National College of Ireland
BSc in Computing
2014/2015

Sean Keeley
x12383858
x12483858@student.ncirl.ie

PhotoPrompt - Technical Report

Github Link: https://github.com/s3an/photoprompt2

"‘"'l
\ National
College

Ireland

Table of Contents

Executive Summary

1 Introduction

1.1 Background

1.2 Aims

1.3 Technologies

IN

System

2.1 Requirements

2.1.1 Functional requirements

2.1.2 Requirement 1

2.1.3 Requirement 2

2.2 Data Requirements

2.3 Portability Requirements

2.4 Maintainability Requirements

2.5 Usability Requirements

3 Design and Architecture

4 Implementation

5 Testing

6 Conclusion

7 FEurther Development or research

8 Appendix

8.1 Project Proposal

8.2 Project Plan

8.3 Monthly Journals

8.4 Analysis Design

8.5 Requirements Specification

8.6 Other Materials

Executive Summary

This document holds the purpose of portraying the progress of the Final Year Project -
PhotoPrompt. Found in the appendix of this document are the previous required
documents that have been submitted along with updated information in the main
document. The mobile market is constantly growing and smartphones are now standard
in peoples lives. Facebook claims to have 350 million photos shared a day on it’s
platform - not including Instagram uploads. Many of those are reposts, or self pictures
and hold no real meaning. The idea behind PhotoPrompt is simple. Log in, check your
prompt and go take the best picture you can of that prompt. Other users are the
deciding factor of what is good or not. There is no metric or formula for a good photo,
just practice. Using PhotoPrompt will provide you with inspiration to take photos that
you normally wouldn’t take and fill the world up with photos that actually mean
something all while becoming a better photographer. | chose a hybrid web application
because it allows anyone with a browser to access the site and engage in the
functionality. No matter your operating system you will be able to use PhotoPrompt as

long as you have access to a web browser.

The prompts themselves will range from a variety of things such as nature, buildings,
traffic etc..all things that most people will be able to find. I think it will be interesting to
see how so many people interpret the same topic and seeing the difference in
photography style will urge people on to trying new methods or solutions to
photography problems. With people taking photographs on smartphones everyday, and
apps such as Instagram and Snapchat now engrained as parts of peoples daily routine, |
think that mobile users with an interest in photography will be very interested in

PhotoPrompt.

1 Introduction

1.1 Background

Everyone has their own device. People want to take photographs on the go. It is the
reason that smartphones with cameras were invented. Sometimes there may be a lack
of inspiration or drive to take a picture and what to take that picture of. PhotoPrompt
will solve that problem. Bringing back the excitement to take a photograph of something
that is not yourself. Using PhotoPrompt will give the user a topic to base a picture on,
along with feedback about how good that photograph is based on user opinion and
relevance to the the topic. PhotoPrompt aims to give the user a reason to take a picture

again.

1.2 Aims

@ Clean ‘Material Design’ Ul

@ Easy to use functionality

@ Accessibility on all devices

@ Use of forward thinking technology

@® Minimal network impact on uploading and downloading images

1.3 Technologies

HTML5

The current standard in web markup will be used allowing for the most up-to-date
functionality. HTML templating will be the base of the markup allowing for rapid

development and modular code.

()

SS

(8]

As above | will use the most up-to-date style functionality to deliver a clean and simple

Ul. CSS3 is now the web-standard in delivering stylesheets.

(V)

S

[V

SCSS is a CSS pre-processor built and compiled using Ruby. Using a pre-processor has
many benefits over regular CSS. These include a responsive design outlook from the
beginning of your project. The ability to use ‘Mixins” which act like functions within your
CSS that allow you to make calculations within the stylesheets. One of the bigger uses of
using the SCSS pre-processor is the ability to save variables within your stylesheet so you
don’t have to write the same CSS code many times. SCSS files are then compiled using a

ruby program to export pure CSS code.

Javascript

Standard stuff really. Javascript for general functionality and interactivity on the
backend. The whole of the framework is built and written on the assumption of using
Javascript as both a front and back end language. The latest Javascript standards will be

adhered to along with using the latest stable release of the language, ECMAScript 6.
AWS

Amazon Web Services or AWS for short, is a cloud based platform for hosting,
integrating and storing complex systems on a easy to use, scalable, reliable and well
documented platform. | chose AWS for hosting because it is becoming the industry

standard along with having some prior experience on it.

The part of AWS | will be using is the EC2 (Elastic Cloud), which creates a virtual machine
based on your configuration. In it, it gives full control of what type of systems and
programs you want to utilize to make your system functional. | will just use AWS for
additional testing instances as the main backend will be contained within MeteorlS.
There will be a need for multiple instances of ec2 severs to deploy and test the

application.

Another aspect of AWS that will be used will be S3. S3 is an online file storage service
that provides storage through web service interfaces such as REST and SOAP. S3 will
store pointers to the images that are uploaded through the application, and it will serve
as a pseudo content delivery network allowing for faster streaming from the cloud

service.
Meteor)S

MeteorlS is an open-source JavaScript application framework built using Node.js. Using
Meteor gives me the ability to control front-end and back-end technology, along with
the ability for rapid prototyping of cross-platform, hybrid code. It is basically a collection
of Node.js libraries and packages bundled together to make web application

development easier and more straight-forward.

Meteor]S is split into a CLI (Command Line Interface), a server and a client. The browser
uses packages like Tracker and Spacebars to receive and display the dynamic front-end
code you write. Your server code is written in javascript using a templating language and

provides quick and easy server-side code.

You only need to create one code base to service many platforms and the code is
cross-platform compatible. This enables the developers to hotfix problems in the
application by simply updating the code-base, removing the need for App-Store updates

and validations.

MongoDB

MongoDB is the packaged database within Meteor and is the premier NoSQL database
system currently available. MongoDB is written in code similar to Javascript and uses a

flexible document model that is similar to JSON. (Javascript Object Notation).

Using the flexibility of MongoDB opens up for Rapid application development and

simple evolution of your system because you are not tied down to one set of fields or

one way of doing things. With built in systems for scaling and database failure, along
with being based and written again in javascript style syntax, it fit's with the rest of the

project.

BootStrap 3

BootStrap3 (Built by the lovely people @ Twitter) isa HTML, CSS and JS framework for
building responsive, mobile first web applications. | will use bootstrap for it’s out of the
box responsive functionality so that | can begin ‘Mobile-first’ design. At it’s core it is

helpful to build quick and easy user-interface components.

Mobile First Design

As an extension of the above explanation of BootStrap, Mobile-first design is as it
sounds - designing for the mobile experience first. The previous standard of web design
employed Graceful Degradation - which would design for the biggest experience and
‘gracefully degrade’ down to the small viewpoints, often resulting in lackluster
experiences. Mobile-first takes the opposite approach where it starts at the smaller
viewpoints and employs Progressive Enhancement - a seamless transition into the larger
viewpoints with added benefits occasionally. This is a core responsive design and should

give an application like feel the web app.

Mobile First

=-=-=

2 System
2.1 Requirements

2.1.1 Functional requirements

2.1.2 Requirement 1: Uploading a photo

Description & Priority

This is a vital, important requirement as the application is powered by the ability
to check a topic and upload a photograph. PhotoPrompt wouldn’t work without
the ability to upload a photo from your device. The user takes a photo, it is
stored to your devices internal memory, the user clicks an ‘Upload’ button which

accesses the file system and allows the user to upload the chosen photograph.

Assumption & Risk

A person may upload a photo that is irrelevant to the current topic. This cannot
really be stopped by the application but will hopefully be voted against by the
user base. Again, a malicious user may upload an offensive photograph which
cannot really be stopped on the application back-end without some intensive

monitoring process beyond the means of this project.

Detailed Use Case for Uploading a Photo:

Scope

The scope of this use case is to evaluate the needs of the user and the system in
order to upload a photo and interact with the application as a whole. This is the

main flow of the whole application.

Description

This use case describes the processes behind uploading a new photograph to the

system.
Flow Description
Precondition

The user has logged in successfully and the system is waiting at the homepage.
There is a keyword and a timer displaying on the homepage of the system. The
user can view already uploaded images and can clearly see the upload

functionality to interact with.

Activation

This use case starts when a user interacts the ‘Upload Photo’ button
Main flow

1. The system identifies the button click or interaction and sends a request to
the user device.

2. The user interacts with the pop up screen and chooses a photo to upload.
(The user may also drag a file directly onto the system)

3. The system then takes that information and uploads the photo to a
database and stores a CDN pointer.

4. The system validates the photo is of correct format and is within the size
regulations.

5. The system sends a request to upload the photo

6. The system displays the photo on the users homepage

Alternate flow

Al- The user uploads a non-photo format
1. The user chooses a non-photo format file to upload - such as .mp3 or .java
2. The system attempts to validate this upload

3. An error message is returned alerting the user of a failure.

10

4. The use case continues at position 2 of the main flow

Exceptional flow

E1l- Invalid photo format.

5. The user chooses to upload a file that is not of photo format. This could me
.mp3 or .java et

6. The system cannot upload this file because of pre-determined restraints.

7. The use case continues at position 2 of the main flow

Termination

The system then presents the homepage again, with the users newly uploaded

photo being displayed.
Post condition

The system goes into a wait state, for another photo to be uploaded or another

functionality to be invoked.

11

2.1.3 Requirement 2: User Voting

Description & Priority

This is another important requirement. The ability to vote for and against what
you think is a relevant photo is important to the success of PhotoPrompt. There
will only be a positive vote. Giving the user the option to negatively vote often
leads to a larger % of negative voting, purely for the sake of voting against
someone.

https://medium.com/the-physics-arxiv-blog/data-mining-reveals-how-the-down-

vote-leads-to-a-vicious-circle-of-negative-feedback-aad9d49da238#.ej2979gg3

This is referenced in the above article but it covers points that a

“Users who are down-voted produces lower quality content in future that is
valued even less by others on the network. What’s more, people are more likely
to down-vote others after they have been down voted themselves. The result is
a vicious spiral of increasingly negative behaviour that is exactly the opposite of

the intended effect.”

Assumption & Risk

Risks lie in this requirement about a lack of user interaction. Users are not
required to vote so therefore we cannot make them vote. | make the assumption
that the user is actually interested in seeing the better content that the
application has to offer therefore the user will vote according. As said above,

users can only be encouraged to vote through prompts on the site.

12

https://medium.com/the-physics-arxiv-blog/data-mining-reveals-how-the-down-vote-leads-to-a-vicious-circle-of-negative-feedback-aad9d49da238#.ej2979gg3
https://medium.com/the-physics-arxiv-blog/data-mining-reveals-how-the-down-vote-leads-to-a-vicious-circle-of-negative-feedback-aad9d49da238#.ej2979gg3

2.2 Data requirements

The data requirements of PhotoPrompt was research into the optimization and
compression of the photo files in order to save the most server space as possible.
There will also be a limit on the size of the photo that can be uploaded by the
user in order to stop malicious users uploading gigabytes of data and slowing
down the experience for all users. Using the cloud storage as a pointer system
over a traditional database will provide a faster connection and less need for
users to download the images, rather just redirect the devices screen to the
content. Upon initial testing, this method saves data and is not in any way

detrimental to a users data plan.

2.3 Portability requirements

PhotoPrompt is a mobile-friendly, responsive web application meaning that the
portability requirement is quite high. The experience will be the same and fluid
across any device that you may use. This means that the application has a very
portable aspect to its creation. With a mobile-first principle in place, the
application should deliver a consistent experience across any device regardless

of platform.

2.4 Maintainability requirements

As PhotoPrompt is a web application, there can be a quick turnaround time for
new features, bug fixing and testing. | chose the web application method
because of this because of the rigid testing and approval processes that go along
with native applications and applications stores. Having the ability to make quick
changes was really important in developing this project as | wanted to be able to
develop in an agile work methodology. MeteorlS being cross platform allows for
the hot-fixes to skip the approval process and for new features to be developed

quickly and efficiently.

13

2.5 Usability requirements

The user will need a constant internet connection, as well as either 1) a device
with a camera or 2) a device with accessible and readable internal storage that
has the desired photo stored on there. The internet connection will be for
uploading the photos from the device as well as loading the content of the web
application. Baring the physical requirements of the devices the user will need
access to input the text of the usernames and passwords. There are no other

usability requirements upon the application.

3 Design and Architecture

The architecture of PhotoPrompt will be based on the simple Client/Server stack that is

contained within Meteorls. The Picture below will explain further.

OMETEOR

2 EFHE e ML

Meczor App

MaongoDB

Modke fs. Fbers/Futnes. LivesGuseny

" hilache Tor Meteoichut # Dwuigned by Srrviertige

14

Barring the architecture, there will be three main algorithms in this application. First of
all the algorithm for returning a random topic for the user to take a picture of. For
testing purposes | will have a sample database to pull random topics from. | eventually
want this to search the web for things that are trending and being talked about, collate

them together and then return them as topics for people to use.

The second algorithm will be for uploading images. This will take the users image either
taken from the camera on the device, or from within the file system and upload it to an
Amazon S3 bucket where it waits to be returned to the client application. This upload
algorithm will take advantage of many Meteor Packages such as Collections:FS and
CFS:S3. These packages leverage Meteors built in methods for easy manipulation of files
and uploading to S3 by just inserting the information that Amazon provides. I'll need to
make sure this information is hidden correctly so no malicious users can use the Amazon

account.

The third algorithm is the voting one. The application will just return the most recent
images uploaded by users. There will be an ability to have a positive vote, showing the
uploader your enjoyment of the photograph. There will be no negative voting. As
referenced above, negative voting leads to a cycle of negative impact on the user and on
the site as a whole. A positive vote may inspire people to use the application more and
in turn create more and better content. A user who has been negatively voted may feel
victimised and that they shouldn’t continue to use the application for fear of further

negative voting.

15

4 Implementation

Using Meteor JS as the main implementation framework will have its benefits and it’s
challenges. Using things like Blaze to make reactive templates will speed up
development substantially. Blaze is Meteor’s built-in reactive rendering library. Usually,
templates are written in Spacebars, a variant of Handlebars designed to take advantage
of Tracker, Meteor’s reactivity system. These templates are compiled into JavaScript Ul
components that are rendered by the Blaze library. Handlebars is just a templating

syntax language.

The main classes within the application revolve around uploading images to the cloud

service, logging in and registering and voting on the uploaded images.

Uploading images code will combine the use of multiple packages that come with
Meteor JS. Namely it will use the Dropzone package, giving the users an area to upload
to on the front-end. There is another package called Collections-FS that will allow
manipulation of the images to be put into temporary mongo collections before using an
S3 extension of Collections-FS to push those images to Amazon S3. Below is a code

snippet for uploading:

(Meteor. isServer){
var imageStore F5.5tore.53("images", {

accesskKeyId: Meteor.settings.private.AWSAccessKeylId,
secretAccessKey: Meteor.settings.private. AWSS5ecretAccessKey,
bucket: Meteor.settings.private. AWSBucket

1);

Images F5.Collection("Images", {

stores: [imageStore],
filter: {
allow: {
contentTypes: ['image/*"']

}

16

For user accounts , the built in Accounts packages in Meteor will be used allowing for
quick accounts integration. Firstly to use the accounts-ui package initially, along with
accounts-password for user account creation. This combined with accounts-bootstrap
for better design that is more in line with the rest of the application. MeteorJS has built
in oAuth functionality that allows extensions to various other sites to use those as login
credentials. The oAuth packages that are included in Meteor include but are not limited
to Facebook, Twitter, Google, Github and many more. This will allow users to enter the
application from whatever chose medium they want - if for some reason they do not

want to make an account using the account creation functionality.

The voting system will make use of a reactive-var package. A ReactiveVar holds a single
value that can be get and set, such that calling set will invalidate any Computations that
called get, according to the usual contract for reactive data sources. It’s similar to a
session variable in traditional web development with the added benefit of holding any
data type, not just JSON like a session would hold. An important property of
ReactiveVars — which is sometimes a reason for using one — is that setting the value to
the same value as before has no effect; it does not trigger any invalidations. So if one
autorun sets a ReactiveVar, and another autorun gets the ReactiveVar, a re-run of the
first autorun won't necessarily trigger the second. This allows for consistent returns of

voting numbers across all users.

5 Testing

Selenium is the premium web test suite. It works based on the theory of browser
automation. You create classes based on what you want to test so if you wanted to test
the upload function - You would navigate to the url, click the button and tell Selenium

the desired outcome and if the outcome is the correct one the test will pass.

Meteor JS has many built in testing functionality packages to enable faster integration of
testing scripts. The most popular and widely used framework for testing Meteor is

Velocity - https://github.com/meteor-velocity/velocity - which is a reactive test runner

for Meteor. It in itself is not the actual tests, rather a means to run those tests. Velocity

17

https://github.com/meteor-velocity/velocity

needs to be paired with one of the forerunning Javascript testing frameworks, such as
Cucumber or Jasmine. Once the relevant packages are installed, Velocity provides you
with an interface to interact with on the browser, in order to run the tests by hand. This

process will eventually be automated.

The use of these frameworks for feature testing will be combined with some webDriver
style testing in order to check the live status of the site. This will probably be completed

using an EC-2 instance, with Jenkins, running Selenium Web Driver classes.

Below is the Jasmine code for a sample test of testing a user uploading a photograph.
You can see in the code snippet that it is straightforward. Tell the test what to do and

what to expect in the case of a successful test.

describe('Uploading a photo', fumction () {

beforeEach(function({){});
it{'interacting with the button uploads a photograph', function ()} {
$('button#image—upload').click();

$newDivs $('div.image—container');

expect($newDivs. length) . toEqual(l);
k);
i

6 Conclusion

There are many advantages and disadvantages to the direction | chose to take
PhotoPrompt thus far. The advantages mainly lie in the speed department where | have
a development stack that allows me to quickly prototype functionality with live updates

to the code. MeteorlJS has been a life-saver in this regard. It has sped up development

18

many times over. The ability for countless packages to be installed easily containing
many things that are needed has allowed quick development and progression. The
development of the front-end, back-end and database functionality within the one

language is highly appealing and surprisingly powerful.

| felt I might be hindered by the use of Meteor as an independent framework but the
advantages have far outweighed the disadvantages. The speed of development really
helped in the high pressure situation that is the software project. The disadvantages lie
in the innate theory of having a hybrid application. | have to code for every little nuance
within each operating system. For example, to upload a picture from a laptop, and
Android Device and an iOS Device are three separate methods because they all have

independent file structures and conventions independent to the operating system.

7 Further development or research

| feel like this is an incredibly marketable idea for an application. People taking photos
on the go using smartphones is happening more and more and this application will only
grow and blossom as that does. With further development | would like to implement
geo-location tags for the uploaded photographs. | feel this is beyond the minimum
viable product. There should also be a consideration to move the hybrid web application

away from it’s current architecture and move to 3 separate instances of PhotoPrompt -
1) A fully fledged, mobile web application

2) A native Android application using Java within Android Studio

3) A native iOS application using Swift in xCode.

| want native applications for the inherit optimisation benefits they provide, but
currently | am without the resources to make native applications - especially without the

time needed to learn a new Language in Swift.

If the application were to reach a commercial status this would have to be weighed up

against where Meteor is in its current development cycle. It is an ongoing framework

19

and the needs might outweigh its capabilities if it were to become highly, commercially
successful. Mobile-first is the future and it would remain the future of this project but
research would be done around upcoming innovations in the mobile technology space
in order to take better advantage of the trends that appear and are upcoming. The
performance difference isn’t really noticable within the scope of this project but if it

were to reach large commercial potential, it would have to be considered.

20

8 Appendix

8.1 Project Proposal

Background

| wanted to make an application that would show off my skills that | learned during my
work placement. | worked in a web development company where | was developing
mobile first websites and applications using a myriad of front end languages and
principles. | wanted to take this mobile focused, front end driven experience into my
final year project as this is the aspect of programming and computer science | enjoy the
most. | am a design geek at heart and | love making something look pixel perfect and
flow well. User experience is a big deal to me and | want to bring that into my project as

a future career possibility.

| decided on a mobile application that somehow incorporates pictures as | enjoy taking
pictures on the go with my smartphone. My main idea would be when you log in to the
app, the app presents you with a keyword and this keyword is the basis of the next
photo you take. You have to find something near you that is related to that keyword and
capture that image. Once you have that image you can upload it to the app and it will be
categorized with the other entries of that same keyword. People can then vote on the
picture they like the most (or is best representative of that keyword). The winning
photo(s) will be featured on the main screen of the app. The keyword will change on a
timer meaning that during the day there will be many different keywords and many
different subjects of which to take a picture of. | like the idea of something prompting
you to go out and take a picture providing you a myriad of different areas and different
perspectives. | think this is an interesting approach to a photography app and it will

allow me to express my strengths in a way that is forward thinking and future driven.

21

Objectives
| will break the objectives into 3 main objectives for the application.

The first objective is to create a fully responsive, fluid web application that runs and
works well on any device or screen size. The industry is headed towards this kind of
development with a lot of companies beginning to develop in a ‘Mobile First’” mindset.
Developing a mobile first application requires you to first finish the mobile design and
then scale back up to the desktop design, assuming most of your users will be coming
from a mobile device. | chose a web application because it allows me to harness the

skills I learned during my industry placement and create a quality, finished product.

The second objective is to set up my own hosting platform for the application. This is
something | have little experience with and therefore want to challenge myself in
creating a fast, reliable and secure cloud based hosting platform. | will use Amazon Web
Services, using the suite of services and applications on there. There are many hosting
services out there but the industry standards are leaning towards using Amazons
impressive proprietary service for all things hosting, with many companies replacing
physical server farms with intricate AWS deployments. | want to gain more experience in

using this technology so the project is a perfect place to start.

My third objective is to create an engaging, seamless experience that makes the user
want to return and keep using the app. This is in part achieved by having a fluid design
allowing you to use the app on any device you have. The other part is having a clean
looking design, that is easy to navigate and understand, along with a rewarding

experience in using it.

22

Technical Approach

There are some aspects of this project that will require some research on my part. | do
not have extensive experience in the hosting element of an application. | will need to

research the ins and outs of using Amazon Web Services for hosting.

My target audience are users that like to take pictures on the go and who are always

connected. The app will require a constant connection to the internet.

This application will most likely been based in HTML5/PHP/JS. A mainly web based front
end with a cloud hosted back end. | want to use the cloud as a hosting platform because

it is the way of the future and AWS(Amazon hosting) is extremely popular right now.

| picked a HTML 5 webapp because of the skills | gained during my work placement. |
wanted to apply the front end engineering experience | gained during the placement
into the project and | feel using HTML5 and making a web application is the best way to

do that.

| will approach this in a Scrum development practice. This requires me to break work
into week long increments and achieve something start to finish in that week period.
The week can be increased if something is more difficult or will require more man
power. When | say something is done from start to finish it means a basic
implementation and a start at the testing. | want to test features as | go along so that

hopefully | can have an extensive test suite by the time the project is completed.

Special resources required

As this is a mobile web application it will need to be tested on as many devices as
possible in order to make sure that the styling and design is consistent across the

application.

At a minimum you need a desktop view, an iPad view, a generic tablet view and a

mobile view. The mobile view could be broken down into the larger phone screens and

23

smaller ones. Having all of these multiple devices will be useful for testing and
designing. Websites react differently on different devices and different software

versions and having some devices that differ will help in capturing bugs and problems.

Project Plan

Gantt Chart in Microsoft Project

Technical Details

Implementation Languages include;
Front End -

@ HTMLS5 for markup and some functionality
@ Javascript for interactivity and functionality
@ (SS3/SCSS for styling and design

@ Grunt for Task running

Back End -

@ PHPS for database connectivity
@ PHP for functionality
@ Simple MySQL database for data I/O

@ Java/lenkins/Selenium for testing

Evaluation

| plan to simulate a user base manually by uploading pictures and upvoting/downvoting
them myself to show that functionality. There will be an automated test suite that runs
tests to make sure everything is running correctly. | want to set up a jenkins to do this

and run some extra selenium jobs to validate the front ends and test the functions.

24

https://drive.google.com/file/d/0B_qzLRnmLfPpd3ZTWGJEN2E4cFk/view?usp=sharing

The app won’t have that much backend infrastructure to keep reliable but | will
automatically test anything as it does come up. Automated testing is turning into an
extremely important part of software development as manual testing and QA is
becoming more and more rare. Companies are hiring automation engineers over

manual QA engineers so | want to improve my skillset in these areas and this project will

be a great chance to do just that.

Sean Keeley 28/09/2015

Signature of student and date

8.2 Project Plan

Gantt Chart embedded here - Gantt Chart in Microsoft Project

25

https://drive.google.com/file/d/0B_qzLRnmLfPpd3ZTWGJEN2E4cFk/view?usp=sharing

8.3 Monthly Journals

Sean Keeley Journal - x12483858

This is my collective reflection journal for the software project module my final year.
Here | will type the musings that went on in my head and the thoughts I've reached to
complete my final year project. This is an evolving document. Each month | will upload
the changes to the document made for that month along with the previous entries. The

first upload will contain the journal for September 2015.

September 2015

Week 1:

Starting back into the routine of college is something | never get used to. This year is
even worse coming back from 8 months of industry placement. The routine | got into
there is shattered now and | have to readjust. There is not a lot of time for that
readjustment period this year. Normally there is a 'grace' week where lectures are
introductions and tutorials are empty due to no lectures but not final year! It was
straight in, with a whole day based on the project module. After the guidelines were
given | began to break down the few project ideas | had and try and figure out one that |
felt | could best deliver. | need to ask some clarification questions around some of my

ideas and the platforms | want to use,

Week 2:

This week | started off productive and narrowed my ideas down to a smaller list. It is
genuinely frustrating when you have an idea and you feel this lightbulb go off in your
head only to be shot down with a quick google search, confirming your brilliant Silicon
Valley-Esque startup has been going for years. | want to bring the skills | learned during
my work placement into the project. | feel this would be beneficial for me and beneficial
for the project as a whole. | emailed and met with my work placement supervisor, Lisa

Murphy, about some of the guidelines needed. | recall her saying she was from a design

26

background and this is where | see myself headed in the future. | wanted to do
something that would look good on a portfolio for a company | wanted to work for. |
met with her and we spoke about how design could be included in a project and it gave

me some insight on what | have to do.

Week 3:

This week | had some questions about the platforms we could use. | took the
Networking and Mobile stream meaning the was more geared towards a native
application rather than a web application. | could make a native iOS app or an android
app but | don't think | could get the application to be as polished as | could make a web
application because of all the web technology work | did during my work placement. |
have a more focused idea on what | want to do as a project now too. | want to
incorporate photos somehow into the project. Maybe some kind of photo taking
application. | love Instagram and | want to create a Ul that is similar and easy to use.
User Experience is a huge part of my development style. | have an affinity for making
things seamless and easy to use. | need to make a decision this week about the actual

content of the project as the proposal and supervisor allocation is next week.

Week 4:

This week is pretty much dedicated to creating a project proposal. | need to do a Gantt
chart which means | have to use the college computers (:() The Gantt chart should help
me stay on track this week. | spent the weekend drawing up design documents and plan
to start setting up the back end of this project next week. I've finished off the project

proposal with an idea I’'m happy enough to start on!

27

October 2015

Week 1:

This week | am swaying back and forth on the idea of making an actual native
application. | don't know if | possess the skills to perform on that stage where as | know |
could create a polished application if it were a web based app. | will email Sam Cogan
about this problem. He might have some more impact on what is really expected of me.
| hope that using a web application will be enough because this will allow me to focus on

my strengths and build a great product.

Week 2:

This week | came to the conclusion that | can indeed use a web application framework
for the project. This is fantastic news. This allows me to use cloud platform hosting,
quick turnaround times and the ability to focus somewhat on my passion of front end
work. | started working on the requirements specification document which is a large
enough piece of work. | drew the mock ups and class diagrams on paper and need to

transfer them to some form of online program.

Week 3:

This week was reading week, so | spent most of my time finishing off the requirements
specification documents. | had a bunch of other assignments to do to so it was a hard
week of week. | got good progress on the RS document though, so that is good news.
There is a lot in this document but | used my old RS from the software engineering
courses during second year as a basis for what has to be done. I'd like to get an upload
function done next week. I’'ve done one before so it shouldn’t be that big of a deal to

replicate it.

28

Week 4:

This week | finished off the RS document and my change management documents. | also
started to write some of the functionality of the application, mainly the image uploading
to a database PHP functions. | don't want to delve too deep into the actual development
of the application until there is a clear direction from the documentation because that is

what this college teaches you to do! Can’t break the rules kids.

29

November 2015

Week 1:

| continued to finalise what | wanted to achieve with the project and mainly how |
wanted to go about getting to that goal. I've ditched the original idea for a LAMP stack
in favour of trying to learn Meteor JS, a rapid application development framework that
runs completely in Javascript. Perfect, | can avoid all of the stuff | don’t like by sticking to
the Javascript plus LAMP stacks are boring. | haven’t completely decided if this is a good
idea or not yet but | do want to try and challenge myself. I’d like to narrow down the
framework choices by next week. | pretty much only know Angular JS. I'll need to

investigate further.

Week 2:

This week | read a few journals and books around NoSQL and specifically MongoDB.
MongoDB is the base DB used in MeteorJS but based on the plans | have for the project,
| doubt I'll be using it much bar pushing the information to some cloud based database,
probably in Amazon Web Services. Meteor has a lot of functionality built in that you can
just install in your application, like user accounts and packages to help with file uploads.
I’'ve found a book on Meteor that I'll read to confirm it’s usefulness in the project. | don’t
have much time next week with the upcoming assignments | want to finish but I'll try do

more research.

Week 3:

This was a busy week finishing up assignments and assessments for the semester. Not a
lot of project work done. I’'m honestly beginning to wonder how they expect anyone to
deliver a decent project and good assignments. Where is the assigned time?! Next week
| want to start planning the mid-point deliverables. There seem to be a lot of

deliverables at the mid-point and | don’t want them to creep up on me.

30

Week 4:

Began planning for the prototype for the upcoming midpoint as I’'m planning on not
touching the project for most of the winter break. | want to focus on exams as much as
possible. Last week was a busy week with assignments and such but now my focus is on
project for a few weeks to prepare some mid-point deliverables in lieu of the winter
exams. The documentation seems sizeable but manageable and now | at least have a

better understanding of the direction | want to go, technology wise!

31

December 2015

Week 1:

Finalised what | needed to deliver for a midpoint presentation and began work on the
document. | really dislike documentation. I've modified my initial plan and proposals to
better match the current state of my project. | also think I've now fully committed to
using Meteor JS. | love it, it makes making an application fun. It will also allow me to
easily make this into a hybrid application by using PhoneGap to compile it into native

mobile device software without any extra coding.

Week 2:

More work on the document. There is not a lot of time between the exams finishing and
the mid-point presentation stuff happening. I'll need to get some concise work done and
code during study breaks. | spent half of this week studying for the upcoming exams.
Getting the hang of this Meteor JS thing. In a nutshell it’s based on Node.JS and is used
for rapid prototyping and cross-platform application development. It covers a lot of the
requirements | have for the project so I’'m going to continue to make little test

applications in order to garner a knowledge of the functionality.

Week 3: Study (Christmas)

Started studying properly this week. It’s also Christmas this week so I'll take some time
off that. I’'m constantly planning in my head how I'll manage study and assignments next
semester, | don’t want it all to pile up on me again. (| swear I've said that every year for

the last 4 years now..)

Week 4: Study (Christmas)

Nothing exciting this week. Exams start next week so the majority of my attention is on

that.

32

January 2016
Week 1:

Exams (Study) The exams start this week. Not only do | not have much time for any
project work, | don’t have much motivation due to the workload of preparation for

these exams.

Week 2:

Exams (Study) The exams start continue and finish week. Not only do | not have much
time for any project work, | don’t have much motivation due to the workload of
preparation for these exams. It’s kind of strange to look back on this time last year and

being nervous to go into my internship!

Week 3:

The exams went well. Well, they felt like they went well. I'll just have to wait and see for
the results to come out. | went straight from exams and back into the midpoint
deliverable work. There is a rather sizeable document to produce as well as the hope for
some kind of working prototype. The document is coming along well. Meteor JS is handy
for just starting a fresh project and having something substantial quite quickly due to
the use of packages and built in features. The documentation is where | feel like I'll be
struggling for the mid-point. | also am not the biggest fan of doing presentations either,
although people seem to tell me I'm quite good at them. Being good at something
doesn’t translate to me liking to do something. If that was the case I'd be doing some

back-end Java project where | tracked data or something snooze-worthy.

33

Week 4:

| spent most of this week working on the prototype itself and is actually the first time
I've really delved deep into the code of the project! With all the exams and assignments
and documentation - it’s the first time I've had free to focus on it! | started a new
Meteor project because | was learning through the old one and it had become a little bit
cluttered and uneven. | can easily rebuild what | have from just copying the templates |
wrote. One of the reasons | like Meteor, | can just slot stuff together fairly handily. The
midpoint is next week and the document is coming together nicely. I'm worried about
some of the functionality though. | want to push user image uploads to a cloud based
DB for quick streaming but | can’t get it to work consistently. It’ll be a tough grind to get

it out but | have a fair idea of how it could be done.

34

February 2016
Week 1:

MidPoint - The biggest downfall of Meteor JS is that in it’s infancy, there isn’t really a lot
of people out there who can answer your question if you run into a problem. There are
a few packages for what | want to do but they can’t really be leveraged without proper
documentation or examples on how to use them. I’'ve prepared a backup plan for the
mid-point anyway - an interactive mockup that explains the premise of what | want to

achieve. The word prototype is subjective anyway.

Week 2:

% Midpoint This week | had my actually midpoint presentation. | felt it went fine. It is
always hard to judge how those things go especially at this early stage of the project. |
spoke well and clearly and stayed on topic. | think | did a good presentation. | was happy
enough with the standard of the document too. The prototype may let me down
because | couldn’t figure out that problem with the cloud database. | mean, | could use
the local MongoDB database but that’s kind of useless for what | need to achieve. Ill
have to just properly break it down and figure it out whenever | get some time. | want to
step away from the project now for a while, in order to get a fresh perspective on it. This

will be helpful with the incoming presentation marks too.

Week 3:

Spent some more time getting into that cloud error. It seems to crash my meteor each
time | run it. Exit Code 8. I’'m going to get exit code 8 tattooed on me by the end of this
endeavour. The problem with that exit code is that it seems to be based within some of
the packages that come installed with meteor that you never touch, so everytime |
google the error it’s a different set of error messages that all relate to exit code 8. Also
having some trouble with database locking issues. The use of MongoDB in depth is

challenging but I'm enjoying it. I've never really delved too far into it in a practical sense

35

as | only became familiar with it through a report | did during a database module. I'm

becoming an expert at UNIX commands at this stage. Especially killing ports.

Week 4:

Not much done this week, still some troubleshooting in order to try and get rid of that
error code. Just settling back into the final set of lectures of the degree. This semester is
a short one so there will be a tonne of assighments and assessments coming up soon! If
only we had a module on ‘Exit Code 8’. Regardless | will continue to think about the

problem along with alternate ways to solve it.

36

March 2016

Week 1:

Lsof -i :3000. Find the node PID. kill -9 Node PID. This is my life now. | spent half a day
trying to write a shell script to do this process for me. It works sometimes. It’s actually
just quicker once you factor in all the times it gets it wrong to write the commands
rather than running the script. | just wanted to be fancy. Not much done in the sense of
exit code 8 from above so | just started building the application around the error, leaving
out the user uploads to a cloud database feature. Not like it’s the most important one or

anything.

Week 2:

I’m finishing up some of the other features. | have a front end built and some user
account done. Some of the smaller functionality is all done, | just need to figure out the
uploading consistently part. I've also started researching image moderation but | can’t
really find a way to do it without paying a service for the use of their api’s per image you
upload. | don’t know how fast that is and if it would factor into the latency of images
appearing on the site or not. | know there needs to be some kind of moderation but I'd

love to be able to just trust the world. Maybe a reporting feature.

Week 3:

This week was spent mainly finishing up assignments and doing some presentations. It’s
a weird feeling that the degree is pretty much over now. (bar this project..) I've also
finished the 200 word profile about the project for the showcase booklets and got my
photograph taken. It all seems so official now. My word profile was approved and | can

move on to studying with coding breaks.

37

Week 4: Study

Full study mode has begun for these exams. | used to take study breaks between coding
sessions but now i’'m doing the opposite. There is so much to learn in these final weeks
and I’'m still figuring out the ideal levels of functionality for the project. Error code 8
seems to be less consistent now but | still can’t figure out what causes it or even

replicate it on command. This is incredibly frustrating when trying to trouble shoot a

problem.

38

April 2016
Week 1:

More study this week. The final set of exams are next week and they are pretty
important. In my spare time | managed to stop the exit code 8 from happening. |
couldn’t tell you what it was from but it stopped happening so | guess that’s good
enough. For the record | deleted a bunch of packages that | wasn’t using within the
projects and it seems to work now. I've also spent the week finishing off some

assignments and projects that were due. Not a lot of time for project work.

Week 2:

The exams start this week. The modules this year were fairly heavy on theory so require
a lot of remembering and some rote learning. | don’t particularly enjoy those modules
but they also have to be done. I'm looking forward to the exams clearing up so that | can

continue working on the project.

Week 3:

Exams. During some downtime for the exams this week | began working on the project
poster for the showcase on the 25th of next month. Just following the template but
these things always perplex me as to how much information is relevant. | don’t want
people spending 20 minutes trying to read an abstract on the project but | don’t want it

to be a one-line affair either. I'll have a look at some older posters.

Week 4:

The exams are over now and full focus is back on the project. | have a few things to
finish up this week but they all revolve around cleaning stuff up. I’ve had to change my
approach to hosting because Meteor JS have switched to paid-only hosting services and
| don’t particularly want to pay too much to host the app. There are a few meteor
packages that deal with hosting the app on free platforms such as AWS. I'll probably spin

up an ec-2 instance as I'm already using s3 for database storage. May aswell keep that in

39

the same platform. I've had to update some of the older functions for meteor 1.3, as
they were a tad redundant. I've been testing as | go along, but I've not really but in some

official testing standards yet. I'll do that next week.

8.4 Analysis Design Document

PHoTOPROMPT

ProbucT DESIGN SPECIFICATION

Version <7.0>
<01/10/2016>

40

VERSION HISTORY

Version Implemented Revision Approved Approval Reason
By Date By Date
1.0 Sean Keeley 01/12/15 <name> <mm/dd/yy | Initial Design
> Definition draft
1.1 Sean Keeley 04/05/16 Refinement

41

TABLE OF CONTENTS

|

INTRODUCTION

1.1 Purpose of The Product Design Specification Document

2 GeNERAL OverviEw AND DEesiGN GUIDELINES/APPROACH

2.1 Assumptions / Constraints / Standards

3 ARCHITECTURE DESIGN

3.1 Logical View

3.2 Hardware Architecture

3.3 Software Architecture

34 Security Architecture

3.5 Communication Architecture

3.6 Performance

4 Svystem DEsiGn
4.1 Use-Cases

4.2 Database Design

4.3 Data Conversions

4.4 Application Program Interfaces

4.5 User Interface Design

4.6 Performance

IN
~

Section 508 Compliance

AprPENDIX A: REFERENCES

AppPenDIX B: Key TErMS

42

https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.1t3h5sf
https://docs.google.com/document/d/12JWs70BfWSvdrtAkXPJfSdbel1DKjNkwU_mQV0M3tvA/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/12JWs70BfWSvdrtAkXPJfSdbel1DKjNkwU_mQV0M3tvA/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/12JWs70BfWSvdrtAkXPJfSdbel1DKjNkwU_mQV0M3tvA/edit#heading=h.2s8eyo1
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.17dp8vu
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.3rdcrjn
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.26in1rg
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.26in1rg
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.26in1rg
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.lnxbz9
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.35nkun2
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.35nkun2
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.35nkun2
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.44sinio
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.44sinio
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.44sinio
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.2jxsxqh
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.z337ya
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.z337ya
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.z337ya
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.3j2qqm3
https://docs.google.com/document/d/12JWs70BfWSvdrtAkXPJfSdbel1DKjNkwU_mQV0M3tvA/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/12JWs70BfWSvdrtAkXPJfSdbel1DKjNkwU_mQV0M3tvA/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/12JWs70BfWSvdrtAkXPJfSdbel1DKjNkwU_mQV0M3tvA/edit#heading=h.4i7ojhp
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.2xcytpi
https://docs.google.com/document/d/1qXIS6nMWjq01vYIQINHHF4UySNuU2LdynqiwLcudXjw/edit#heading=h.2xcytpi

1 INTRODUCTION

1.1 Purprose oF THE PropucTt DEsiGN SpeciFicaTioN DocumENT

The Product Design Specification document documents and tracks the
necessary information required to effectively define architecture and
system design in order to give the project developer the outline of system

design and architecture during testing and developing.

2 GeNerAL OVERVIEW AND DEsIGN GUIDELINES/APPROACH

This section describes the principles and strategies to be used as

guidelines when designing and implementing the system.

2.1 AssumpTioNs / CONSTRAINTS / STANDARDS

The applications design should be simple to implement but there is a
large learning curve with a framework in such infancy. There are some
small details to hammer down with latency between the client side and
the server returning the images in a fast manner. The biggest factor for a
smooth operation of this system would be a quick connection to the
server from the users application. This is in order to ensure the smallest

amount of downtime.

The use of cloud services such as Amazon Web Services will require quite
a classified approach to setting up buckets for image storage. There is a
problem with configuration information being leaked through unsecure
project uploads, leading to huge unwarranted bills for services that you

never started.

43

Due to the infancy of the framework and it's constantly updating
processes, constant upkeep with forum documentation, research of
capabilities and a certain level of contingency will be needed to bring this
application to full functionality. The use of AWS cloud services and built

in framework API's will be needed and have to be researched.

3 ARcHITECTURE DESIGN

This section outlines the system and hardware architecture design of the

system that is being built.

3.1 HARDWARE ARCHITECTURE

With the use of a web application platform, there is no extensive
hardware need baring a connection to the internet. With the intention of
serving the application as a cross platform experience, there will be no
inherent need for a certain version of Android or iOS. With a mobile-first
approach quickly becoming standard, a consistent experience across all

devices and breakpoints will be important.

The user's input will be taken in on the phones touch screen or using a
mouse on a computer, and the images will be displayed on the screen or

the monitor - dependent on the device in use.

3.2 SoFTWARE ARCHITECTURE

The main client side application will consist of a front end that allows the
user to interact with the overall system by checking the current topic, and
then deciding if they want to upload a picture of that topic. It will require
internet access for the upload and device file system access in order to

pick a photo to upload. The main GUI of this web application will display

44

the topic, the timer of when that topic changes and any pictures that
have been uploaded by users. This will be done in a call to the cloud

database to retrieve the images for that topic.

The upload functionality will be handled using packages within Meteor.
There are packages such a dropzone javascript or ok-grow. It will limit
the file types and sizes of the uploads to allow for quicker and more

consistent uploads.

Login systems and mobile-first front ends will be built using meteor
packages such as accounts-ui and bootstrap. A mobile first design
philosophy is key as it will deliver a consistent experience across all

devices.

The server will contain the upload scripts, along with the topic that is
currently displayed. The topic must be consistent amongst all users. The
topic will be tagged within the database, along with a tag on each picture.

This will allow for searching as well as history of topics to be checked.

3.3 SECURITY ARCHITECTURE

The main security aspect of this application lies within the uploading
from the client applications, through upload scripts and onto the server
database. The user image has to travel safely with the required
information, such as tag, time, userID, preferably somewhat encrypted to
protect information. User accounts will be secure as per standard. While
this information is not necessarily that classified and important to remain
private and anonymous, it is still important to introduce adequate

security measures.

The use of Amazon Web Services is a contentious issue. It's an incredible
service but it's not that secure. There have been many reported cases of

server credentials being left in the public parts of the project and that

45

information being compromised for the personal gain of hackers. The
credentials and configuration of the project must not be public in any

capacity.
3.4 CoMMUNICATION ARCHITECTURE

The main communication protocol for the project will be the standard
HTTP protocol, which is the standard in any Node.JS system. NodeJS HTTP
POST is built for high concurrency so user volume won't be a problem. I'd
like to implement HTTPS if at all possible because it would increase

another level of security for the users of the application.

There is no plan for a user messaging system, or user interaction in any
capacity past a report button. This removes the need for any extra
communication features such as chats and equivalent technologies. I
can't foresee a need for user chat to be important in the context and

scope of the project.

3.5 PERFORMANCE

Performance is an issue due to the application constantly loading large
image files from an online service. It has to be lightweight as to not slow
down the network and usage of the application. If the user has to wait
too long for an image to load, they will lose interest and exit the
application - rendering a high level of importance on quick and efficient
loading. This will require decent compression and limitation on what the
user can actually upload. Using a cloud service will bring some speed to

the process too.

The bulk of the slow down will come from the downloading of these
images when the user loads the system. Rather than loading each image

individually, it would make sense to load a small bulk of images for the

46

user to see initially and infinitely scroll through more images, loading a
new bulk when the user requests new images. The user upload feature
will also cause some slowdown but that is to be expected as upload
speeds are not as fast as download speeds. The use of a cloud service
like Amazon S3 will allow for scalability to not be an issue, along with the
use of pointers to almost turn it into a content delivery network. So
rather than pulling the images from a database each time, you are simply
just telling the application where to look for the images and returning

that location.

4 System DEesiGn

4.1

4.2

Use-Casks

The use cases can be found in the project requirements specification

document.

DAataBase DESIGN

The database will primarily function as an NoSQL, MongoDB database as
that is packaged within the framework. The only database requirements
will be for user account information, random topic information and
pointers to the images on the cloud storage. For early development,
pointers to a local directory for the images will work just as well. The user
account database structure comes prepackaged with Meteor and is done
using MongoDB syntax. There will be a store that saves pointers to the
images that are on the cloud service, turning whatever cloud service

database is chosen into a psuedo-CDN (content delivery network)

47

4.3

44

DATA CONVERSIONS

There are not too many data conversions needed in this project. The
JSON encoding from the NoSQL Database will extract the relevant
information and the images will just be stored as pointers and
downloaded from the cloud service. There is no need to convert anything
from SQL for example because MongoDB uses JSON as default. The
image will be stored as a pointer link and then sent to the client in order
to be downloaded and displayed. The use of NoSQL is quite proactive in
this regard because there is not a lot of information, especially sensitive

information, that needs to be stored locally.

AppLICATION PROGRAM INTERFACES

The system will incorporate multiple API's for a complete suite of
functionality. Namely they will be the accounts API built into Meteor for
accounts, the oAuth API for further login functionality and the image API

for uploading and downloading images.

The accounts and oAuth API's are both for user account creation and use.
The image API will handle the majority of the functionality and point to
the project. It will allow a user to upload an image from the chosen and
current device they are on, send that image to a cloud stored database
and then return the image once that transfer has occurred. Another call
will be made everytime the user loads the application in order to return

the images to the homepage.

48

4.5

4.6

User INTERFACE DEsSIGN

There are two main screens for the user client UI to show. A login screen
where a user enters valid credentials in order to see the main home
screen. Once valid credentials are entered, the user will see the home
screen where the current topic is displayed, the time remaining and the

most recently uploaded pictures from other users.

Mobile first design calls for this to be one screen, with all of the relevant
and valid information available within one glance. Uploading, viewing,
deleting and logging out can all be accessed within one screen from an
easily determined point. If you think of a website accessed on mobile as
a graceful degradation from the desktop standpoint, mobile first aims for

a progressive enhancement from the mobile to the desktop.

PERFORMANCE

Performance should be fairly quick in regards to downloading and
uploading images and will only depend on the speed and strength of the
connection on the client device. The use of cloud based storage as a
pointer over a true data store allows for less load time on the client side,
as there is less need to load new data, rather just redirect the user to
where the existing data already is. Amazon S3 will probably be the
chosen cloud service which has features such as geographic redundancy
and built in scalability protocol should prevent slowdown from the usage
of a cloud service. This will also provide reliability for the application.
This bodes well for client data usage, as there will be little reason to
download large amounts of data. The images themselves will not
downloading onto the device, your devices browser will just be
redirected to the chosen location. Further testing is required but in

estimation there should not be any large spikes in data usage from using

the application.

49

Appendix A: References

The following table summarizes the documents referenced in this document.

Document Description Location
Name and

Version

<Document [Provide description of <URL or Network path
Name and the document] where document is located>
Version

Number>

Appendix B: Key Terms

The following table provides definitions for terms relevant to this

document.

Term Definition

[Insert Term] [Provide definition of the term used in this
document.]

[Insert Term] [Provide definition of the term used in this
document.]

[Insert Term] [Provide definition of the term used in this
document.]

50

8.5 Project Requirements Specifiation

BSHC4

Requirements
Specification (RS)

PhotoPrompt

Sean Keeley
Upload Date: November 6th 2015

51

Requirements Specification (RS)

Document Control

Distribution List

Name Title Version
Eamon Nolan Lecturer
Paul Hayes Project Supervisor

Related Documents

Title Comments

Title of Use Case Model

Title of Use Case Description

52

Table of Contents
1 Introduction

1.1 Purpose
1.2 Project Scope
1.3 Definitions, Acronyms, and Abbreviations
2 User Requirements Definition
3 Requirements Specification
3.1 Functional requirements
3.1.1 Use Case Diagram
3.1.2 Requirement 1 <Upload A Photo>
3.1.3 Requirement 2 <User Registration>
3.2 Non-Functional Requirements
Performance/Response time requirement
Availability requirement
Security requirement
Reliability requirement
Maintainability requirement
Portability requirement
4 GUI
5 System Architecture

6 System evolution

Introduction

Purpose

The purpose of this document is to set out the requirements for the development of the
mobile web application, PhotoPrompt. PhotoPrompt is a mobile friendly web
application that gives users topics to which they can go out and take a picture of with
their smartphone. The topic changes at a given interval and then users can begin to vote
on which they think is the best photograph to represent a given topic. Users can view
previous topics and the photos that are associated with that topic. This application will
follow mobile-first design pattern meaning that it will be designed with the end product
looking the best on the smaller devices, and flowing up to the larger screen sizes.

53

The intended customers are smartphone users who enjoy taking photographs on the go
with their phones. It has become a common thing to do now, when you see something
interesting you can capture that moment easily and in high quality on your smartphone.
| often find myself wanting to take pictures without any inspiration so by using this
application you can gain that little push of inspiration.

Project Scope

The scope of this project is to develop a mobile friendly web application. The project
was decided to be a mobile friendly web application because that is where | see the
future of development going. Rather than native applications which require a large
amount of effort to update or fix bugs, a website that is mobile friendly, works across all
devices and has similar functionality to an application gives you the ability to push new
features and fixes out quickly. During my work placement | did some work with
responsive websites and even made a web application for the office with an eye for
responsive and mobile-first design.

The system will have a login and registration system, a HTML, Javascript and PHP front
end experience with CSS to deliver the experience across all devices. There will be a PHP
inclusive backend experience for any back end needs the application may come across. |
will store user details and photo information into a database for quick I/O when the
photos are needed for display. | plan to host the whole application on an EC-2 instance
of Amazon Web Services Cloud Hosting system. This will give me a reliable uptime and
dependable scalability if needed. EC-2 acts like a mini cloud server and allows me to run
many server instances for multiple purposes to have faster load times and reliable
uptimes. | plan to package the whole application together using some kind of
deployment manager such as Cordova or PhoneGap in order to create an Android .apk
file for anyone who does want to use the application as a pseudo native application.
Creating an .apk file seems like a slight contradiction from what | wrote above but it’s
not. The idea behind create a web application and then creating an .apk file avoids the
more difficult use of the native android language and development systems. By making
a mobile-first web application it allows me to focus on my web development strengths.

There are no outlying cost requirements for the development of this application bar the
chance that one may go over the free-usage tier while using AWS (Amazon Web
Services). This free-usage tier should cover all the needs of the application quite
comfortably but there is a chance that running beyond the free tier is possible. This
could arise from too many requests being sent or too much data being stored. This
constraint will have to see this project code be efficient in the amount of traffic it
generates for the server.

54

Definitions, Acronyms, and Abbreviations
AWS - Amazon Web Services

HTML - HyperText Markup Language

(S)CSS - (Sassy) Cascading Style Sheets

JS - Javascript

PHP - PHP: HyperText Processor

EC-2 - Elastic Cloud

User Requirements Definition

From a target market perspective and the perspective of someone who uses
smartphone applications daily - the main user requirement lies with ease of use. A well
thought out and planned user experience is key to the success of any mobile endeavour.
As PhotoPrompt is a mobile web application over a native application, the need for a
clean flow similar to the experience of a native mobile application is key.

Requirements Specification

The user shall go through a welcome screen once they have been registered. This should
allow the user to be completely familiar with the workings of the application and
therefore the ability to use the application. This means that once the user has
completed this they should be able to use all of the system functions within a few
minutes. This information will be available to the user even after the ‘tutorial’ has been
completed.

Functional requirements

Some of the basic functional requirements within this project are that the device you
are using either has a camera or a hard drive in which you can store pictures.

1.1.1 Requirement 1 <Upload A New Photo>

1.1.1.1 Description & Priority

This is a description of the main functionality of PhotoPrompt, the ability to upload a
photo to the main website. This is an incredibly essential functionality of the system as it
is the main USP of the project.

55

1.1.1.2 Use Case
Scope

The scope of this use case is to evaluate the needs of the user and the system in
order to upload a photo and interact with the application as a whole.

Description

This use case describes the processes behind uploading a new photograph to the
system.

Flow Description
Precondition

The user has logged in successfully and the system is waiting at the homepage.
There is a keyword and a timer displaying on the homepage of the system

Activation
This use case starts when a user clicks the ‘Upload Photo’ button.

Main flow

1. The system identifies the button click and sends a request to the user
device.

2. The user interacts with the pop up screen and chooses a photo to upload.

3. The system then takes that information and uploads the photo to a
database and stores a CDN pointer.

4. The system validates the photo is of correct format and is within the size
regulations.

5. The user fills out a description and then confirms the upload.

6. The system sends a request to upload the photo

7. The system displays the photo on the users homepage

Alternate flow

A1l : The user uploads a non-photo format
1. The user chooses a non-photo format file to upload - such as .mp3 or .java
2. The system attempts to validate this upload.
3. The use case continues at position 4 of the main flow

Exceptional flow

E1 : Invalid photo format.
4. The user chooses to upload a file that is not of photo format. This could me
.mp3 or .java et
5. The system cannot upload this file because of pre-determined restraints.
6. The use case continues at position 2 of the main flow

56

Termination

The system then presents the homepage again, with the users newly uploaded
photo being displayed.

Post condition

The system goes into a wait state, for another photo to be uploaded or another
functionality to be invoked.

1.1.2 Requirement 2 <User Registration>

1.1.2.1 Description & Priority

This is a description of the requirement of User Registration. This has a high priority
because the user will not be able to interact with the application without going through
the account creation and registration process.

1.1.2.2 Use Case

ueWN R

Scope

The scope of this use case is to evaluate the needs of a user registration system
and the flows held within

Description

This use case describes the user registration process for PhotoPrompt.
Flow Description

Precondition

The user navigates to the website and is met with a Login Screen. A new user will
need to follow to the ‘Create an Account’ screen in order to access the application
as they will not have any login details.

Activation
This use case starts when the User clicks ‘Create an Account’
Main flow

The system identifies the user trying to create an account

The User enters the details into the form

The system validates that these details fill out the security criteria
The user receives a validation or failure message

The system sends an email to the user on a successful request

57

Alternate flow

Al : The User does not enter a valid email
1. The user enters a non-valid email address (without @ or .com etc)
2. The system will not validate this request
3. The use case continues at position 4 of the main flow

Exceptional flow

E1l : No Internet Connection
1. The user attempts to create an account
2. The system cannot complete the valid requests because of a non-existent
connection to the internet and therefore the database.
The user reconnects to the Internet
4. The use case continues at position 1 of the main flow

w

Termination

Upon successful form validation, the system will then present the PhotoPrompt
login screen, where the user will then log in with their new login details.
Otherwise, upon the failure of validation, the system remains on the account
creation page.

Post condition

The system goes into a wait state

58

Non-Functional Requirements

Performance/Response time requirement

As a web application the performance and response time requirement is an important
one. Being built on an EC-2 instance allows the web application to be quick, responsive
and easily scalable.

Availability requirement

Using AWS as a hosting medium is a paradigm to availability. In 2014 Amazon EC-2 was
only down for 2.14 hours across 20 different outages. This means that the average site
had an uptime of 99.9974% during 2014. This is the highest uptime statistic of any cloud
hosting platform in 2014. This was partially the reason behind my choice of using
Amazon Web Services.

Security requirement

As there is a user account system, there will have to be sufficient security requirements.
There will be password salting and hashing and no passwords will be stored in plaintext.
Nothing will be transmitted in plaintext and there will always be some form of
encryption.

Reliability requirement

As stated above using Amazon Web Services has an incredibly reliably service. There was
a 99.99974% uptime for 2014 - which is amongst the highest in cloud hosting platforms.
This garners a very safe and high sense of reliability within the project. | will also run a
second instance for testing alongside the client facing one. This will mean that | cannot
break the user experience through the introduction of new features of bug fixing.

Maintainability requirement

As PhotoPrompt is a web application, there can be a quick turnaround time for new
features, bug fixing and testing. | chose the web application method because of this
because of the rigid testing and approval processes that go along with native
applications and applications stores.

Portability requirement

PhotoPrompt is a mobile-friendly, responsive web application meaning that the
portability requirement is quite high. The experience will be the same and fluid across
any device that you may use. There will be a mobile view, a tablet view and a desktop
view. This means that the application has a very portable aspect to its creation.

59

Interface requirements

GUI

Homepage On Desktop:

PhotoPrempt

Q0 X3

) @&

PhotoPrompt

The Current Keyword is: 'Example’

Mobile View Desktop:

12:03 PM

PhotoPrompt

Keyword: 'Example’

Upload

60

>

[Homn | — | — I‘—P Honepage navigation

This is the current
keyword

and the upload
button

These are
pictures that
other users have
uploaded.

These are
curated and
displayed on the
homepage
accoerding to
popularity

Desktop Login:

PhotoPrompt

A X 4O () @O

PhotoPrompt

| Username/Email]
| Posswor: d]

Create an Account

Forgot your password?

Application Programming Interfaces (API)

| will integrate the Twitter, Facebook and Instagram API’s to allow the users to notify
their other accounts when they use my application. Sending push notifications to their
independent timelines will give PhotoPrompt some exposure and bring in extra users
from people seeing their friends using it. Using these API’s will require me to follow the
steps that are available on the corresponding websites. | may in the future integrate the
Google Maps API to show the location that a picture was uploaded from.

System Evolution

This system application can be easily scalable in the future. Using AWS adding more
instances is an easy task. This can handle more load, and more requests per minute. As
per functionality evolution, this application will be a living application. Meaning that |
will constantly write new functionality and features as they come to light. The basis of
the application will be the above but the application will be suspect to some scope
creep as the development continues. With the nature of the application being a web
application, this means that there can be quick fired bug fixes and new feature pushes
with minimal downtime and no waiting around for the app stores to confirm the
updates.

61

8.6 Other Materials Needed

The following are materials | referenced from throughout the course of the project. Any
code that has been sourced from a source that is not my own will be appropriately
commented in the comments section of the source files. Otherwise all code is a

representation of my own work.

References:

GitHub. 2016. GitHub - meteor-velocity/velocity: A reactive test-runner for Meteor. [ONLINE] Available at:

https://github.com/meteor-velocity/velocity. [Accessed 10 May 2016].

Meteor. 2016. Meteor. [ONLINE] Available at: https://www.meteor.com/. [Accessed 10 May 2016].

Documentation - Meteor. 2016. Documentation - Meteor. [ONLINE] Available at:

http://docs.meteor.com/#/full/. [Accessed 10 May 2016].

The Meteor Chef. 2016. The Latest | The Meteor Chef. [ONLINE] Available at: https://themeteorchef.com/.
[Accessed 10 May 2016].

GitHub. 2016. GitHub - arunoda/meteor-up: Production Quality Meteor Deployments. [ONLINE] Available at:
https://github.com/arunoda/meteor-up. [Accessed 10 May 2016].

Matt Silverman. (2016). Number of mobile app downloads worldwide from 2009 to 2017 (in millions).
Available: http://www.statista.com/statistics/266488/forecast-of-mobile-app-downloads/. Last accessed

2nd Feb 2015.

-.(2014). 23 DAYS A YEAR SPENT ON YOUR PHONE. Available:
http://www.mobilestatistics.com/mobile-news/23-days-a-year-spent-on-your-phone.aspx. Last accessed

2nd Feb 2016.

62

