
' j f ' ■ * * *

Author:

National
College
Ireland
T h e c o lle g e f o r a
le a r n in g s o c ie ty

N a tio n a l C o llege o f Ire la n d

Master o f Science in Web Technologies

cial Networks

fe "Jp.''■ rèCrwins<rsr- -•.••:'•:• ‘̂f-.• s- ■■ -.v'S^a»'^MflFvi «' I.

Student Id: X10206884

39006010493221

I hereby certify that this material, which I now submit for assessment of the programme
of study leading to the award of Master of Science in Web Technologies is entirely my
own work and has not been taken from the work of others save and to the extent that such
work has been citied and acknowledged within the text of my work.

Signed:

Date:... . .^ ? . \ N

Student N u m b e r : . . . 'S.5? . ^

Barcode No'J^o^/ocf-^f b vu
Dewey No ■ C 0 6 ' l - 6 i u m
pate Input : ¡h U z.

The author o f this thesis would like to thank Aidan Mooney and Michael Bradford
for the help, advice and assistance throughout the duration o f this project. He
would also like to acknowledge the assistance of the NCI Library staff in their
assistance when doing the research o f academic papers and journals. Finally he
would like to thank the members o f the academic staff o f the Master o f Web
Technologies Program for their assistance throughout the academic year on which
a large part o f the content of this thesis is based.

A b s t r a c t

The current, most popular social networks are great applications for connecting people who
know each other. But sometimes the people who you would most want to meet are those that you
don’t know about. Our project focuses on how it would be possible to allow people to find others
within a social network, based on their profile, their business needs and/or their interests and
activities. The project developed an algorithm to index a social network member’s profile. The
project further created application programming interfaces (apis) to allow for efficient retrieval
of matching profiles to allow profiled members of a social network find others within their
network based on a number of criteria.

The resulting application can be considered as a Software as a Service (SaaS) offering for social
networks, providing all the necessary functionality for a social network to index their members
and includes mechanisms for efficient retrieval and matching of registered profiled members.

An event based social network application was created as a proof of concept of the work done in
creating the profiler application. This application is a web based application intended to run on a
smartphone platform. This application will allow signed in users of an event to make connections
with fellow attendees at the event, based on their profiles, areas they wish to collaborate on
and/or their interests and hobbies. The application allows users to change the context of their
profile matching request on demand making it flexible in its use.

The report concludes with an examination of the work carried out so far and presents a set of
areas where the project can be taken forward and developed in the future.

C o n t e n t s

Index

Introduction 1
Definitions 3
Research Methods 4
Research 5

Information Retrieval 5
Stopwords 6
Stemming 6
Brute Force Algorithm 7
Suffix Stemming 7
Indexing 9

Social Network Research 9
Facebook Profile Information 10
Linkedln Profile Information 11
Twitter Profile Information 12

Research Conclusions 14
Application Architecture & Design 16

Technology 16
Technology Decisions 16
Profiler API Application 18

Use Cases 18
Architectural Patterns 18
User Object Model 19
Indexing 21

Geomingle Application 24
Use Cases 24
Object Model 25
Process Flow 25

Security 28
Deployment 29

Testing and Evaluation 30
Future Work 34
Conclusions 38
References 39

A p p e n d i c i e s

Appendix I Social Network Statistics 41
Appendix II OAuth Explained 45
Appendix III User Testing Questionnaires 49
Appendix IV Profile API Usage 52
Appendix V Porter Stemmer Algorithm 59
Appendix VI Geomingle Screen Shots 62

This project was motivated by ihe fact ihat it seems d iffic u lt to find people w ith in social

networks that arc outside o f one’ s im m ediate c irc le o f friends and fam ily . It is easy to find

people that you know but d iffic u lt to fin d people that you don 't know. In this project wc wanted

to examine i f there was another way fo r members o f a social network to find each other. Not
based on who you know but on the sk ills you have, your interests and activities and areas you

would like to explore outside o f your current sk ill set. I f we could build such a system then
people w ith in a network could find people that they d on 't yet know but have s im ila r profiles to

the ir own o r w ith a p ro file that they are looking fo r w ith potential fo r collaboration on project

they are planning to embarking upon.

O ur in itia l focus was to research the current m ajor social networks and determine i f what we

were setting out to achieve was already achievable w ith these social networks. We wanted to
mine the data held w ith in a user’ s social network p ro file and determine i f we could extract this

inform ation in a form that was usable in the sense o f using the data to index a user in such a way

that could be findable by someone else w ith a s im ila r profile. A large number o f social networks
are a llow ing developer’ s permission access to registered members p ro file in form ation. This

opens up a w ide range o f opportunities fo r developers to mine this inform ation in interesting

ways to create new application based on this inform ation. We wanted to explore this in our

project. Specifica lly w ith respect to bu ild ing new social network applications that do not have to

build their own p ro filing functiona lity hut have the ab ility to leverage o f f the existing profile data

stored w ith in the major social networks and concentrate on build ing useful and com pelling

functiona lity o f the ir own.

To enable us to bu ild the infrastructure necessary to achieve our goals led us to the fie ld o f

Inform ation Retrieval and Storage. T h is is a large topic o f research w ith in the Information
Technology com m unity w ith applications in areas such as document storage and retrieval, search

engines and lib ra ry systems. One o f the m ajor goals w ith in the project was to create an algorithm

that was e ffic ien t enough to take the contents o f a social network members p ro file and index it in

such a way that w ould enable fast retrieval o f the members p ro file based on query searches. We
also wanted to create a system that was flex ib le enough to be able to change context based on the

requirements o f the network. So that a user can change from find ing p ro file matches to find ing

people w ith s im ila r interests to the ir ow n. Build ing in this functiona lity w ould make the
application fle x ib le enough to cross d iffe rin g types o f social network. Business related social
networks where members are looking lo collaborate w ith each other, purely social networks

where people w ith s im ila r interest w ou ld like to meet up and engage in dialog. The contextual
change o f the matching process we considered to be an important element in the design o f the
application as this a llows f le x ib ility in its use and makes it applicable to

As part o f the project we wanted to b u ild a small scalc social network as a p roof o f concept o f

the functiona lity o f the p ro filing application. This w il l be our showcase fo r demonstrating its

usage and potential attractiveness to ex is ting and potential social networks. We decided to

develop an event based social network that could be used by attendees at conference events. W c

felt this was an ideal area fo r h igh ligh ting the functiona lity o f the p ro file r application. Events can

be specific to a business area or cross business areas as w e ll as having a social element to them.

I n t r o d u c t i o n

N A T IO N A L C O U

O F iP E L A N w

u b r a f y

We believe this an ideal fit for our application allowing event attendees to connect with other
users based on different criteria.

Ultimately our goal was to create a Software as a Service (SaaS) application that could be used
by existing social networks that felt that what our application was offering was compelling
enough to use. The application would provide all the necessary functionality to allow them to
index their existing membership and add the functionality to return profile matches all through a
well defined interface complying with current and state of the art standards and protocols.

Throughout this report we use the following terms.

Bio: a social network member’s biography. This is used as the basis of a user’s profile.

Likes: a social network member’s interests and their activities.

Needs: a social network member’s description of what they would like to collaborate
with others on. This is generally used to describe areas of interest outside of a
member’s profile.

API: Application Programming Interface. A well defined protocol that allows
registered users of an application access to the application’s functionality.

API Key A key provided by the owner of an application that allows client access to the
applications underlying functionality

Software as a Service (SaaS):
can be defined as a software distribution model in which applications are hosted
by a vendor or service provider and made available to customers over a network,
typically the Internet.

Profiler API: the application built for this project that indexes a users profile and allows for
matching of users based on their profiles

geomingle: the event based social network application developed as part of this project

synonym: different words with almost identical or similar meanings.

anonym: an alternative name for the same thing (similar to pseudonym)

D e f i n i t i o n s

R e s e a r c h M e t h o d s

Our initial research focused on those areas that would help us with building up social network
profile information and ways sourcing it. To do this we examined the major social networks such
as Facebook, Linkedln and Twitter. We wanted to examine these networks for how they
maintain their profile information and the breadth of the information they store.

In order to undertake this process we used a number of members of these social networks, who
were willing to allow us access to their profiles on these networks. This allowed us to examine
the sort of information they store within these networks. Using this information we can
determine if there are differences between the profile data that is stored within these networks.

We also wanted to research existing credible research that has already been done on this topic.
Consequently we used the internet to trace any relevant data we could be used to aid in our
research.

We wanted to determine if it was possible to extract profile information from the major social
networks so that it could be processed in some way to potentially index the information
contained within it. This led us to research relatively new protocols such as OAuth which is
actively being taken up by social networks to allow application developers gain access to the
underlying data contained within the social networks.

Once we have harvested our profile information we wanted to find ways of analysing the data
and structuring it in an efficient manner. This led us to research topics including Information
Retrieval, Data mining, Natural Language Processing, Pattern Matching Algorithms and Search
Algorithms amongst others. These are largely topics of an academic nature. To research these
areas we concentrated on sourcing academic books, journals and papers relevant to these areas of
research.

R e s e a r c h

This section of the report highlights the research we did in the areas of interest. We initially look
at techniques for information storage and retrieval. These techniques are used in areas such as
search engines, data mining and natural language processing. We examine these areas to
determine a way to create a suitable algorithm to aid us in designing an application that will meet
the goals and objectives of our application.

The second major area of research involves analysing the major social networks to determine
how they store their members profile information, if we can harvest this information and how to
marshal it into a form that will comply with the requirements of the application designed as a
result of the above research.

In form ationa l Retrieval

Over the centuries there has always been an attempt to store and to be able to retrieve all forms
of information. This became particularly prevalent with the advent of the modern printing press.
As a result a large number of books were being produced that needed to indexed in some way, in
order to have an efficient retrieval system. With the invention of the computer came the
realisation that these machines could be used to store large amounts of information and
programmatically retrieving this information.

One of the original visionaries of where information storage and retrieval was going in the late
I940’s, was Vannevar Bush. He wrote an influential article called As We May Think [21] that
has, to some extent, predicted the advent of the internet, online encyclopaedia and hypertext
linking of documents. Bush envisioned the ability to retrieve several articles or pictures on one
screen, with the possibility of writing comments that could be stored and recalled together. He
believed people would create links between related articles, thus mapping the thought process
and path of each user and saving it for others to experience. Bush urged scientists to turn their
hand to the massive task of creating more efficient accessibility to the increasing store of
knowledge. He was particularly concerned that important work by scientists was not being found
by those who could expand and build on the work of other. In the article he cites the incidence of
the loss of Mendel’s law of genetics for generations because his publication did not reach the
few who were capable of grasping and extending it.

One of the most influential works that elaborated on the idea of text searching by computer was
described by H.P.Luhn in 1958 [17], in which he extended the concept of using words as the
indexing unit for documents and measuring word overlap as a criterion for retrieval. In a paper
he wrote [17] he states “It is here proposed that the frequency of word occurrence in an article
furnishes a useful measurement of word significance. It is further proposed that the relative
position within a sentence of words having given values of significance furnish a useful
measurement for determining the significance of sentences. The significance factor of a sentence
will therefore be based on a combination of these two measurements.”

Information Retrieval is primarily concerned with the storage of documents and the efficient
retrieval of these documents based on some kind of query. The criteria on which these systems
can be measure is based on the quality of the returned matching documents. The most effective

systems also rank the documents by some kind of relevance and order them by the most relevant,
descending. Informational Retrieval systems also rank documents by their estimation of the
usefulness of a document for a user query.

The implementation of an Information Retrieval system generally follows a standard procedure.
The document is broken down in to component parts. This may be by each single word within a
document or a more sophisticated approach may extract phrases from the document the system
may deem relevant. Other information may be attached to the words or phrases, for example to
indicate relevance. A word that appears in the title of a document may be given more weight
than that which appears at the end of the document. Once the document has been broken down
into its component parts it may undergo further processing. This may include the removal of stop
words, the stemming of the remaining words and ultimately the indexing of the remaining words
into a form that enables fast retrieval of document based on a user query. These processes are
discussed in the following sections.

Stop Words

To improve the quality of a document (or profile) containing words to be parsed and indexed
extremely common words which would appear to be of little value in helping indexing a
document and generally are excluded from the text entirely. These words are called stop words.
They generally include words such as /, am, be, and, the etc. The general strategy for
determining a stop list is to sort the terms by collection frequency (the total number of times each
term appears in the document collection), and then to take the most frequent terms, often hand-
filtered for their semantic content relative to the domain of the documents being indexed, as a
stop list, the members of which are then discarded during indexing. Other strategies use a
dictionary of fixed terms that are used to remove matching words from a document.

Using a stop list significantly reduces the number of keywords that a system has to index. Some
statistics on this are taken from Manning[4] in Chapter 5(see Table 5.1) where he indicates that
up to 47% of words are removed from a document with a stop list of 150 stop words.

Most of the time not indexing stop words does little harm, keyword searches with terms like the
and by don’t seem very useful. However, this is not true for phrase searches. The phrase query
President o f the United States, which contains two stop words, is more precise than President
AND United States. A search for Vannevar Bush's article As we may think will be difficult if the
first three words are stopped out, and the system searches simply for documents containing the
word think. Some special query types are disproportionately affected. Some song titles and well
known pieces of verse consist entirely of words that are commonly on stop lists (To be or not to
be, Let It Be).

Stem m ing

Stemming is the process of conflating various forms of the same word and reducing it to its root
form. Stemming can broadly be described in two forms, weak stemming and strong stemming.
Weak stemming generally refers to the removing of plurals e.g. bicycles becomes bicycle. Strong
stemming removes suffixes to leave behind the root of a word, for example book illustrator and
book illustration, using strong stemming we would drop both the -o r and the -ion leaving

behind book illustrat. It can be seen that this techniques is useful in our case as instead of having
only one common word in the two phrases we now have both words that we can match on.

There are several types of stemming algorithms which differ in respect to performance and
accuracy and how certain stemming obstacles are overcome.

Brute-force algorithms

Brute force stemmers employ a lookup table which contains the relationship between root forms
and inflected forms, where an inflected form is the alteration of the form of a word by the
addition of an affix. For example the inflected form of the root from develop would include
inflected forms development, and developer. To stem a word, the table is queried to find a
matching inflection. If a matching inflection is found, the associated root form is returned.

Brute force approaches are criticized for their general lack of elegance in that no algorithm is
applied that would more quickly converge on a solution. In other words, there are more
operations performed during the search than should be necessary. Brute force searches consume
immense amounts of storage to host the list of relations (relative to the task). The algorithm is
only accurate to the extent that the inflected form already exists in the table. Given the number of
words in a given language, like English, it is unrealistic to expect that all word forms can be
captured and manually recorded by human action alone. Manual training of the algorithm is
overly time-intensive and the ratio between the effort and the increase in accuracy is marginal at
best.

Brute force algorithms do overcome some of the challenges faced by the other approaches. Not
all inflected word forms in a given language "follow the rules" appropriately. While ’’running"
might be easy to stem to "run" in a suffix stripping approach, the alternate inflection, "ran", is
not. Suffix stripping algorithms are somewhat powerless to overcome this problem, short of
increasing the number and complexity of the rules, but brute force algorithms only require
storing a single extra relation between "run" and "ran". While that is true, this assumes someone
bothered to store the relation in the first place, and one of the major problems of improving brute
force algorithms is the coverage of the language.

Brute force algorithms are initially very difficult to design given the immense number of
relations that must be initially stored to produce an acceptable level of accuracy (the number can
span well into the millions). However, brute force algorithms are easy to improve in that
decreasing the stemming error is only a matter of adding more relations to the table.

Suffix-stripping algorithms

Suffix stripping algorithms do not rely on a lookup table that consists of inflected forms and root
form relations. They generally employ a smaller list of rules which provide the basis of the
algorithm, which when employed for a given an input word form will find its root form. Some
examples of the rules include:

if the word ends in 'ed', remove the 'ed'
if the word ends in 'mg’, remove the 'ing'

Suffix stripping approaches enjoy the benefit of being much simpler to maintain than brute force
algorithms, assuming the maintainer is sufficiently knowledgeable in the challenges of
linguistics and encoding suffix stripping rules. Suffix stripping algorithms are sometimes
regarded as crude given their poor performance when dealing with exceptional relations (like
’ran' and 'run'). Suffix stemming does not do general substring matching or pattern matching. So,
for instance, it should make walk, walking, walked, and walks all match in searching, but it will
not make walking a match for king. This feature is important for our purposes as we don’t want to
do any form of pattern matching when retrieving profiles based on keyword searches. Although
pattern matching may prove useful in finding common word patterns between to matched
profiles so that we can visually see what terms are common in their profiles.

Suffix stemming is not without its critics. David Hull [15] outlined some of the concerns with
this approach. In his article he highlights that fact that words with different meanings can be
conflated to the same stem and words with similar meaning are not conflated at all. He also
highlights the fact that stemmed words often end up as words that have no meaning. In our case
this should have no impact as we only use the stemmed words as keywords to index. The actual
words are hidden to the user and are not required to have any meaning other that as a key to an
index of profiles containing that stemmed word. He states also that these words no longer have
the ability to do a dictionary look up, which is true in the case of words that are stemmed to
words that no longer have any meaning. In addition he highlights that fact that these words
would not be able to be translated into other languages. Again these criticisms are not applicable
in our situation.

The effectiveness of stemming is explored in Frakes (1992) [2] in his book he presents a
summary of Information Retrieval performance reporting that the combined results make it
unclear whether any stemming is useful. In contrast Krovetz, R. (1993) [16] reports a 15-35%
increase in performance when stemming is used on some collections. The interesting outcome of this
analysis is that these results were achieved on small collections. Larger documents showed less
performance improvements. This is significant in our case as the data we are dealing with is not large
in comparison to large documents like academic papers. We generally anticipate small collections of
data when dealing with profiles stored in social networks.

One of the most often referenced of the stemming algorithms is the Porter Stemmer [18] [15].
This was developed by Martin Porter in 1979. His algorithm is widely used and probably one of
the best understood. The algorithm is very simple in concept, with ca. 60 suffixes, two recoding
rules and a single type of context-sensitive rule to determine whether a suffix should be
removed. Rather than rules based on the number of characters remaining after removal of a
suffix, Porter uses a minimal length based on the number of consonant-vowel-consonant strings
(the measure, m) remaining after removal of a suffix. A more detailed outline of the Porter
Stemmer Algorithm is given in APPENDIX VI

if the word ends in Tly', remove the 'ly'

Indexing

Most Information Retrieval systems are based on the inverted list data structure. This enables
fast access to a list of documents that contain a term along with other information (for example,
the weight of the term in each document, the relative positions of the term in each document,
etc.)- A typical inverted list takes the common form.

P (i) ► <d(0),... .>,<d(b),.... > ,......<d(n),....>

Where P is a phrase-i is contained in documents d(0),d(b),...... ,d(n)

Inverted lists exploit the fact that given a query most Information Retrieval systems are only
interested in returning a small number of documents that contain some query term. A query that
contains only one word phrase will only be required to find one indexed term, which will provide
a link to all documents containing that term. Once these documents have been returned some
form of ranking can be employed to determine the frequency ranking of these documents and
return the documents in order of relevance.

Social N e tw ork Research

The research on social networks is focused on how users within social networks can make
contact with each other and the mechanisms for enabling this. We also focused on whether it is
possible to achieve our aims and objectives of making contact with other members of the
network outside of friends and friends of friends, within the existing functionality of these
popular web sites. We also look at ways of sourcing profile information from the most popular
social network sites. These include Twitter, Facebook and Linkedin. At the time of writing this
document Google have announced the introduction of its own social network called Google+ .
Initial indications are that Google+ will be a successful competitor to the likes of Facebook and
Linkedin, but currently registration is restricted by invitation only. So for our purposes we will
not present a comprehensive analysis of Google+ here.

One of the objectives of our project is to create profile information for our users. It doesn’t seem
productive to create a completely new interface to allow users re-input profile information to our
system or to any proposed new social network. If this were the case it is likely that potential
users would be put off from registration and be unlikely to engage with the application.
Consequently we propose to source profile information from one of the major social networking
sites as the basis for building our user profile.

The following sections outlines the profile map of each of the three major social network sites
and a determination is made as to which is the best source of information for our purposes and/or
a combination of them all.

Before embarking on this analysis we present an explanation of an emerging standard OAuth.
OAuth stands for “open authorization” and is quickly becoming an industry standard particularly
among the social networking sites. This scheme is “three legged” in that it involves an exchange
of information (often called a “dance”) among a client application that needs access to a
protected resource, a resource owner such as a social network, and an end user who needs to
authorize the client application to access the protected resource (without giving it a
username/password combination).

In a nutshell, O Auth provides a way fo r you to authorize an application to access data you have

stored away in another application w ithout having to share your username and password. Th is is

useful fo r social networks that don ’ t want to create the ir own p ro file functiona lity but source

p ro file in form ation from existing networks such as Facebook. Th is is the procedure we intend to

fo llo w when creating our own social network geomingle.

For a more detailed outline o f the process fo r accessing Facebook p ro file inform ation using the

O Auth protocol sec Appendix II.

Facebook Profile Information

The main details that are stored in a Facebook p ro file are the fo llow ing . The components arc

listed as:

Formatted - users input is validated

Auto-suggest - user is prompted w ith suggested keywords based on input

Free format - user can type in anything, not validated.

M ain Profile Data

Name
Country .County .City
Gender
Date of Birth
About me:

Education & Work

Employer
College
High School

Interests & Hobbies

Music
Books
Movies
Television
Games
Favourite Sports
Favourite teams

Formatted
Formatted
Formatted
Formatted
Free formal

Auto-suggest
Auto-suggest
Auto-suggest

Auto-suggest
Auto-suggest
Auto-suggest
Auto-suggest
Auto-suggest
Auto-suggest
Auto-suggest

W ith the aid o f the O Auth process outlined in Appendix II wc have the ab ility to extract this data
and marshal it into a form that can be indexed by the P ro file r A P I application.

Facebook has a number o f ways fo r users to connect w ith other registered users. The main way is

using a “ search and d iscovery" on people the user already knows. The user can type in the name
o f a potential contact and the application w ill return a lis t o f registered users w ith that name.

Once a contact has been found the users asks the contact i f they can be their friend. I f the contact

accepts the request then they are then connected.

The other ways users can find people to connect w ith include

- Use a users contact email lis t to find registered users w ith these email addresses

- Search friends o f friends or mutual friends

P ag e 10

- Find people within a particular employer
- Find people in a particular hometown or own hometown

Find people from particular high school
- Find people from a particular collage
- Find people from a particular Graduate school

The application will suggest possible friends to a registered user. These suggestions are generally
mutual friends. It can also be as crude as suggesting people with the same surname as the
registered user.

Individual members of Facebook have no way of finding other registered users with profiles
similar to their own or to connect with people with similar interests.

The area where Facebook comes close to our applications goal of matching people with similar
profiles is via their ad creation facility. This facility allows advertisers to target registered
members based on the following criteria.

Location - country, city
Demographics - age range, marital status, gender
Interests
Education level
Work place

This facility doesn’t allow for targeting registered users to the level of the detail contained within
their profile.

Linkedin Profile Information

Linked is a social network predominately targeted at the business professional. It has a number
of ways of making connections. They allow a search and discover based on the registered user’s
email addresses contained within a users email contact list. The system will then attempt to find
users within the network based on these email addresses. The site recommends that users should
only invite people to join their network that they know well and who know you.

The social network allows for the creation of and joining of groups where discussions can be
entered into. This facility relies on the owner of the group accepting a new user who wishes to
join the particular group. This is one way that users with a similar profile can connect to each
other.

The information that Linkedin allows users to store is much more detailed than Facebook. We
detail it below. Irrelevant details are left out.

Current Position
Company Name: unformatted
Title: unformatted
Location: auto-suggest
Time period: formatted
Description unformatted

Past Position as above
Education auto-suggest
Summary

Experience and goals : . unformatted
Specialities unformatted

Skills auto-suggest
Interests unformatted
Groups & Associations unformatted
Projects unformatted

A detailed breakdown of the demographics of Linkedin registered users for Ireland can be found
in Appendix I.

Twitter Profile Information

Twitter keeps a minimal amount of information about a user in their profile. This includes

Bio: information about the user (limited to 160 chars)
Name:
Web Site:
Location:

Potentially the most interesting information on twitter is the detail of who a user is following and
who is following them. This data, if mined, could provide a way of matching two users based on
the similarities in who is following them and who they are following. This information can be
retrieved by an api call once the necessary access keys have been obtained. There are however
certain limits on the amount of data twitter will allow an api call to make. Currently these limits
restrict the user to 350 api calls per hour and an api call is restricted to 100 users per api call. So
in theory it would be possible to return 35,000 followers per hour.

An example of how to make calls to twitter via its api is given below using an open source java
library once we’ve obtained the necessary access tokens.

import winterwell.jtwitter.*;
public class Main {

public static void main(String[] args) {
String consumer_key = "2cgkPKxNbaylC2eQ10Kcgw";
String consumer_secret = "ILkglJUGxkh2BI4CgXC73T4XMQzDES2ktvlezuTri0";
String token = "252655570-aB5XuLfdtSoMPvhTlyzv5l-lwsDSIgHw1ofFYATNim,l;
String secret = "AoGv8PKrSMOFrjGGh1f2dazDAeuQvXfk5aOW3vlw";

OAuthSignpostClient oauthClient = new OAuthSignpostClient(consumer_key, consumer_secret,
token,secret);
// Make a Twitter object
Twitter twitter = new Twitterfeventsindublin", oauthClient):
// we can now interrogate the twitter object to get useful information
String handle = "eventsindublin";
Twitter twitter = new Twitter(handle, oauthClient);
Twitter.User user = twitter.getUser(handle);
List<Twitter.User> followers = twitter.getFollowers(handle);
List<Number> friends = twitter.getFriendlDs(handle);
System.out.println("Twitter@ :" + user.screenName + " loca tion:" + user.Iocation);
System.out.println('lls Followed B y :");
for (Twitter.User u : followers)
System.out.println("\t" + u.screenName);
System .out.printlnfls Follow ing:");

for (Number id : friends)
System.out.println("\t" + twitter.getllser((Long)id).screenName);

This produces the following output
Tw itter® : even ts indub lin location: Dublin

bio A handle for publicising events in Dublin.
Primarily focused on the Business community

Is Followed By:
begin_again, brianstorme, businesstartup, o_r_m

Is Following:
broadshee tje , businesstartup, css3pie, mediaflash, po litico je , the journa lje ,
b o a rd s je , politicise, dublinwebsummit, businessdublin

One can see how this information could be useful in matching users with similar interests. If two
users were both following a large number of the same twitter handles, you might conclude that
those two users had very similar interests. The limits imposed by the twitter api should not be an
issue for most users but some exception handling would need to be incorporated for power users,
such as limiting the number of followers and following returned and some timeout functionality
if an api call is taking too long to return.

If we run the above code snippet for two users we can then do a simple set intersection to
determine common followers and friends.

We ran the above for another twitter handle “newmediamatters” and got the following results:

Twitter@ : new m ediam atters location: Dublin

bio online m arketing com pany
Is Followed By:
Is Following:

css3pie, h tm l5andcss3 > designingdublin , boards_ie, innovationdub dublinw ebsum m it,
m ashable

Running a set intersection gives us the following matches

Set s1; //userl friends and followers
Set s2; //user2 friends and followers

s1.retainall(s2);

for (Object x : s1) {
System.out.println(x.toStringO);

}
Produces the following

{css3pie, boards_ie, d u b lin w eb su m m it}

This data is potentially useful information that could be included in any profiling indexing
applications as a means of matching people within a social network who have matching twitter
handles that they are following and are followed by.

P a g e i s

R e s ea rc h C o n c lu s io n s

Based on the research we have done we propose to distinguish between different types of text
that is present, generally, in the profiles of members of social networks.

Free text - unformatted
Well formed text formatted.

This distinction is used to determine how the text will be processed and ultimately indexed.

An example of free text is a user’s bio within Facebook. This text has no validation placed upon
it and can contain any words within the body of the text. We propose that this type of data will
go through a clean-up process, removal of stop words and a stemming process.

For text that we consider well formed we will not strip stop words as this may have the effect of
changing the meaning of the phrase, for example the title of a song may contain many stop
words that if removed would strip the phrase of its meaning and diminish it of its relevance. Text
that falls into this category includes interest and activities within Facebook. Facebook applies an
auto-suggest facility to prompt users as to the correct phrase e.g. the title of a book or the title of
a song. We propose to delimit these phrases (e,g with a comma). These phrases will then be
directly indexed by the indexing process by splitting on this delimiter. Other such data could be
the data we retrieved from twitter (see previous section). We would take the twitter handles from
the process described in the previous section and simply join them together by a delimiter

A lot of social networks allow certain data to be hash tagged in some way to give the associated
data some semantic meaning. Again this type of data could be considered to be well formed. But
it may improve the quality of the data if it was stemmed. If we look at the Digg social network
they allow articles to be hash tagged but they may be tagged with phrases such as web developer
and web development, these phrases could be considered as similar in meaning. If we did not
stem these phrases then they would be separately index and not associated in any way.

Based on our research we decided to use the techniques of removing stop words and apply
stemming techniques to process free text. We have allowed for a client to make additions to the
list of generic stop words provided by the application. This will allow client to provide their own
stop word for words that they deem irrelevant to the keyword indexing process.

We decided that the Porter stemmer algorithm[18] best met our requirements and have decided
to implement this as one of the major components of our algorithm. This stemming algorithm is
repeatedly referenced in the literature as one of the leading implementation of a suffix stemming
algorithm and has been widely translated into a number of programming languages including
python and java.

The ability to access a users profile from Facebook, Linkedin and Twitter is a powerful tool and
saves the headache of having to build separate profiling functionality within a new social
network. The data from Facebook and Linkedin is rich in the content that can be extracted with
the OAuth protocol described in Appendix II. Linkedin is a more business focused network than
Facebook and potentially gives more compelling content for use in business networks. The data
within a Linkedin profile is potentially richer in content than data within Facebook for the
purposes of indexing a user’s profile. Although this depends to what extent the user has updated
their profile with compelling information. The data from Twitter is interesting and requires more

investigation, particularly the data on a user’s followers and followed, it is unlikely that the
profile information contained within Twitter is as compelling as that contained within Facebook
and Linkedin.

With these issues in mind, we decided to use Facebook as our profile repository for our
geomingle social network application. This decision is based largely on the fact that it is almost 4
times more popular than Linkedin (see appendix I). As our application is an event based
application it was deemed that attendees would have a much higher probability of being a
registered user of Facebook than Linkedin. As a consequence we can potentially get more
attendees to sign on to the application that if we were using Linkedin as the repository of the
profile data. Another factor in the decision was the diversity of the data that makes up a users
profile in Linkedin. There is a large amount of data that potentially make up a users profile and it
would take considerably more effort to marshal the data into a form usable by our event based
social network

A p p l i c a t i o n A r c h i t e c t u r e a n d D e s i g n

This section of the report details the technology used to create both the Profiler API application and the
geomingie social networking application. It discusses the technology used and the design and architecture
of both applications.

Technology

The following technologies were used in the creating of the various applications.

Profiler API Application

Languages
- Java, Groovy, Javascript
- JQuery
- HTML, CSS

Framework
- Grails

IDE
Netbeans 6.9

Database
- MongoDB

Deployment
Amazon Elastic Beanstalk

- MongoHQ

Geomingie Social Networking Application

Languages
- Python, Javascript
- JQuery
- HTML5, CSS3

Framework
- Google App Engine

IDE
- JetBrains PyCharm 1.5.2

Database
Google App Engine Datastore

Deployment
Google App Engine

Techno logy decis ions

Frameworks

When deciding what framework to develop our Profiler API application we wanted to find a
framework that allowed for integration of Java code, as this was the platform for the
development of our algorithm. We looked at the popular frameworks such as Spring MVC and
Struts.

Spring MVC requires a lot of configuration to get your applications environment setup. This is
time consuming and tedious. In the end we went with a relatively new framework, Grails. Grails
is a modern web development framework that mixes familiar Java technologies like Spring and
Hibernate with contemporary practices like convention over configuration. Grails framework sits
on top of the Spring MVC framework but relieves the user from the problems of configuring an
applications environment. To create an application we simply run the command

> grails create-app <application-name>

This command will create an application with all the necessary folders and files created up front,
such as folders for domain model classes, controllers and views. It configures all the necessary
configuration file to enable the underlying Spring MVC to work seamlessly. Grails is very
similar in concept to the Ruby on Rails framework environment and follows similar conventions
based on the MVC architectural design pattern.

Written in Groovy, Grails gives seamless integration with legacy Java code while adding the
flexibility and dynamism of a scripting language. As different as Grails development is from
other typical Java Web frameworks, you still end up with a Java EE-compliant WAR file. This
allows for easy deployment to production. In our case we deployed the WAR file to Amazon
Elastic Beanstalk platform. This is a simple process requiring no configuration. We simply need
to upload the compiled WAR file to the Amazon environment and it is ready to run.

For the geomingie social network application we decided to use the Google App Engine
framework. GAE comes with a built in framework called webapp. This is a lightweight
framework for developing GAE applications. For our purposes this proved sufficient. The GAE
allows users to integrate more complex frameworks like django. But as our application was
relatively straight forward we decided to stick with webapp.

Databases

For storing our indexed data generated by our Profiler API application we decided to use one of
the new noSql databases, MongoDB, MongoDB has built-in support for horizontal scalability.
MongoDB allows users to build and grow their applications more rapidly. With auto-sharding,
you can easily distribute data across many nodes. Replica sets enable high availability, with
automatic failover and recovery of database nodes within or across data centers. As we anticipate
that our database will need to embrace issues such as scalability and availability the features that
MongoDB provide are attractive over traditional SQL databases. Making this decision in the
initial phase will remove the need to transition off an SQL database if it proves incapable of
scaling as the application grows in size. Data in MongoDB is stored in JSON-like documents
with dynamic schemas, providing flexibility during the development process.

Users who develop on the Google app engine platform have no choice but to use their
proprietary database called the datastore. This is a NoSQL database that has many differences to
more traditional Relational databases.

Pro file r API App lica tion

The design and architecture o f the P ro file r application is given in the fo llo w in g sections

Use Cases

Based on our in itia l analysis and design we came up w ith the fo llow ing use cases.

Architectural Design Patterns

Both applications were bu ilt using the M V C (M odel V iew C ontro ller) architectural pattern. The

architecture o f the P ro file r API application can be show in the diagram below

MongoDB

P a g e 18

Based on our research we propose an object model that w il l be used w ith in the P ro file r API

application, to cater fo r the profile matching we are attempting to implement.

The User model w ill have four components

Bio: A summary o f the users p ro file . Th is w ill be made up o f free, unformatted

text
Skills: A formatted, delim ited lis t o f a users’ s k ill set

Likes: A formatted, delim ited lis t o f a users interest and hobbies

Needs: A summary o f what a user w ou ld like to collaborate on.

User Object Model

The P ro file r API w ill attempt to find contacts based on the fo llow ing scenarios

Bio

Skills

As an example we can show how a Facebook p ro file can be marshalled into a form com pliant
w ith the P ro file r API application, we use our geomingle social network as an example.

The Facebook p ro file has no a b ility to enter a formatted sk ills p ro file . The About me section can

be used to enter a ll relevant sk ills , but in a free form atted manner. There is no section in

Facebook to enter details o f what a user w ould like to collaborate on. The geomingle application

w il l provide the a b ility to enter the "needs” details. The marshalled user object w il l resemble the

fo llo w in g object model.

P a g e 19

| Facebook

a qeomingle

Oncc a user p ro file has been marshalled into a form al compatible w ith the P rofile r API

application the user profile can be indexed using the P ro file r A P I's . These api's w ill send the

p ro file data through a number o f processes before indexing takes place. These processes w il l

depend on the data type. In the application we distinguish between Free Text, text that has no

validation or pre-processing on it, and formatted text that has some validation and pre-processing

applied to it.

Free Text w ill undergo processes to

Remove slop words
- Clean text by stripp ing non alpha characters (w ith exceptions)

- Siem remaining words

Proceed to indexing

Formatted text

- W ill split text into keywords by expected de lim ite r

Proceed to indexing

P a g e 20

Indexing

The Profiler API application will index a processed profile based on the following model

To see how a profile would be indexed we use the following example.

Api-Key: 1234-5678-9012-3456
Client name: “small business”
User Identity: 123456
User location: Ireland,Dublin,Dalkey
User Bio: i am a web developer with experience in php, python, java.

Running this bio through the text processing functionality results in the following keyword terms

web
develop
ex peri
php
python
java

After running through the indexing process our index will resemble the following

Application

api-key: 1234-5678-9012-3456
name: small business

locations

Location
country: ireland

state: dublin
city: dalkey
keywords

Keyword

■{> wed

-[> develop

■£> e x p e n

■£> p*p

-[> java

P r o f i l e T y p e

b i o

b i o

b i o

b i o

b i o

p y t h o n b i o

>

£>

U s e r

1234 5 6

123456

123456

123456

123456

123456

As part of the profiling process we store these keywords with the User object as a coma separated
string. This will assist us in retrieval of matches. The resulting user object will look like.

User

Identity: 123456
Profil©: web,develop.expsri,php,java,python

Once the users have been profile we can retrieve matches in the following way

Find Profile matches

Required parameters api-key, country, state, city, user identity

Find needs to profile matches

The difference between this procedure and the procedure above is that we use the
user needs rather than the user profile (or bio). If the user needs are not stored as
part of their profile free text can be passed representing their needs

Required parameters api-key, country, state, city, user identity, needs text(optional)

list of users associated with; key word;
exclude self

create "
return sorted frequency map

in list

Find Likes matches

Required parameters api-key, country, state, city, user identity

find application record /?y api-key
find useirfê t̂ëer identity Ï' ' '
find appi icatiofi

P a g e 22

c re a te frequency map of list of users and number of times they appear in list
r e tu rn sorted frequency map___

Compare Users

This process is different to the processes above. Here we are trying to match two
users and return common keywords in their profile. This process assumes that the
keywords have been pre-processed and stored in the user object. Te exception is if
we send in needs as free text. This free text will be processed to stemmed
keywords before making a comparison.

The comparison matching uses a pattern matching algorithm to find matching
words

Required Parameters api-key, user identity, compare user identity, profile type,
needs free text(optional)

f in d application record b y api-key
f in d user b y user identity
f in d compare user by compare user identity
i f profile type = ‘bio’

c o m p a re user profile to compare user profile
e lse i f profile type = 'n e e d s '

i f needs free text
p ro c e s s needs free text to stemmed keywords
c o m p a re stemmed keywords to compare user profile

e lse

c o m p a re user needs to compare user profile
else //'profile type = Mikes'

c o m p a re user likes to compare user likes
re tu rn list of matching keywords

For a more comprehensive explanation of how these processes can be called via the apis
developed in the Profiler API application see Appendix IV. This section outlines how an api call
can be made to the server application and the parameters that need to be passed to enable it to
function correctly. Any user wanting to use the apis must register for an api-key which is used
for authentication on the server application.

P a g e 23

G eom ing le A pp lica tion

The mingle application is a social networking application associated with events. The application
allows users to checkin to an event and it allows them to collaborate with other attendees at the
event. The application uses Facebook as the authenticator to the application. The application uses
the users profile data from Facebook to index a user within the application which in turn enables
them to match with other users attending the event based on their profile similarity

The application communicates with the Profiler API application via well defined apis.

U se Case

Actors : Event Organiser
Event A ttendee

P a g e 24

Based on the requirements analysis and the social network p ro file analysis we determined the

fo llow ing object model.

Object Model

Process Flow

The first stage in the event based social network is to enter a new event. This requires the event

organizer to enter the event details and correctly determine the geo location o f the event using a

google map. Once this is entered the event is stored w ith the geolocation and all event details.

Behind the scenes a unique api-key is generated to com ply w ith the requirements o f the P rofile r

API application. This key is hidden from any users but is used in a il api calls to the P ro file r API

application.

(
Enter Event
Location Details

Generate Unique
API-KEY

Once an event has been created and stored it is available to event attendees who are w ith in a
fixed radius o f the events geoposition. The event attendees once they have accessed the
application on their smartphone w il l go through the fo llow ing procedures to gain access to the

system.

Application
Requests
Facebook

A ccess

Login Using
Facebook

Credentials

Once a user has successfully log in lo the system the application w il l attempt to retrieve to users

Facebook p ro file details and store these details to the local database.

Request

Retretve Facebook
I Profile Details

return details

I Marshal Facebook
Details | \ j — ÿ

Store Locally

On successful storage o f details to local database the application w il l then send these details to

the P ro file r AP I application fo r indexing fo r storage w ith in its database.

Retreive API-KEY
From

Location Table

The User is now in a position to find p ro file matches w ith the application. These matches are

returned via api calls to the P ro file r AP I application

i

Request to Find '
Matching Contacts

From the returned lis t o f contacts the user can view the p ro file o f the matched contact and in itia te

a d ia log i f they wish.

Appendix V I has a comprehensive outline o f the operation o f the application from a user

perspective including screen shots o f the application interface.

P a g e 27

Security

Security is an important part of any application. This is particularly true of our application as we
are potentially handling sensitive information. We have designed the applications in such a way
to minimise the possibility of data falling into the wrong hand or being compromised in any way.

Profiler API

In order to use the Profiler API application intended users need to register for an API key. This
key is required in any api calls made to the Profiler API application. This api-key is
authenticated on the server side to ensure only registered users can access the system.

This api-key will also be used to determine the level of usage the client user may employ.
Depending on their membership level they may be restricted to how many profiles they may
index.

Upon registration users are required to give a user name and password, which, once user has
confirmed their registration will enable them to access the online system. The password is stored
on our database using the ‘SHA’ hashing algorithm.

The application intentionally does not hold any sensitive user information. The system only
holds keywords which are associated with users via an identifier. This identifier is provided by
the client application. If they wish this can be encrypted in any way they wish, as long as they
are consistent in their encrypting they should have no problem indexing and retrieving data from
the system.

GeoMingle Social Network

The geomngle social network application has two components. The first is the event registration
portion, the second is the web based application developed for use on a smartphone platform.

The event registration portion uses Google App Engine authorization. This requires the user to
have a gmail account to gain access to the system.

The web based portion of the application uses profile information from Facebook as the
repository for a user’s profile. This process is outlined in the appendix section of the report (see
appendix II). The procedure uses Facebook for authorisation and authentication. The user must
opt-in to allow our system access their Facebook profile data.

We do store a user’s profile data on our local database. It will only reside on our database for the
duration of the event they are attending. We have setup a cron task that is scheduled to run every
evening and will delete all user information. We have no intention of using the user’s profile

in form ation fo r any purpose other than w ith in our own application. Th is in form ation w i l l not he

stored fo r later use o r fo r generating an em ail list

D ep lo ym en t

The P ro file r AP I application resides on an Amazon Elasticbeanstalk application server. It resides
on the url http://profiler.elasticbcanstalk.com

The database is a M ongoD B database hosted by p la tform as a service provider M ongoH Q

P r o f i l e r

- J r ä
« y » a m a z o n
« webservtees-

Q mongohq

♦ DB

Applica bon
Server

Database
Server

The geomingle social networking application resides on the Google App engine p la tfo rm hosted

et http://tieomingle.anpsnot.com

m iln g fe

http://profiler.elasticbcanstalk.com
http://tieomingle.anpsnot.com

T e s t i n g a n d E v a l u a t i o n

This section of the report outlines the testing done on both applications.

Unit Testing

Throughout the project we did extensive unit testing. For the Profiler API application unit testing
is easily facilitated by the Grails framework. All domain classes, views and controllers have unit
test stubs generated by the framework automatically. The net beans IDE allows easy running of
the unit tests and generates html reports of all tests run. An example a report follows.

tc t • «4M ni*un<JMi M**c

An example of the code run to generate these tests follows.

class ParserTests extends GrailsUnitTestCase {
void testParseAtSign() {

// strip ® from text
String s « "This is a test to see if 9 is stripped";
String expResult = "this is a test to see if is stripped";
SStack result - Parser.StripSearch(s);
assertEquals(expResult, result.toString());

}
void testParsePlus{) {

// want to loose + sign not only if C + +

String s = "This is a test to see if + is stripped";
String expResult ■ "this is a test to see if is stripped";
SStack result » Parser.StripSearch(s);
assertEquals(expResult, result.toString());

}
void testParseCPlus() {

// want to keep + sign only if C++
String s = "This is a test to see if C++ is stripped";
String expResult - "this is a test to see if C++ is stripped";
SStack result - Parser.StripSearch(fl);
assertEquals(expResult, result.toString 0);

>

void testParseApostrope() {
// strip ' from text
String s » "This is a test to see I'm is stripped";
String expResult = "this is a test to see im is stripped";
SStack result - Parser.StripSearch(s);
assertEquals(expResult, result.toString());

void testParseCommandApostrope() {
// strip • and , from text
String s = "This is a test to see I'm, is stripped";
String expResult - "this is a test to see im is stripped";
SStack result - Parser.StripSearch(s);
assertEquals(expResult, result.toString());

}

void testCSharpO {
// test c# remains from text

String s ■ "This is a test to see if c# is not stripped";
String expResult = "this is a test to see if c# is not stripped";
SStack result = Parser.StripSearch(s);
println result.toString();
assertEquals(expResult, result.toString());

void testDotNetO {
// test .net remains from text

String s - "This is a test to see if .net is not stripped";
String expResult - "this is a test to see if .net is not stripped";
SStack result = Parser.StripSearch(s);
println result.toString();
assertEquals(expResult, result.toString());

}
void testDeveloperStemmed() {

//test developer group of words correctly stemmed
String stopped * "developer";
SStack stemmed ■ Stemmer.StemText(stopped);
assertEquals("develop",stemmed.toString());
stopped » "development";
stemmed = Stemmer.StemText(stopped);
assertEquals("develop",stemmed.toString());

}
void testGenrateStemmed0 {

//test gererate group of words correctly stemmed
String stopped « "generate";
SStack stemmed = Stemmer.StemText(stopped);
assertEquals("generat",stemmed.toString())
stopped ■ "generation";
stemmed = Stemmer.StemText(stopped);
assertEquals("generat",stemmed.toString());
stopped = "generated";
stemmed = Stemmer.StemText(stopped);
assertEquals("generat",stemmed.toString());

}
void testAnimateStemmed() (

//test animate group of words correctly stemmed
String stopped ■ "animation";
SStack stemmed = Stemmer.StemText(stopped);
assertEquals("animat",stemmed.toString())
stopped = "animator";
stemmed ■ Stemmer.StemText(stopped);
assertEquals("animat",stemmed.toString());
stopped - "animate";
stemmed ■ Stemmer.StemText(stopped);
assertEquals("animat”,stemmed.toString());

}

G eom ing le Social N e tw ork A pp ica tion

U s e r T e s t in g

A t the tim e o f w riting this document the geom ingle application was not considered ready for

extensive user testing and evaluation. But we can outline the plans we have fo r conducting this
testing. We plan on doing both an Heuristic Evaluation and extensive user testing in a contro lle r

environment.

Heuristic Usability Evaluation

We plan on asking an experienced web developer to conduct a heuristic evaluation o f the system

for us. Th is evaluation w ill be based on the princip les set down in.Jakob Nielsen's Ten U sability

Heuristics [22] as a guide line.

The guidelines can be summarized as fo llow s.

1. V is ib ility o f system status (Feedback)

The system should always keep users in form ed about what is going on, through
appropriate feedback w ith in reasonable tim e. A feedback message is displayed when an
action is performed

2. Match between system and the real world

The system should speak the users' language, with words, phrases and concepts familiar to the
user, rather than system-oriented terms. Follow real-world conventions, making information
appear in a natural and logical order.

3. User contro l and freedom (N A V IG A T IO N)
Users often choose system functions by mistake and will need a clearly marked “emergency exit"
to leave the unwanted state without having to go through an extended dialogue. Supports undo
and redo and a clear way to navigate. Clearly marks w here the person is and where they can go
by showing the selection in each menu

4. Consistency and standards (CONSISTENCY)

Users should not have to wonder whether different words, situations, or actions mean the same
thing. Follow platform conventions.

5. Error prevention (PREVENTION)

Even better than good error messages is a careful design, which prevents a problem from
occurring in the first place. Minimise user input. Use defaults where possible.Disable the update
button after it is clicked, so the person cannot update the post twice by accident. Auto focus on
input prevents a common source of frustration, typing only to realize nothing is displayed because
the field did not have focus

6. Recognition rather than recall (MEMORY)

Minimize the user’s memory load. Make objects, actions, and options visible. The user should not
have to remember information from one pari of the dialogue to another. Instructions for use of the
system should be visible or easily retrievable whenever appropriate.

Pa g e 32

7. Flexibility and efficiency of use (EFFICIENCY)

Accelerators — unseen by the novice user — may often speed up the interaction for the expert
user such that the system can cater to both inexperienced and experienced users. Allow users to
tailor frequent actions.

8. Aesthetic and minimalist design (DESIGN)

Dialogues should not contain information, which is irrelevant or rarely needed. Every extra unit
of information in a dialogue competes with the relevant units of information and diminishes their
relative visibility. Visual layout should respect the principles of contrast, repetition, alignment,
and proximity.

9. Help users recognize, diagnose, and recover from errors (RECOVERY)

Error messages should be expressed in plain language (no codes), precisely indicate the problem,
and constructively suggest a solution. Immediate feedback with specific instructions

10. Help and documentation (Help)

Even though it is better if the system can be used without documentation, it may be necessary to
provide help and documentation. Any such information should be easy to search, focused on the
user’s task, list concrete steps to be carried out, and not be too large.

We plan on instigating this analysis as soon as the system has been effectively unit and system
tested.

User Testing

We plan on conducting user testing on the application within a controlled environment so that
users can be observed in their use of the system and to get their feedback on their impressions of
the system.

We plan on using reports to get feedback from the users on completion of the user testing. An
example of the proposed feedback reports is given in Appendix II.

The user testing will consist of a set of 10 users. Each will be given a sheet outlining their
activities. They will be asked to.

Ensure that they can access their Facebook profile

They will be assigned keywords they will be asked to enter into their Facebook profile

Groups of users will be separated into separate rooms.

They will be given an indication of the other members of the controlled group that they
should be able to connect to and via what criteria

They will be asked to attempt to contact a contact via the “request a chat” feature.

If request successful they will be asked to engage in a dialog with the contact.

F u t u r e W o r k

This section of the report highlights areas where the project could be extended and improved
upon. It also highlights work that needs to be done to complete the applications.

Extending the A lgorithm

In this section we discuss some approaches to improving the algorithm and increasing it likely
hood of retrieving more efficient matches.

B i-g ra m m in g

Some Information Retrieval systems also use multi-word phrases as index terms. A phrase match
is considered more informative than individual words. One of the drawbacks of our approach so
far is that we use single words in our indexing and matching process (for free text such as the
users bio). This approach has its limitations as we are not taking into account the context of the
word within a paragraph of text. For example we could have two profiles as follows

Profile 1 - “I am a surgical consultant”
Profile 2 - “I am a management consultant”

In our approach these two profiles would match on the single word consultant, but clearly these
two profiles have little in common. To improve on our approach we can consider the use of bi
grams, where a bi-gram is a pair of consequent words. In our example above, after removing stop
words, we are left with the following bi-gram word phrases

Profile 1 - “surgical consultant”
Profile 2 “management consultant”

This data is more powerful then the use of single words in that we can match users on more
relevant terms. We can also give these bi-grams more weight than single keyword phrases to
improve the matching capabilities of our algorithm.

The downside of implementing the use of bi-grams is that it increases the amount of storage
required to store our inverted linked list. As we increase the number of keyword phrases we will
increase the number of keywords to index upon.

An approach to implementing this would be to iterate through the text in a profile and instead of
keying on single words we could include consecutive words as keyword phrases. We could also
improve on this approach by ignoring words that have a comma or full stop after the word. For
example the profile

“I am a web developer programming in php, java, python”

Would produce the following keywords
web
develop
program
php
java
python

In an enhanced algorithm we would produce the following keyword phrases in addition to the
single word keywords

web develop
develop program
program php

Clearly this introduces some “noise” i.e. irrelevant terms, but does include the phrase web
develop which could be considered useful in creating a relevant keyword phrase.

T h e s a u r i

At present the application relies on the exact matching of indexed keywords. The application
resolves certain words to their root stem so that words like animator and animate will resolve to
the same stem i.e. anim at, Therefore profiles with these words in them will match.
What if we have words that have the same meaning, but are unrelated linguistically. For example
the words Automobile and Car clearly relate to the same physical thing. At present our system is
not sophisticated enough to relate these two words. One way to overcome this limitation is to use
thesauri which are dictionary based systems for resolving words and their synonyms and
antonyms. For example the word Automobile can viewed visually

Using this approach we could substitute words that have synonyms and antonyms for the word
within a text and include these in the indexing process. This would add a degree of complexity to
the system and potentially impact on the responsiveness of the application.

C o n n e c t io n s

At present the system retrieves connections in real time. This may prove impractical for large
scale social networks as the response time may prove impractical. To solve this issue we could
provide the ability to store connections in a separate database table. This could be created via
overnight batch processing so that connections are already formed when queries are made. We
could also ensure that these connections are ranked by relevance for fast retrieval.

H e u ris t ic R e fa c to r in g

The algorithm we have created is essentially an heuristic, where we converge on an optimal
solution over time. We see the algorithm undergoing constant evaluation and improvement over
an extended time period. To put into context the challenge of creating a world class algorithm for
profile matching the following quotes from an Irish Times article (Friday, July 15, 2011) by the
lead engineer in Google’s search projects, Ben Gomes. He puts the challenge into context.

“More than 20,000 potential changes are evaluated by Google annually. Of these, about 6,000 go
into live experiments on the site, with engineers closely watching the results. About 50 to 200
experiments might be ongoing at any one time, Gomes says. During the course of the year, more
than 500 changes are made of some sort to the search algorithm.”

R a n k in g

At present we have a crude approach to ranking contacts for relevance. We return the frequency
of the number of users who match on a keyword and sort by descending order. Improvements in
this area include investigation of Vector Space Models and Probabilistic Models. We will do this
in conjunction with the bi-gram analysis where term are given higher relevance and ranked
accordingly.

R e fa c to r in g

One area we would like to address in future is the refactoring of the algorithm we used in the
stemming algorithm. We used an open source version of the Porter stemming algorithm. This has
not been written in a way that makes it easy to amend and update. We would like to redesign it to
use object oriented techniques and design patterns. This would make it easier to effect changes
and improvements in future iteration of the algorithm.

P ro f i le S o u rc in g

Our event based social network sources profile information from Facebook. It should be possible
to allow users to choose which social network they wish to source their profile information from.
We propose to add the functionality to allow users to choose between Facebook and Linkedin at
the sign-on stage. We will also look at using Twitter details to enhance a users indexed profile.

C o m m e r c ia l i s a t io n

If it is decided to attempt to commercialise this application we propose to follow the model used
by most internet Software as a Service providers. We intend to provide the application free of
charge for limited access to the application and charge for unlimited access on a monthly basis
with enhanced reporting capabilities. We would need to enhance the application to achieve this.
We would need to provide enhanced reporting capabilities to allow client access their indexed
user profile. A lot more work would need to be done to enable users to monitor their details via
an online reporting system.

B e n c h m a r k in g

One of the issues we encountered when testing the application was that our testing environment
was not adequately setup to provide accurate benchmarking figures. Running the application
locally on a desktop computer does not adequately reflect production conditions. On deploying
the application to Amazons platform we saw a factorial improvement in performance. What was
taking minutes to run on our testing environment took seconds when running on the Amazon
platform. We realised this too late in the development process to adequately provide
performance figures. We need to set up a parallel testing environment on another Amazon EC2
instance to replicate the anticipated performance of the production environment. This has cost

implications which we need to quantify in order to proceed with setting up this testing platform.
As a result a lot of our benchmarking figures are not accurate and are not reported on here.

D a ta b a s e O p t im iz a t io n

We decided at the outset to use a noSql database. This decision was based largely on the ability
of these databases to handle large amounts of data and to scale with the requirements of the
application as it grows. We also were keen to take advantage of functionality such as automatic
sharding. Sharding is the partitioning of data among multiple machines in an order-preserving
manner. This feature allows systems to scale transparently as the demands on the database grow.
This was deemed an important feature for an application that potential could hold large amounts
of data.

We don’t have a lot of experience of optimizing the database we choose, MongoDB. Over the
next few iterations of the project we plan on attempting to optimise the database to improve
performance. This will include the addition of suitable indexes and implementing performance
monitoring tools.

D a ta b a s e B a c k u p a n d R e c o v e r y

If the application we have created is to have the potential to be commercialised we need to
ensure that the database is adequately backed up to ensure seamless recovery for any potential
outages.

C o n c l u s i o n s

In our project we produced a relatively unsophisticated algorithm for indexing of user profiles
within a social network. A lot of the research we did in the initial stages of the research phase of
the project highlighted issues which we felt were not relevant at this stage of the projects
evolution. For instance, early pioneers in the field of information retrieval such as Luhn [17]
highlight issues such as, emphasising the relevance of the positioning of words within sentences
and giving these words more significance. This research is largely related to the indexing of
documents. As we are only indexing relatively small portions of text we did not consider adding
this level of complexity to our algorithm at this stage.

Our research shows that none of the major social networks have the functionality that we have
developed in this project. It is possible we have identified a gap in the market which could
enhance a social networks functionality and increase its desirability to potential members.

It is possible that providing the kind of functionality we propose may impinge on the major
social networks business model. They make the majority of their money via ads targeted at
specific users. Providing the kind of functionality we propose may break this model, as it would
potentially allow, for example, recruiters to find members with specific skills in specific
locations. To overcome this, the functionality could be provided as a premium level service
where users who want this kind of functionality would pay for the ability to search the network
for specific users. Users could opt-in and opt-out of the ability to be found by others within the
network. For example, people who are looking for jobs could allow their profiles to be found,
those who are not actively looking for jobs could opt-out of being searched for. Privacy could be
an issue in this scenario. To overcome this it may be possible to restrict the information that is
displayed to searchers e.g. the name of the individual and their employer would not be displayed,
but the searcher could contact the user in some way and rely on the individual to decide if they
want to enhance the level of communication between the two.

References

[2] W illia m B. Frakes, 1992. Information Retrieval: Data Structures and Algorithms. I

Edition. Prenticc H a ll.

[3] Brucc Law son, 2010 . Introducing H T M L 5 (Voices That M atter). 1 Edition . N ew Riders

Press.

[4J C hristopher D . M anning, 2008. Introduction to Inform ation Retrieval. I Edition.

Cam bridge U n iversity Press.

[51 T o m N egrino , 2008. JavaScript and A jax fo r the Web: Visual QuickStart Guide (7th

Edition). Peachpit Press.

[6J Jothy Rosenberg, 2010 . The Cloud at Your Service. Pap/Psc Edition . M anning

Publications.

[7) M atthew A . Russell, 2011. M ining the Social Web: Analyzing D ata from Facebook,

Twitter, Linkedin, and Other Social M edia Sites. 1 E d itio n . O 'R e illy M ed ia

[8] D an Sanderson, 2009. Programming Google App Engine: Build and Run Scalable Web

Apps on Google's Infrastructure (Anim al Guide). I E d itio n . O 'R e illy M ed ia .

[9J T o b y Segaran, 2007 . Programming Collective Intelligence: Building Smart Web 2.0
Applications. 1st Ed. Edition. O 'R e illy M ed ia .

[101 Jonathan Stark, 2010. Building iPhone Apps with H T M L , CSS, and JavaScript: Making
App Store Apps Without Objective-C o r Cocoa, 1 E d itio n . O 'R e illy M ed ia .

1111 R icardo B ae /a -Y ates . 1999. Modern Information Retrieval. 1st Edition . Addison W esley.

[121 Authentication - Facebook developers. 2011 . Authentication - Facebook developers.

[O N L IN E] A va ilab le at: http://develoDers.faccbook.coni/docs/authentication/. [Accessed

13 July 2011].

[1 3] lOgen & M o n g o D B . 2 0 1 1. lOgen & M ongoDB. [O N L IN E] A va ilab le at:

http ://w w w .m ongodb .com . [Accessed 1 August 20111.

[14] M o n g o H Q . 2 0 1 1. M ongoH Q - The cloud-based hosted database solution fo r MongoDB..

[O N L IN E J A va ilab le at: h ttp ://w w w .m ongohq .com . [Accessed 2 August 2 0 1 1 1.

[15] D av id H u ll. Stem m ing algorithm s - a case study for deta iled evaluation. Journal o f the
American Society fo r Information Science, 4 7 (1) :7 0 -8 4 , 1996

[16] K rovctz, R. (1 9 9 3). V ie w in g m orphology as an inference process. In Proceedings o f
the 16th Annual International A C M S IG IR Conference on Research and Developm ent
in In form ation R etrieval, 191-202 .

[171 L U H N , H .P ., T h e autom atic creation o f literature abstracts', IB M Journal o f Research
and Development, 2 , 1 5 9 -165 (19 5 8).

[18] M .F . Porter, 1980, A n algorithm for suffix stripping. Program , 1 4 (3) pp 1 3 0 -1 3 7 .

[I9 | C J . van Rijsbcrgcn, S .E. Robertson and M .F . Porter, 1980. New models in probabilistic
information retrieval. London: British L ibrary. (B ritish L ib rary Research and

D evelopm ent Report, no. 5587).

[IJ Bear Bibeault, 2008. jQuery in Action. 1 Edition. Manning Publications.

http://develoDers.faccbook.coni/docs/authentication/
http://www.mongodb.com
http://www.mongohq.com

[20) A m il Singhal G oogle , Inc. 2 0 1 1. Modem Information Retrieval: A Brief Overview
[O N L IN E] A va ilab le at: http://pages.cs.w isc.edu/~anhai/courses/784-sp08-
anhai/ir o verv iew .p d f. [Accessed 1 Septem ber 2 0 1 1 J.

[2 1 J Bush, Vannevar. "As W e M a y T h in k ." The Atlantic Monthly. July 1945.

[221 10 Heuristics for User Interface Design. 201 1 . 10 Heuristics for User Interface
Design. [O N L IN E 1 A va ilab le at:

http://w w w .useit.com /napers/heuristic/hcuristic lis t.h tm l. [Accessed 0 2 Septem ber

20111.

Page 40

http://pages.cs.wisc.edu/~anhai/courses/784-sp08-
http://www.useit.com/napers/heuristic/hcuristic

A P P E N D I X I

F a c e b o o k S t a t i s t i c s

Facebook is the w o rld ’s most popular social network. A t the tim e o f w ritin g this report(31 A ug

2 0 11) there are

7 5 0 m illio n g lobally registered users

2 ,0 2 5 ,28 0 users on Facebook Ireland

9 2 7 .7 0 0 have stated their gender as m ale 4 5 .8 %

1,058,580 have stated their gender as fem ale 52 .2 6%

39,(XX) have no gender slated 1.92%

Th e fo llo w in g chart shows Facebook usage in Ireland, by age group.

F a c e b o o k A g e S t a t i s t i c s

■ 13-17 ■ 18-24 ■ ¿ 5 34 ■ 35-44 "4 5 *5 4 ■ 55-^4 ■

T he next chart shows the num ber o f users by age grouping.

F a c e b o o k A g e S t a t i s t i c s

o 100,000 200,000 300,000 400,000 500,000 600,000 700,000

These figures can be verified by using the Facebook ad targeting tool (as of 31 Aug. 201 1)

L la ra e tm o M Ttrgrtng F AQ

location

lomtrr. ’1 t M ,
• fwrWxn
©By 0*1'»

------------------ 1

Ormograptec*

624,000m

» tuet. r< »Qct
Bw d 34 net —r

» a - X 3
V - t a u f t u t t ig t M k t i T>

Sec It) * Al ('■ Hen f'. Mxawn

N .B . select "exact age match” to get accurate figures otherw ise data w ill be distorted.

T h e breakdow n o f registered users by c ity shows that D ublin is by far the biggest user o f

Facebook, w hich isn't surprising given the population d istribution o f Ireland

D ublin - 752,040
C ork - 145,920
L im erick - 79,040
G alw ay - 71,420

Some global statistics show:

• 50% o f active users log on to Facebook in any given day
• The average user has 130 friends
• Entrepreneurs and developers from more than 190 countries build w ith Facebook

Platform
• People on Facebook install 20 m illio n applications every day
• Every m onth, more than 250 m illio n people engage w ith Facebook on external websites
• Since social plug-ins launched in A p ril 2010, an average o f 10,000 new websites

integrate w ith Facebook every day
• M ore than 2.5 m illio n websites have integrated w ith Facebook, including over 80 ot

comScore's U .S . T o p 100 websites and over h a lf o f com Score's G lobal T o p 100 websites.
• There are more than 250 m illio n active users currently accessing Facebook through their

m obile devices.
• People that use Facebook on their m obile devices are tw ice as active on Facebook than

non-m obile users.

S ou r c e : h t t n V / w w w i a c c h o o k . c o m / p r c s s / i n t o php?»m»b»i<;s

Page 42

L i n k e d I n S t a t i s t i c s

A t the tim e o f w riting this report there are

5 3 6 ,1 0 8 users subscribed to L inked In Ireland
202,541 have stated their gender as fem ale 37 .8%
2 8 6 ,2 7 0 have stated their gender as m ale 53 .4%
4 7 ,2 9 7 have not stated their gender 8 .8%

Source: L inked In ad cam paign tool (31 A u g 2011)

L i n k e d I n A g e S t a t i s t i c s

■ »8-24 ■ 25*34 "3 5 -5 4 «55+

T h e next chart shows the num ber o f users by age grouping.

L i n k e d I n A g e S t a t i s t i c s

o i o .o o o 20,000 30,000 40,000 50,000 60,000 70,000

Th e figures can be verified v ia the L inked In ad cam paign tool

80,000

Page 43

Linked (3* Ads

Targeting

N a n o « yo u r u * j« a u « o n e * i

17 C*ograp»iT

S*»p 2 of 4

Ettimatoti Targot Audio oco'
286.496

LMikOdln Momoort

w n jita rv MIiho-t
I ' W tul g*oguc*»*s can I UrçaT
Jj wm I to at»* to diano* m» I
• I mut a r* MXTutM awtonc* *eo’

B**tP radccs »

D Company

H J o b T ttlo

H Croup

0 «•"<>*'
Soloct f s F «maio

» Maio

B AQ»

T h e Linked In A d cam paign tool doesn't a llo w fo r breakdow n by c ity w ith in a country such as

Ire land, so w e can ’ t get the same level o f statistics about usage as in Facebook.

A P P E N D I X l a

S m a r t p h o n e U s a g e

Sm artphone penetration in Ireland is currently at 3 7 % , w ith strong adoption among m ales (4 5 %)

com pared w ith females (2 9 %), according to new research from Am ârach. Smartphones are most

popular am ong 25 to 34-year-o lds, where the penetration level is 53% . O n average, a smartphone

ow ner downloads 4 .8 apps per month and, as the table shows, social netw orking apps are the

most used.

Am arach is predicting that the acceleration in smartphone use w ill stim ulate dem and fo r m obile

com m erce in Ireland - and forecasts that € 8 0 0 m illio n worth o f transactions w ill be conducted

through m obile devices in 2012. A lready m obile com m erce has taken o f f in ternationally , and

often for some u n like ly product categories

http ://w w w .iia . ie /resou rces/resou rce/l/s ta te-o f-the-net/ S tate o f the N et issue 21 (01.06.2011)

Page 44

http://www.iia

A P P E N D I X II

OAuth Explained

In this project we used OAuth to allow users gain access to .their Facebook profile information
via our social network application geomingle. The reason for doing this is that OAuth provides
the ability to:

- Avoid a user setting up a new username/password pair .
- Allows our applications to pull profile information from the service provider and use

it within our application.

Before understanding the OAuth workflow we will define the following terms.

Service Provider: A web application, that allows access via OAuth. In our discussion we are
using Facebook as the service provider

User: An individual who has an account with the Service Provider.

Consumer: A website or application that uses OAuth to access the Service Provider on behalf of
the User. This is our geomingle application.

Registration

The consumer {geomingle) needs to register their application with the service provider
(facebook) providing OAuth access. This process results in the consumer being provided with a
number of keys, an application id and a secret key. See figure below for an example for our
geomingle application

S ca rd i fo r docum entation

Apps ► Http://geomlng!e.appspotcom/ ► Basic Info

. App Info
App ID: 256317207717121

App Secret S36b5f58ee0cf367bb71a741a7«dd3bd (reset)
Web ---------------------------------- j Basic Info
On Facebook j

Mobie j

I ’ .

App risene: {?] Http://̂ eon»nglg.appspotcan/
Description: C?) mnglesro

A b o u t

Basic Info
Rotes
Advanced

facebook DEVELOPERS Documentation Fonim Blog App*

Authorization and Authentication
User authentication and application authorization are handled at the same time by redirecting the
user to the Facebook OAuth dialog When invoking this dialog, we pass in our app id that is

Http://geomlng!e.appspotcom/
Http://%5eeon%c2%bbnglg.appspotcan/

generated in the above process and the U R L that the user w ill he redirected back to once

application authorization is com pleted (the redirect Uri param eter).

h t tp s : / / www. fa c e b o o k . c o m /d ia lo g /o a u th ?
c l ie n t id-YOUR APP iD & re d ire c t uri=YOUR URL

in our case the redirect_uri w ill look like http://geominglc.aPDspot.com/auth/login

W ith in our application this w ill route to a contro ller method based on our routing handler.

T h e next step is that the user is asked to enter their credentials.

E B 13 F» X

I «• -» C ft © rafacebook.com/iogin.php?appjd=25& \ \

fa c e b o o k m
1 You must log in first

1 Email Of Phone 5

sean@nmmie

| Password J

—

1
w

I f this is the first tim e the user has accessed the application they w ill be prom pted to grant the

th ird party application (geomingle) authorization.

f] - -I-
♦* C il © www.facrtoolccom/fonnetVu;vive' php 'rr«-ih<xl - p«m.«»<XK̂ec & ^

r-JTÆ * Æ 'Æ Æ Æ rjrÆ Æ Æ Æ Æ Æ Æ n
wtqH * p«rmiss<on 10 3CU# totowflftQ
A c c *n m y b a tic I

. J M U tiK in am» scar* wMtO »-'«•f'T t*»' r r.» v*ig «»

p _ i Sond m a em a il

Dont Mow | Alow ^

*i

Th e O A u th D ia lo g w ill redirect the user's browser to the U R L we passed in the redirect_uri
param eter w ith an authorization code provided by the servicc provider.

http://www.facebook.com/dialog/oauth
http://geominglc.aPDspot.com/auth/login

h t t p : / /g e o m in g le . a p p s p o t. com/auth/login?code*A_CODE_GENBRATED_BY_SERVB
R

W ith in our application we then can access the users profile using this authorization code.

In order to authenticate our app, w e must pass the authorization code and our app secret to the

G raph API token endpoint at https://graph.facebook.com /oauth/access_token.

h t t p s : / /g r a p h . fa c e b o o k . co m /o a u th /a cce ss_ to ke n ?
client_id«YO UR_APP_ID&redirect_uri«YO UR_URL&
client_secret-YOUR_APP_SECRET&code«THE_CODE_FROM_ABOVE

I f our app is successfully authenticated and the authorization code from the user is va lid , the

authorization server w ill return an access token:

W ith a valid access token we can invoke the Graph A P I by appending the access_token
param eter to G raph A P I requests:

h t t p s : / /g ra p h . fa c e b o o k . com/me ?access_token-ACCESS_TOKEN

For exam ple in our application w e return the fo llo w in g data from the user’s profile

{ ,bio,: 'I am a web developer programming in python, php, ruby rails, c# . I develop applications

using the Google App Engine. Also used frameworks such as .net, rails, django.',

'first_name': ’Sean',

'last_name': ’Cahill',

'verified': True,

'name': 'Sean Cahill',

'locale': 'en_US\

'gender': 'male',

'email': 'sean@nmm.ie',

'link': 'http://www.facebook.com/profile.php7id=1749478181',

'dmezone': 1,

'updatedjim e': '2011-07-20109:41:14+0000',

'id': ,1749478181'}

A dditiona l calls to the Facebook api are required to obtain more pro file inform ation.

For exam ple to return a users interests and activities we m ake calls such as (code is based on

python code)

b o o k s = j s o n . l o a d (u r n i b 2 . u r l o p e n (" h t t p s ; / / g r a p h . f a c e b o o k . c o m / m e / b o o k s ? " +

u r l l i b . u r l e n c o d e { d i e t (a c c e s s _ t o k e n » a c c e s s _ t o k e n))))

t v = j s o n . l o a d { u r l l i b 2 . u r l o p e n { nh t t p s : / / g r a p h . f a c e b o o k . c o m / m e / t e l e v i s i o n ? " ♦

http://geomingle.appspot.com/auth/login?code*A_CODE_GENBRATED_BY_SERVB
https://graph.facebook.com/oauth/access_token
https://graph.facebook.com/oauth/access_token
http://www.facebook.com/profile.php7id=1749478181'
https://graph.facebook.com/me/television

u r l i i b . u r l e n c o d e (d i e t (a c c e s s _ t o k e n = a c c e B 8 _ t o k e n)) >)

m o v i e s - j s o n . l o a d <u r i l i b 2 . u r l o p e n (" h t t p s : / / g r a p h , f a c e b o o k . c o m / m e / t n o v i e s ? " ♦

u r l i ib .urlencode(d ie t(access_token=access_token)) })

music - js o n . lo a d (u r ll ib 2 .u r lo p e n ("https://g raph.facebook.com /m e/m usic?" +

u r l i ib .urlencode(d ie t(access_token-access_tokenJ)))

Page 48

https://graph.facebook.com/me/music

A P P E N D I X III

Thank you for completing this phase of the testing process. Please fill in the
attached questionnaire to record your experiences of using the system.

Post Test Questionnaire

How useful is this application ?

Please choose the appropriate response for each item

strongly
disagree

□ □ □

strongly
a g r e e

This web site meets my needs
It does everything I would expect
It to do
The web site allows me to do the
Things I want to do

□ □

□ □ □ □ □

□ □ □ □ □

How easy was this web site to use ?

Please choose the appropriate response for each item

strongly
disagree

□ □ □

strongly
agree

This web site meets my needs
It does everything I would expect
It to do
The web site allows me to do the
Things I want to do

□ □

□ □ □ □ □

□ □ □ □ □

Page 49

P o s t T e s t Q u e s t i o n n a i r e

Feedback

W hat did you like most about this web site ?

Please write your answer

What did you dislike most about this web site ?

Please write your answer

How could this web site be improved ?

Please write your answer

Where you able to find the event on the home page of the application
Yes / No

Where you able to find the login using your Facebook id and password
Yes / No

If Yes does the profile presented accurately reflect your Facebook profile
Yes / No

Where you able to find the users you were assigned as possible matches in your
work sheet

Yes / No

If Yes above here you able to initiate a dialog with one of the users assigned as
possible matches in your work sheet

Yes / No

A P P E N D I X I V

API Usage
Th e fo llo w in g is a list o f the availab le apis accessible by registered users w ith valid api-keys

using the Profiler A P I application

Index a User

T h is api w ill take a user and index it based on the text passed in the api call. The text w ill be

reduced to keywords w hich w il l then be indexed and store on our database. Th is indexed pro file

can then be queried to find matches w ith other users.

URL: h ttp ://<h o stn am e> /ap i/p ro file

M ethod: POST

Parameters

country:the country location o f user
state: the state location o f user
town: the tow n location o f user
name: the nam e o f the client application
api: the c lient api key
user: unique identifie r identifying user
profile: text based description o f users profile (required)
type: profile type

O ptions: bio
needs
likes

Example:

The following is an exam ple o f usage im plem ented in python

from urilib import urlencode
import httplib2

httplib2.debuglevel = 1

data = { ■country":‘ lre land\“state*:"DublinVtown":"dalkey\'name": "smallbusiness".
"api": "1234*5678-9012-3456V u s e rY I 23450","profile": "I am a web developer with
experience in php.python.java.ytype": "bio"}

h = httplib2.Http('.cache‘)

resp, content =
h.requestfhttpV/localhosttfOSO/socnet/api/createVPOST'.urlencodeidata).

headers={’Content-Type': 'application/x-www-form-urlencoded'})

print(content.decode(’utf-8'))

(optional)
(optional)
(optional)
(required)
(required)
(required)

http://%3chostname%3e/api/profile

Return a Users M atches

T h is api ca ll takes a user, identified by its unique identifier, and w ill proceed to find the most
relevant matches based on the users pro file from the pool o f other users w ith in the networks pool
o f users. The api call w ith return the most relevant matches ordered by the closest matches,
descending.

URL: h ttp ://<h o stn am e> /ap i/m atch

M ethod: POST

Parameters

E xam ple code

from urllib import urlencode
import httplib2
httplib2.debuglevel = 1

data = { "country":"lreland\"state":"Dublin\"Town":"dalkeyYname": "demo", "api": "92a68c27-
d1 b3-4cc2-ac86-e477bcdcf239"."user":"123456","type":"bio"}
h = httplib2.Http('.cache')

resp. content = h.request(,http://localhost:8081/socnet/api/match,.'POST\ur1encode(data),
headers={'Content-Type’: 'applicat¡on/x-www-form-ur1encoded,})

print(content.decode(,utf-8'))

The above request results in the fo llo w in g output. The api call returns a list o f user contacts,
identified by their unique identifier, a long w ith the frequency o f that user. The list is sorted by

most popular matches, decreasing. The output is in json form at.

c o n n e c t : { l o c a l h o s t , 8 0 8 1)
s e n d : ' P O S T / s o c n e t / a p i / m a t c h H T T P / 1 . l \ r \ n H o s t : l o c a l h o s t : 8 0 B l \ r \ n C o n t e n t -

L e n g t h : 6 3 \ r \ n c o n t e n t - t y p e : a p p l i c a t i o n / x - w w w - f o r m - u r l e n c o d e d \ r \ n a c c e p t -

e n c o d i n g : g z i p , d e f l a t e \ r \ n u s e r - a g e n t : P y t h o n - h t t p l i b 2 / 0 . 7 . 0
(g z i p) \ r \ n \ r \ n a p i = 1 2 3 4 - 5 6 7 8 - 9 0 1 2 - 1 1 l l & t y p e - b i 0 & n a m e * s m a l l b u s i n e s s i i u s e r = 1 2 3 4 5 6 '

r e p l y : ' H T T P / 1 . 1 2 0 0 O K \ r \ n *

h e a d e r : S e r v e r : A p a c h e - C o y o t e / 1 . 1

h e a d e r : C o n t e n t - T y p e : a p p l i c a t i o n / j s o n , c h a r s e t » U T F - 8

h e a d e r : T r a n s f e r - E n c o d i n g : c h u n k e d

h e a d e r : D a t e : P r i , 2 6 A u g 2 0 1 1 1 6 : 5 1 : 4 3 G M T

c o u n try .th e country location o f user

state: the state location o f user
town: the town location o f user
name: the nam e o f the client application
api: the c lient api key
user: unique identifie r identifying user
type: profile type

(optional)
(optional)
(optional)
(requ ired)
(requ ired)
(requ ired)
(requ ired)

O ptions: bio
Needs
Skills
Likes

{"123457":4,"123458":3}

Process finished with exit code 0

http://%3chostname%3e/api/match
http://localhost:8081/socnet/api/match,.'POST/ur1encode(data

Delete a User

This api will remove a user from the index. The process finds all instances ot the user and will re
index based on the profile information.

URL: http://<hostname>/api/delete

Method: POST

Parameters

country:the country location of user
state: the state location of user
town: the town location of user
name: the name of the client application
api: the client api key
user: unique identifier identifying user
type: profile type

Options: bio
needs
likes

Example code

from urllib import urlencode
import httplib2
httplib2.debuglevel = 1

data = { "name': "smallbusiness", 'api': "1234-5678-9012-1111 Y u s e r T I 23456","type’ : "bio"}

h = httplib2.Http('.cache')

resp, content = h.requestChttpV/localhost^OSI/socnet/api/delete.'POST'.uriencodeidata),
headers={'Content-Type': *application/x-www-form-ur1encoded'})

printicontent.decodeCutf-S'))

Produces the following output.

c o n n e c t : (l o c a l h o s t , 8081)

s e n d : ' P O S T / s o c n e t / a p i / d e l e t e H T T P / 1 . l \ r \ n H o s t : l o c a l h o s t : 8 0 8 1 \ r \ n C o n t e n t -

L e n g t h : 6 3 \ r \ n c o n t e n t - t y p e : a p p l i c a t i o n / x - w w w - f o r m - u r l e n c o d e d \ r \ n a c c e p t -

e n c o d i n g : g z i p , d e f l a t e \ r \ n u s e r - a g e n c : P y t h o n - h t t p l i b 2 / 0 . 7 . 0

(g z i p) \ r \ n \ r \ n a p i - 1 2 3 4 - 5 6 7 8 - 9 0 1 2 - 1 1 1 l & t y p e - b i o 5 i n a m e = s m a l l b u s i n e s s & u s e r » 1 2 3 4 5 6 •

r e p l y : • H T T P / 1 . 1 2 0 0 O K \ r \ n *

h e a d e r : S e r v e r : A p a c h e - C o y o t e / 1 . 1

h e a d e r : C o n t e n t - T y p e : t e x t / h t m l ; c h a r s e t = u t f - 8

h e a d e r : T r a n s f e r - E n c o d i n g : c h u n k e d

h e a d e r : D a t e : P r i , 2 6 A u g 2 0 1 1 1 7 : 3 6 : 2 0 G M T

successfully deleted user 123456

Process finished with exit code 0

(optional)
(optional)
(optional)
(required)
(required)
(required)
(required)

Page 54

http://%3chostname%3e/api/delete

Com pare Two Users

This api will return keywords that two users have in common based on the “type*’ passed. If the
user’s needs have not been indexed it is possible to send needs as a free text parameter

URL: http://<hostname>/api/compare

Method: POST

Parameters

name: the name of the client application (required)
api: the client api key (required)
user: unique identifier identifying user (required)
compareUser: unique identifier identifying user to compare with (required)
needs: free text identifying user needs (optional)
type: profile type (required)

Options: bio
needs
likes

If type of'bio' user is compared to compareUser bio to bio
If type o f‘needs' users needs are compared to compareUser bio
If type o f‘likes’ user is compared to compareUser likes to likes

from urllib import urlencode
import httplib2
httplib2.debuglevel = I

data = { "name": "demo", "api": "92a68c27-d I b3-4cc2-ac86-
e477bcdcf239"."user":" 123456",'"compareUser":" 123457VtypcVbio"}

h = httplib2.Http<\cache')

resp, content = h.request('http://localhost:8080/socnet/api/compareVPOST\urlencode(data),
headers= {'Content-Type’: application/x-w w w-form-urlencodcd'})

print(content.decode('utf-8))

c o n n e c t : (l o c a l h o s t , 8 0 8 0)

s e n d : ’ P O S T / s o c n e t / a p i / c o m p a r e H T T P / 1 . l \ r \ n H o s t : l o c a l h o s t : 8 0 8 0 \ r \ n C o n t e n t

L e n g t h : 7 3 \ r \ n c o n t e n t - t y p e : a p p l i c a t i o n / x - w w w - f o r m - u r l e n c o d e d \ r \ n a c c e p t -

e n c o d i n g : g z i p , d e f l a t e \ r \ n u s e r - a g e n t : P y t h o n - h t t p l i b 2 / 0 . 7 . 0

(g z i p) \ r \ n \ r \ n c o m p a r e U s e r = 1 2 3 4 5 7 & a p i * 1 2 3 4 - 5 6 7 8 - 9 0 1 2 -

l l l l & n a m e = s m a l l b u s i n e s s & u s e r = 1 2 3 4 5 6 1

r e p l y : ' H T T P / l . l 2 0 0 O K \ r \ n '

h e a d e r : S e r v e r : A p a c h e - C o y o t e / 1 . 1

h e a d e r : C o n t e n t - T y p e : a p p l i c a t i o n / j s o n ; c h a r s e t = U T F - 8

h e a d e r : T r a n s f e r - E n c o d i n g : c h u n k e d

h e a d e r : D a t e : S a t , 2 7 A u g 2 0 1 1 1 4 : 4 7 : 2 7 G M T

["expert","php“,"python\‘ |ava"l

Process finished with exit code 0

Page 55

http://%3chostname%3e/api/compare
http://localhost:8080/socnet/api/compareVPOST/urlencode(data

Find Users to Co llabora te w ith

This api will attempt to find indexed users with keywords contained in a user’s needs. The api
will match based on these needs to a compare user’s profile (‘bio’).
If users needs have been indexed pass the user’s identifier else pass the needs as a free text
parameter.

URL: http://<hostname>/api/collaborate

Method: POST

Parameters

country: the country location of user (optional)
state: the state location of user (optional)
town: the town location of user (optional)
name: the name of the client application (required)
api: the client api key (required)
user: unique identifier identifying user (optional)
needs: free text string

(optional)

n.b. api requires one of user or needs

from urllib import urlencode
import httplib2
httplib2.debuglevel = 1

data = { "country":'lreland‘ ."state":"Dublin","town’ :"dalkey"."name': “demo“, “api": "92a68c27-
d1b3-4cc2-ac86-e477bcdcf239“,"needs":*i am looking for a web developer“,“type“:“bio“}
h = httplib2.Http('.cache')

resp, content = h.request(,http://localhost:8081/socnet/api/collaborate,.'POST,,urlencode(data),
headers={'Content-T ype’: 'application/x-www-form-urfencoded'})

print(content.decode('utf-8'))

produces the following output. The output contains the identifier o f the matched users and a frequency
count o f the matching terms. Output is in json format

c o n n e c t : (l o c a l h o s t , 8081)

s e n d : ' P O S T / s o c n e t / a p i / c o l l a b o r a t e H T T P / 1 . l \ r \ n H o s t :

l o c a l h o s t : 8 0 8 l \ r \ n C o n t e n t - L e n g t h : 1 3 9 \ r \ n c o n t e n t - t y p e : a p p l i c a t i o n / x - w w w - f o r m -

u r l e n c o d e d \ r \ n a c c e p t - e n c o d i n g : g z i p , d e f l a t e \ r \ n u s e r - a g e n t : P y t h o n -

h t t p l i b 2 / 0 . 7 . 0

(g z i p) \ r \ n \ r \ n T o w n = d a l k e y & n e e d s = i + a m * l o o k i n g * f o r * a + w e b + d e v e l o p e r S i n a m e = d e i n o 6 c C o u n

t r y = I r e l a n d & s t a t e = D u b l i n & a p i » 9 2 a 6 8 c 2 7 - d l b 3 - 4 c c 2 - a c 8 6 - e 4 7 7 b c d c f 2 3 9 & t y p e = b i o '

r e p l y : • H T T P / 1 . 1 2 0 0 O K \ r \ n '

h e a d e r : S e r v e r : A p a c h e - C o y o t e / 1 . 1

h e a d e r : C o n t e n t - T y p e : a p p l i c a t i o n / j s o n , - c h a r s e t = U T F - 8

h e a d e r : T r a n s f e r - E n c o d i n g : c h u n k e d

h e a d e r : D a t e : F r i , 0 2 S e p 2 0 1 1 1 9 : 3 0 : 4 6 G M T

{ -123456 - :2 , -123458 " :2}

P r o c e s s f i n i s h e d w i t h e x i t c o d e 0

http://%3chostname%3e/api/collaborate
http://localhost:8081/socnet/api/collaborate,.'POST,,urlencode(data

Text to Keywords

The following api call will reduce any unformatted text to a set of key words. The text goes
through text cleaning, removal of stop words and stemming processes.

URL: http://<hostname>/api/stemToKeywords

Method: POST

Parameters

country: the country location of user (optional)
state: the state location of user (optional)
town: the town location of user (optional)
name: the name of the client application (optional)
api: the client api key (optional)
text: the text to be stemmed

(required)

from urllib import urlencode
import httplib2
httplib2.debuglevel = 1

data = { "countryM:"lreland","state":"Dublin,’/'Tow n":Mdalkey","name": "demo", "api":
"92a68c27-dlb3-4cc2-ac86-e477bcdcf239","text": "I am a web developer**}

h = httplib2.Http(’.cache')

resp, content =
h.request('http://localhost:8081/socnet/api/stemToKeywords7POST\urlencode(data),

headers={'Content-Type*: 'application/x-www-form-urlencoded'})
printicontent.decodeCutf-S’))

Produces the following output. Output is in json format

c o n n e c t : (l o c a l h o s t , 8 0 8 1)

s e n d : ' P O S T / s o c n e t / a p i / s t e m T o K e y w o r d s H T T P / 1 . l \ r \ n H o s t :

l o c a l h o s t : 8 0 8 1 \ r \ n C o n t e n t - L e n g t h : 1 1 7 \ r \ n c o n t e n t - t y p e : a p p l i c a t i o n / x - w w w - f o r m -

u r l e n c o d e d \ r \ n a c c e p t - e n c o d i n g : g z i p , d e f l a t e \ r \ n u s e r - a g e n t : P y t h o n -

h t t p l i b 2 / 0 . 7 . 0

(g z i p) \ r \ n \ r \ n T o w n = d a l k e y 6 f n a m e = d e m o 6 c C o u n t r y = I r e l a n d & s t a t e = D u b l i n & a p i - 9 2 a 6 8 c 2 7 -

d l b 3 - 4 c c 2 - a c 8 6 - e 4 7 7 b c d c f 2 3 9 & t e x t « I ♦ a n u a + w e b + d e v e l o p e r '

r e p l y : ' H T T P / 1 . 1 2 0 0 O K \ r \ n '

h e a d e r : S e r v e r : A p a c h e - C o y o t e / 1 . 1

h e a d e r : C o n t e n t - T y p e : a p p l i c a t i o n / j s o n ; c h a r s e t = > U T F - 8

h e a d e r : T r a n s f e r - E n c o d i n g : c h u n k e d

h e a d e r : D a t e : T u e , 0 6 S e p 2 0 1 1 1 2 : 1 5 : 1 3 G M T

(" w e b " . " d e v e l o p "]

P r o c e s s f i n i s h e d w i t h e x i t c o d e 0

Page 57

http://%3chostname%3e/api/stemToKeywords
http://localhost:8081/socnet/api/stemToKeywords7POST/urlencode(data

Javascript Invocation
All the above apis can be called via javascript ajax calls. To enable these javascript apis users are
required to have JQuery installed. To deal with cross domain issues the apis include a callback
function. This callback function needs to be included in the parameters passed to the api.

var data = { "country":"any","state":"any","town":ManyM,Mname": "mingle",, "api"; <api-
key>,Muser":<user identity>,"profile": <user profile text>,"type": "bio"}
varheaders = {"Content-type": "application/x-www-form-urlencoded"}

var url = http://<hostname>/api/profile

$.ajax({ type: "POST", url: u r l , data: data,dataType: "jsonp",
jsonp : "callback",
jsonpCallback: "jsonpcallback",
success: function (response) {

var mess = response;
profiled = ’yes';

I
error: function (XMLHttpRequest, textStatus, errorThrown) {

// handle error
alertOproblem with profiling service1);

},
complete: function() {

}

__________I); __

function jsonpcallback(overlays) {
III handle response

var response = overlays;

}

http://%3chostname%3e/api/profile

A P P E N D I X V

An o u t l in e o f the P o r te r Stemmer A lg o r ith m is g iv e n b e low . T h is has been
rep roduced from the o f f i c i a l P o r te r Stemmer web s i t e []

To p re s e n t th e s u f f i x s t r ip p in g a lg o r ith m in i t s e n t i r e t y we w i l l need a few
d i f i n i t i o n s .

A consonant in a word is a l e t t e r o th e r tha n A, E, I , 0 o r U, and o th e r
th a n Y preceded by a consonan t. (The fa c t th a t th e te rm 'c o n s o n a n t' is
d e f in e d to some e x te n t in term s o f i t s e l f does n o t make i t am biguous.) So in
TOY th e consonants a re T and Y, and in SYZYGY th e y a re S; Z and G. I f a
l e t t e r is n o t a consonant i t is a \v o w e l\ .

A consonant w i l l be denoted by c , a vowel by v . A l i s t c c c . . . o f le n g th
g re a te r tha n 0 w i l l be denoted by C, and a l i s t v w . . . o f le n g th g re a te r
than 0 w i l l be denoted by V. Any word, o r p a r t o f a w ord , th e re fo re has one
o f the fo u r fo rm s :

CVCV . . . C
CVCV . . . V
VCVC . . . C
VCVC . . . V

These may a l l be re p re s e n te d by th e s in g le fo rm

[C]VCVC . . . [V]

where th e square b ra c k e ts denote a r b i t r a r y presence o f t h e i r c o n te n ts .
U sing (VC){m} to denote VC re p e a te d m tim e s , t h i s may a g a in be w r i t t e n as

[C] (VC) {m} [V] .

m w i l l be c a l le d the \m easu re \ o f any word o r word p a r t when re p re s e n te d in
t h i s fo rm . The case m = 0 cove rs th e n u l l word. Here a re some exam ples:

m=0 TR, EE, TREE, Y, BY.
m=l TROUBLE, OATS, TREES, IVY.
m=2 TROUBLES, PRIVATE, OATEN, ORRERY.

The ru le s f o r rem oving a s u f f i x w i l l be g iv e n in the fo rm

(c o n d it io n) S I -> S2

T h is means th a t i f a word ends w ith the s u f f i x S I, and th e stem b e fo re SI
s a t i s f ie s th e g iv e n c o n d it io n , S I is re p la c e d by S2. The c o n d it io n is
u s u a lly g iv e n in term s o f m, e .g .

(m > 1) EMENT ->

Here SI is "EMENT1 and S2 is n u l l . T h is would map REPLACEMENT to REPLAC,
s in c e REPLAC is a word p a r t f o r w h ich m = 2.

The " c o n d i t io n 1 p a r t may a ls o c o n ta in the fo l lo w in g :

*s - th e stem ends w ith S (and s im i la r l y f o r th e o th e r l e t t e r s) .

* v * - th e stem c o n ta in s a v o w e l.

*d - th e stem ends w ith a doub le consonant (e .g . -TT, -SS) .

*o - th e stem ends cvc , where th e second c is n o t W, X o r Y (e .g

Page 59

-WIL, -HOP)

And the c o n d it io n p a r t may a ls o c o n ta in e xp re ss io n s w ith \a n d \ , \ o r \ and
\ n o t \ , so th a t

(m>l and (*S o r *T))

te s ts f o r a stem w ith m>l end ing in S o r T, w h ile

(*d and n o t (*L o r *S o r * Z))

te s ts f o r a stem end in g w ith a dou b le consonant o th e r th a n L, S o r Z.
E la b o ra te c o n d it io n s l i k e t h i s a re re q u ire d o n ly r a r e ly .

In a s e t o f r u le s w r i t t e n beneath each o th e r , o n ly one is obeyed, and t h is
w i l l be th e one w ith the lo n g e s t m a tch ing S I f o r the g iv e n word. For
exam ple, w ith

SSES -> SS
IES -> I
SS -> SS
s ->

(here th e c o n d it io n s a re a l l n u l l) CARESSES maps to CARESS s in c e SSES is
the lo n g e s t m atch f o r S I. E q u a lly CARESS maps to CARESS (S1=VSS') and CARES
to CARE (S 1 = 'S ') .

In th e ru le s be low , examples o f t h e i r a p p l ic a t io n , s u c c e s s fu l o r o th e rw is e ,
a re g iv e n on th e r ig h t in lo w e r case. The a lg o r ith m now fo l lo w s :

S tep la

SSES -> SS caresses - > ca re ss
IES -> I pon ie s - > p o n i

t ie s - > t i
SS -> SS ca ress - > ca ress
s - > c a ts - > c a t

S tep lb

(m>0) EED -> EE feed - > feed
agreed - > agree

(*v *) ED -> p la s te re d - > p la s te r
b le d - > b le d

(*v *) ING -> m o to r in g - > m otor
s in g - > s in g

I f the second o r t h i r d o f the ru le s in S tep lb is s u c c e s s fu l, th e fo l lo w in g
is done:

AT -> ATE
BL -> BLE
IZ -> IZE
(*d and n o t (*L o r *S o r *Z))

-> s in g le l e t t e r

(m=l and *o) -> E

Page 60

c o n f i â t (ed)
t ro u b l(e d)
s iz (e d)

h o p p (in g)
ta n n (e d)
f a l l (i n g)
h is s (in g)
f iz z (e d)
f a i l (in g)
f i l (in g)

-> c o n f la te
-> t r o u b le
-> s iz e

-> hop
-> ta n
-> f a l l
-> h is s
-> f i z z
-> f a i l
-> f i l e

The r u le to map to a s in g le l e t t e r causes th e rem oval o f one o f th e doub le
l e t t e r p a i r . The -E is p u t back on -AT, -BL and - IZ , so th a t th e s u f f ix e s
-ATE, -BLE and -IZ E can be re co g n ise d la t e r . T h is E may be removed in s te p
4 .

S tep lc

(* v *) Y -> I happy -> happ i
sky -> sky

Step 1 d e a ls w ith p lu r a ls and p a s t p a r t i c ip le s . The subsequent s te p s a re
much more s t ra ig h t fo rw a rd .

S tep 2

<m>0) ATIONAL - > ATE r e la t io n a l - > r e la te
(m>0) TIONAL - > TION c o n d it io n a l

r a t io n a l
- >
- >

c o n d it io n
r a t io n a l

(m>0) ENCI - > ENCE v a le n c i - > va le nce
(m>0) ANCI - > ANCE h e s ita n c i - > h e s ita n c e
(m>0) IZER - > IZE d i g i t i z e r - > d ig i t i z e
(m>0) ABLI - > ABLE c o n fo rm a b li - > con fo rm ab le
{m>0) ALL I - > AL r a d i c a l l i - > r a d ic a l
(m>0) ENTLI - > ENT d i f f e r e n t l i - > d i f f e r e n t
(m>0) ELI - > E v i l e l i > v i l e
(m>0) OUSLI - > OUS a n a lo g o u s li - > analogous
(m>0) IZATION - > IZE v ie tn a m iz a t io n - > v ie tn a m iz e
(m>0) AT I ON - > ATE p r e d ic a t io n - > p re d ic a te
(m>0) ATOR - > ATE o p e ra to r - > o p e ra te
(m>0) ALISM - > AL fe u d a lis m - > fe u d a l
(m>0) IVENESS - > I VE d e c is iv e n e s s - > d e c is iv e
(m>0) FULNESS - > FUL h o p e fu ln e ss - > h o p e fu l
(m>0) OUSNESS - > OUS c a llo u s n e s s - > c a llo u s
(m>0) A L IT I - > AL f o r m a l i t i - > fo rm a l
(m>0) IV IT I - > I VE s e n s i t i v i t i - > s e n s i t iv e
(m>0) B IL IT I - > BLE s e n s i b i l i t i - > s e n s ib le

The t e s t f o r the s t r in g SI can be made f a s t by d o in g a program s w itc h on
th e p e n u lt im a te l e t t e r o f the word b e in g te s te d . T h is g iv e s a f a i r l y even
breakdown o f th e p o s s ib le va lu e s o f the s t r in g S I. I t w i l l be seen in fa c t
th a t th e S I - s t r in g s in s tep 2 a re p re s e n te d here in th e a lp h a b e t ic a l o rd e r
o f t h e i r p e n u lt im a te l e t t e r . S im ila r te c h n iq u e s may be a p p lie d in th e o th e r
s te p s .

S tep 3

(m>0) ICATE -> IC t r i p l i c a t e - > t r i p l i c
(m>0) A T IVE -> fo rm a tiv e - > form
(m>0) ALIZE -> AL fo rm a liz e - > fo rm a l
(m>0) IC IT I -> IC e l e c t r i c i t i - > e le c t r i c
(m>0) ICAL -> IC e le c t r i c a l - > e le c t r i c
(m>0) FUL -> h o p e fu l - > hope
(m>0) NESS -> goodness - > good

Step 4

<m>l) AL - > r e v iv a l -> r e v iv
(m>l) ANCE - > a llo w a n ce - > a llo w
(m>l) ENCE - > in fe re n c e -> in f e r
(m>l) ER - > a i r l i n e r - > a i r l i n
(m>l) IC - > g y ro s c o p ic - > gyroscop
(m>l) ABLE - > a d ju s ta b le - > a d ju s t
<m>l) I BLE - > d e fe n s ib le - > defens

(m>l) ANT - > i r r i t a n t - > i r r i t
(m>l) EMENT - > rep lacem en t - > re p la c
(m>l) MENT - > a d ju s tm e n t - > a d ju s t
(m>l) ENT - > dependent -> depend
(m>l and (* S o r * T)) ION -> a d o p tio n - > adopt
(m>l) OU - > homologou - > homolog
(m>l) ISM - > communism - > commun
(m>l) ATE - > a c t iv a te - > a c t iv
(m>l) IT I - > a n g u la r i t i - > a n g u la r
(m>l) OUS - > homologous - > homolog
(m>l) I VE - > e f f e c t iv e - > e f f e c t
(m>l) IZE - > b o w d le r iz e - > bow d le r

The s u f f ix e s a re now removed. A l l th a t rem ains is a l i t t l e t id y in g up.

S tep 5a

(m>l) E -> p ro b a te -> p ro b a t
ra te -> ra te

(m=l and n o t *o) E -> cease -> ceas

Step 5b

(m > 1 and *d and *L) -> s in g le l e t t e r
c o n t r o l l -> c o n t ro l
r o l l -> r o l l

The a lg o r ith m is c a r e fu l n o t to remove a s u f f i x when th e stem is to o s h o r t ,
the le n g th o f the stem b e in g g iv e n by i t s measure, m. There is no l i n g u i s t i c
b a s is f o r t h is approach. I t was m e re ly observed th a t m c o u ld be used q u i te
e f f e c t i v e ly to h e lp d e c id e w he ther o r n o t i t was w ise to take o f f a s u f f i x .
For exam ple, in the fo l lo w in g two l i s t s :

l i s t A l i s t B

RELATE DERIVATE
PROBATE ACTIVATE
CONFLATE DEMONSTRATE
PIRATE NECESSITATE
PRELATE RENOVATE

-ATE is removed from th e l i s t B w ords, b u t n o t from th e l i s t A w ords. T h is
means th a t the p a ir s DERIVATE/DERIVE, ACTIVATE/ACTIVE, DEMONSTRATE/ DEMONS-
TRABLE, NECESSITATE/NECESSITOUS, w i l l c o n f la te to g e th e r . The fa c t th a t no
a tte m p t is made to i d e n t i f y p r e f ix e s can make th e r e s u l t s lo o k r a th e r
in c o n s is te n t . Thus PRELATE does n o t lo s e th e -ATE, b u t ARCHPRELATE becomes
ARCHPREL. In p ra c t ic e t h i s does n o t m a tte r to o much, because the p resence o f
the p r e f i x decreases the p r o b a b i l i t y o f an e rroneous c o n f la t io n .

Complex s u f f ix e s a re removed b i t by b i t in th e d i f f e r e n t s te p s . Thus
GENERALIZATIONS is s t r ip p e d to GENERALIZATION {S tep 1) , then to GENERALIZE
{S tep 2) , the n to GENERAL (S tep 3) , and th e n to GENER (S tep 4) . OSCILLATORS
is s t r ip p e d to OSCILLATOR (S tep 1) , the n to OSCILLATE (S tep 2) , th e n to
OSCILL (S tep 4) , and the n to OSCIL (S tep 5) .

A P P E N D I X V I

Geomingle Social Network
New Event Details

T h e first step in using the m ingle application is to create an event that is upcoming. The

organizer enters their event details. Th is portion o f the application is run on a desktop brow ser

and can be accessed via url http://geom ingle.appspot.com

Th e event organizer must first enter the location o f the event. It is im portant that the location o f

the event is located on the G oogle m ap accurately to reflect the actual geo position o f the event.

I f this is entered incorrectly then attendees w ill not be able to log onto the social netw ork once

they have arrived at the location o f the event.

Once located the event organizer must enter the rem aining event details.

fa tr la w n s . sa v a l p ark r o a d , d a lk e y . c o .d u b lm

tn«*r)VU toca«i©n M M r * • p e ts b le P re »
t o c « » * te locate thè addrc** on thè map
0 * 9 and Drop tfva m attar (o anotfter location ■* tne « M a l
location •• *\acculaia

E vent Title

[C lo u d C o m p u tin g E v e n t

Oate jmm/ddfyyyy)
| 08/23/2011

m iin g ie
Location Addren________

user tc fs s a iooom

Duration
uts327» Wnj « I1M

T h e geo location o f the event location is stored along w ith the o th e r event details

The user can then generate m arketing m ateria l associated w ith the event

m iin g fe u t» r K JM C M LO O O u S

Succettfuty Added your Eventi

Cloud Computing Event@fairtawns, saval park road,
dalkey, co.dublin

1 you w hh to Croat* ma»ketlng material for your event e n te r the URL (or your
event and p re tt th e 'C rea te Market n g Material" button

http //ww¥i neki ie /even t^

http://geomingle.appspot.com

Th e application w ill then generate Q R codes to link to the uri o f the event and to the geom ingle

social netw orking application.

SPARO ® WWW'

Cloud Computing Event
wns, Saval Park Road Dalkey Co

SPARO (Ü WWW'1'

Miingle on Mobile
(http/Af msky ui*&3L2)

Page 64

I

http://q.msky.us/r/FQHD

http://q.msky.us/r/G3L2

Social N etw ork ing W eb Application

T h e social netw orking application has been developed as a web based m obile application. It is

optim ized fo r use on a browser w ith a smart phone. It has been developed using H T M L 5 and

css3 standards. Consequently the application may not run o p tim ally on a desktop browser, not

supporting these latest technologies.

By scanning the Q R code generated in the event publishing application or by going to the url

http://iieom ingle.annspot.com /gco

User w ill be directed to the fo llo w in g screen in their browser.

location

C l o u d C o m p u t i n g E v e n t . . >

C o p y r ig h t © 2011

A H o m e + About IJs + C ont.ict Us

07:18AT»! A pplication fin d s events w ith in

radius o f users geo-location

based on a haversine

Events fo u n d w ith in users

location

The application uses Facebook to authenticate the users to the application . The user must enter

their facebook credentials in order to gain access to the system.

http://iieomingle.annspot.com/gco

appbcaton a c ca s s c reden tia ls pro lile
raceoook data

user gives permission to alow US6f enters facebook mim^e application dspiays users

The application takes the users profile from faccbook and sends the data to the P rofile r A P I

application for indexing. T h e application divides the pro file data into the fo llo w in g

Profile: based on the Facebook bio

Likes: generated from facebook likes and interests

C ollaborate on: not sourced from Faccbook. User can enter details o f what they

wish to collaborate on. based on the event they are attending

Page 66

Cloud Computing Event

i- iS ta n C ah ill

i am a web-dewekw« programming in pyton. /-¡|
phpjawa.tails,cft.litevHkjpappfcHionsusr^ttw ĵ J
Googie App Engine. Atso use rracrcworks sucfi as I
jw i, rads. ap n g ^ g ro w f. I do « m e w * dcstgr. J
gt IB ifflt̂ Jgû gndjttgaCTiaL̂

\Q) Ukts

R«qu«*l * Chit

a

user can select how they want to
contact other event attendees

view list of contacts
view contact detail, request a

dialog

Users can attempt to find fellow attendees to collaborate on based on

Profile to Profile
Collaborate on to Profile
Likes to Likes

The application accesses the Profiler API aplication to find matches based on its matching
algorithm. The user is then presented with a list of matchng contacts. From this list the user can
view the contact details and request a dialog if they desire.

Page 67

