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Abstract

Clustering is the unsupervised classification of patterns into groups and is one
of the most popular techniques applied to explore and discover naturally occurring
patterns within hitherto unlabelled data. The quality of the clusters resulting from
a clustering algorithm can be verified using clustering validity indices, which take
into account the intra cluster similarity and inter cluster separation of the clusters.
However in a distributed setting the computation of pairwise distances between
data points of a large data set distributed across the cluster can be computation-
ally very expensive.

This research proposes to evaluate a sampling based approach to computing
the cluster validity indices for distributed datasets and embed this methodology
into a model selection pipeline that evaluates distributed machine learning jobs in
selecting an optimal clustering algorithm. The results suggest the sampling error
of the internal validation index so computed is statistically significant.
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1 Introduction

There are different classifications of learning algorithms like supervised, unsupervised,
reinforcement learning problems that can be applied to analysis of data. Enterprises
face the challenge of selecting a relevant and optimal model for exploratory or predictive
analysis of their data.

In supervised learning, the observations to be classified are provided with a label. As
the volume and nature of data being generated increases obtaining data with labels is
increasingly challenging (Aggarwal and Reddy; 2013). This makes automatic labeling an
indispensable step in the modern data analysis pipeline and is relevant to enterprises for
understanding and categorising large volumes of unlabelled data being gathered.

”Clustering is the unsupervised classification of patterns into groups” (Jain et al.;
1999) and is an appropriate choice for performing exploratory data analysis of large data
sets to identify hitherto unknown inter relationships and patterns within the data. Image
classifcation, trend and anamoly detection, customer segmentation are some of the well
known application domains in which clustering is used.

2 Taxonomy of Clustering Algorithms

Clustering algorithms can be classified into a Hierarchical, Partitional, Density Based,
Grid Based algorithms based on their choice of measure for arrving at the partitions of
data. Partitional algorithms require mentioning the desired number of clusters upfront,
where as density based algorithms require to be told the number of points in space that
make up a cluster. Hierarchical algorithms take either a top down approach or bottom
up approach aggregating or partitioning data points into clusters (Jain et al.; 1999).

Clustering algorithms are based on the notion of similarity between points and try
to maximizie similarity within the group, while minimizing inter-group similarity. The
problem of defining similarity is largely dependent on the definition of a desirable cluster
and a relevant distance measure, the selection of which requires knowledge of the domain
from which the data is being generated. Hence clustering algorithms can only be evaluated
against the particular dataset for the measure of the quality of the resulting clusters rather
than as a generalised model.

Given the wide taxonomy of clustering algorithms, Lange et al. (2004) define a general
model selection process for selecting an optimal clusteirng algorithm for a given dataset
as follows :

1. Initialise a list of algorithms

2. On each chosen algorithm perform a parameter sweep to obtain different clusters

3. Compute the cluster validation measures to evaluate the results

However, with no version of ground truth available for the data, the problem of
selection and evaluation of a clustering algorithm in an automated manner is a difficult
exercise.

Data mining algorithms have traditionally been applied to data sets that could be
fit into the memory of a single machine. However the scale of modern enterprise data
necessitates scaling out to analyse these larger and diverse data sets. This poses technical



challenges like scaling the algorithms to process data on a distributed scale, time and space
complexlity, data locality and fault tolerance.

Modern distributed data processing frameworks have abstracted away these com-
plexities and have made it possible for enterprises to build automated data processing
pipelines on large distributed datasets. The Apache Hadoop framework based on the
functional programming paradigm of map and reduce (Dean and Ghemawat; 2008) can
analyse massive amounts of data on large clusters built from afforable and easily replace-
able commodity hardware. The ready availability of machine learning algorithms capable
of running on distributed data sets, has enabled the industrialisation of large scale data
analysis. However it is a significant challenge to build a pipeline atop a framework that
runs on shared distributed resources, that is aware of resource-constraints and uses them
in an efficient manner. Newer data processing engines like Spark, Tez take advantage of
pluggable distributed cluster managers like Apache Mesos and YARN have that efficiently
schedule and monitor resource utilisation on shared clusters (Vavilapalli et al.; 2013) and
are the building blocks for modern enterprise scale big data analytics platforms.

TN (2015) suggets a novel approach to increasing the efficiency of supervised learning
algorithms based on dynamic model evaluation approach. This approach monitors at
run time the incremental learning progress of a machine learning algorithm and uses it
decide to stop a machine learning job thats has poor incremental learning performance.
This information is further embedded into the communication protocol with the cluster
resource manager which can use it to request its application master to terminate the job,
thus freeing the shared resources.

This research proposes to the explore the feasbility of extending this dynamic model
evaluation approach, successfully appplied to a supervised learning algorithm, to an un-
upservised learning algorithm. However, unlike supervised learning which has precise
and objective measures of performance evaluation, an unsupervised learning algorithm
can only be evaluated based on relative metrics across different parametric combinations.
To illustrate, for selecting and evaluating the optimum number of clusters for a given
data set using a crisp clustering algorithm (K-Means), the spark framework on which the
aforesaid dynamic model evaluation approach was implemented, only provides a single
measure of performance evaluation, the Weighted Sum of Squared Errors (WSSE). As
seen in 1, WSSE is a monotonic measure that decreases as the cluster size increases.
The optimcal cluster in this scenario can be selected based on the elbow criteria which
is a heuristic measure, which makes it harder to evaluate the incremental learning rate
objectively in a dynamic model evaluation scenario.

This has lead to the review of other clustering validation measures. Unsupervised
learning relies on measures of pairwise distance computation in both arriving at the
clusters and in evaluating the quality of the resulting clusters. However in a distributed
scenario it becomes highly inefficient to compute the pairwise distances between points
spread across multiple nodes for the process of evaluating the results as it has a greater
time and space complexity than deriving the clustering model itself.

Hence the research question “Can the computational efficiency of cluster evaluation be
improved in a distributed setting and be integrated into a unsupervised modeling pipeline
to dynamically evaluate simultaneous distributed machine learning jobs launched with
different parameters in choosing an appropriate clustering algorithm”.



Figure 1: WSSE for KDD 1999 Data Set



3 Related Work

3.1 Cluster Validation

Since clustering is an unsupervised learning mechanism, there is no apriori knowledge
of a ground truth against which the results can be measured against (Von Luxburg and
Ben-David; 2005). Hence validation of results of clustering results is an important step
in ensuring the quality of the resulting clusters.

The wide variety of clustering algorithms means no single measure can be uniformly
and objectively assessed towards the validity of the results for all clustering methods.
i.e. some measures may favour a particular algorithm. Density based evaluation meas-
ures might align better with clustering algorithms like DBScan, where as an evaluation
based on metrics like cluster radius might prefer k-Means algorithm, which is partitional
algorithm that is more suited to identifying spherical clusters. Inspite of this limitation,
the resulting clusters can be evaluated using various intra cluster metrics like size, radius,
density (Leskovec et al.; 2014) and their stability (Von Luxburg; 2010) and cluster val-
idation indices that are based on combination of intra-cluster and inter-cluster measures
(Halkidi et al.; 2001). of clustering.

It is also common to employ a variety of clustering techniques to analyse a data set
and use visual inspection aided by the prior knowledge of the domain the analyse the
results of the clustering algorithm (Handl et al.; 2005). However for large data sets and
with high dimensions a manual visual inspection of clusters is not feasible.

In their review of cluster validity measures Halkidi et al. (2001) classify validity criteria
for these various clustering mechanisms into two major categories internal validation,
external validation measures. External clustering validation rely on prior knowledge of
the true clusters and on the existence of this external truth against which the results
of clustering are measured. Some example of external validation measures are purity,
entropy, precision, recall, f-measure. Since the challenges with large data sets being
accumulated is the task of assigning their true labels (Aggarwal and Reddy; 2013), for the
purposes of this research, external validation measures have not been further considered.

3.1.1 Internal Cluster Validation Indices

Internal Cluster Validity Indices primarily rely on the measures of compactness and seper-
ation. Whereas compactness relates to intra cluster quality , separation relates to inter
cluster quality. Liu et al. (2013) emphasise the greater importance of inter cluster separ-
ation on the cluster validity.

The measure of compactness can be based on computing either the maximum or
average of pairwise distance between points in the cluster or the distance to the cluster
centroid where as separation can be computed as the maximum or average of the pair wise
distance between points across clusters or distance between their centroids (Aggarwal and
Reddy; 2013) and varies according to the chosen validity index measure.

A few of the internal cluster validation indices consider only one of the above criteria.
However these primary measures tend to be monotonic and usually only consider one
aspect of the principal cluster validation measures of compactness and separation (Liu
et al.; 2010)

Validity indices that take in account both measures tend to perform better and handle
issues like noise, outliters and skewness of the data better than unary measures of indices
that consider only one of the two features of cluster validation indices.



There are a number internal clustering validation indices like the DunnIndex, Davies-
BouldenIndex, SDIndex. Each of these indices are based on a variant of the combination
of separation and compactness measures of the resultant clusters. Irrespective of the
chosen index most of them rely on computing pair wise distances between points across
clusters. In a distributed environment this can a very inefficient as it has a greater time
and space complexity than performing the clustering itself.

4 Methodology

The problem of implementing a distributed cluster validation index is that evaluation can
be more expensive than computing the clusters. In its selection of centroids, the Bahmani
et al. (2012) algorithm broadcasts the chosen centers to all partitions to compute the
nearest centroid locally on each partition. However for the purpose of computing pairwise
distances between clusters, a similar approach of relaying of those data points betweeen
nodes can lead to a number of expensive network shuffles and is not feasible.

Based on the understanding of existing literature, the principles of distributed com-
puting and statistical inference this research proposes a sampling based approach for
the computation of cluster validity indices in computing the validation indices used to
determine optimal cluster configuration. To support the methodology of this research,
the Davious Boulden Index which compares within cluster scattering to between-cluster
separation (Davies and Bouldin; 1979) is proposed to be implemented in the chosen dis-
tributed framework.

In sampling for the data points to compute the cluster validity index the following
approach is followed. Random sampling, without replacement is done. Samples are
drawn at the rates from 10% to 100% of the population and the Davies Bouldin Index
is computed locally, on the spark driver node, on the sample so gathered. To eliminate
any bias in this process the sampling process is repeated 10 times for each sampling
percentage and the average value of the index is computed to arrive at the final index
value for that sample percentage. Further a test of statistical signifinance is performed
on the sample based Davies Bouldin Index against the index computed on the population
to verify the efficacy of this sampling approach.

5 Implementation

The choice of framework for this project is the Apache Spark framework. It is based
on the Scala language which has in built support for functional programming with its
support for map reduce style abstractions and allows parallelising processing of collec-
tions and lazy evaluation that can be leveraged for efficient data processing. The Spark
framework, developed in scala building on top of its strengths, provides the Resilient Dis-
tributed Datasets(RDD) abstraction for programmming on distributed data sets. Unlike
the hadoop framework where the intermediate results through the iterations have to be
written to disk, the RDD’s allow intermediate results to persisted in memory or disk and
hence speed up the iterative machine learning process (Zaharia et al.; 2010). However
the RDD abstraction does require significantly higher memory allocation as it retains the
data lineage of the RDDs to avoid expensive transformations on the parent data set.

Spark provides the MlLib machine learning framework in which the K-means cluster-
ing is implemented. It can be run on distributed data sets, and provides a cost metric



based on the within cluster sum of squared errors (WCSS) to evaluate its performance.
Performing automated model selection using techniques like paramater sweep and

cross validation on a distributed scale is a highly resource intensive process. For each value
or combination of the parameters an individual machine learning job can be triggered or
alternatively the same job can made to perform the entire parameter sweep. However
splitting this up into individual jobs brings with a few benefits like the ability to run those
jobs in parallel and monitor each job for its quality metrics and explore the possibility of
terminating early the jobs that continually exhibit poor quality metrics.

As there is no centralised job manager available on the Spark Framework currently,
each distributed job is submitted individually to the yarn cluster with a particular com-
bination of parameters like the number of clusters, the number of iterations and the
sampling rate to be used for gathering sample data points for clustering evaluation and
the DBIndex and WSSE are computed on the chosen data sets.

6 Evaluation

6.1 Experiment Setup

Table 1 provides information on the proposed hardware configuration used for this exper-
iment which primarily consists of a Spark ecosystem setup on top of the YARN cluster.

Table 1: Hardware Setup
Component MasterNode DataNode
VCPU 4 2
RAM 8GB 4GB
Hard Disk 80GB 40GB
Quantity 1 4

This implementation proposes an experimental methodology be tested on a scientific
data set and two real world-data sets to evaluate their performance.

Since the K-Means implmenetation on the Spark framework only supports the euc-
lidean distance measure, datasets have been chosen for which the euclidean distance is a
meaningful measure of distance.

6.2 Experiment / Iris Data Set

The Iris data set has been chosen as one of the datasets to evaluate this implementation.
The DBIndex for the Iris Data Set 2 shows that quality of the clusters suffers as the
number of the cluster increases and this is in contrast to the WSSE that is monoton-
ically decreasing 1. However the DBIndex is not accurate as it shows the Iris data set
has the least value at 2 clusters as against the ground truth available for this data set
of 3 clusters. This highlights the problem of selection and evaluation of an appropri-
ate clustering algorithm, owing to the lack of a standardised and objective measures of
validation.



Figure 2: WSSE for KDD 1999 Data Set



6.3 Experiment / KDD Data Set

The KDDCup1999 dataset consists of 4.8 million points and has 42 dimensions. The
features of the data set have been standardised to void any feature weighing in abnormally
on the clustering.

Figure 3: WSSE for KDD 1999 Data Set

A comparision of the normalised WSSE and DBIndex show varying optimal cluster
sizes for the KDD 1999 data set. With the WSSE 3 its harder to identify the optimal
clusters , whereas the DBIndex 4 is not monotonic in nature and based on its index
value, cluster sizes of 20 and 45 can be identified as possible optimal clusters. However
this graph is plotted based on the DB Index computed on the entire population.

Looking at the sampling based DB Index computed on cluster size 20 and 45, the
optimal clusters identified above, the sampling error in estimating the DBIndex across
various percentages is shown in 5 and in 6 respectively. As noticeable from the graphs
the sampling error gradually decreases as the sampling rate reaches 100

A one-sample statistical t-test performed across the 30 samples drawn for each of the
cluster sizes 20 and 45 has lead to the rejection of the null hypothesis that sample based
index is equal to the population based index at 95% confidence interval with the p-values
for sampling percentages of 30, 40 and 50 2.

The table 2 provides information on the p-values of the sample percentage and the
normalised Standard error of the DBIndex for a poulation mean of 0.9827828.

Table 2: p-value of One Sample T-test of DBIndex
SamplePercentage p− value 95%Conf.IntervalV alues
0.3 0.000007212 1.079439 - 1.195468
0.4 0.000001595 1.067132 - 1.154388
0.5 0.00001731 1.023308 - 1.076916



Figure 4: DBIndex for KDD 1999 Data Set

Figure 5: Sampling Based DBIndex for Cluster Size 20



Figure 6: Sampling Based DBIndex for Cluster Size 45

6.4 Experiment / GoWalla Data Set

Similarly for the GoWalla DataSet the DBIndex is able to give out a clear indication that
20 is the optimcal cluster size 7 and this is supported by the WSSE Measure as well 8
based on the tapering off of the elbow bend at cluster size of 20.

However, simliar to the results on the t-test for the KDD 1999 dataset, the null
hypothesis was rejected on this dataset too.



Figure 7: WSSE for GoWalla Data Set



Figure 8: DBIndex for GoWalla Data Set



7 Conclusion and Future Work

Inspite of the limitation of the assumption of this approach that the sampled points
would fit locally on the driver node and the statistical rejection of the sample based
approach to computing cluster validity, in all the three data sets used in the experiment,
the Davies Bouldin Index is able to help identify better the optimal size of clusters within
the datasets. This reinstates the superiority of the cluster validity indices to measures
that only consider one aspect of cluster validation like the WSSE.

Hence possible future work could be to try verifying this approach on other datasets
and algorithms and explore alternative approaches to implementing these superior cluster
validity indices for evaluating clustering algorithms on a distributed data sets.
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