
Benchmarking Hive on Spark and SQL Server with
the Real Time Data Warehousing Chain.

Ian, Bassett
X06709711

MSc. Masters in Data Analytics
National College of Ireland

School of Computing

Abstract—The following paper focuses on the field of Data
Warehousing in two aspects. The first aspect will review Big Data
performance comparing the emerging Hive on Apache Spark
with SQL Server to determine when it would be appropriate to
switch to a big data platform. The other aspect will investigate
current software in the industry and how the continuous
support of communities are creating to solve current and future
barriers in the profession. A current issue in Data Warehousing
and Business Intelligence is the development of Real Time
Data Warehousing. This paper documents the research and
progress of tools in the automation process of Real Time Data
Warehousing.

Keywords- Data Warehousing; Benchmarking; OLAP Cube;
Salesforce; Sentiment Analysis; Python; Real Time Data Ware-
housing

I. INTRODUCTION

The field of Data Analytics is continually evolving. New
software and theories on approaching the latest challenges
and limitations are being addressed; where the current
established practices are being reviewed and altered to the
needs of the industry. With the transformation of data within
the last decade, data is a key structure in companies staying
competitive. The current obstacles in the profession are the
continuous growth of data and the limited amount of time
employees have in analysing.

During the attempted acquisition of EMC, Founder and
CEO of Dell Inc. Michael Dell expressed the importance
of securing EMC based on their access to the data market.
Dell examines how data is integrated into a wide variety of
digital products, showing the opportunities that come from
customers and industries generating data, placing the value in
trillions of dollars.[1]

With the potential of data in discovering insights, trends
and gaining a strategic advantage in the market, Dell and
other companies are investing and placing Data Analytics as
a high priority in their success. This viewpoint is supported
as the International Data Corporation (IDC) is currently
forecasting the market for Big Data technology to grow at
23.1% compound annual growth rate reaching $48.6 billion
in 2019 with spending on self-service data preparation tools
and visual discovery growing 2.5 times faster than traditional

IT-controlled tools.[2]

Currently the industry‘s biggest challenge is to reduce the
time to prepare data and to allow Data Scientists more time
to examine and discover Business Intelligence. Forrester [2]
believes that in 2016, Machine Learning will begin to replace
manual Data Wrangling and Data Governance to make Data
Ingestion, preparation and discovery quicker.

Benchmarking Hive on Spark and SQL Server with
the Real Time Data Warehousing chain is a practical
assessment measuring Big Data performance between Hive
on Apache Spark and SQL Server through the developed
environment, Real-Time Data Warehousing (RT-DW) Chain.
An environment that investigates current industry tools in
the implementation of Real Time Data Warehousing. The
research question‘s objective is to reduce time by converting
manual into automatic processes to allow Data Analysts more
time for analysis

The organisation of the paper consists of five remaining
sections. In section II, “Related work” is discussed with
respect to the components and approaches in developing a
Data Warehouse, evaluating the current practices in Real
Time Data Warehousing and how certain concepts led to the
development of the RT-DW chain. “Related Work” will then
continue examining the reasoning and importance behind
Benchmarking Big Data performance between SQL Server
and Hive on Spark, establishing the Benchmarking approach
and considerations when choosing data.

In section III, “Design” will document the operation of
the chain, the choosing of data sources and the performance
parameters being implemented for testing. “Design” will
conclude with user experience requirements, documenting the
needed skills for successful deployment of the RT-DW Chain.

In section IV, “Implementation” will acknowledge the
importance of business input in developing the RT-DW
chain. “Implementation” continues by examining the building
process for testing data. Concluding with how the prototype
runs in action.

In section V, “Evaluation” will begin with establishing
the method taken to gather and review results. The RT-DW
chain performance will be assessed by seeing how the data
responded focusing on the benefits, limitations and how user
experience can effect the quality of the chain. “Evaluation”
will then continue by contrasting between SQL Server and
Hive on Spark based on the performance parameters and
concluding on which is the more promising choice moving
forward.

Finally section VI, “Conclusions” will recap what has been
achieved in this paper and the direction future work should
take moving forward.

II. RELATED WORK

A. Components of a Data Warehouse

Defined by Inmon[3] a Data Warehouse is “a subject-
oriented, integrated, time-variant and non-volatile collection
of data that is primarily used in organizational decision
making”. As seen in Fig. 1, Data Warehouse architectures are
comprised of three components, Extract Transform and Load-
ing (ETL) from multiple data sources, the Data Warehouse and
Analysis consisting of Online Analytical Processing (OLAP)
cube, Reporting and Data Mining.[4]

Fig. 1. Components of a data warehouse. [24]

Building a data warehouse is widely accepted through
two approaches, Inmon‘s data driven Corporate Information
Factory[5] and Kimball‘s business driven Data Warehouse Bus
built through Dimensional Modelling and Data Marts [6].

B. Development of the RT-DW chain

Haisten[7] reviews the history of Data Warehousing and
documents that Inmon‘s approach created the snap-shot
concept, capturing data at a certain point of time and
establishing Data Warehousing as a Decision Support System
add-on, being independent of the source systems. Haisten
continues to state that Data Warehousing should evolve from
the snapshot approach and instead access data streams to

write data into the warehouse environment through operating
systems.

Though Haisten‘s approach is intriguing, getting data
from streams may not be suitable in every aspect. Owen
[8], Data Scientist and director of Cloudera distinguishes
between Stream processing and Batch processing. Owen
describes streaming as useful for computing a single data
element or a small segment of recent data with streaming
performing something relevantly simple. Owen continues by
contrasting with Batch processing having access to all data
with the ability to compute large and complex data. Taking
this into account, the best approach to leverage the benefits
of Batch and Streaming approaches is to develop a concept
that satisfies both.

The development to satisfy both presented in this paper is
the Real Time Data Warehousing (RT-DW) chain. Creation of
the chain concept originated through two main ideals. Nair [9]
proposed Supply Chain Analytics, an approach that combines
Data Analytics with Supply Chains offering advanced
capabilities ranging from drill down views, scenario and
what if analysis, pattern and trend analysis and dashboards
among other capabilities. Ranjan et al [10] researched Real
Time Business Intelligence (RT-BI) and the proposed interior
architecture with Supply Chain Analytics, detailing the
progression from reactive to proactive Business Intelligence
through automation.

In the creation of the RT-DW chain, both ideals contribute
on how the chain should be developed. Supply Chain Analytics
focuses on the business objectives and determine what needs
to be achieved. The RT-DW chain should focus on what will
contribute to the business objectives. In terms of Real Time
Business Intelligence, data must constantly be updated; this
requires the RT-DW chain to be automated on a timely basis.
Building the RT-DW Chain will be based on Kimball‘s[14]
approach of starting small and develop based on the business
process through Dimensional Modelling. The RT-DW chain
will be customizable based on the knowledge worker‘s desired
objective. To determine the success of the RT-DW chain Big
Data performance will be measured by comparing SQL Server
and Hive on Spark.

C. Big Data performance: Hive on Spark and SQL Server

In terms of analyzing big data performance between
SQL Server and Hive on Spark Price Waterhouse Coopers
(PwC) and Iron Mountain [15] conducted a study that
included 1,800 business leaders in North America and Europe
researching their use of their respective data. The results
show a disconnection between Data Science and business in
data strategies, competitive advantage and a lack of focus
in organizational investment when it comes to the right
analytical tools and talent. [16]

This lack of understanding shows that companies need to
better understand when to switch to a big platform. SQL
server and Hive on Spark are Benchmarked together to
determine this migration. Hive on Spark is a port of the
Apache Hive SQL engine to run over Spark instead of
Hadoop. Its supported by the Hive Query Language (HQL)
and runs over Hive Data Warehouses.[17] In comparison with
Hadoop, Hive on Spark was chosen to benchmark against
SQL Server because it can run machine algorithms 25 times
faster than Map Reduce programs and answer queries 40
times faster than on Hive on the Hadoop Platform. [18]

The importance of gathering results from Hive on Spark
and SQL Server through Benchmarking can offer multiple
benefits in a corporate environment as Managing Director of
CFO Edge, Rothberg [20] highlights how Key Performance
Indicators (KPIs) through Benchmarking can improve areas in
operations, productivity and profitability. The Benchmarking
approach to measure the SQL Server and Hive on Spark
is comparing Big Data architecture and systems under user
concerns[26] while using diverse and real world datasets.
Suitable data requirements are based on the characteristics of
Big Data, V3; Volume, Variety and Velocity.[29]

III. DESIGN

A. Operation of the RT-DW chain.

The RT-DW chain will measure the performance between
SQL Server and Hive on Spark through Python. Python was
chosen over other languages such as Java, PHP and R as
Python has a range of modules and packages that can support
Real Time Data Warehousing. Also as a scripting language,
Python can connect multiple existing components together as
seen in Fig 2.

Fig. 2. Connecting existing components in Python.

To measure Big Data performance between Hive on Spark
and SQL Server, two VMware environments were created to
measure performance on an equal playing field. As Table 1
shows, each VMware workstation is similar with the only
exception being the operating systems and tools for the data

warehouses. Hive on Spark will be run on Ubuntu 14.04.LTS
and SQL Server will be run on Windows 10 operating system.

Enviroment: Ubuntu Windows
Memory: 4096MB, 4GB 4096MB, 4GB
Processor: 1 1
Hard Disk: 80GB 80GB
CD/DVD: Ubuntu 14.04 LTS Windows 10

Network Adapter: NAT NAT
VM WorkStation: 11.0 11.0

Table 1: VMware Environments

The RT-DW Chain is developed by taking into account
components of the Data Warehouse architecture as shown in
Fig 1. The design of the chain will be to treat each part of the
chain as a block with a specific role that needs to be achieved.
In this case, this involves inserting and Benchmarking data
into the warehouse, get a cube analysis and produce results.
To show the flexibility of the chain, cube results are brought
into the Software as a Service (SaaS) provider Salesforce. A
Sentiment Analysis is also produced to show the Data Mining
capabilities of the chain.

Every block is represented through a master block that
activates each slave block in order through a recurring time
sequence from the operating system. A master block is a
Python script that calls Operating System (OS) and Sub
process calls to the slave blocks, which are Python scripts
that have a set of functions to carry out.

On the operating system level, a directory represents each
block. Files are placed in a starting directory called block 1.
When the master block activates the Python script associated
with the first block, it processes the functions and moves the
file into the second block/directory. The process is repeated
until the file enters through all blocks to the end.

As seen in Fig 3, this process allows multiple tables, Data
Marts and Data Warehouses to be populated from a sequence
of scripts or one giant script. Additionally, the RT-DW chain
will query and update multiple Data Warehouses at the same
time, producing the results in one location. In both cases it
will reduce manual input and focus on more time for analysis.

Fig. 3. Real Time Data Warehousing (RT-DW) Chain Concept

B. Data Sources

Two different data sources were chosen to examine and
push each environment to its respective limits to assess
time and durability. The first data source is the Amazon
Review dataset.[25] Amazon has been used in a range of
papers from Big Data Benchmarking[26] to SIGIR and KDD
papers.[11,12] From a data perspective, Amazon was chosen
for testing as the raw data consists of over one hundred
and forty two million records, broken down into two main
formats Reviews and Metadata. In terms of data volume, the
data is suitable for stress testing. The quality of the data was
another key factor as it allowed analysis to be conducted. This
expanded the data into multiple new categories developing
the Data Warehouse further for Benchmarking.

The second data source is COSMOS [19], a project that
brings a range of Data Scientists together to investigate the
ethical impact of big social data, the development of new
methodological tools and technical/data solutions for the
UK academic and public sectors. In contrast to Amazon,
COSMOS was chosen for testing as the data is focused solely
on social media[13]. COSMOS data capacity is limitless
as social media data is recorded through the COSMOS
Streaming API. Finally Cosmos was selected because the
data presented for Benchmarking is more compact in the
Data Warehouse schema structure.

C. Performance Parameters

To measure the performance between SQL server and Hive
on Spark, five Key Performance Parameters (KPI) are chosen
to conduct experiments on in each environment.

These performance parameters are:
• Time
• CPU
• Memory
• Disk
• Data Loss

When choosing these KPIs to measure, time was chosen
because to get the latest up to date information, the RT-DW
chain and Data Warehouses will have to deliver results as
close to zero latency as possible. CPU, Memory and Disk
Performance were chosen because the chain is dependent on
how each environment can withstand.[27] These parameters
determine how much the computer can process and the
possibility of overheating and crashing could occur, which
would damage the system. Finally Data Loss is recorded
to discover any data leakage, loss and damage. [21] As the
cost of data loss can lead to inaccurate results and in terms
of sensitive data a loss of ten thousand records could cost
between $1.5 and $2 million dollars [22]

Each file is benchmark tested using CSV format through
lines, the reasoning behind this is based on the size limit.
CSV can contain more data compared to spreadsheets such
as Microsoft Excel. With regards CPU, Memory and Disk
Performance, files are loaded together into the RT-DW Chain
so all pre-function results are similar when recording starts.
Table 1 shows the data volume loads through the RT-DW
chain.

Amazon Record count Cosmos Record Count
2500 2500

10000 10000
25000 25000
50000 50000
100000 100000
250000 250000
500000 500000

Table 2: Benchmarking Tables based on CSV file lines

D. User Experience Requirements

To successfully deploy the RT-DW Chain, expertise in four
skills are required:

• Data Warehouse Architecture
• JavaScript
• Python (or a similar programming language)
• Operating System experience

Data Warehouse Architecture experience is needed to
connect between Fact and Dimension tables and to not
comprise data while importing. JavaScript is needed to
develop a cube model that reflects a Data Warehouse for cube
analysis. Python is needed as the blocks are built from Python
and require experience with programming concepts, range
of different packages and understanding syntax. Operation
Systems experience requires how to automate the system.

IV. IMPLEMENTATION

Incorporating the RT-DW chain to measure Big Data per-
formance and to convert manual into automated processes
requires taking into account a number of key points for
successful deployment. This involves three phases, Business
Preparation, RT-DW chain development and Big Data Execu-
tion.

A. Business Preparation

Before starting development, it is important to take into
account what needs the chain’s objective is attempting to fulfil
and what data sources are needed to achieve the end result.
Porter et al[23] describes it best by saying “A data warehouse
must deliver the right data to the right people. However, the
data warehouse cannot deliver all the data people want.”
Based on this business emphasis, a data warehouse schema
is created based on the importance, usefulness and quality of
each data segment.

To measure the user’s level of experience in developing
Data Warehouses, the Data Warehouse Architect will need to
look at what is necessary in the schema when creating tables
by taking into account how improper use of different data
variables may tweak results and cause incorrect execution
and analysis. Once the Data Architect has finalized the Data
Warehouse structure and the RT-DW chain to the needs of
the business, the next stage involves development.

B. RT-DW Chain Development

Based on the business plan, the Data Warehouse will be
implemented in its environment and the RT-DW chain will
have three blocks, containing a benchmarking, cube analysis
and processed block. On the operating system level a root
directory is developed containing three sub directories. The
reasoning behind this is that all files will be located together in
the same area and processing paths are closer when executing.

In terms of benchmarking data into the warehouse, the
approach involves reading files from a directory, interaction
with the server, loading multiple tables and passing the file to
another directory. Data is loaded into Hive and SQL Server
table through bulk loading where two requirements must
be met. This involves temporary files and support tables.
With regards benchmarking results between SQL Server
and Hive on Spark, performance parameters are recorded
in the benchmarking script and loaded into their individual
table. CPU, Memory and Disk are recorded through variable
assigned snapshots that start at the beginning of the script
and repeats after each table import. Time is documented
by subtracting pre and post table load variables. Data Loss
testing is saved by querying the Data Warehouses and CSV
files using the Count Function. The file count subtracts with
the post Data Warehouse count to determine if there is any
data loss.

Once loading is complete, the second block will activate
to perform cube analysis. This involves Python interacting
with the server again, establishing workspaces and importing
a user created cube model to perform drill downs, slicing and
querying on multiple Data Warehouses. As seen in Fig 4,
The cube model is built in JSON format and requires JSON
experience in assigning dimensions, measures, aggregates,
mappings, connection to established joins among other
features to the cube. To interact with Salesforce, Data
Architects communicate through the REST API using Python
as long as the user has a username, password and security
token.

To implement Data Mining into the chain, a range of
techniques can be used. For this instance, a Sentiment
Analysis is conducted by interacting with CSV files in
multiple blocks and a web service[28]. After the results are
processed, the data can be imported into a data warehouse

Fig. 4. Requirments to build a JSON cube model.

table, Salesforce using a Bulk API or exported into a file.

To build the master block to activate each Python script.
A script consisting of only operating system and sub process
calls are required. As seen in Fig 5, this master script can be
enhanced to start up a server, create file count requirements
and with the flexibility of calls, the user can decide which
scripts to turn on or off. To implement Real Time Data
Warehousing, Windows Operating System can run the chain
starter script through Windows Task Scheduler at a minimum
of 5 minutes; where on a Linux operating system Ubuntu
Crontab can run tasks at a minimum of one minute. Each
approach can repeat the running of the Chain Starter Script
after N amount of minutes.

Fig. 5. Master block to activate the RT-DW chain.

C. Big Data Execution

With Data from multiple sources and analysis needed to
be conducted before Benchmarking, data is prepared through
combining multiple data frames into Denormalization as
one giant flat file. N amount of files are then placed in the
starting directory. After N amount of minutes, Crontab or
Windows Task Scheduler runs the chain starter script. The
script starts the server and checks if N amount of files are in
the beginning directory of each warehouse.

If N is greater than the requirement: Benchmarking will
begin loading the specified tables in the python script through
temp files and support tables.
If N is less than the requirement: Benchmarking is skipped
and the chain moves to the next phase of the chain.

The cube Salesforce block then performs cube analysis from
the warehouses and uploads the results into Salesforce. Finally
Data Mining Sentiment Analysis communicates with the web
service[28], processes and loads the results into the user’s
desired format. The process is then repeated after N amount
of times.

Fig. 6. Cube Results in Salesforce.

V. EVALUATION

A. Evaluation Method

As seen in Table 1, fourteen datasets are chosen for testing,
seven from Amazon with the remainder from COSMOS.
These datasets range from 2,500 to 500,000 records and the
volume of data is equal between Amazon and Cosmos. These
datasets are placed into the RT-DW chain and benchmarked
together during stress testing.

There are three cycles of testing:
• Amazon: testing is conducted with Amazon data.
• Cosmos: testing is conducted with Cosmos data.
• Amazon and Cosmos: testing is conducted with both

data sources.

Each cycle is broken down into five sub sections to de-
termine the effects duplication has on the RT-DW chain.
Denormalised files are divided into the following duplication
parameters:

• 0%
• 12%
• 24%
• 36%
• 48%

The testing process is repeated three times to determine
variation in results.

B. RT-DW Chain Evaluation

The RT-DW chain has been optimized from the initial
concept. The first concept originated from accessing a
directory manually similar to an SSIS For Loop Container
and executing files through a directory. This then evolved
to using Ubuntu Crontab and Windows Task Scheduler and
a pre-defined directory destination path. Changing from a
manual to an automated process similar to Haistens approach
of using operating systems is a positive direction moving
forward as Data Analysts just need to acquire data and place
it in a directory and let the operating system take care of it.

The benefits are:
• Reduction in time, leading to more focus on other activ-

ities.

• Removal of continuous manual input when importing data
into the warehouse.

• Removal of continuous manual input when conducting
Data Mining.

• Cube analysis is now based on searching up the latest
results from the data warehouse/Salesforce

However, the drawback is shifting responsibility and being
dependent on the operating system. This will require users
to have a sustainable machine that can meet and handle
the demands of the processes being implemented. This is
supported as processing large datasets, preventing data loss
and to remove manual processes from the user requires more
pressure on the operating system.

During Benchmarking, pressure on the operation system
was taken into account by moving from the originally pro-
grammed ’line-by-line’ to bulk loading and support tables.
Bulk loading and support tables were also used because:

• Bulk loading is faster to process compared to ’line by
line’.

• Python can only update Hive through bulk load.
• Small data can support ’line to line’ but as volume of

data increases, data loss happen on SQL Server and can
create key errors.

• Support tables are used because though there are unique
denormalised records, they are not unique when nor-
malised.

• Support tables are used to filter data because Hive
does not have a key system similar to SQL. This filter
converts tables into Primary Key tables and provides
Hive with accurate cube analysis.

When Benchmarking data into the RT-DW chain, evaluation
began by using small datasets to discover if cube analysis
results were accurate or inaccurate. In terms of a knowledge
worker’s level of experience, the results will be based on
how the user developed the Data Warehouse and the creation
of the cube model. This was examined further by altering
the Data Warehouse by placing columns into different tables
and switching compound keys with primary keys. The results
showed data loss and inaccurate cube analysis compared to
the properly implemented Data Warehouse. Once accurate
results were recorded in the cube, data loads were increased
to determine Benchmarking performance.

C. KPI Benchmarking: SQL Server VS. Hive on Spark

Test: Time performance
Result: Hive on Spark outperforms SQL Server.

In measuring time performance based on before and after
data load time functions, Hive on Spark outperforms by
loading to near zero latency in milliseconds compared to
SQL Server’s seconds/minutes. Though slower in processing
data it is to be noted SQL Server does perform well below

100,000 records however once over the threshold, processing
time jumps as seen in Fig 7.

Fig. 7. Hive on Spark (Top Measured in milliseconds.) SQL Server (Bottom
Measured in Seconds)

In measuring time in the RT-DW chain, Hive on Spark
out performs SQL Server again as SQL Server require more
steps to implement, Hive allows overwriting tables where
SQLs limitation requires you to send data to a CSV file and
to write to an empty table. Another drawback of SQL is
that to conduct cube analysis keys are required, this means
the deactivation and reactivation of Foreign Key constraints.
From observing both Amazon and Cosmos directories, it
appears that Windows focus solely on one Python function
at a time until completion where Linux can run additional
functions depending on the progress of another function.

From multiple test results, processing time is consistent
with a minimum variation on Hive on Spark’s milliseconds,
however as seen in Fig. 8; SQL Server processing time varies
based on the computer performance.

Fig. 8. Variation of Windows processing time of 500,000 records.

Test: Data Loss performance
Result: SQL Server successfully imports every record, Hive
on Spark show data irregularity.

The maximum record count from the seven datasets
are 935,000 denormalized rows. Using SQL Server, both
the Amazon and Cosmos data warehouse imports each
row successfully. In contrast, Hive on Spark shows data

irregularities. Two different approaches were used to address
this issue.

The first approach originally used the Python package
Tempfile where small duplicate data generated after a file is
processed over six digits. Tempfile though can cause a more
severe data irregularity by doubling the amount of the file. As
seen in Fig. 9, It appears this comes into effect after N amount
of files are being processed. The alternative approach involved
using Windows Temp file approach by creating a CSV file in
a directory. This approach was implemented in Windows as
Windows NT and later do not support re-opening temp files
with the Python package. As seen in Fig. 9, the results show
a loss of data in each file load.

Fig. 9. (Top - Tempfile, Severe Data Duplication) — (Bottom - Created CSV
tempfile, Data Loss)

Test: Computer Performance (CPU, Memory, Disk)
Result: CPU is pushed to it‘s limit on Hive on Spark, where
Windows starts at max CPU and reduces over time depending
on load, Memory and Disk are effected more on Windows
compared to Ubuntu.

As Hive on Spark out performs SQL Server in time,
the trade off is Data irregularities, The reasoning behind
this could be based on CPU performance. Multiple test
recordings show a repeat pattern that Hive on Spark pushes
CPU performance to the environment’s limit for the short
period of time. By contrast, SQL Server‘s CPU performance
starts strong but adjusts based on the data load. While the
chain is running, Memory and Disk performance on Hive on
Spark start and maintain at below 60%. In SQL Server the
start point begins at above 50% and can increase above 90%
depending on data load.

D. RT-DW Chain: SQL Server VS. Hive on Spark Discussion:
Which One?

The findings from Benchmarking based on user
concerns[26] have not produced a universal answer on
which approach is the best as each evaluation has their

positive and negative results. It is to be noted though that the
VMware environments could be the cause of these limitations.

If these limitations are resolved based on better hardware
specifications, Hive on Spark would out perform SQL server.
However, if hardware is not the reason and it is based on
the software, perhaps the approach in tackling Big Data
should be re-evaluated. Haisten’s [7] viewpoint was taking a
certain criteria of data from a stream and place it into a Data
Warehouse has merit as it offers less impact on the hardware.
With regards the RT-DW chain, perhaps slicing data into
smaller segments may be best. This would reduce processing
time, pressure on the hardware and prevent data loss. This
is supported for when the python tempfile is successfully
working with smaller datasets compared to larger datasets as
seen in Fig. 10.

Fig. 10. (Top - Data Irregularity after six digits) — (Bottom Successful
deployment with smaller data loads.)

VI. CONCLUSION

The research question being addressed was to convert
manual into automated processes to reduce time to allow
Data Analysts more time for analysis. Researching current
concepts, practices and acknowledging the state the industry,
the concept of Real Time Data Warehousing Chain was
developed to achieve this.

The findings show that their is great flexibility in the
RT-DW chain allowing communication to Data Warehouses,
CRM systems and offering Data Mining capabilities. In
terms of benchmarking SQL Server and Hive on Spark, their
was a trade off based on the ’user concerns’ performance
parameters. These findings show from a hardware perspective
that the user has to have a suitable machine. With regards
software, the approach of handling ’Big Data’ was reflected
upon by proposing alternative methods.

Future work to be implemented in the RT-DW chain should
focus on enhancing preparation tools by slicing data into
separate CSV file blocks for the RT-DW chain to transfer
into the Data Warehouses. This will increase speed, create
zero data loss and to reduce computer performance pressure.
This can be done by testing one giant file or gathering from
a stream as Haisten envisioned. Secondly, RT-DW chain
should be placed into different environments such as a high
performance computing cluster on a cloud to determine it’s
effects. Finally it should be noted, The RT-DW chain was
developed based on technologies that are based on the time
period, different Python packages and languages may provide
varied results. It is important to look at what is currently
available in the industry to enhance on the current concept.

The RT-DW chain was used to measure Big Data
performance but what makes it an efficient tool moving
forward is it can be applied to any situation through
preparation and the continuous support by coding
communities.

VII. ACKNOWLEDGMENTS

• Dr. Simon Caton
• Dr. Julian McAuley
• Dr. Peter Burnap

REFERENCES

[1] J. Bort, “Tech billionaire Michael Dell says ’big data’ is
the next trillion-dollar tech industry”, Business Insider UK,
2015. [Online]. Available: ‘‘http://uk.businessinsider.com/
dell-big-data-is-next-trillion-dollars-2015-12?r=US&IR=T’’.
[Accessed: 11- Jan - 2015].

[2] G. Press, ”6 Predictions For Big Data Analytics And
Cognitive Computing In 2016”, Forbes, 2015. [Online].
Available: http://www.forbes.com/sites/gilpress/2015/12/15/
6-predictions-for-big-data-analytics-and-cognitive-computing-in-2016/.
[Accessed: 15- Dec- 2015].

[3] S. Chaudhuri and U. Dayal, “An overview of data warehousing and
OLAP technology”. ACM SIGMOD Record, 26(1), pp.65-74, 1997.

[4] W. Inmon, “Building the Data Warehouse. 4th ed”. Hoboken: John Wiley
and Sons, 2005.

[5] M. Breslin, “Data Warehousing Battle of the Giants”.Business Intelli-
gence Journal, p.7, 2004.

[6] R. Kimball, “The data warehouse lifecycle toolkit. 2nd ed”. Indianapolis,
IN: Wiley Publishing, Inc, 2008.

[7] M. Haisten, “The Real-Time Data Warehouse: The next stage in Data
Warehouse Evolution”. DM Review, 1999.

[8] S. Owen, “What are the differences between batch
processing and stream processing systems?”, Quora,
2014. [Online]. Available: https://www.quora.com/
What-are-the-differences-between-batch-processing-and-stream-processing-systems.
[Accessed: 12- Mar- 2016].

[9] P. Nair, “Supply Chain Analytics”, CSI Communications, vol. 38, no.
7, pp. 11 - 12, 2014.

[10] B. Sahay and J. Ranjan, “Real time business intelligence in supply chain
analytics”, Info Mngmnt and Comp Security, vol. 16, no. 1, pp. 28-48,
2008.

[11] J. McAuley, C. Targett, J. Shi, A. van den Hengel, “Image-based
recommendations on styles and substitutes” SIGIR, 2015

[12] J. McAuley, R. Pandey, J. Leskovec, “Inferring networks of substitutable
and complementary products” Knowledge Discovery and Data Mining,
2015

``http://uk.businessinsider.com/dell-big-data-is-next-trillion-dollars-2015-12?r=US&IR=T''.
``http://uk.businessinsider.com/dell-big-data-is-next-trillion-dollars-2015-12?r=US&IR=T''.
http://www.forbes.com/sites/gilpress/2015/12/15/6-predictions-for-big-data-analytics-and-cognitive-computing-in-2016/
http://www.forbes.com/sites/gilpress/2015/12/15/6-predictions-for-big-data-analytics-and-cognitive-computing-in-2016/
https://www.quora.com/What-are-the-differences-between-batch-processing-and-stream-processing-systems
https://www.quora.com/What-are-the-differences-between-batch-processing-and-stream-processing-systems

[13] P. Burnap, O. Rana, M. Williams, W. Housley, A. Edwards, J. Morgan, L.
Sloan, and J. Conejero.“COSMOS: Towards an Integrated and Scalable
Service for Analyzing Social Media on Demand”, International Journal
of Parallel, Emergent and Distributed Systems, 2014.

[14] R. Kimball. M. Ross., “The Data Warehouse Toolkit: The Complete
Guide to Dimensional Modeling”; Second Edition. Wiley, 2002.

[15] R. Petley, C. Reid, J. McClean, K. Jones and P. Ruck, “Seizing the
information advantage How organisations can unlock value and insight
from the information they hold.”, A PwC report in conjunction with Iron
Mountain., 2015.

[16] S. White, “Study reveals that most companies are failing at big data”,
CIO, 2015. [Online]. Available: http://www.cio.com/article/3003538/
big-data/study-reveals-that-most-companies-are-failing-at-big-data.
html. [Accessed: 11- Mar- 2016].

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley, M.
Franklin, S. Shenker and I. Stoica, “Fast and Interactive Analytics over
Hadoop Data with Spark”, 2012.

[18] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. Franklin, S. Shenker and
I. Stoica, “Shark: Fast Data Analysis Using Coarse-grained Distributed
Memory”.

[19] P. Burnap, “COSMOS Legacy Page”, Cosmosproject.net, 2014. [Online].
Available: http://www.cosmosproject.net/. [Accessed: 11- Feb- 2016].

[20] A. Rothberg, “What is Benchmarking and Why Is It Important?”, CFO
Edge, 2013.

[21] S. Liu and R. Kuhn, “Data Loss Prevention”, IT Professional, vol. 12,
no. 2, pp. 10-13, 2010.

[22] R. Layland, “Data Leak Prevention: Coming Soon To A Business Near
You”, BUSINESS COMMUNICATIONS REVIEW, pp. 44 - 49, 2007.

[23] J. Porter and J. Rome, “Lessons from a Successful Data Warehouse
Implementation”, CAUSE/EFFECT, 1995.

[24] “be happy and make others to be happy: Data Warehouse
Architecture”, Krishnareddyoracleapps.blogspot.ie, 2012. [Online].
Available: http://krishnareddyoracleapps.blogspot.ie/2012/07/
data-warehouse-architecture.html. [Accessed: 15- Apr- 2016].

[25] J. McAuley, “SNAP: Web data: Amazon reviews”, Snap.stanford.edu,
2016. [Online]. Available: https://snap.stanford.edu/data/web-Amazon.
html. [Accessed: 15- Nov- 2015].

[26] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,
S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li and B. Qiu, “BigDataBench:
a Big Data Benchmark Suite from Internet Services”, 2014.

[27] J. Henning, “SPEC CPU2000: Measuring CPU Performance in the New
Millennium”, Computer, vol. 33, no. 7, pp. 28 - 35, 2000.

[28] Sentiment Analysis, [Online]. Available: http://text-processing.com/api/
sentiment/. [Accessed: 03- Feb- 2016].

[29] P. Zikopoulos, “Understanding big data”. New York: McGraw-Hill,
2012.

http://www.cio.com/article/3003538/big-data/study-reveals-that-most-companies-are-failing-at-big-data.html
http://www.cio.com/article/3003538/big-data/study-reveals-that-most-companies-are-failing-at-big-data.html
http://www.cio.com/article/3003538/big-data/study-reveals-that-most-companies-are-failing-at-big-data.html
http://www.cosmosproject.net/
http://krishnareddyoracleapps.blogspot.ie/2012/07/data-warehouse-architecture.html
http://krishnareddyoracleapps.blogspot.ie/2012/07/data-warehouse-architecture.html
https://snap.stanford.edu/data/web-Amazon.html
https://snap.stanford.edu/data/web-Amazon.html
http://text-processing.com/api/sentiment/
http://text-processing.com/api/sentiment/

	Introduction
	Related Work
	Components of a Data Warehouse
	Development of the RT-DW chain
	Big Data performance: Hive on Spark and SQL Server

	Design
	Operation of the RT-DW chain.
	Data Sources
	Performance Parameters
	User Experience Requirements

	Implementation
	Business Preparation
	RT-DW Chain Development
	Big Data Execution

	Evaluation
	Evaluation Method
	RT-DW Chain Evaluation
	KPI Benchmarking: SQL Server VS. Hive on Spark
	RT-DW Chain: SQL Server VS. Hive on Spark Discussion: Which One?

	Conclusion
	Acknowledgments
	References

