure	12	-	Click	on	New	Database	

	

	
Figure	13	-	Name	the	Database	and	Click	ok	

	
	
	
	
	

	 28	

Once	the	three	empty	databases	have	been	created,	the	project	repository	will	need	to	
be	cloned	from	Github	by	running	the	command	in	Figure	14	from	the	terminal.	
	

	
Figure	14	–	Clone	Repository	

Cloning the repository will create a folder named ‘cd-procedures’. This folder contains all
project files and folders. Within this folder there is a ‘data’ folder which contains the three
CoderDojo Foundation source databases along with content. These three database dumps need to
be imported into the three newly created databases from the previous steps. This can be achieved
using PSQL on the command line. Execute the three commands in Figure 15 from the terminal.

	
Figure	15	-	Import	Data	Dump	

It is important to note that ‘database_name’ must match one of the empty database names
which was created earlier. Sql_file_name must correspond to that database. Consider the below
examples:

psql cp-dojos-development > data/dojosdbdump.sql
psql cp-events-development > data/eventsdbdump.sql
psql cp-users-development > data/usersdbdump.sql

As the users’ database is the largest, it will take the longest to import. At this stage, all local

databases have been populated with the CoderDojo Foundation source data. The next step is to
activate the python virtual environment and install the project requirements. This is done by
executing the following commands from the terminal.

Virtualenv env
Source env/bin/activate
Pip install uuid
Pip install psycopg2
Pip install isodate

The final step is to create another empty database named ‘cd_datawarehouse’ and import

the sql/dw.sql file.

	 29	

Connecting	to	the	sources	
	

The script needs to connect to the data sources to perform the ETL process. All connection
details are stored in a .JSON configuration file. This means additional sources can be easily added
in the future and changes can easily be made as it does not need to be done multiple times.

	
Figure	16	-	Configuration	Details	

	
The configuration details are then consumed by the main script and used to connect to each

data source. This is done one by one.

	
Figure	17	-	Connecting	to	Sources	

	 30	

Referring to figure 17, line 10-12 opens the .JSON configuration file from figure sixteen
and stores the data in variables named data. Lines 13-19 enter the .JSON and assign each key from
the file to its own independent variable. Line 22-25, connection strings are setup using the
previously declared variables. These strings are printed to the console to let the user know the
script is connecting to the database. Line 34-43, connects to each individual database using the
connection details which are stored in the previous strings. Using the connection, a cursor is setup.
The cursor allows the script to execute a query and iterate over the results row by row. Finally, a
success message is logged to let the user know all connections were successful.

Main	method	
	

The very first thing that the main method does is truncate all existing tables. The reason
for this is that each time the script is ran, it will error out as the primary key being inserted already
exists in each table. Truncating all tables before performing the inserts solves this issue.
Alternative solutions include checking the primary key on a row by row basis and only performing
the insert if there is no conflict.

	

	 31	

The main method is used to query the source databases to get the target data.

	
Figure	18	-	Gathering	Source	Data	

	
Each block selects target data from the source databases. The script then iterates over each

row in the result set. Each row is fed into a transformation function. After all rows have been
transformed, a string is printed to let the user know.

	 32	

Transformation	functions	
	

The purpose of the transformation functions is to transform the data such that they become
more appropriate for analysis. Figure 19 shows example rows from the CoderDojo Foundation
Users source data.

	
Figure	19	-	Users	Source	Data	

	
The data is not ideal for analysis. There are missing values from a lot of the rows and some

columns are being saved in JSON arrays. The transformation functions make the data more useable
and readable. It also deals with missing and null values. Figure 20 shows one of the transformation
functions.

	
Figure	20	-	Transformation	Function	

	 33	

Line 87-99 extracts out values for each column and assigns the data to a variable.
Depending on how the variable is saved in the source, the data may need to be cleaned. For
columns which are not mandatory, instead of saving a blank field, the word ‘Unknown’ is used.
This allows to CoderDojo Foundation to see proportionally, how much of their dataset is unknown.
This could lead to a decision to enforce more fields on the front end of the applications.

Line 101-112 is for rows which the source is saving as JSON or inside a JSON array. JSON
is not very efficient for analysis and as such, the values for the interesting keys are extracted out
and saved to variables.

Finally, line 114 calls an insert function with each variable which was extracted out from
the row. The transformation is of utmost important as it cleans the data. Without this, the data
would not be able to be analyzed.

Insert	functions	
	

The purpose of the insert function is to receive data from the transformation function and
insert it into the appropriate table inside the data warehouse.

	
Figure	21	-	Insert	Function	

Line 172-192 is the SQL command which will be executed to insert the data into the data
warehouse table. The values are ‘%s’ are for security reasons. This is a prepared statement and
prevents SQL injection. Line 194-198 attempts to execute the query through a try-catch. If for any
reason, the query generates an error – the error will be caught and logged to the user. Otherwise,
the query will successfully execute.

Starting	the	main	method	
	

Figure 22 shows the starting point when the application is run.

	
Figure	22	-	Starting	the	script

	 34	

Evaluation	and	testing	
	

The solution to this project is rather unique and very manual. Having the constraint of using
open source software made the project tenfold more difficult. This was especially true when it
came to populating the fact table. In any case, I believe the project can be considered based oat
looking the schemas to the original three sources of data. The below images showcase the schema
for the three sources of data.

	
Figure	23	-	Events	Schema	

	 35	

	
Figure	24	-	Dojos	Schema	

	 36	

	
Figure	25	-	Users	Schema	

	 37	

To go from these three source schemas, to the data warehouse schema in Figure 26, would
be considered a success. The previous schemas have little to no relationships set up, contains a lot
of unwanted data and contains data in formats which is bad for analyzing.

	
Figure	26	-	Data	Warehouse	Schema	

	

	
	
	
	
	
	
	

	 38	

Client	feedback	
	

The following feedback is directly from Rosa Langhammer, the reporting lead of the
CoderDojo Foundation.

“CoderDojo built a Community Platform, Zen, in 2015 which serves to help our community
members to organize and run their Dojo from one central place as opposed to using a variety of
free tools as was happening previously. A central platform was also needed to help the movement
assess its impact as the movement has now scaled to over 1200 clubs in 70 countries with 10's of
thousands of young people attending Dojos globally. Unfortunately, with limited internal
resources and a higher priority of user facing issues we were never able to create a specific
statistics dashboard for our internal team to check in on our progress regularly. Adams
specification from CoderDojo was to build something reliable which we could use to visualize
statistics for the entire Foundation team. It was also to build something scalable which we could
add to when we want to track new metrics in the future. Adam's final solution has met the entirety
of the specification and will be incredibly useful for us as a team to analyze our impact, allowing
us to become more effective at scaling, engaging and enabling our community members and
consequently growing the CoderDojo movement worldwide.”

Testing	methodology	
	

In the final iterations of the project, testing was implemented. Two primary testing
methodologies were used.

1. Unit testing.
Unit testing involves breaking the script into smaller pieces, or units and running a set of

tests against that specific unit. Unit testing is used to confirm whether a unit of code is working as
expected, or not. Unit tests are relatively straight forward and are typically written as functions.
The unit test, tests weather the returned values equals that which was expected.

The following pages show the results of the tests which were carried out.

	 39	

Unit Test 1.
Test ID UT1.

Purpose of Test When reading from the source databases, many columns are encoded in JSON.

The purpose of this test is to ensure that the application can extract the values
from the specified key.

This ensures that no JSON is inserted into the data warehouse.

Test Environment The test was carried out in the following environment:

Operating System: OS X El Capitan, Version 10.11.6.
Python Version: 2.7.10.
Test data: Source data from the CoderDojo Foundation production database.

Test Steps From terminal, the tester should:

Navigate to the directory where the project has been downloaded.
Execute ‘python test.py’
The results will be logged to the terminal.

Expected Result After the tests have been completed by running the above steps, the data
assertEqual() method should pass.

This ensures that that the data was correctly extracted out of the JSON.

Actual Result The data was successfully extracted and the test passed.

	 40	

Unit Test 2.
Test ID UT2.

Purpose of Test When reading from the source databases, several fields are empty. This is due
to the CoderDojo platform not making the field required, on the front-end
application.

The purpose of this test is to ensure that the application handles these empty
fields correctly.

This ensures that there are no empty fields within the data warehouse
dimensions.

Test Environment The test was carried out in the following environment:

Operating System: OS X El Capitan, Version 10.11.6.
Python Version: 2.7.10.
Test data: Source data from the CoderDojo Foundation production database.

Test Steps From terminal, the tester should:

Navigate to the directory where the project has been downloaded.
Execute ‘python test.py’
The results will be logged to the terminal.

Expected Result After the tests have been completed by running the above steps, the data
assertEqual() method should pass.

This ensures that that the empty field was replaced with the value ‘Unknown’.
This gives the CoderDojo Foundation team more insight.

Actual Result The empty field was successfully updated and the test passed.

	 41	

Unit Test 3.
Test ID UT3.

Purpose of Test The purpose of this test is to ensure that the script can successfully connect to
the local PostgreSQL server.

Without being able to connect to the initial data sources, no extraction,
transformation and loading of the data would be possible.

Test Environment The test was carried out in the following environment:

Operating System: OS X El Capitan, Version 10.11.6.
Python Version: 2.7.10.
Server: PostgreSQL running locally with password set on admin account.

Test Steps From terminal, the tester should:

Navigate to the directory where the project has been downloaded.
Execute ‘python test.py’
The results will be logged to the terminal.

Expected Result After the tests have been completed by running the above steps, the data
assertFail() method should pass.

This means that the application is successfully able to connect to the initial
data source.

Actual Result The application successfully connected to the source database.

	 42	

Unit Test 4.
Test ID UT4.

Purpose of Test The purpose of this test is to ensure that the script can successfully read from
the data source after making a successful connection.

Without being able to read from the sources, the transformation and loading
would not be possible.

Test Environment The test was carried out in the following environment:

Operating System: OS X El Capitan, Version 10.11.6.
Python Version: 2.7.10.
Server: PostgreSQL running locally with password set on admin account.

Test Steps From terminal, the tester should:

Navigate to the directory where the project has been downloaded.
Execute ‘python test.py’
The results will be logged to the terminal.

Expected Result After the tests have been completed by running the above steps, the data
assertFail() method should pass.

This means that the application is successfully able to read from the initial
data source after connecting to it.

Actual Result The application successfully read from the source database.

	 43	

Unit Test 5.
Test ID UT5.

Purpose of Test The purpose of this test is to ensure that the script can successfully insert to the
local PostgreSQL server.

Without being able to insert to a database, no data would be able to be loaded
into the data warehouse.

Test Environment The test was carried out in the following environment:

Operating System: OS X El Capitan, Version 10.11.6.
Python Version: 2.7.10.
Server: PostgreSQL running locally with password set on admin account.

Test Steps From terminal, the tester should:

Navigate to the directory where the project has been downloaded.
Execute ‘python test.py’
The results will be logged to the terminal.

Expected Result After the tests have been completed by running the above steps, the data
assertFail() method should pass.

This means that the application is successfully able to insert to the database

Actual Result The application successfully inserted to the database.

	 44	

The below Figure shows the code which is used to execute the unit tests.

	
Figure	27	-	Unit	Tests	

	
	
	
	
	

	 45	

Non-Trivial	Queries	
	

The	below	images	showcase	some	of	the	non-trivial	queries	that	have	come	because	of	
this	project.	Due	to	the	nature	of	the	source	data	schemas,	the	below	queries	would	simply	be	
impossible.	
	

	
Figure	28	-	Gender	Breakdown	by	Country	

	
Figure	28	shows	the	gender	breakdown	by	country	for	each	Dojo.	This	query	would	have	

been	previously	impossible	as	gender	and	dojo	data	is	stored	within	different	source	databases.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 46	

	
	

	
Figure	29	-	Visualization	of	Countries	with	Active	Dojos	

	
Figure	 29	 shows	 visualizes	 which	 countries	 have	 active	 Dojos.	 This	 would	 have	 been	

previously	impossible	as	their	country	data	is	saved	as	JSON	within	the	source	Dojos	database.	
	

	 47	

	
Figure	30	-	Total	Number	of	Ticket	Types	Based	on	Gender	

	
Figure	30	shows	the	count	of	genders	for	each	ticket	type.	This	query	would	have	been	

previously	impossible	as	tickets	were	stored	in	the	events	database	and	gender	was	stored	within	
the	user’s	database.	
	
	

	 48	

	
Figure	31	-	Which	Event	Types	Are	Most	Prevalent	in	Which	Countries	

	
Figure	 31	 the	 most	 common	 Dojo	 event	 type	 by	 continent.	 This	 would	 have	 been	

previously	impossible	as	the	event	type	was	stored	in	the	events	database	and	the	Dojo	location	
was	stored	in	the	Dojos	database.	

	
	

	 49	

Conclusions	and	future	work	
	

From undertaking this project, a lot was learned. It quickly became clear that data
warehousing is a difficult skill to master. It goes against many concepts which are thought in
standard database classes. Using Kimballs approach, the idea of not normalizing the data was a
strange and took some time to understand. It also became abundantly clear that a data warehouse
project isn’t entirely all about itself. It is vitally important to understand how the data is stored and
saved in the source databases, as well as what kind of relationships exist within the data.

Using a star schema proved an ideal solution to the problem. The schema allows the

CoderDojo Foundation to filter their metrics across several dimensions, something which was
previously not possible within the structure of the source data. By using a star schema, non-trivial
queries can be executed such as those which span across multiple source databases.

Many difficulties were encountered while working on the project. The toughest problem

was populating the fact table. Not having access to professional tools made this problem tenfold
more difficult. SQL Server, for example would populate the fact table by itself based on the
relationships between the dimension tables to the fact table. This was not feasible in this project
and the populating the fact table became a manual process. It was solved using a staging table. The
abundant lack of data in some key columns also proved a delicate issue. After analyzing these
columns, it was seen that it was appropriate to replace the empty fields with ‘Unknown’. This
gives more insight into the measures and the CoderDojo Foundation can act on this.

Tableau is an extremely powerful tool which made visualizing the data extremely efficient.

Without using Tableau, the project would include building a KPI dashboard manually through a
separate technological stack to this project. This would drag the project timeline out a lot. It was
fortunate that Tableau had a charitable license which the team could avail of. This is an item which
can be considered for future work. Without relying on Tableau, the dashboard could be built into
the CoderDojo Foundation platform. This would mean the platform provides a one stop shop for
everything and limits the number of tools needed by the Foundation.

 A final consideration for future work is to bring external APIs in to the data warehouse.

Currently, the data warehouse focuses on the community platform and it’s three databases as the
source of data. However, the schema could be extended to include third party applications so long
as there is an appropriate relationship to link the external services to the data held in Zen. Examples
include email addresses or user identification strings.

	 50	

Appendix	
September	monthly	report	

	
Achievements	

This was an important month. It was the month in which I had to finalize my project idea.
No advancements were made on the project, other than finalizing the idea. My project will be built
for the organization in which I completed my internship, CoderDojo Foundation. As my project
will be for an actual client, I had back and forth communication with the team, regarding the
project. The initial idea was for a KPI (Key Performance Index) admin dashboard to be built. As
this would lead to better reports and help secure funding. The pros and cons of taking on this
project were outlined:

Pros:
1. Because it's more programming oriented.
2. Because more value on long term.
3. Because cross-database requests.
4. More dynamic filtering for internal analysis.
5. Possibility of analysis post-dashboard
6. Health check and input on strategy
7. Evolution of languages over time.

Cons:
1. Less data oriented

	
Reflection	

I am happy with the month in case. I could finalize my project idea and have it accepted,
following communication with the CoderDojo Foundation. I am looking forward to starting the
project in the next few days. My steps to complete next are below:

1. Gather business requirements.
2. Map out functional and non-functional requirements.
3. Re-define the database schema.
4. Get the stack setup on my local environment.

Once these steps have been completed, I can begin to start piecing together the project.
These steps will involve constant communication with the CoderDojo Foundation, for feedback
and design ideas.
	
Supervisor	meetings	

At this stage, project supervisors have not been assigned.

	 51	

October	monthly	report	
	
Achievements	

This month I could gather business requirements for my project. This involved several
meetings with the CoderDojo Foundation team and my academic supervisor. CoderDojo layed out
their needs through functional requirements, while my supervisor advised the best approach to
solve the problem. One of the key achievements was agreeing that the project, for all intents and
purposes – is a data warehousing project.

Additionally, I fully completed my requirements specification – subject to review. Once
this was completed, I started work on the project itself. I gathered all data sources from CoderDojo
which will be used for the data warehouse, and took actions from our meeting. Using the data
sources, I could build an initial entity relationship model for the data warehouse, however it will
heavily change as it is an early draft.

	
Reflection	

I believe it was a productive month. I completed a lot of objectives. All paperwork is done,
such that I can begin the development of the project. This is also aided by the fact that all
requirements have been gathered and agreed upon between both parties. By finishing my
requirements specification early, it gives me more time to focus on development, which is certainly
needed as an expected 50-60 hours is to be put into modelling the data warehouse.

If there was one item I would have liked to complete which I didn’t, it would be GUI mock-
ups. This is something I will need to do later. However, visualization of the data is not a priority
until further down the road. Due to this it is not essential that the mock-ups are completed right
away.

Supervisor	meetings	
This month, I was assigned my supervisor – Dr. Simon Caton. I could meet with Caton

several times this month to discuss the needs of the project and how to best approach the problem.
I passed information between Caton and CoderDojo to best establish requirements and approach.

	 52	

November	monthly	report	
	
Achievements	

In November, I was rather ill and such got less done than I would have liked. I had more
discussions with CoderDojo. I discussed in depth about the strategy for the warehouse and
specifically how the ETL process works and what it does. On top of this, I continued working on
the data warehouse model and requested more data sources from CoderDojo. One of the additional
sources of data is the forums on zen.coderdojo.com. This is another priority to have statistics about
and so it will be added to the model early on.

This month the requirements also evolved. There are discussions to build an API alongside
the data warehouse. This way Zen can consume the warehouse, but also it will allow the warehouse
to be opened to more external applications also. This is not set in stone yet but more of a talking
point.

	
Reflection	

I would have liked to have gotten more done this month. There is on item which I really
want to finalize as soon as possible and it is which database management system will be used for
the data warehouse. SQL Server and MySQL are the two biggest choices, however CoderDojo is
open-source and would prefer PostreSQL. This is my biggest challenge at the minute and
something which I want to finalize soon.

In December, I plan to complete and finalize the data warehouse modal ERD with two
initial data sources, Zen and Zen Forums. Once the ERD is finished, I will then construct the
warehouse in the (yet to be chosen) DBMS. This will be the construct of my prototype which I
will present on the final week of the semester. I plan to meet with Simon again and talk more about
the project and specifically the prototype. It’s an area which is important as it will build the
foundation of work down the line. I will also be meeting with CoderDojo again this month to
discuss progress.
	
Supervisor	meetings	
	 There were meetings with Caton this month, there was also back and forth emails to discuss
progress.

	 53	

December	monthly	report	
	
Achievements	

During December, I finalized my database entity relationship model for two sets of data.
1. Zen.
2. Forums.

Once the schema was finalized, I wrote a small pipeline script to extract the data from Zen
production databased and insert them into the data warehouse. Not all fields were carried across
but only those which were relevant to the metrics required by CoderDojo. I also prepared my
PowerPoint presentation for my prototype, detailing all the work which has been done to data,
work which is left to do and the architecture of the system.

Finally, I presented my prototype to Simon and Vikas. The presentation went well and I
got a result of 18/25. There were no real problems, other than the fact that CoderDojo has not yet
handed over data. However, I went straight to CoderDojo afterwards about.
	
Reflection	

It was a good month and I was happy with my presentation. Simon and Vikas had no real
questions, which I believe means I covered everything in my presentation. Not having the data at
this stage was an issue with Vikas and he suggested I get this sorted as soon as possible. It will be
difficult to move forward with the project without the data.
	
Supervisor	meetings	

I met with Caton early in the month, prior to my presentation. The purpose of this meeting
was to go over what key points my prototype presentation should hit well on to get good marks.
We also went over the grading rubric.

	 54	

January	monthly	report	
	
Achievements	

During January, I primarily spent time reviewing what I have got done up until this point
and spent a bit more time researching data warehousing to ensure I was on the correct path. I
realized that I had one or two errors in my design of the warehouse so I have worked to fix them.
This is primarily in the schema of the warehouse. The relationships were not correct in some places
and had to be changed. Furthermore, I have spent time investigating other APIs which will be
pipelined into the warehouse. I have passed these APIs onto CoderDojo for review and for them
to extract the metrics which they want.
	
Reflections	

This was a slow month due to the exams. Although I am happy to have spotted some minor
mistakes in my design and have been able to fix them. This has given me confidence going
forward.
	
Supervisor	meetings	

There were no meetings between Simon and I this month.

	 55	

February	monthly	report	
	
Achievements	

During February, I focused on my ETL strategy. Up until this point I was simply populating
the data warehouse by transferring the data from the source production databases to the data
warehouse. There was no real strategy. I worked up a strategy and actively worked on it. It begins
with reading data from the source tables row by row and performing a transformation where
needed. Such transformations include stripping out data from JSON. An example of this would be
a column named country which shows where a user is from, being saved as so in the source. {
“nameWithHierarchy” : “Ireland” }. However, only the value of “Ireland” is needed for the data
warehouse. Other operations included replacing null values with a value “Unknown”.

Finally, the schema changed once more as I began actively working on the ETL process. I
enforced relationships between tables and assigned appropriate primary keys. I also wrapped the
ETL script in a CronJob such that it would run every X days. This is not needed at the minute but
will be needed once the application is deployed.

Reflections	

February proved to be a great month for getting work done. I am happy that all the
dimension’s tables are successfully populated with the data from source tables. The ETL process
has also proved a success and all values are now in the correct data type. I would have liked to
start working on the fact table this month but ran out of time.
	
Supervisor	meetings	

Unfortunately, this month I had no meeting with Simon or CoderDojo. Over the next
month, I would love to meet with both. I would like to get feedback from Simon about design and
the next stage of the project. From CoderDojo, I would like to see how they think the project is
going and to get feedback on metrics being used. The next big step is to populate the fact table.

	 56	

March	monthly	report	
	
Achievements	

This month, I finalized the software for visualization. The software which will be used is
Tableau, although costly – it has a non-profit license which can used by CoderDojo and a student
license which I can personally use. I could meet Simon twice to discuss the next steps. The biggest
of which is populating the fact table. This is something which I was not able to wrap my head
around straight away and took some time. Simon suggested I populate the fact table with the more
“simple” queries and then put them into Tableau. Afterwards, I should get feedback from
CoderDojo.

After doing this, I had a product which I could present to CoderDojo. The technical team
were happy with the solution and had several questions which they wanted answered. Most of
these questions were related to the pipeline between hosting and Tableau receiving the data. At the
end of the month, I met Simon again to show the measures in the fact table. It turned out that I
populated the fact table in the wrong manner. Some of the measures which I had there can be
retrieved by simply performing a count on a dimension column within Tableau itself. This led to
me removing the unnecessary measures and identifying the ones which span across multiple
sources. These are the ones which will go into the fact table.

	
Reflections	

March was a positive month, I could begin adding real measures to my project and start to
visualize them. For the first time in the project life cycle, I had a project which I could show off to
the client and get actual feedback. This was an important step to make sure I was on the correct
track. As mentioned, the fact table was populated with the wrong measures. This is the final step
in the project – correctly populating the fact table with the correct measures which span multiple
sources. Once this is done, the dashboard will be updated to be more visually appealing to the
team. Afterwards, unit tests will be added and the project will be handed over to the CoderDojo
Foundation.

Supervisor	meetings	
I met with Dr. Caton twice this month to discuss populating the fact table and how to best

achieve this. Dr. Caton also helped to conceptually wrap my head around how the queries will
work with the relationship between the fact table and the dimension table.

	 57	

Bibliography	
	
[1] Ali, Shaker. "A Proposed Model For Data Warehouse ETL Processes". Sciencedirect.com.
N.p., 2017. Web. 2 July 2011.

[2] "Data Warehouse Definition - What Is A Data Warehouse". 1keydata.com. N.p., 2017. Web.
7 May 2017.

[3] Dhakal, Avesh. "Data Warehouse Architecture". Datasciencecentral.com. N.p., 2017. Web.
20 May 2014.

[4] Perkins, Alan. "Critical Success Factors For Data Warehouse Engineering".
http://www.visible.com/. N.p., 2017. Web. 7 May 2003.

[5] Rangarajan, Sakthi, and View →. "Data Warehouse Design – Inmon Versus Kimball".
TDAN.com. N.p., 2017. Web. 7 May 2017.

[6] Ross, Margy. "The 10 Essential Rules Of Dimensional Modeling - Kimball Group". Kimball
Group. N.p., 2017. Web. 7 May 2017

[8] Schiff, Michael. "Data Warehousing: The Keys For A Successful Implementation". N.p.,
2017. Web. 7 May 2011.

[9] "Postgresql: Downloads". Postgresql.org. N.p., 2016. Web. 24 Oct. 2016.

[10] Foundation, Node.js. "Node.Js". Nodejs.org. N.p., 2016. Web. 24 Oct. 2016.

[11] "Seneca, A Microservices Toolkit For Node.Js". Senecajs.org. N.p., 2016. Web. 24 Oct. 2016.

[12] "Coderdojo/Community-Platform". GitHub. N.p., 2016. Web. 24 Oct. 2016.

[13] Caton, Simon. Data Warehousing and Business Intelligence. Slide 27-30. 21 Oct. 2016.

[14] "Coderdojo/Community-Platform". GitHub. N.p., 2016. Web. 21 Oct. 2016.
Development, Software. "HSC Agile Software Development -

[15] Development, Software. "HSC Agile Software Development - Mahara". Web1.muirfield-
h.schools.nsw.edu.au. N.p., 2016. Web. 21 Oct. 2016.
	
	
	
	
	
	
	
	

