
 

Declaration Cover Sheet for Project Submission 

 

SECTION 1 Student to complete 

 

Name:  Sam Gormley 

 

 

 

 

Student ID: x12467312 

 

 

Supervisor:  Arghir Moldovan 

 

 

 

 

 

 

SECTION 2 Confirmation of Authorship 

The acceptance of your work is subject to your signature on the following 

declaration: 

I confirm that I have read the College statement on plagiarism (summarised 

overleaf and printed in full in the Student Handbook) and that the work I have 

submitted for assessment is entirely my own work.  



 - 2 - 

 

 

Signature: Sam Gormley  

Date: 11/05/16  

 

 

NB. If it is suspected that your assignment contains the work of others falsely 

represented as your own, it will be referred to the College’s Disciplinary Committee. 

Should the Committee be satisfied that plagiarism has occurred this is likely to lead 

to your failing the module and possibly to your being suspended or expelled from 

college. 

 

Complete the sections above and attach it to the front of one of the copies 

of your assignment, 

 



 - 3 - 

What constitutes plagiarism or cheating? 

The following is extracted from the college’s formal statement on plagiarism as 

quoted in the Student Handbooks. References to “assignments” should be taken 

to include any piece of work submitted for assessment. 

 

Paraphrasing refers to taking the ideas, words or work of another, putting it into 

your own words and crediting the source. This is acceptable academic practice 

provided you ensure that credit is given to the author. Plagiarism refers to copying 

the ideas and work of another and misrepresenting it as your own. This is 

completely unacceptable and is prohibited in all academic institutions. It is a 

serious offence and may result in a fail grade and/or disciplinary action. All sources 

that you use in your writing must be acknowledged and included in the reference 

or bibliography section.  If a particular piece of writing proves difficult to 

paraphrase, or you want to include it in its original form, it must be enclosed in 

quotation marks 

and credit given to the author. 

 

When referring to the work of another author within the text of your project you 

must give the author’s surname and the date the work was published. Full details 

for each source must then be given in the bibliography at the end of the project 

 

Penalties for Plagiarism 

If it is suspected that your assignment contains the work of others falsely 

represented as your own, it will be referred to the college’s Disciplinary Committee.  

Where the Disciplinary Committee makes a finding that there has been plagiarism, 

the Disciplinary Committee may recommend  

 

 that a student’s marks shall be reduced 



 - 4 - 

 that the student be deemed not to have passed the assignment  

 that other forms of assessment undertaken in that   academic year by the 
same student be declared void 

 that other examinations sat by the same student at the same  sitting be 
declared void 

 

Further penalties are also possible including 

 

 suspending a student college for a specified time, 

 expelling a student from college, 

 prohibiting a student from sitting any examination or assessment., 

 the imposition of a fine  and  

 the requirement that  a student to attend additional or other lectures or 
courses or undertake additional  academic work. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 5 - 

National College of Ireland 

BSc in Computing 

2015/2016 

 

 

Sam Gormley 

X12467312 

X12467312@student.ncirl.ie 

 

Yellow Umbrella Tours app 

Technical Report 

 

 

 

 

 

 

 

 



 

Table of Contents 

Executive Summary .............................................................................................. 7 

1 Introduction .................................................................................................... 8 

1.1 Background .............................................................................................. 8 

1.2 Aims ......................................................................................................... 9 

1.3 Technologies ........................................................................................... 9 

1.4 Structure ................................................................................................ 11 

2 System ......................................................................................................... 12 

2.1 Requirements ........................................................................................ 12 

2.1.1 Functional requirements .................................................................. 12 

2.1.2 Data requirements ........................................................................... 23 

2.1.3 User requirements ........................................................................... 23 

2.1.4 Environmental requirements ............. Error! Bookmark not defined. 

2.1.5 Usability requirements ....................... Error! Bookmark not defined. 

2.2 Design and Architecture......................................................................... 23 

2.3 Implementation ...................................................................................... 24 

2.4 Testing ................................................................................................... 36 

2.5 Graphical User Interface (GUI) Layout................................................... 39 

2.6 Customer testing .................................................................................... 40 

2.7 Evaluation .............................................................................................. 41 

3 Conclusions ................................................................................................. 42 

4 Further development or research ................................................................. 42 

5 References .................................................................................................. 44 

6 Appendix ...................................................................................................... 46 

6.1 Project Proposal .................................................................................... 46 

6.2 Project Plan ........................................................................................... 48 

6.3 Monthly Journals .................................................................................... 48 

6.4 Other Material Used ................................. Error! Bookmark not defined. 



 - 7 - 

Executive Summary 

This project, the Yellow Umbrella Tours app, will be an Android app initially. It will 

make use of an online database in order to facilitate guide registration and log in, 

as well as allow guides to enter notes and data concerning their tours, and will 

also allow tourists to book tours, give feedback and get in contact with tour 

guides at Yellow Umbrella Tours in order to receive recommendations, directions 

or just general help without forcing one time tourists to create accounts and log  

in for what could only be a weekend trip.



 

1 Introduction 

1.1 Background 

The idea for this project came from a previous project that I had done involving a 

tourism app, and noticing a pattern in general tourism apps. I noticed that, in my 

own app and others, the entire experience was centred on the tourist, with little to 

no thought given to the guide. For example, Tripadvisor allows tourists to rate 

their experience and give some feedback, while allowing tour operators some 

contact with potential customers. I feel that tripadvisor is a good planner and can 

give you some background on where you’re going and what to do, but is a 

planner and nothing more, and I would not call it a travel companion app. Yelp is 

much the same. Another issue I find with these apps is that while they may mark 

out certain things to do, they fail to immerse you in these activities, providing you 

with only a waypoint. From this, I began to research the various tourism based 

apps in order to ascertain what was missing from them, and what I could do to 

improve them. I decided to model the app on a single tour company, for the sake 

of simplicity.  

 My idea for this app was also inspired by a tour company operating in the 

City Centre, currently called Dublin Free Walking Tours, but currently 

transitioning and rebranding to Yellow Umbrella Tours, which is the name of this 

App. I worked with 2 of the guides initially to form the requirements, then began 

talking to other guides once I began development in order to ascertain what they 

would like to see and began asking for their feedback on the app once some of 

them were asked to test beta versions of the app. I also asked the guides about 

the non-functional requirements of the app, and the things that could make their 

lives a bit easier and make some of their processes more efficient, for example, 

having either a contact form or some kind of messaging function, which would 

allow tourists to contact guides outside of tour time. Through my conversations 

with the guides, we were able to map out what features would be added to the 

app, what kinds of users we would have and how they could benefit from the 



 - 9 - 

different features of the app. From here, I began development of the app, 

checking back in with the guides from time to time in order to demo whatever I 

had done for the app and to ascertain the next step of the development. 

1.2 Aims 

My aim for the project is to create an Android app that will be useful for tourists to 

find free tours and points of interest, and for tour guides to assist other guides by 

leaving helpful notes about tours, route changes or traffic issues etc. by sending 

the information back to a database. By the end of this project, I hope to have a fully 

functioning Android app that will have map functionality, user registration and a 

contact form or message function which will allow tourists to get in contact with a 

guide who may be able to answer their queries. I also wanted to allow tourists to 

book tours using the app. My main aim is to create an immersive, interactive tourist 

app that lends itself to informative trips and can also assist the tour guide. 

1.3 Technologies 

This project makes use of java for Android, as I felt that it would be easy enough 

to work with as well as providing the functionality required for the project. The 

Google Maps API will be used in the app in order to provide waypoints and 

directions to users. I chose the Maps API as it is easy to integrate, work with and 

personalise. The Maps API is implemented using the API key and a class that will 

call in the map and specify any locations or markers. This will be discussed in 

more detail in the implementation section. I also decided to use MySQL with PHP 

files, as well as creating an online database using 000Webhost, in order to get a 

log in database working in my app. I used MySQL and PHP because I felt that 

they would be easy to integrate into an Android app, and MySQL would allow me 

to edit and work on tables without much difficulty. For the chat function, I will be 

attempting to implement the support function from Intercom.io. Intercom makes 

use of Google Cloud Messaging(GCM) in order to send push notifications to the 

users phone, and would allow the user to get in contact with a guide directly, in 

real time. I had considered an alternative to Intercom, known as hotspot.io, but 



 - 10 - 

decided to go with intercom, both for the helpfulness of their documentation, and 

also as a financial measure. Intercom.io offers the package that would be 

relevant for this project for $49 a month, whereas the same product from 

hotline.io would cost $300 a month. In terms of services offered, there was not a 

great deal that hotline.io provided that intercom did not, especially in relation to 

my project and what I would need, so spending the extra $251 just seemed 

unnecessary. If intercom proves to be too troublesome to implement, I will 

instead implement a contact form as a sort of ticketing system, in which tourists 

will fill out a contact form of name, email, phone number and query, which will 

then be sent into the database and followed up by a guide who will regularly 

check this list and provide support to the tourists who need it.  

 

 In order to facilitate registrations, log ins and any other functions that 

require any networking functions, e.g sending data to databases or receiving any 

information from the server, I will be making use of the http library Volley. This 

can be seen in any classes that involve data being sent to or retrieved from the 

database, in the final method called RequestQueue. This allows the class in 

which it is implemented to call on another java class  in order to interact with the 

database(for example, within my project, the class with the request queue 

method may be called GuideRegister, and the class being called in the method 

would be called GuideRegisterRequest). Volley allows you to send information to 

and from databases via your app by linking to the relevant .php file and sending 

the information to it first, before passing it off to the database. 

 

In order to handle the dependencies and libraries, I used the module level 

build.gradle and the app level build.gradle in order to import any libraries or 

dependencies and repositories that I would need in my project, and then enabled 

the use of these libraries by importing them into each individual class. This saves 

the trouble of manually downloading whatever libraries you need and then 

importing them as modules in Android Studio in order to make use of them. As an 



 - 11 - 

aside, I used cloud storage sites like Google Drive and Dropbox in order to store 

versions of my project during development, both as a backup and in order to 

integrate certain features into the app that I wasn’t too confident in, so as not to 

ruin the entire project and have to start over. 

1.4 Structure 

Brief overview of each chapter 



 - 12 - 

2 System 

2.1 Requirements 

2.1.1 Functional requirements 

 App must have login and Database functions 

 App must have a map interface detailing route of tours. 

 Guide must be able to record notes concerning the tour in the database. 

 User must be able to select their preferred tour 

 User must be able to give feedback on their chosen tour. 

 Users must be able to book tours using the app. 

 

2.1.2 App must have database and login function 

2.1.2.1 Description & Priority 

The app must allow the user to create an account and login in order to store 

favourite tours, stops, etc. Most important requirement. 

2.1.2.2 Use Case  

Scope 

This will be the 

Description 

This use case describes the process involved in the login and database 

saving. 

Use Case Diagram 

 



 - 13 - 

 

Figure 1 Login Usecase 

 

 

Flow Description 

Precondition 

The system is in initialisation mode. 

Activation 

The use case starts when the actor starts up the app. 

Main flow 



 - 14 - 

1. The actor activates the app 
2. The system prompts user to log in 
3. The Actor Logs in 

Alternate flow 

A1 :  
1. The User is not registered 
2. The system prompts user to register 
3. User Registers 
 

Exceptional flow 

E1 : The system prompts user to log in 
4. The actor enters their username and password 
5. The password is incorrect 
6. The system refuses log in. 

 
        E2: The user is a tourist and does not have to log in 

1. The actor opens the app on the home page 
2. The actor selects continue as tourist 
3. The actor is taken to 

 
 

Termination 

The user is brought to the home screen. 

 

Post condition 

The system goes into a wait state  

2.1.3 App must allow user to choose route 

 

2.1.3.1 Description & Priority 

The app must have a map to illustrate the different tours and routes. As the pre-

tense of this app is about the tours, this is very important. 

2.1.3.2 Use Case  

Scope 



 - 15 - 

The scope of this use case is to show the required functionality of the map 

interface 

Description 

This use case describes the process of the actor using the map interface 

Use Case Diagram 

 

 

Figure 2 Route select Use Case 

 

Flow Description 

Precondition 

The actor is logged into the system and at the home screen. 

Activation 

This use case starts when the actor tries to activate the map function from 

the homescreen 

Main flow 

4. The system prompts the user to choose a route. 
5. The <Actor> chooses route 1 



 - 16 - 

6. The system brings the actor to the map page 
7. The <Actor> views the route on the map 

Alternate flow 

A1 :  
           The actor chooses route 2 

7. The system brings user to the map screen for the second route 
8. The use case continues at position 3 of the main flow 
 
 

Termination 

The Actor is at the map screen, viewing the route. 

 

Post condition 

The system goes into a wait state 

2.1.4 Guide must be able to record information about the tour in the 
databse 

2.1.4.1 Description & Priority 

The app must allow the guide to send useful information about the tour back to the 

database. 

2.1.4.2 Use Case  

Scope 

This scope of this use case is to show the required functionality for this 

requirement. 

Description 

This use case describes the process involved in the guide recording the 

information. 

Use Case Diagram 

 



 - 17 - 

 

Figure 3 Guide data recording use case 

 

Flow Description 

Precondition 

The system is in initialisation mode. 

Activation 

The use case starts when the actor finishes a tour. 

Main flow 

8. The actor activates the part of the app that allows the guide to record 
details of the tour 

 



 - 18 - 

9. The system prompts actor to record details of the tour 

 

10. The Actor enters the details of the tour 

 

11. The details of the tour are sent to the database 
 

Termination 

A thank you message is shown 

 

Post condition 

The system goes into a wait state 

2.1.5 User must be able to provide feedback on their tour 

2.1.5.1 Description & Priority 

The app must allow the user to vote for their favourite tour. Add interactivity. Mildly 

important. 

2.1.5.2 Use Case  

Scope 

This scope of this use case is to show the required functionality for this 

requirement. 

Description 

This use case describes the process involved in the user voting for their 

favourite tour. 

Use Case Diagram 



 - 19 - 

 

Figure 4 Tour feedback usecase 

 

 

Flow Description 

Precondition 

The system is in initialisation mode. 

Activation 

The use case starts when the actor navigates to the feedback section of the 

app. 

Main flow 



 - 20 - 

12. The actor navigates to the feedback section of the app. 
13. The system prompts user to feedback for their tour 
14. The Actor records their feedback for the tour. 

Alternate flow 

A1 :  
9. The Actor chooses not to vote at this time. 
10. The system takes the user back to the home page 
 

Termination 

The user is brought to the home screen. 

 

Post condition 

The system goes into a wait state 

2.1.6 User must be able to book tours using the app. 

2.1.6.1 Description & Priority 

The app must allow the user to book tours while using the app. While useful for the 

tourist, it is not a main functionality for the App. 

2.1.6.2 Use Case  

Scope 

This scope of this use case is to show the required functionality for this 

requirement. 

Description 

This use case describes the process involved in the user booking a tour. 

Use Case Diagram 



 - 21 - 

 

Figure 5 Booking use case 

 

Flow Description 

Precondition 

The system is in initialisation mode. 

Activation 

The use case starts when the actor selects the book tour option 

Main flow 

15. The actor selects book tour option. 
16. The system prompts user to select what tour they want to book 
17. The Actor selects tour 
18. The system prompts for details 
19. The Actor tour details. 
20. The System send the data to the database 



 - 22 - 

21. A confirmation message is displayed 
 

Exceptional flow 

E1 : The booking cannot be processed 
11. The actor enters their details 
12. The info is not sent to the database 
13. An error message is displayed 
14. The actor retries their booking. 
 

Termination 

The actor is shown a success message. 

 

Post condition 

The system goes into a wait state 

 

 

 

 

 

 

2.2 Non-Functional Requirements 

2.2.1 Performance/Response time requirement 

App must be quick and responsive, with very little lag time when navigating pages, 

etc. 

2.2.2 Security requirement 

App must be secured by passwords and require log in to begin session. Payment 

processing must be secure. 

2.2.3 Reliability requirement 

App must attain above 95% uptime. 



 - 23 - 

2.2.4 Extendibility requirement 

App will be ported to iPhone in the future 

2.2.5 Resource utilization requirement 

App will access all data from the code or the database 

 

2.2.6 Data requirements 

The app must be able to process user input, such as login details, booking 

details and messages, such as the intercom messages.  

2.2.7 User requirements 

The user (client) feels that this app should have a map interface, a feedback 

mechanism and a function that will allow users to book tours, as well as a feature 

that will assist his guides. The map interface is dealt with by using the Google 

maps API, the feedback is answered by the features that will allow the 

users/tourists to rate their tour guide and their favourite tour route, and the 

assistance for the guides is provided via the contact form within the app, which 

will allow the guide to answer any queries from tourists outside of tour time. The 

guides will also have a section where they can enter notes and details about their 

tours to the database for the benefit of the other guides. For example, a guide 

could remark that a particular stop may be overcrowded due to an event, or that 

traffic could be heavy at one of the stops near the road. This can then be seen by 

the guide who will also be looking after support, who can then disseminate the 

information to the other guides. 

2.3 Design and Architecture 

This app is made up of a main central Android App, an online hosted database 

from 000Webhost and fragments within the app itself. This will be accessed by 

an external user who has the app on their device. 

 



 - 24 - 

 

Figure 6 High Level Design and Architecture 

2.4 Implementation 

One of the main classes in this app will be the class which contains and adds detail 

to the map to be used by tourists. This class will contain the code which calls the 

map and places a specific location or marker on the map, and uses another class 

in which the API key is used, allowing me to use the Google Maps API within my 

project. Below is the code for the class that will call in the map and specify the 

location of a marker on the map, along with a custom image for the marker: 

public class Map extends FragmentActivity implements OnMapReadyCallback { 

 

    private GoogleMap mMap; 

 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_map); 

        // Obtain the SupportMapFragment and get notified when the map is ready 

to be used. 

        SupportMapFragment mapFragment = (SupportMapFragment) 

getSupportFragmentManager() 

                .findFragmentById(R.id.map); 

        mapFragment.getMapAsync(this); 

    } 



 - 25 - 

 

 

 

    @Override 

    public void onMapReady(GoogleMap map) { 

        LatLng dublin = new LatLng(53.349, -6.260 ); 

 

        if (ActivityCompat.checkSelfPermission(this, 

Manifest.permission.ACCESS_FINE_LOCATION) != PackageManager.PERMISSION_GRANTED 

&& ActivityCompat.checkSelfPermission(this, 

Manifest.permission.ACCESS_COARSE_LOCATION) != 

PackageManager.PERMISSION_GRANTED) { 

 

            return; 

        } 

        map.setMyLocationEnabled(true); 

        map.moveCamera(CameraUpdateFactory.newLatLngZoom(dublin, 14)); 

 

        map.addMarker(new MarkerOptions() 

                .title("The Spire") 

                .snippet("The starting point for all of our tours!") 

                .position(dublin) 

                .icon(BitmapDescriptorFactory.fromResource(R.drawable.marker))); 

 

 

https://developers.google.com/maps/documentation/android-api/  

The class containing the API key has very little, other than the key itself, and is 

shown below: 

<resources> 

    <!-- 

    TODO: Before you run your application, you need a Google Maps API key. 

 

    <string name="google_maps_key" templateMergeStrategy="preserve" 

translatable="false"> 

        AIzaSyDcSr5AsoqnlM3qRUeO1zktUzAufEe2y60 

    </string> 

    </resources> 

 

The next thing to implement would be the login/register database for guides, 

which will use MySQL, PHP files and be integrated into the app using java code. 

MySQL  is used to edit and access the tables of the database, while the PHP 

files are used to send the data to the database. An example of one PHP file, 

named ‘GuideRegister.php’, which sets up the basic connection to the database, 

is shown below: 

<?php 

    $connect = mysqli_connect("mysql9.000webhost.com", "a8066174_SamG", 

"B3taBas3", "a8066174_YellowB"); 

     

    $gName = $_POST["gName"]; 

    $gEmail = $_POST["gEmail"]; 



 - 26 - 

    $gPassword = $_POST["gPassword"]; 

     function registerGuide() { 

         $connect, $gName, $gEmail, $gPassword; 

        $statement = mysqli_prepare($connect, "INSERT INTO guide (gName,  

gEmail, password) VALUES (?, ?, ?)"); 

        mysqli_stmt_bind_param($statement, "sss", $gName, $gEmail, $gPassword); 

        mysqli_stmt_execute($statement); 

        mysqli_stmt_close($statement);      

    } 

    function gEmailAvailable() { 

        global $connect, $gEmail; 

        $statement = mysqli_prepare($connect, "SELECT * FROM guide WHERE gEmail 

= ?");  

        mysqli_stmt_bind_param($statement, "s", $gEmail); 

        mysqli_stmt_execute($statement); 

        mysqli_stmt_store_result($statement); 

        $count = mysqli_stmt_num_rows($statement); 

        mysqli_stmt_close($statement);  

        if ($count < 1){ 

            return true;  

        }else { 

            return false;  

        } 

    } 

    $response = array(); 

    $response["success"] = false;   

    if (gEmailAvailable()){ 

        registerGuide(); 

        $response["success"] = true;   

    } 

     

    echo json_encode($response); 

?> 

 

 

In the above code snippet, the name, user of and password for the database that 

contains the “guide” table are at the top of the code, and within the code there 

are the methods to send the information back to the database to register a user. 

Below, you will see some of the java code from the class where the Registration 

takes place: 

gRegisterBTN.setOnClickListener(new View.OnClickListener() { 

    @Override 

    public void onClick(View v) { 

        final String gName = gNameRegET.getText().toString(); 

        final String gEmail = gEmailRegET.getText().toString(); 

        final String gPassword = gPasswordRegET.getText().toString(); 

 

        Response.Listener<String> responseListener = new 

Response.Listener<String>() { 

            @Override 

            public void onResponse(String response) { 

 

                try { 

                    JSONObject jsonResponseT = new JSONObject(response); 

                    boolean success = jsonResponseT.getBoolean("success"); 

 

                    if (success) { 



 - 27 - 

                        Intent intent = new Intent(GuideRegister.this, 

GuideLogin.class); 

                        GuideRegister.this.startActivity(intent); 

                    } else { 

                        AlertDialog.Builder builder = new 

AlertDialog.Builder(GuideRegister.this); 

                        builder.setMessage("Registration Failed") 

                                .setNegativeButton("Retry", null) 

                                .create() 

                                .show(); 

 

                    } 

 

 

                } catch (JSONException e) { 

                    e.printStackTrace(); 

                } 

At the end of this code, there is a small section that calls in the registration 

request: 

GuideRegisterRequest gRegReq = new GuideRegisterRequest(gName, gEmail, 

gPassword, responseListener); 

RequestQueue queue = Volley.newRequestQueue(GuideRegister.this); 

queue.add(gRegReq); 

 

What this request does is call in a java class called GuideRegisterRequest, which 

contains the information needed to send the data captured from my EditText 

fields and converted into strings to be sent to the database in order to register the 

user. The code for GuideRegisterRequest is below: 

public class GuideRegisterRequest extends StringRequest { 

    private static final String GUIDE_REGISTER_REQUEST_URL = 

"http://yellowumbrellatours.comxa.com/GuideRegister.php"; 

    private java.util.Map<String, String> params; 

 

    public GuideRegisterRequest(String gName, String gEmail, String gPassword, 

Response.Listener<String> listener){ 

        super(Method.POST,GUIDE_REGISTER_REQUEST_URL, listener, null); 

        params = new HashMap<>(); 

        params.put("gName", gName); 

        params.put("gEmail", gEmail); 

        params.put("gPassword", gPassword); 

    } 

    public java.util.Map<String, String> getParams() { 

        return params; 

    } 

} 

 

 The next PHP file, GuideLogin.php, checks that all parameters entered in 

GuideLogin.php are correct before allowing the user to log in: 

<?php 



 - 28 - 

    $connect = mysqli_connect("mysql9.000webhost.com", "a8066174_SamG", 

"B3taBas3", "a8066174_YellowB"); 

     

    $gEmail = $_POST["gEmail"]; 

    $gPassword = $_POST["gPassword"]; 

     

    $statement = mysqli_prepare($connect, "SELECT * FROM guide WHERE gEmail = ? 

AND gPassword = ?"); 

    mysqli_stmt_bind_param($statement, "ss", $gEmail, $gPassword); 

    mysqli_stmt_execute($statement); 

     

    mysqli_stmt_store_result($statement); 

 $returnName = ''; 

 $returnEmail = ''; 

 $returnPassword = ''; 

    mysqli_stmt_bind_result($statement, $returnName, $returnEmail, 

$returnPassword); 

 

    //echo("Name : $returnName , Email : $returnEmail , Password : 

$returnPassword"); 

     

    $response = array(); 

    $response["success"] = false;   

     

    while(mysqli_stmt_fetch($statement)){ 

        $response["success"] = true;   

        $response["gEmail"] = $returnEmail; 

        $response["gPassword"] = $returnPassword; 

  $response["gName"] = $returnName; 

    } 

     

    echo json_encode($response); 

?> 

 

 

 

 

Similarly to the registration, the Login is also implemented in its own class and 

has a request class, calling for the return of the details to make sure that they 

match credentials already in the database. Firstly, the GuideLogin class: 

gLoginBTN.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                String gEmail = gEmailET.getText().toString(); 

                String gPassword = gPasswordET.getText().toString(); 

 

                // Response received from the server 

                Response.Listener<String> responseListener = new 

Response.Listener<String>() { 

                    @Override 

                    public void onResponse(String response) { 

                        try { 

                            JSONObject jsonResponse = new JSONObject(response); 

                            boolean success = 

jsonResponse.getBoolean("success"); 

 

                            if (success) { 

 

 



 - 29 - 

                                Intent intent = new Intent(GuideLogin.this, 

GuideHome.class); 

 

                                GuideLogin.this.startActivity(intent); 

                            } else { 

                                AlertDialog.Builder builder = new 

AlertDialog.Builder(GuideLogin.this); 

                                builder.setMessage("Login Failed") 

                                        .setNegativeButton("Retry", null) 

                                        .create() 

                                        .show(); 

                            } 

 

                        } catch (JSONException e) { 

                            e.printStackTrace(); 

                        } 

                    } 

                }; 

 

                GuideLoginRequest gLoginRequest = new GuideLoginRequest(gEmail, 

gPassword, responseListener); 

                RequestQueue queue = Volley.newRequestQueue(GuideLogin.this); 

                queue.add(gLoginRequest); 

            } 

        }); 

    } 

} 

 

 

The LoginRequest class: 

public class GuideLoginRequest extends StringRequest { 

    private static final String GUIDE_LOGIN_REQUEST_URL = 

"http://yellowumbrellatours.comxa.com/GuideLogin.php"; 

    private java.util.Map<String, String> params; 

 

    public GuideLoginRequest(String gEmail, String gPassword, 

Response.Listener<String> listener) { 

        super(Method.POST, GUIDE_LOGIN_REQUEST_URL, listener, null); 

        params = new HashMap<>(); 

        params.put("gEmail", gEmail); 

        params.put("gPassword", gPassword); 

    } 

 

    @Override 

    public java.util.Map<String, String> getParams() { 

        return params; 

    } 

} 

 

 

The next thing that must be implemented is the function which will allow the user 

to book a tour of their choice: 



 - 30 - 

tBookingBTN.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                final String name = tBookingNameET.getText().toString(); 

                final String email = tBookingEmailET.getText().toString(); 

                final int people = 

Integer.parseInt(tBookingNumET.getText().toString()); 

 

                Response.Listener<String> responseListener = new 

Response.Listener<String>() { 

                    @Override 

                    public void onResponse(String response) { 

 

                        try { 

                            JSONObject jsonResponseT = new JSONObject(response); 

                            boolean success = 

jsonResponseT.getBoolean("success"); 

 

                            if (success) { 

                                AlertDialog.Builder builder = new 

AlertDialog.Builder(NorthsideBook.this); 

                                builder.setMessage("Tour Booked") 

                                        .setPositiveButton("Okay", null) 

                                        .create() 

                                        .show(); 

 

                            } else { 

                                AlertDialog.Builder builder = new 

AlertDialog.Builder(NorthsideBook.this); 

                                builder.setMessage("Booking Failed") 

                                        .setNegativeButton("Retry", null) 

                                        .create() 

                                        .show(); 

 

                            } 

 

 

                        } catch (JSONException e) { 

                            e.printStackTrace(); 

                        } 

 

                    } 

                }; 

 

                NorthsideBookRequest nBookReq = new NorthsideBookRequest(name, 

email, people, responseListener); 

                RequestQueue queue = Volley.newRequestQueue(NorthsideBook.this); 

                queue.add(nBookReq); 

            } 

        }); 

    } 

} 

 

 

 

This is the code to book the Northside Tour. As with the previous java snippets, 

this class calls in the Request class in order to send the details serialized as 

JSON objects to the database. The NorthsideBookRequest class is shown below: 



 - 31 - 

public class NorthsideBookRequest extends StringRequest { 

    private static final String NORTHSIDE_BOOK_REQUEST_URL = 

"http://yellowumbrellatours.comxa.com/BookNorth.php"; 

    private java.util.Map<String, String> params; 

 

    public NorthsideBookRequest(String name, String email, int people, 

Response.Listener<String> listener) { 

        super(Method.POST, NORTHSIDE_BOOK_REQUEST_URL, listener, null); 

        params = new HashMap<>(); 

        params.put("name", name); 

        params.put("people", people + ""); 

        params.put("email", email); 

 

    } 

 

    @Override 

    public java.util.Map<String, String> getParams() { 

        return params; 

    } 

} 

 

This is the class that specifies the .php file that will be handling the information to 

be sent to the database. That .php file, BookNorth.php, is shown below: 

<?php 

    $connect = mysqli_connect("mysql9.000webhost.com", "a8066174_SamG", 

"B3taBas3", "a8066174_YellowB"); 

     

    $name = $_POST["name"]; 

    $people = $_POST["people"]; 

    $email = $_POST["email"]; 

    $statement = mysqli_prepare($connect, "INSERT INTO northsideBooked (name, 

email, people) VALUES (?, ?, ?)"); 

    mysqli_stmt_bind_param($statement, "ssi", $name, $email, $people); 

    mysqli_stmt_execute($statement); 

     

    $response = array(); 

    $response["success"] = true;   

     

    echo json_encode($response); 

?> 

 

 

 

I will also be implementing a chat function within the app so that tourists can 

communicate with a tour guide that will be monitoring the support messages. 

Tourists will be able to use this messaging function in order to communicate with 

a guide from within the app in order to ask questions or direct any queries at the 

guide who will be monitoring the support system. The messaging system will 

make use of intercom.io and GCM. The app will then send push notifications to 



 - 32 - 

any users who have received a message, but in order to use push notifications, I 

will have to register my App for GCM (Google Cloud Messaging) before adding in 

that functionality. GCM works by importing the google-services.json file to your 

android project. After this, we can begin coding  

 

Below, we have the code that will listen for the user I.D assigned by intercom to 

the user, by which they will be identified by the guide providing support: 

public class IntercomIdListenerService extends InstanceIDListenerService { 

    @Override 

    public void onTokenRefresh() { 

        Intent intent = new Intent(this, RegistrationIntentService.class); 

        startService(intent); 

    } 

} 

 

 

 

In this class, we see an intent referencing RegistrationIntentService, which is the 

class that assigns a token to the user in order to send push notifications to the 

user. This class is shown below: 

 

public class RegistrationIntentService extends IntentService { 

    private static final String TAG = "RegIntentService"; 

    public RegistrationIntentService() { 

        super(TAG); 

    } 

 

    @Override 

    protected void onHandleIntent(Intent intent) { 

        try { 

            InstanceID instanceID = InstanceID.getInstance(this); 

            String token = 

instanceID.getToken(getString(R.string.gcm_defaultSenderId), 

GoogleCloudMessaging.INSTANCE_ID_SCOPE, null); 

            Log.i(TAG, "GCM Registration Token: " + token); 

 

            sendRegistrationToServer(token); 

        } catch (Exception e) { 

            Log.d(TAG, "Failed to complete token refresh", e); 

        } 

    } 

 

    private void sendRegistrationToServer(String token) { 

        Intercom.client().setupGCM(token, R.drawable.intercomsdk_default_push); 

    } 

} 



 - 33 - 

 

Intercom itself requires some initialization code: 

public class CustonClass extends Application { 

    //CHANGE THESE VALUES 

    private static final String YOUR_API_KEY = "<INTERCOM_API_KEY>"; 

    private static final String YOUR_APP_ID = "<INTERCOM_APP_ID>"; 

 

    @Override public void onCreate() { 

        super.onCreate(); 

        Intercom.initialize(this, YOUR_API_KEY, YOUR_APP_ID); 

    } 

 

From here, you will need to add the function to allow the user to send a support 

message: 

Intercom.client().displayMessageComposer(); 

 

As well as a button to allow users to view previous conversations: 

 

Intercom.client().displayConversationsList(); 

 

You also need to add some code to your main activity to make sure that Intercom 

and GCM are working together: 

 

public class MainActivity extends AppCompatActivity implements 

View.OnClickListener { 

    

    private static final String YOUR_EMAIL = ""; 

    private static final String YOUR_USER_ID = ""; 

 

     

    private static final String YOUR_HMAC = ""; 

    private static final String YOUR_DATA = ""; 

 

    private Button registerButton; 

 

    @Override protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        setContentView(R.layout.activity_main); 

 

        registerButton = (Button) findViewById(R.id.register_button); 

        registerButton.setOnClickListener(this); 

 

        //if you have provided a hmac and data try begin secure session 



 - 34 - 

        if (!TextUtils.isEmpty(YOUR_HMAC) && !TextUtils.isEmpty(YOUR_DATA)) { 

            Intercom.client().setSecureMode(YOUR_HMAC, YOUR_DATA); 

        } 

 

        

        Intercom.client().openGCMMessage(getIntent()); 

    } 

 

    @Override public void onClick(View v) { 

        Registration registration = Registration.create(); 

        if (!TextUtils.isEmpty(YOUR_USER_ID)) { 

            registration.withUserId(YOUR_USER_ID); 

        } 

        if (!TextUtils.isEmpty(YOUR_EMAIL)) { 

            registration.withEmail(YOUR_EMAIL); 

        } 

        Intercom.client().registerIdentifiedUser(registration); 

 

        registerButton.setEnabled(false); 

        setUpPush(); 

    } 

 

    @Override public boolean onCreateOptionsMenu(Menu menu) { 

        MenuInflater inflater = getMenuInflater(); 

        inflater.inflate(R.menu.menu_main, menu); 

        return super.onCreateOptionsMenu(menu); 

    } 

 

    @Override public boolean onOptionsItemSelected(MenuItem item) { 

        if (item.getItemId() == R.id.action_intercom) { 

            Intercom.client().displayConversationsList(); 

        } 

        return super.onOptionsItemSelected(item); 

    } 

 

 

    private void setUpPush() { 

        

        if (checkPlayServices()) { 

            // Start IntentService to register this application with GCM. 

            Intent intent = new Intent(this, RegistrationIntentService.class); 

            startService(intent); 

        } 

    } 

 

    public boolean checkPlayServices() { 

        int resultCode = 

GooglePlayServicesUtil.isGooglePlayServicesAvailable(this); 

        return resultCode == ConnectionResult.SUCCESS; 

    } 

} 

 

 

In the end, the intercom integration didn’t go to plan, and I ended up creating a 

contact form that would allow the tourist to fill out a contact form in order to be 

contacted by a guide. The form would work by collecting the users data entered 



 - 35 - 

into the 3 text fields (Name, email and query), converting them into strings, as 

seen in some of the classes above, and sending them to the database, where 

they will be monitored by a guide who will look after support. This will work in a 

similar fashion to the feedback and booking functions, with the contact form class 

also having a request class that will send the data to the PHP file, to be inserted 

into the relevant table in the database. 

Some of the code that will enable the contact form is shown below: 

 

contactBTN.setOnClickListener(new View.OnClickListener() { 

            @Override 

            public void onClick(View v) { 

                final String name = touristNameET.getText().toString(); 

                final String email = touristEmailET.getText().toString(); 

                final String question = questionET.getText().toString(); 

 

                Response.Listener<String> responseListener = new 

Response.Listener<String>() { 

                    @Override 

                    public void onResponse(String response) { 

 

                        try { 

                            JSONObject jsonResponseT = new JSONObject(response); 

                            boolean success = 

jsonResponseT.getBoolean("success"); 

 

                            if (success) { 

                                AlertDialog.Builder builder = new 

AlertDialog.Builder(ContactUs.this); 

                                builder.setMessage("Your question has been 

asked. A guide will contact you in relation to this shortly.") 

                                        .setPositiveButton("Okay", null) 

                                        .create() 

                                        .show(); 

 

                            } else { 

                                AlertDialog.Builder builder = new 

AlertDialog.Builder(ContactUs.this); 

                                builder.setMessage("Question not submitted, 



 - 36 - 

please try again") 

                                        .setNegativeButton("Retry", null) 

                                        .create() 

                                        .show(); 

 

                            } 

 

 

                        } catch (JSONException e) { 

                            e.printStackTrace(); 

                        } 

 

                    } 

                }; 

 

                ContactUsRequest contactReq = new ContactRequest(name, email, 

question, responseListener); 

                RequestQueue queue = Volley.newRequestQueue(ContactUs.this); 

                queue.add(contactReq); 

            } 

        }); 

    } 

} 

 

 

2.5 Testing 

For this project, I will be using Junit testing in order to carry out my technical 

testing, and will be making use of testing libraries in Android Studio to make sure 

that my app is performing as expected under the hood. I will also be carrying out 

practical testing, which will entail myself and one guide from Yellow Umbrella 

Tours. Practical testing will be discussed later on, under the Customer 

Evaluation heading, so for now we will discuss JUnit testing. JUnit is a 

framework which allows you to write testing methods and organize these 

methods into test classes, and use these to test the functionality of your app. In 

order to test my app, I constructed a number of simple tests to test the staple 

functions of the app, i.e making sure that buttons were working and leading to the 



 - 37 - 

correct pages, etc. One such class that I wrote in order to test my project was a 

testing class called HomeTests, which you can see below: 

public class HomeTests extends ActivityInstrumentationTestCase2<Home> { 

 

    public HomeTests() { 

        super(Home.class); 

    } 

 

    public void testActivityExists() { 

        Home activity = getActivity(); 

        assertNotNull(activity); 

    } 

 

    public void testHome() { 

        Home activity = getActivity(); 

 

 

        // Tap "tourist" button 

        // ---------------------- 

 

        Button touristButton = 

                (Button) activity.findViewById(R.id.tBTN); 

 

        TouchUtils.clickView(this, touristButton); 

 

 

 

    } 

} 

 

 

 

The above test ensures that the activity exists within the project, and carries out a 

button click in order to make sure that the button is working and leading to the 

right page. Another class that I created, which carries out a similar job to this is 

TouristTest, which makes sure that the buttons on the TouristHome page 

function properly. 

 

extends ActivityInstrumentationTestCase2<TouristHome> { 

 

    public TouristTest() { 

        super(TouristHome.class); 

    } 

 

    public void testActivityExists() { 

        TouristHome activity = getActivity(); 

        assertNotNull(activity); 

    } 



 - 38 - 

 

    public void testHome() { 

        TouristHome activity = getActivity(); 

 

        Button northButton = 

                (Button) activity.findViewById(R.id.nSideTourBTN); 

 

        TouchUtils.clickView(this, northButton); 

 

        Button southButton = 

                (Button) activity.findViewById(R.id.sSideTourBTN); 

 

        TouchUtils.clickView(this, southButton); 

 

 

 

    } 

} 

 

 

 

 
 

 

This test checks the functionality of both buttons on the page. After writing a 

couple of more tests, I decided to check the results of these tests by exporting 

them as an html file, and the results can be seen below: 

 

Figure 7 Test Run times 

 

The above results show how long each test took and whether or not it passed. 

This allowed me to analyse not only the success of the tests, but how they were 

performing and if they would need to be changed, and in making sure that no 

function dropped below an acceptable level of performance. 



 - 39 - 

2.6 Graphical User Interface (GUI) Layout 

 

 

Figure 8 Login screen        Figure 9 Home screen     Figure 10 Choosing your tour 

 

 



 - 40 - 

 

Figure 11 Payment screen   Figure 12 Page containing the map.  

 

 

2.7 Customer testing 

In order to carry out customer testing, I installed the app on one of the guides’ 

Android phone. From here, I asked him to try out the different sections of the app 

and give me his feedback for the different sections and functions. This was a 

process carried out over a long period of time, throughout the development of the 

project .The main points that the guide, Peter, touched on initially were that 

system seemed a bit slow at first, and that the interface was a bit clunky and not 

too user friendly. At this stage, I had only developed a very rough draft of what 

the app would look like. After spending another couple of weeks working at the 

app, I brought it back to him, installed it and asked him to evaluate it once more. 

He noted the improvement of the interface, remarking that it was much more user 

friendly, with sections being labelled in a much more recognizable fashion, and 

the system seemed to be a little quicker, due to a cleanup of the code that I had 

carried out between review sessions. Overall, after our second review, Peter 

seemed pleased with the progress that had been made, and advised me on a 



 - 41 - 

couple of changes that he thought would add to the app. At this stage, he 

suggested I add markers for the start and finish points for the tours on the map, 

and add the companies soon to be logo, the yellow umbrella, as a custom 

marker. The next time that we reviewed the app’s usage, Peter noted that the 

app was still running smoothly and that the main features of the app were 

working well. In regards to my contact with Peter and other guides currently 

working with him, I also spoke to the guides during my requirements gathering 

phase, asking the guides what they felt the app needed and also what they felt 

would improve the app for both the tourists and the guides. 

2.8 Evaluation 

The system was evaluated using a combination of customer evaluation, as detailed 

above, and through JUnit testing. Throughout the customer evaluation phase, it 

became evident that the code would need to be cleaned up in order to keep the 

app efficient. I also needed to construct my Junit testing classes in order to make 

sure that my classes were all running as expected, and those tests have been 

discussed in more detail under the Testing heading in this report. 

One of the factors discussed above was the tests themselves and how quickly 

they were running, as shown below: 

 

Figure 13 Test run times 

  



 - 42 - 

3 Conclusions 

In conclusion, from working on this app, I feel that this app has an advantage 

over other tourism apps in that it takes guides into consideration and allows them 

to make their own lives easier through the tour data system, which allows guides 

to submit notes about their tour back to the database, i.e changes to routes, 

issues at certain stops, etc. In the context of the apps practical use, it also helps 

the guides and the company itself to see the number of people attending the 

tours and what time they finish, allowing the company to better organise tours 

around finishing times and attendance. I feel that this would be especially helpful 

if the app were to expand and include a whole network of tour companies, 

instead of just one. This would lead to greater co-operation between tour 

companies, as well as allowing tourists to book tours in cities that they haven’t 

visited yet. A disadvantage of the app is that I could not facilitate a guide support 

mailbox within the app itself, which would have led to a much more interactive 

and immersive experience. The opportunites offered by the app here include the 

potential for expansion (mentioned above), the opportunity to “onboard”, if you 

like, incoming tourists and leave them with a good experience of the city and of 

Yellow Umbrella Tours especially. One limit of this project is getting it out there. It 

may be difficult to get people who may only be in the city for a few days to find 

this app and use it in order to book tours and give feedback, especially 

considering that the company originally did most of its business through flyers 

and relying on tourists to come to the start point of the tour, but I feel that this 

could be counter-acted with changes to the marketing structure of Yellow 

Umbrella Tours in order to try and push people towards using the app while they 

are in Dublin. Another limit that could be an issue in the early phase is not only 

getting the app out there and spreading knowledge of it, but encouraging use, 

especially if it is just based off Dublin. Without the expansion and addition of 

other cities, people may not be keen on downloading an app that will only be 

useful for a couple of days. This however, is only a potential drawback, as it is 

impossible to tell how people will take to it before it has been put on the market. 



 - 43 - 

4 Further development or research 

With more time and resources, I feel I could scale this app out to include an 

entire network of tour companies and cities, each linked through suggestions and 

based off of where the user has been and what tours they have enjoyed. This 

would address one of the limits that I had mentioned previously, and would 

probably be received more positively by tourists if the app were to include a 

network of tour companies around Europe as opposed to just the one. Another 

possibility for the future, if the app were to include a network of tour comapanies 

around Europe, would be to create something of a tourist social network and 

have tourists share pictures, experiences and recommendations and use guides 

as admins, making sure that all content is appropriate and also offering their own 

contributions to pictures, experiences and reccomendations. The app could also 

be ported over to other devices such as iPhones or Windows phones. 



 - 44 - 

5 References 

How to Accept Payments in an Android App Using MPL - PayPal Developer. 

2016. How to Accept Payments in an Android App Using MPL - PayPal Developer. 

[ONLINE] Available at:https://developer.paypal.com/docs/classic/mobile/ht_mpl-

itemPayment-Android/. [Accessed 04 February 2016]. 

 

Google Maps Android API  |  Google Developers. 2016. Google Maps Android 

API  |  Google Developers. [ONLINE] Available 

at: https://developers.google.com/maps/documentation/android-api/. [Accessed 04 

February 2016]. 

 

Testing Concepts | Android Developers. 2016. Testing Concepts | Android 

Developers. [ONLINE] Available 

at: http://developer.android.com/tools/testing/testing_android.html. [Accessed 08 

May 2016]. 

 

Testing activity in Android Studio. Part 1.. 2016. Testing activity in Android Studio. 

Part 1.. [ONLINE] Available at: http://evgenii.com/blog/testing-activity-in-android-

studio-tutorial-part-1/. [Accessed 08 May 2016]. 

 

Testing activity in Android Studio. Part 2 . 2016. Testing activity in Android Studio. 

Part 2.. [ONLINE] Available at: http://evgenii.com/blog/testing-activity-in-android-

studio-tutorial-part-2/. [Accessed 08 May 2016]. 

 

Testing activity in Android Studio. Part 3.. 2016. Testing activity in Android Studio. 

Part 3.. [ONLINE] Available at: http://evgenii.com/blog/testing-activity-in-android-

studio-tutorial-part-3/. [Accessed 08 May 2016]. 

https://developer.paypal.com/docs/classic/mobile/ht_mpl-itemPayment-Android/
https://developer.paypal.com/docs/classic/mobile/ht_mpl-itemPayment-Android/
https://developers.google.com/maps/documentation/android-api/
http://developer.android.com/tools/testing/testing_android.html
http://evgenii.com/blog/testing-activity-in-android-studio-tutorial-part-1/
http://evgenii.com/blog/testing-activity-in-android-studio-tutorial-part-1/
http://evgenii.com/blog/testing-activity-in-android-studio-tutorial-part-2/
http://evgenii.com/blog/testing-activity-in-android-studio-tutorial-part-2/
http://evgenii.com/blog/testing-activity-in-android-studio-tutorial-part-3/
http://evgenii.com/blog/testing-activity-in-android-studio-tutorial-part-3/


 - 45 - 

Intercom. 2016. Intercom. [ONLINE] Available 

at: https://app.intercom.io/a/apps/od2x3tpl/guide. [Accessed 09 May 2016]. 

 

GitHub. 2016. GitHub - tonikami/NEWLoginRegister: Tutorieal for creating an 

android app which allows user to login and register.. [ONLINE] Available 

at: https://github.com/tonikami/NEWLoginRegister. [Accessed 09 May 2016]. 

 

GitHub. 2016. intercom-android/samples/intercom-gcm-

sample/gcmsample/src/main/java/io/intercom/gcmsample at master · 

intercom/intercom-android · GitHub. [ONLINE] Available 

at: https://github.com/intercom/intercom-android/tree/master/samples/intercom-

gcm-sample/gcmsample/src/main/java/io/intercom/gcmsample. [Accessed 09 

May 2016]. 

Hotline.io - Native in-app chat | Deep links | mobile app support |. 2016. Hotline.io 

- Native in-app chat | Deep links | mobile app support |. [ONLINE] Available 

at: https://hotline.io/in-app-chat. [Accessed 09 May 2016]. 

 

Google Developers. 2016. Set up a GCM Client App on Android  |  Cloud 

Messaging  |  Google Developers. [ONLINE] Available 

at: https://developers.google.com/cloud-messaging/android/client. [Accessed 09 

May 2016]. 

 

Transmitting Network Data Using Volley | Android Developers. 2016. Transmitting 

Network Data Using Volley | Android Developers. [ONLINE] Available 

at:http://developer.android.com/training/volley/index.html. [Accessed 09 May 

2016]. 

https://app.intercom.io/a/apps/od2x3tpl/guide
https://github.com/tonikami/NEWLoginRegister
https://github.com/intercom/intercom-android/tree/master/samples/intercom-gcm-sample/gcmsample/src/main/java/io/intercom/gcmsample
https://github.com/intercom/intercom-android/tree/master/samples/intercom-gcm-sample/gcmsample/src/main/java/io/intercom/gcmsample
https://hotline.io/in-app-chat
https://developers.google.com/cloud-messaging/android/client
http://developer.android.com/training/volley/index.html


 - 46 - 

6 Appendix 

6.1 Project Proposal 

7 Objectives 
This app is aimed towards tourism companies who would like more exposure and 

be able to offer more to customers than they can through sites like TripAdvisor. 

While we all have trip advisor and its different sections and its helpful reviews 

and suggestions, there is only so much that you can take from it. My goal is to 

create a tourism app (which will be based on one company initially) where you 

can view the available tours, the times they depart and even book and pay for 

your place on the paid tours. By the time I have developed this app, there should 

also be a page on the app where you can rate your tour guide and an average 

rating will appear, and even send a tip for your tour guide to the company 

through the paypal functionality within the app. My main objective is to create a 

stylish, well designed app that can perform all of its functions properly and with 

minimal faults, as well as making these tours and info regarding them accessible 

to all who may wish to go on them. It is also imperative that the security around 

the paypal API and the entering of all personal details is tight and all users of the 

app can be ensured that their details are safe and secure. The overall user 

experience must be pleasant and not too difficult, even for those who may not be 

all that technical. The app will also let users “bookmark” certain tours, sending 

them push notifications an hour or so before their tour is due to begin. There will 

be a section within the app that will also have info on the main stops on the tour, 

and allow you to choose your favourite, which will be saved. There will be a basic 

login feature and database to make sure that everything is stored and loaded 

correctly for each registered user. A facebook Login is also a possibility, with the 

option to share your tour experience and favourite stop through Facebook. 

8 Background 
The idea for this project came from a previous project that I had done as part of a 

group in the beginning of 3rd year. A similar concept (a tourism app, some points 



 - 47 - 

of interest), but I felt that it was sorely missing a lot of functionality. The ability to 

rate and save certain stops, booking tours, setting reminders for tours you’d like 

to go on and rating and reviewing your guide (arguably the most important part of 

the tour) were all missing. I wanted create an app with these features and 

improve on the existing features in order to create an app that will encourage 

people to get out and see Dublin City and what it has to offer, as well as creating 

an easy to use, immersive app that allows you to give your opinion on the 

experience. There is also a small walking tour company that I know of in the city 

centre, and looking at their business model and the structure of their tours also 

made me want to make this app, as everything nowadays is digital, whether it be 

marketing, sales or education, and I thought this app could really help this 

company in particular to grow a huge amount, allowing them to gain exposure 

that they otherwise would not have seen. I also wanted to show that I could 

handle the more complex issues that will no doubt arise while I am working on 

this project in order to prove my capabilities as a developer. 

9 Technical Approach 
For this project, I will be working from a basic Android framework with Map 

Activities as well as separate pages and added API’s to give the functionality 

needed. I will also need to add in a database to store login details as well as 

people’s ratings and reviews. This of course means that the database will have to 

be hosted in order for it to run consistently on every device that it’s on. The use of 

the MPL for PayPal will likely give me the most trouble, as I will have to make 

sure the security around that is up to scratch. The tally system for the tour guide 

ratings will also be a bit difficult, and I will have to do more research on this 

before I dive in and start coding that. In regards to the PayPal MPL, PayPal 

themselves have a lot of documentation on their website to do with its 

implementation and compatability. The Google Maps API will be simple enough 

to implement, as there is plenty of documentation and even the option to put in a 

map activity in Eclipse JDE. 



 - 48 - 

10 Special resources required  
Resource-wise, all I will need are android devices to test on and a few reference 

websites, such as the PayPal and Google developer sites for the API’s, and other 

sites for tutorials on Android programming. 

 

10.1 Project Plan 

 

10.2 Monthly Journals 

Reflective Journal 

Student name: Sam Gormley 

Programme BSc in Computing 

Month: September 



 - 49 - 

11 My Achievements 

During the month of September, much of my time was spent researching the ins 

and outs of my project. I researched the use of the PayPal API as well as 

researching a few different databases which I could use and incorporate into my 

project. I was also able to look at a previous project that may help me to build on 

this project, as the framework is similar. This helped me to see what I needed to 

do in relation to what I can already do and what I need to learn. My research took 

me to other APIs as well, such as the Google Maps API and the proper 

implementation of the features that I plan to use within my project, such as the geo-

location and marking stops on the tours. 

 

 

 

 



 - 50 - 

12 My Reflection 

I felt it was good to look at an old project in order to work out where I was in relation 

to my ability and what I needed to learn and work on. As a whole, my research 

gave me a good idea of what I need to do, how long it will take and what I need to 

give more time to. I felt that I could have benefitted from some more practical work 

on the project, perhaps towards making a prototype. 

 

 

 



 - 51 - 

13 Intended Changes 

Next month I will devote more time to playing around with the practical elements 

and try to implement some of the smaller features into the project, such as the map 

and some markers, just to test them out before I dive in with the more complex 

features, as well as trying out the compatibility of some features together to make 

sure that one won’t break the other. 

 

 



 - 52 - 

14 Supervisor Meetings (Not assigned supervisor yet) 

 

Date of Meeting: N/A 

Items discussed: N/A 

Action Items: N/A 

 

Reflective Journal 

Student name: Sam Gormley 

Programme: BSc in Computing 

Month: October 



 - 53 - 

15 My Achievements 

This month, I was able to meet with my project supervisor and discuss the in’s and 

outs of my project, as well as come up with a couple of ideas for additions to my 

project in order to increase the complexity and come up with something innovative. 

 

 

 

 



 - 54 - 

16 My Reflection 

I was glad that I got to meet with my supervisor so that I could vocalise some of 

my ideas and get some feedback on them, and I felt that it was good to get more 

assured feedback, rather just my own research. 

 

 

 



 - 55 - 

17 Intended Changes 

Implement the more basic parts of my project so that I can devote more time to the 

innovative features of the app and try to test and implement them. 

 



 - 56 - 

18 Supervisor Meetings 

 

Date of Meeting: 06/11/15 

Items discussed: Project structure, innovation. 

Action Items: Work on the basic aspects of the project 

 

Reflective Journal 

Student name: Sam Gormley 

Programme: BSc in Computing 

Month: November 



 - 57 - 

19 My Achievements 

This month, I was able to begin my documentation, and I completed my 

requirements specification at the beginning of the month.  Unfortunately, other 

assignments took up a lot of my time, so my contribution to the project was minimal 

this month. 

 

 

 

 



 - 58 - 

20  

 

 

 



 - 59 - 

21 Intended Changes 

Next month, I will try to get more work done on the app and try to implement some 

featured. I realised that I need to try to divide my time out more evenly between 

subjects and projects. 

 



 - 60 - 

22 Supervisor Meetings 

 

Date of Meeting: 

Items discussed: 

Action Items: 

 

Reflective Journal 

Student name: Sam Gormley 

Programme: BSc in Computing 

Month: December 



 - 61 - 

23 My Achievements 

This month, I was able to begin some of the coding for my project, and decided to 

use Android Studio rather than the Android plugins for Eclipse, as Android studio 

is easier to use and more up to date than Eclipse. I created the shell for the app 

as well as attempting some tutorials on implementing some of my functionalities. 

 

 

 

 



 - 62 - 

24  

 

 

 



 - 63 - 

25 Intended Changes 

Next month, I intend to begin the implementation of the aforementioned 

functionalities into my app instead of just following tutorials and making sure that I 

can understand the methods behind these functions. 

 



 - 64 - 

26 Supervisor Meetings 

 

Date of Meeting: 11/12/15 

Items discussed: Functions of the project, documentation 

Action Items: Work on diagrams, improve documentation 

 

Reflective Journal 

Student name: Sam Gormley 

Programme: BSc in Computing 

Month: January 



 - 65 - 

27 My Achievements 

This month, a lot of my time was consumed with the exams and preparing for them, 

so my time to work on the app was limited. However, I did manage to begin 

implementing some of the features into my app, such as the map and the login and 

registration function. 

 

 

 

 



 - 66 - 

28  

 

 

 



 - 67 - 

29 Intended Changes 

With the exams out of the way, I will have a lot more time to work on my project, 

both the documentation and the app itself, so in the coming month I hope to make 

a lot of progress with my project. 

 



 - 68 - 

30 Supervisor Meetings 

 

Date of Meeting: 28/01/16 

Items discussed: Implementation, Mid Point Presentation 

Action Items: Implement one feature into the project for the presentation, get 

documentation up to scratch. 

 

Reflective Journal 

Student name: Sam Gormley 

Programme BSc in Computing 

Month: February 



 - 69 - 

31 My Achievements 

Throughout the month of February, I was able to focus a bit more on the research 

of other technologies for my project, such as hotline.io, an alternative to Intercom, 

different libraries that I could use for the project, etc. I was also able to begin some 

of the more basic implementations for my project, and began to get a better picture 

of how the app would look once completed.  

 

 

 

 



 - 70 - 

32 My Reflection 

I was happy to be able to start some of the more basic implementations this month, 

as I felt they gave me a better understanding of what would be needed and how 

best to Implement these features. However, I felt that I could have carried out a bit 

more research this month regarding some of the more difficult implementations. 

 

 

 



 - 71 - 

33 Intended Changes 

Next month, I will try to work on some more features of the app, as well as working 

a little bit on the design as well. I also realised that I needed to make some of the 

interfaces more user friendly and a bit more simplistic in order to appeal to potential 

users. 

 



 - 72 - 

34 Supervisor Meetings 

 

Date of Meeting: 22/02/16 

Items discussed: Progress of the app, feedback from the mid-point presentation 

Action Items: Work on Documentation, fix points brought up from mid-point 

presentation, continue to work on implementation 

 

 

Reflective Journal 

Student name: Sam Gormley 

Programme BSc in Computing 

Month: March 



 - 73 - 

35 My Achievements 

Throughout the month of March, I continued to try and balance my project with the 

rest of my workload. When I got the chance to work on my project, I focused mainly 

on the database interactions between the app and database, such as registration, 

logging in or sending feedback, etc. I also got the chance to work on the messaging 

function of the app, which will be provided by intercom.io.  

 

 

 

 



 - 74 - 

36 My Reflection 

It was good to get started on some of the more complex functions within the app 

this month. Getting a chance to look at intercom gave me a chance to see what I 

will need to do and what other steps I would need to take in order to get the app 

working the way I would like it to. 

 

 

 



 - 75 - 

37 Intended Changes 

Next month, I will try to work on the design of the app and try to perfect the GUI 

and get one of the guides to test it, in order to obtain some feedback. 

 



 - 76 - 

38 Supervisor Meetings 

 

Date of Meeting: 22/04/16 

Items discussed: Progress of the app, advice on the next steps to take, project 

deliverables 

Action Items: Work on Documentation, continue to work on implementation, work 

on poster and start thinking about the presentation. 

 

 

 

 

 

 


