ALLERGY ADVICE

Technical Report
BSc in Computing
Niall Whelehan, x12102954

Allergen Advice

EX@CULIVE SUMMAIY «oitiiiiiiiiiiiiiieeeeeeeeeeeeaenenssssssseeeeecessssssssssssssssssseassessensnns 5

[31d e Te (111 4 {o] o J P PPN 5
LF Tel €1 o 10] 4 L« PPN 5
THE CONCEPt ciiiiiiiiiiiiiiiienneeeettteteeeeesssssecesnnssssssssssccsssssssssssnnnssssssssssssssnns 5
[CTo -1 L PP 6
TEChNOIOGIES tiiiiiiiiiiiiiiieineeettttttteeeeeeesseennnnnssssssseseessssssssssnnnnssssssssssssasnns 6
[0 o]0 T Y] U0 1 o] o HPUN PPN 6
DY - o 1Y P 7
MODITLE BaCKeNd. ... ittt et ettt ieeeeeeeeeeeeeeeannnnnnnseeseeeesssssasannnns 8
7= o PPN 9
=0 [T =T 1= e 9
Functional Requirements (Mobile Application)........ccceeeeiiiiiiiiiiiiiiiiiiinnnnnnenennnns 9
Function: “Screen Navigation”eeiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeesnnnnneeeeeeeeeeens 9
Function: “Retrieve Allergen Food Laws Information by Country”..........ccccvvvveee... 10
Function: “Provide neat animations to allow user to pick and choose what info they
A= A o T = U o PPN 11
Function: “Phrasebook To Translate Common Allergen Foods”cccovvvvvvvvnneen... 12
Function: “Restaurant Recommendation Service”......ccceveiiiiiiiiiiiiiiiiiinnneeeeeenns 13
Function: “Recommended Restaurants”iieiiiiiiiiiiiiiieereeeeeeeiiinneeeeeeeeens 14
Function: “Profile information”eeiiiiiiiiiiiiiiiiiiiiiiiii it i i eeeeeeeeiirreeeeeeees 15
Functional Requirements (Mobile Backend)ccciiiiieeeiiiiiiiiiiiiiiiiiicnnnnnnnnnnnns 16
Function: “Status/Health Check ENdpoint”....ccceuniiiiiiiiieiiiiiiiiiieeeeeens 16
Function: “Country Header Request Listener”uieiiiiiiiiiiiiiiiiiiiiinnnneeeeenns 17
Function: “Process Allergen Advice Based On Country Header”cccccvvvvvvneen... 17
Function: “For Phrasebook Return Translation Sheet For Food Groups In Selected
LT BT T 17
Function: “Restaurant StOre”eeeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeaeeeannnnnneeeeeeeess 18
FUunction: “LoCations SEIVICE”uuueeitiiitiiieeereiiiiiieeeeeeeeeeeeeesessnnnnnneneeeeeens 18
Data ReqUIrEMENtS .iiiiiiiiiiiiiiiiiitettttiieeeeeeesnnnnnnssssssssssecssssssssssnnnnnsssssnns 18
UsSer ReqUINEMENTS .iiiiiiiiiiiiiiiiiineettttittteeeeesessnnnnnssssssssssesssssssssssnnnnnsssssnns 19
UX REQUITEMENTES «iiiiiiiiiiiiiiiiiinnneeetetteeeeeesessssssnnnnsssssssssssssssssssssssnnnnsssssses 19
Design and ArchiteCtUre....eeeiiiiiiiiiiiiiiieenneeeeeteeeeceeessssssennnsssssssssescssssssssssnnns 20
IMplementationoiiiiiiiiiiiiiiiiiiiiiiiiieiiiteteieeennneaetecececssnnnssssseccssnnnnas 21
Y= 0 =) PP 21
L0010 31 Y20 (o U 1= 21
(2] ¢= 1] oo o) (@e] a1 d o 11 (=] PP PP 23
ALLErgeN AdVICE. ittt ettt ettt ieeeeeeeeeessssesnnnnnnnnsssssseessssssannns 23
CommMUNIEYCONEIOLLET ..ttt ittt tieeeeeeeeeeeeeeeaeennnnnes 25
714 L [o) L« I PPN 26
R3] WY =T o = e 26
o] 0] = L] 0o Yo) 27
Restaurant Recommendationeeeeiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeennnnnnnneeeeeeeens 28

WOrk CUrrently [N Progress ..cceeeeieeeeeeiieiiieiieneeeeteeeesessnnsssscccccsssnnnnasas 31

LCT=T o) =T ot Y =T o = 31
User FEedbacKciiiiiiueiiiiiiiniiiiiiintieiiienetiessessstecssessstscsssssssosssnssssssssnnnss 32
Graphical User Interface (GUI) Layout......ccceeeeeiiiiiiiiiinnneeeeecceecncnnnnncens 32
[60o] 3 Vel (113 (o] 3 1S P 34
Waterfall Vs Agile . cciiiiiiiiiiiiiiiiiiiiiiiiiiiieeineeetttttteeeesssssssssnnnnsssssssssccscanns 34
Activities VS Fragments....coveeeiiiiiiiniiiiiiinetieiiinneiiessssnstossssssstcssssssssossnsssscns 34
Amazon Services Are Your Friendccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnecessssscccccanns 34
ACronyms and PRrasescieiiiiiiineeiiiiiiiiiienneecteeeesessnnnassssccccssnnnnsssees 34
T =] =) Tel =L PP 35
7:Ys]0 1] g Te | {ol =1 S PPN 35
Appendix (i & ii) - Project Proposal & Project Planccciiiiiiiiiiiinnnniniiiiiieannnn. 36
5= Tod e | o 11T T 37
Technical Details And APpProach.......c.cccciieiiiiiiiiieeeeeennseeeeceennnssscccccsanes 38
ReSOUrCes reqUIred.......cciiiiiiiieniiieeeeeeeennseeeeeessssssseccssssssssseccssssnnssnns 39
EValuation .. .cciiiiiiiiiiiiiiiiiiiiiiiiieieineeeeessesssessssssssssssssssssssssssssssssssssnnes 39
Project Plan - Milestones and Timeline.........cccceiiiiiiiiiinnnnnnnnnnccccccccccnees 40
L0 o =T o Y= 43
SUIMIMATY tttvvtteieeeeeeeesasssnes 44
Appendix(iii) Project Journals......cciiiiiiiiiiiiiiiniiiiiiiiiieiiieiissnnnnsssssssscccccanns 44
Month One (Jan 12th - October 5th)c.ccviiiiiiiiiiiiiiiiiiiiiinnncceccceceenees 45
Setting Up the basiCScciiitiettesessssssssssnannes 46
Putting the tutorials tothetest........ccoviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineneennes 47
Agile Development and Planningcceeiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeesessssssssssses 47
SPHNt Planningcceiiiiiiiiiiiiiiiiiieneeeetttteeeeeesssssenssssssssssssccssssssssssnnnsssssses 47
Agile terms and teChNIQUEScciiiiiiiiiiiiiiiiiiiiiiiieiiiiiiscccetsssssssssssssssssssssns 48
Month Two (Oct 6th - NOV 3rd)ccvviiiiiiiiiiiiiiiiinnneeennncecscsccccscccccccnnes 50
From Front To Back and Front Again.........ccccceviiiiiiinennnnenncccccccccccccccccces 51
Test Driven Development......cccoiiiiiiiiiiieiiiiiiieeeeeeeeencsecceceesssssscccccssnns 51
Agile Development and Planningcceeiiiiiiiiiiiiiiiiiiiiiieiieeieeeeeeessssssssssnes 52
SPHNt Planningcceiiiiiiiiiiiiiiiiiinneetetttteeeeetsssssecnnsssssssssssccssssssssssnnnsssssses 52
Agile terms and teChNIQUESciiiiiiiiiiiiiiiiiiiiiiietiiiiissccetsssssssssssssssssssssns 53
Month Three (Nov 4th -Dec 1St)....cccvviiiiiiiiiiiiiiiinneneeeenncnccscssccscscccccnnes 54
Backend Is Working, Tests Up And RUNNING.......ccccevviieinnnnnnnnncccccccccccnees 55

Agile Wizardry.....oooiiiiiiiiiiiiiiiiiinntiiiiiieiessssssetcccssssssssssssscssssssssssssssns 55

RetrOSPECHIVE ..uuiiiiiiiiiiiiiiittiiiiiieeeeeeenneeeeeeeesanssssceccssssssssscccssssnnnsnns 55

Agile Development and Planningccoeiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeceessssssssssnes 56
SPHNt Planningcceiiiiiiiiiiiiiiiiiinneeeeettiteeeeetssssscnnsssssssssssccsssssssssssnnsssssses 56
Agile terms and teChNIQUESceiiiiiiiiiiiiiiiiiiiiieiiiiiiseccetsesssssssssssssssssssans 57

Month Four (Dec 2nd -Jan 5th)........cccviiiiiiiiiiiiiiiiiininncnnnncnccccccccccccccnces 58

Data is the core of this projectcccvviiiiiiiiiiiiiiiiiiiiiiiinnenccccccccccccccees 58

DynamoDB, an obSeSSioNccvviiiiiiiiiiiiiieieeeeeeaecssccsssssssssssssssssssssssnes 59

The featuUresiiiiiiiiiiiiiiiiiiiiiiiiiiiiteteeeieeeeeeeeeeeeeeseseesssssssssssssssssssssnes 59

RetrOSPECHIVE ..uuiiiiiiiiiiiiiiiiitiiieiieeeeeeenneeseeeeeeasssssseccssssssssscecsssnnnnsnns 59

Agile Development and Planningcceeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeessssssssssnes 60
SPHNt Planningcceiiiiiiiiiiiiiiiiiinneeeetttteeeeeesesssecnnsssssssssssccssssssssssnnasssssses 60
Agile terms and teChNIQUESciiiiiiiiiiiiiiiiiienniiieiiiiitssccersssssssssssssssssssssns 61

Month Five (Jan 6th -Feb 2nd)ccvviiiiiiiiiiiiiiiiiiiiiiiiiiiinnececcccncenees 62

Making Up FOr Lost Time ...ccvviiiiiiiiiiiiiiiieeneeeeeeceecsscesssssssssssssssssssscsnnes 62

Naming ConVventionScciiiiiiiiiiiiiiiinieieeeeseecasssssssssssssssssssssssssssssssnces 62

Activities and Fragmentsccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeessessassssses 63

User Interface and User EXPerienCe.....cccuueuiiiiiietenenniieeeeeeeennnsccecessnnnnnnns 63

RetrOSPECHIVE ..uiiiiiiiiiiiiiiiiittiiiiieeeeeeeeneeseeeeessnnsssseccssssssssscccasssnnnnnns 63

Agile Development and Planningccoeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeseessssssssssnes 63
SPHNt Planningcceiiiiiiiiiiiiiiiiiinneetetttteeeeetsssssecnnsssssssssssccssssssssssnnnsssssses 63
Agile terms and teChNIQUESccciiiiiiiiiiiiiiiiiiiieiiiiitseccetsesssssssssssssssssssns 64
Appendix(iv) Play Store Focus Group Bug Tracker Spreadsheet.........cccccvvvieennnnn. 65

Appendix(v) Play Store Focus Group Feedback Spreadsheet.........cccccevvviiiieannnnn. 65

A common problem for those affected by serious allergy afflictions is that the rules
and laws governing food packaging or general awareness of contaminants vary from
country to country. Allergen Advice aims to act as a travelling companion for food
related allergy sufferers.

Using a simple to use user interface, app users can select their own countries food
laws and regulations and compare them with selected destinations. Additional
features include a phrasebook, listing common allergens in multiple languages, a
community area where people can recommend and view suggested restaurants and
a smartwatch extension that alerts a user when they are nearby such a restaurant.
While the phrasebook exists in other translation style applications, the allergen
information on a country by country basis does not exist currently on the Play
Store.

As a parent of a child with a severe nut allergy | am acting as one of my own target
audience. | love this idea, and the colleagues and friends | have shared it with
have endorsed the project as something they would use and recommend to
families affected.

A closed beta of the application has been viewed, updated and reported on by
close friends and colleagues as well as a group of mothers of children suffering
from serious food allergies.

The goal of this report is to highlight the risk of such allergies as well as to show
how easy, and cheap it can be to create an application not for monetary gain.

This document is presented to include all the research and findings made so far in
the Allergen Advice project. The current content has changed, in some places
drastically, since the beginning of the project and is likely to change again if and
when better implementations or user experiences are defined.

THE CONCEPT

As mentioned above, | am the father of a serious allergy sufferer. It is a terrifying
fact and recurring nightmare for a parent that there is a food that could cause

such catastrophic damage to their child. Fueled by this fear my wife and | have
done our research on the specific allergen, have become hyper vigilant while
shopping to check all ingredients and warnings, and prepared his bag to always
have his adrenaline pen close should something happen. This is what | suspect
most parents would do in our situation. Feeling somewhat secure in our knowledge
of Ireland’s laws surrounding this subject is one thing, planning a family holiday
abroad is another.

Food laws differ greatly from country to country. Some countries do not even have
food laws and regulations. The idea for this application was conceived when | read
an article about the risks prevalent in the United States for allergy sufferers due to
the fact that only eight of the commonly known allergens must be displayed on the
packaging of food items. Compare that with the fourteen mandatory displayed
items in the EU and you already have six hidden killers in American food labels.

GOALS

My plan for this project was to create a philanthropic application that raises
awareness of the dangers of food allergies and offer a simple reference for those
affected. As of January, 2015, | have been working as a backend developer for a
mobile application company. | will take what | have learned and use it to develop
my idea. On a personal development level, | also wanted to use this project to try
out new technologies that | might try bring to my job. The eventual goal for me
with this project is to get it uploaded to the Play Store. From there | can review
feedback and try to expand on the original concept.

** Update on this: | successfully setup the Allergen Advice application on the Play
Store and have gathered a new insight into the process of builds and deployment,
as well as gathering feedback in a constructive manner.

TECHNOLOGIES

CLOUD SOLUTION

The project is hosted using Amazon Web Services. The suite provided by Amazon
make everything so much easier. Using Amazon Elastic Compute Cloud (Amazon
EC2) allows me to scale my project as the scope requires. The cost of the service is
free for the first year, so long as an agreed bandwidth of requests is not being
processed.

It is my intention to switch to an Elastic Load Balancing (ELB) server closer to the
final deadline. This offers some advantages for not much more in price. The main
advantage of an ELB is that additional servers can be called in to use if the
application saw a significant increase in traffic. As well as this, ELB servers have a
built in failover that automatically direct traffic to another server should the main
one fail.

DATABASE

Originally | used MongoDb as a database because of how easily the structure of the
database could be updated when new features were added. As well as this, mongo
is a light service that is quick and easy to use.

> show dbs
allergy_advisor 0.078GB
allergy_ambassador 0.078GB
development 0.078GB
junto 0.078GB
latam 0.078GB
local 0.0786B
test 0.078GB
> use allergy_ambassador
switched to db allergy_ambassador
> show collections
allergenAdvice
system.indexes
> db.allergenAdvice.findOne()
{

»_id" : “IE",

"_class" : "com.mts.health.allergen_information.AllergenAdvice",

“countryName" : "Ireland”,

"listedHighRiskFoods" : "1. Cereals containing gluten, namely: wheat (such as spelt and khorasan wheat), rye, barley, oats or their hybridised strains, and products thereof,
except:\n(a) wheat based glucose syrups including dextrose\n(b) wheat based maltodextrins\n(c) glucose syrups based on barley\n(d) cereals used for making alcoholic distillates inc
luding ethyl alcohol of agricultural origin\n2. Crustaceans and products thereof\n3. Eggs and products thereof\n4. Fish and products thereof, except:\n(a) fish gelatine used as carr
ier for vitamin or carotenoid preparations\n(b) fish gelatine or Isinglass used as fining agent in beer and wine\n5. Peanuts and products thereof\n6. Soybeans and products thereof,
except:\n(a) fully refined soybean oil and fat\n(b) natural mixed tocopherols (E306), natural D-alpha tocopherol, natural D-alpha tocopherol acetate, and natural D-alpha tocopherol
succinate from soybean sources\n(c) vegetable oils derived phytosterols and phytosterol esters from soybean sources\n(d) plant stanol ester produced from vegetable oil sterols from
soybean sources\n7. Milk and products thereof (including lactose), except:\n(a) whey used for making alcoholic distillates including ethyl alcohol of agricultural origin\n(b) lactit
ol\n8. Nuts, namely: almonds (Amygdalus communis L.), hazelnuts (Corylus avellana), walnuts (Juglans regia), cashews (Anacardium occidentale), pecan nuts (Carya illinoinensis (Wange
nh.) K. Koch), Brazil nuts (Bertholletia excelsa), pistachio nuts (Pistacia vera), macadamia or Queensland nuts (Macadamia ternifolia), and products thereof, except for nuts used fo
r making alcoholic distillates including ethyl alcohol of agricultural origin\n9. Celery and products thereof\n1l@. Mustard and products thereof\nll. Sesame seeds and products thereo
f\nl2. Sulphur dioxide and sulphites at concentrations of more than 10 mg/kg or 10 mg/litre in terms of the total S02 which are to be calculated for products as proposed ready for c
onsumption or as reconstituted according to the instructions of the manufacturers\nl3. Lupin and products thereof\nl4. Molluscs and products thereof",

"speciallnfo" : ""

“linkToNationalAllergenHealthWebsite" : "https://www.fsai.ie"

}
>1

Mongo is based on documents, instead of tables. Like Relational databases, each
document must have a unique _id. The benefit of MongoDB is that the design is
schema less, and the project code defines the structure of the db. For a project
that is updated as often as a mobile application, this is a great feature. Having the
documents stored in JSON format makes life a lot easier when communicating
using Rest Services.

With the risk of Amazon tearing down a running service for maintenance purposes |
migrated my implementation to use DynamoDb, Amazon’s own Item based (similar
to a mongo document) data solution. The database is now hosted on a dedicated
server that will be automatically backed up before any maintenance might take
place.

I.I AWS ~ Services v) EC2 DynamoDB Edit v Niall Whelehan v Oregon v Support v

AllergenAdvice
> Create table Actions v g L o e
Q Overview Items Metrics Alarms Capacity Indexes Triggers Access control
- [oreae tom JEEE ——
@ AllergenAdvice Query: [Table] AllergenAdvice: countrylSO A Viewing 1 to 1 items

PhraseBook
[Table] AllergenAdvice: countrylSO B3 ~
key
© Add filter

Sort @ Ascending @ Descending

Attributes © All @ Projected

Start search

countrylSO countryName linkToNational, listedHighRiskFoods speciallnfo

IE Ireland https://www.f... 1. Cereals containing gluten, namel... ~ N/A

For the most part, DynamoDb is very similar to Mongo. Mongo has more features
and a better query language, but it is complicated to host. Dynamo does the job
that | need with the extra security guaranteed by Amazon.

Having now worked with DynamoDB for a number of months my opinion is that it
does not stand up to MongoDB. It was educational and | learned a lot about
alternative ways of marshalling data but it is a lot less user friendly than MongoDB
and has poorer sources of community support.

MOBILE BACKEND

The backend runs a Java encoded tomcat instance with Spring Frameworks.
Spring is a framework based on two core concepts:

Dependency Injection

Aspect Oriented Programming

Dependency Injection allows for the management of object lifecycles, from
instantiation to destruction. Using Spring Beans to define id’s and reference
points, interfaces can be used to design the flow of the working server.

Aspect Oriented Programming deals with the idea of ‘aspects’. An aspect is the
concept of a component that operates across different levels of the code base but
is not directly part of any of the areas touched. The best example of this is a
security controller that is used to return advice once an error arises in the
program. This could be implemented to be triggered by a rest call being handled

wrong, or a memory leak. Neither are necessarily related, and you could not say
that a security controller is an extension of Rest controller.

Tomcat is an open source web server that takes a war file that is generated from
the Java project, and runs it in a controlled environment.

CLIENT:

The front end is an Android application. My reasoning behind this is that | am an
Android user and there is a strong link with Java and Android. | presumed | would
be pressed for time so learning iOS is not something | thought | would be able to fit
in.

The app makes use of a third party library called Retrofit. Retrofit takes the
projects API and turns it into a Java interface.

The following is a revised edit of the previously submitted Requirements Spec.
Allergen Advice has evolved as a project in many ways. The database, instead of
being a locally deployed MongoDB instance is now a DynamoDB stand-alone server
hosted by Amazon. The configuration of the backend has been refactored from
XML base to Java and annotations. New functionality has been added and some
taken back to better reflect the goal of the application.

| think the most significant requirement of a mobile application in the current
market is changeability. The market moves very quickly and ratings are the
deciding factor on whether or not an application will be downloaded. If the
application cannot be hot fixed and redeployed quickly after receiving negative
feedback about a bug or bad user experience, then the ratings will reflect the
issue and the app will disappear into the lower rankings.

For this reason, | have refactored the code to allow for faster deployments, more
reliable hosting environments and an overall more scalable project.

FUNCTIONAL REQUIREMENTS (MOBILE APPLICATION)

FUNCTION: “SCREEN NAVIGATION”

2 al 1:04 am

Allergen Advice M

SUGGESTED YOUR
RESTAURANTS RECOMMENDATIONS

RECOMMEND A RESTAURTANT

Allergen Advice

Input: User swipes or presses tab buttons to navigate main screens.

Action: The client should process the request and direct the user to the desired
activity or fragment. The fragment should be pre-loaded so as not to slow the
navigation down.

Output: The screen should now show the page the user wanted to access.

Priority: Very important. The app should be intuitive, and poor navigation can ruin
any user experience

‘FUNCTION: “RETRIEVE ALLERGEN FOOD LAWS
‘INFORMATION BY COUNTRY”

= Bl 1:00 am

lf:: ~

Allergen Advice

HOME PHRASEBOOK INFORMATION
United Kingdom
Peanuts

Sesame

Sulphites

¢ € €K

Wheat

Specific variations for this region:

It's not a legal requirement to say on the
label that a food might accidently
contain small amounts of an allergen

but many manufacturers label thej
products in this way to warn thei
customers of this risk.

Input: User has country of origin configured from initial setup.

Action: The client should make a request to the backend requesting information
based on country.

Output: A table is returned displaying the relevant information.

Priority: The core functionality of the app. Critical priority.

FUNCTION: “PROVIDE NEAT ANIMATIONS TO ALLOW USER
TO PICK AND CHOOSE WHAT INFO THEY WANT TO READ”

= al 1:01 am

e o

Allergen Advice

HOME PHRASEBOOK INFORMATION

United Kingdom

Peanuts v

Sesame PN

These seeds can often be found
in bread (sprinkled on
hamburger buns for example),
breadsticks, houmous, sesame
oil and tahini. They are
sometimes toasted and used in
salads.

Sulphites Vv

Wheat @

Input: User selects country from drop down spinner

Action: The selected information is returned. The specific allergens can be
expanded to read more info

Output: A text is returned displaying the relevant information.

Priority: Very important. This is a natural progression in the thought processes of
what this app should do and it is what the user would expect to be available.

'FUNCTION: “PHRASEBOOK TO TRANSLATE COMMON
'ALLERGEN FOODS”

DG Ha A = all 1:00am | DG [= A = all 1:00 am

Allergen Advice A Allergen Advice AL

HOME PHRASEBOOK INFORMATION HOME PHRASEBOOK INFORMATION

2

Peanut
v

Peanut

Spanish: Soja
Italian: Soia

German: Soja

French: Soya

Portuguese: Soja

Input: User selects phrasebook from navigation bar and selects the language they
want.

Action: The application should send the request to the backend based on the
selected language and the user’s spoken language (configured at initial setup).

Output: A comparative list of translations will be displayed

Priority: A very nice feature to have. Not top priority.

FUNCTION: “RESTAURANT RECOMMENDATION SERVICE”

DG A= AE 2 Il) 1:04am

< happy pear X

The Happy Pear
Greystones, Ireland

Happy Pearl - Restauragao, Cat...
Rua Adelaide Cabete, Lisbon, Portu...

Happy Nails
North Main Street, Pearl River, NY, U...

pear peat pest prat spe
gqgwertyuiop

asdfgh | kI

4 zxcvbnma@

Sy 123 . \!/@

Input: User enters an eatery they suggest.

Action: The client opens a Google Place Picker widget. The Place object is then
verified to be a bar, restaurant, cafe or bakery.

Output: The restaurant is stored along with the recommending user’s allergen
affliction information (form profile).

Priority: Critical. Based on midpoint recommendations this is a necessary feature.

FUNCTION: “RECOMMENDED RESTAURANTS”

2 .l ¥ 103am PG EH=E A | 1:03am | DG [H = A 2 il 1:04 am

Allergen Advice - # i | Allergen Advice > A& i | AllergenAdvice = A

SUGGESTED YOUR SUGGESTED YOUR SUGGESTED YOUR
RESTAURANTS RECOMMENDATIONS RESTAURANTS RECOMMENDATIONS RESTAURANTS RECOMMENDATIONS

E)ountry Area . n
Ireland Laois Chapter One Restaurant
Area n 18-19 Parnell Square N,
Dublin City Dublin 1, Ireland

+353 1 873 2266 0

http./
www.chapteronerestaurant.c
om/

Cost

% K K e

Average Rating

[») O xx%x%x20

Input: User navigates through location map to find list of recommended
restaurants in a locality.

Action: Selecting the Locality loads a list of cards.

Output: Restaurant cards display information about recommended restaurants
including breakdown of relevant allergens of recommending users.

Priority: Very important. Ties in with recommendation service.

FUNCTION: “PROFILE INFORMATION”

2 He il () 1:01am

Allergen Profile

(] Wheat

(] Crustacean
Egg

Fish

[[] Peanut

[] Soya

[Milk

[C] Nuts

CANCEL OK

Input: The user can navigate to the settings menu and specify the allergens
relevant to them.

Action: The allergens are added to a profile stored on the phone.

Output: When a user opens phrasebook the allergens are ordered to prioritize the
most relevant ones. When a user recommends a restaurant the data is stored in
the cloud.

Priority: Nice feature. Not vital.

FUNCTIONAL REQUIREMENTS (MOBILE BACKEND)

FUNCTION: “STATUS/HEALTH CHECK ENDPOINT?”

Input: Admin calls a server endpoint with “/status”
Action: The server should process the request.

Output: The server version and rest endpoints should be displayed in a HTML page
in JSON format.

Priority: Very important. The most common issue with a server is a configuration
file, not with a specific component of the service. A status endpoint will exist
outside of all the other micro services in a system and should not be affected by an

individual component being down. But if the status endpoint does not work then
there is a configuration error and the developer does not waste too much time
checking individual features.

FUNCTION: “COUNTRY HEADER REQUEST LISTENER?”

Input: Request containing “country” as a header parameter is received.

Action: An interceptor should pick up on this request and store the current country
in context.

Priority: Not crucial but makes for better code that has less repetition.

FUNCTION: “PROCESS ALLERGEN ADVICE BASED ON
COUNTRY HEADER”

Input: Server retrieves a request from the application with country parameter

Action: The server should request the entry for the specific country from the
Dynamo repository.

Output: A JSON object is returned to the application with the requested
information.

Priority: Critical importance. This is the base functionality of the application.

FUNCTION: “FOR PHRASEBOOK RETURN TRANSLATION
SHEET FOR FOOD GROUPS IN SELECTED LANGUAGE”

Input: Server retrieves a request from the application with language parameter
and requested “translateTo” parameter.

Action: The server should request the entry for the specific languages from the
Dynamo repository.

Output: A JSON object is returned to the application with the requested
information.

Priority: A very nice feature to have. Not top priority.

FUNCTION: “RESTAURANT STORE”

Input: Server stores and retrieves stored restaurant models.

Action: The client makes a request to the backend. The server reads from the
database and creates a concurrent map.

Output: If the request is to get a restaurant info then the server returns the
cached info. For post requests the cache is cleared and the map is remade.

Priority: Vital to the client’s restaurant service.

FUNCTION: “LOCATIONS SERVICE”

Input: Server navigates through list of restaurants in store.

Action: Server compiles a nested map of { Country, Greater Area, Locality } from
every restaurant.

Output: Map is returned of all locations.

Priority: Vital to the client’s restaurant service.

DATA REQUIREMENTS

In order to interact optimally with the mobile backend using Restful services, the
Database should return objects in LinkedHashMap compatible form, because it is
the class that closest matches a JSON object.

Due to the critical dependence of the stored data to the functionality of the
application, backup and recovery options must be available.

To update tables within the database two simple web forms have been created:

One to update Allergen Information

Allergen Information Admin Console

Update Allergen Information Per Country

Country Name Ireland @

Country ISO IE
If unsure about the official ISO of a country check here.
Food groups that must 1. Cereals containing gluten, namely: wheat (such as spelt and khorasan wheat), rye, barley, oats or their hybridised strains, and products l

be displayed in
package contents

thereof, except:
4

Sepér’atereach‘ food group by storing it on a new line.

Country Specific N/A
Allergen Food Laws

National Website
Relating To Food Laws

o

https://www.fsai.ie

and the other to update the Phrasebook.

Phrases for translation

Add food allergen phrases

Phrase ID peanut
Spanish mani
German erdnuss
French cacahuéte
Portuguese amendoim
Italian arachide
BT =

USER REQUIREMENTS

In order to use the application, the user must be connected to the internet. | have
considered using caching to allow for snapshots of the database to be saved on a
phone but as of yet there is no plan to add this feature.

Initially the application had a minimum version of Android 4.0. In order to make
full use of some nice new features as well as expanding functionality cleanly to a
smartwatch | have opted to change the absolute minimum supported version to
Android 4.4.

UX REQUIREMENTS

In order to make the user’s experience the best one it can be the application will
make use of a “light” and easy on processing power navigation bar. Where possible
Fragments will be used in place of Activities in order to improve on more fluid
view transitions.

This application is a simple idea and as such needs to be simple in its
implementation. Every backend component is tested to assure it does what it was
programmed to do but in order to better gauge usability requirements | will be
depending on family and friends using a beta version of the application and giving
their honest feedback. A developer is almost always too close to the
implementation to have a clear idea of what issues users might run into.

Design and Architecture

| AmazonWeb | Amazon Cloud Services
Console (Admin) -
S|
Bitbucket
| Allergen Advice T . fra)
WebForm | | =, — ” A Mobile Backend ?
SSH Deployment
Console
| Phrasebook ‘
Web Form a y
DynamoDB

0—

The service will operate from an AWS instance. The mobile backend will
communicate with some of the services on offer from Amazon, including an EC2
and DynamoDB instance. Spring Web Frameworks and Spring MVC will be used to
handle dependency injection as well as the Restful dialogue between the backend
and other components.

In order to access the Amazon, instance an ssh private and public key must be
present on the machine, unless accessing port 80, which will be open to allow the
application to access the backend over public ip.

The reason to use Amazon is because they are free for one year, if the decision is
made to submit the application to the Play store there is an option for instant
scalability, and they are doing all the heavy lifting in terms of devops tasks.

The main reason for a mobile backend is that scalability is greater. Phone
performance and power is less relevant because the server takes care of

processing the requests. If the application ends up on the play store it is a lot less
expensive to release hotfixes or minor releases on the backend than on the client,
as the client requires users to update their device.

In this section | have singled out, in my opinion, the most significant methods and
classes in the mobile backend.

SERVER

COUNTRY HOLDER

The first is how the backend stores a header “country” in context once received
from the application. The CountryHolderStrategy implements the
ThreadinformationHolderStrategy interface in the utils package of the project. It
appends or deletes, from thread context, the country string that is passed to it.

public class CountryHolderStrateqgy implements ThreadInformationHolderStrategy {
private static final ThreadlLocal<String> COUNTRY_HOLDER =
hew NamedThreadLocal<>();

@Override
public String get() { return COUNTRY_HOLDER.get(); }

@Override
public void set(String country) { COUNTRY_HOLDER.set(country); }

@Override
public void reset() { COUNTRY_HOLDER.remove(); }

The CountryHolder is an enum that has one value (INSTANCE) which returns a
thread safe instance of a single request. In Java terms this is a Singleton, a
structure designed to restrict the instantiation of the class to a single object. This
is a simple class designed to get set the context defined in CountryHolderStrategy.

m CountryHolder {

e ThreadInformationHolderStrategy strategy = new CountryHolderStrategy();
public String getCountry() { return sti get(); }
public Locale () {
if (isCountrySet()) {
return Locale(getCountry());
}

return null;

}

public boolean isCountrySet() { return getCountry() != null; }

public void setCountry(String country) { stra /.set(country); }

public void (CountryHolderStrategy strategy) { this.st = strategy; }

public void reset() { st reset(); }

}

The CountryHeaderListener implements the ServletRequestListener class the will
listen for servlet requests being made and tidy/destroy them once the lifecycle of
the request is done. Any Http request made that contains the header “country”
will be saved to that thread and stored in context.

c class CountryHeaderListener implements ServletRequestListener {
public static final String MT:

@Override
public void requestDestroyed(ServletRequestEvent requestEvent) { CountryHolder.I .reset(); }

@Override
public void requestInitialized(ServletRequestEvent requestEvent) {

String country =
K (HttpServletRequest) requestEvent.getServletRequest()).getHeader (M7
if (StringUtils.isNotBlank(country)) {
CountryHolder setCountry(country);

When the backend processes a request the CountryHeaderRequestinterceptor
checks from context whether or not country information has been set. If it has
then the header information is appended to the request.

public class CountryHeaderRequestInterceptor implements ClientHttpRequestInterceptor {

public static final String FORWARDING_COUNTRY_HEADER = c

@Override
public ClientHttpResponse intercept(HttpRequest request, bytel]l body,
ClientHttpRequestExecution execution) throws IOException {
if (CountryHolder.INSTANCE.isCountrySet()) {
e request.getHeaders () .add (FORWARDING_COUNTRY_HEADER, [KountryHolder.INSTANCE.getCountry())

return execution.execute(request, body);

}

PHRASEBOOKCONTROLLER

The PhrasebookController class retrieves, stores and manipulates the translations
for the fourteen stored allergens. showTranslationsForGivenLanguages() retrieves a
list of Phrases, pulled from the DynamoDB instance. The first time the server is
called after a reboot it builds a cached map to save on response time. If any
modifications are made to the data, the map is cleared and propagated again with
the updated information.

@RequestMapping(method = RequestMethod.)
ResponseEntity<Map<String, List<Phrases>>> showTranslationsForGivenLanguage() {
(! .isEmpty()) {
ResponseEntity<>(HttpStatus.0K)

{
ScanRequest scanRequest = ScanRequest()

.withTableName ()
ScanResult result = .scan(scanRequest)
List<Phrases> listOfItems = ArrayList<>()

(Map<String, AttributeValue> item : result.getItems()) {
listOfItems.add(Phrases().convertMapToPhrases(item))
}

Map<String, List<Phrases>> response = HashMap<>()
response. put (listOfItems)

.putAll(response)
ResponseEntity<>(response, HttpStatus.O0K)

ALLERGEN ADVICE

The Allergen Advice information is the key piece of work being done by the
application. The Allergen Advice model is a simple pojo with the exception of one
method “convertltemToAllergenAdvice”. This method maps a DynamoDB Item to
the AllergenAdvice model for marshalling the requests to the database.

lic AllergenAdvice convertItelToAllergenAdvice(Item item) {
AllergenAdvice allergenAdvice = new AllergenAdvice();
allergenAdvice.setCountryISO(item.get().toString());
allergenAdvice.setCountryName(item.get().toString());

allergenAdvice.setLinkToNationalAllergenHealthWebsite(item.get().toString());
allergenAdvice.setSpecialInfo(item.get().toString());

allergenAdvice.setListedHighRiskFoods (item.get ().toString());

return allergenAdvice;

The AllergyAdviceController uses Annotations to inject the repository object as
well as the Restful endpoints being hit.

s AllergyAdviceController {
tati = LoggerFactory.getLogger(AllergyAdviceController.cl
Table
@Autowired
public AllergyAdviceController(@Qualifier() DynamoRepository repository) {...}

@RequestMapping(method = RequestMethod.GET)
public ResponseEntity<AllergenAdvice> getInformation() {

@RequestMapping(value = , method = RequestMethod. Gt
public ModelAndView getForm(@Param(value = inal i throws JsonProcessingException {...}

@RequestMapplng(method = RequestMethod. TE)
public ResponseEntity<String> delete(@Param(value =) String id) {...}

@RequestMapping(method = RequestMethod.PUT)
public ResponseEntity<String> save(@RequestBody AllergenAdvice request) {...

}

The getForm method creates a ModelAndView that populates a jsp file with the
requested advice. What this means is that a web form is generated that allows an
admin to update allergen advice on the database.

@RequestMapping(value = , method = RequestMethod
public ModelAndView getForm(@Param(value =) fi String country) t JsonProcessingException {
Map<String, Object> itemMap;
try {
itemMap = table.getItem(, country).asMap();
} catch (Exception e) {
Item item = new Item()
.withPrimaryKey(new PrimaryKey(, country))
.with(’)
.with(
.with()
.with(

table.putItem(item);
itemMap = item.asMap();

al Map<String, Object> finalItemMap = itemMap;
ew ModelAndView(eal | al-information—form"”,
w HashMap<String, Map<Str1ng ObJect>>() {{
, finalltemMap);

The custom RestController class uses the third party rest services library Retrofit.
A model is mapped to a http request implemented elsewhere.

COMMUNITYCONTROLLER

Restaurant information is returned based on locality. If “all” is requested, then
every restaurant is returned. The reason for “all” is because of a work in progress
geo-fencing feature on the app.

@RequestMapping(method = RequestMethod.)
ResponseEntity<List<RestaurantAPIModel>> getRestaurantsByRegion(@Param(value =) String locality) {
Map<String, AttributeValue> expressionAttributeValues =
HashMap<>()
expressionAttributeValues.put(AttributeValue(locality))

ScanRequest scanRequest

(locality.equals()) {

scanRequest = ScanRequest()
.withTableName()

} {

scanRequest = ScanRequest()
.withTableName ()
.withFilterExpression()
.withExpressionAttributeValues(expressionAttributeValues)

}

ScanResult result = .scan(scanRequest)
List<RestaurantAPIModel> response =
result
.getItems()
.stream()
.map(RestaurantAPIModel: : convertMapToRestaurants)
.collect(Collectors.toList())

ResponseEntity<>(response, HttpStatus.OK)

populateCacheMap cycles through all the locations available and Restaurants, then
assigns the locality required for the recommendation service used by the app.

populateCachedMap() {

(.isEmpty())
ScanRequest scanRequest = Sc

.withTableName ()

{
a

nRequest()

ScanResult result = .scan(scanRequest)
.addAll(result
.getItems()
.stream()
.map(Country: : convertMapToCountries)
.collect(Collectors.toList())

(Country country :) {
(.get(country.getCountry()) !=

(.get(country.getCountry())

.get(country.getGreaterArea()) !=) {

(! .get(country.getCountry())
.get(country.getGreaterArea())
.contains(country.getLocality())) {
Map<String, List<String>> copyOfGreaterArea = .get(country.getCountry())
List<String> copyOfLocalities = copyOfGreaterArea.get(country.getGreaterArea())
copyOfLocalities.add(country.getLocality())
copyOfGreaterArea.put(country.getGreaterArea(), copyOfLocalities)

.put(country.getCountry(), copyOfGreaterArea)

}
} {
ArrayList localities = ArrayList()
localities.add(country.getLocality())
.get(country.getCountry())

.put(country.getGreaterArea(), localities)

{
Map<String, List<String>> greaterArea = HashMap<>()
ArrayList localities = ArrayList()
localities.add(country.getlLocality())
greaterArea.put(country.getGreaterArea(), localities)
.put(country.getCountry(), greaterArea)

ANDROID

REST SERVICE

The Restful setup on the android application uses Retrofit to create the API, and
OKHttpClient as the RestClient.

public interface AllergenAdviceApi {

String BASE_URL = "/aa";

String RESTAURANT_PATH = "/restaurant";

String LOCATIONS_PATH = "/locations";

String ALLERGEN_ADVICE PATH = “/allergen_advice";
String PHRASEBOOK_PATH = "/phrasebook";

String LOCATION_PARAM = "locality";

@Headers ("Cache-Control: max-age=14400")
@GET(BASE_URL + ALLERGEN_ADVICE_PATH)
Call<AllergenInformationAPIModel> getAllergenInformation(@Header("country") String country);

@Headers ("Cache-Control: max-age=14400")
@GET(BASE_URL + PHRASEBOOK_PATH)
Call<PhrasebookListAPIModel> getTranslations(@Header("language”) String language);

@Headers("Cache-Control: max-age=1440")
@POST(BASE_URL + RESTAURANT_PATH)
Call<ResponseBody> addRestaurant(@Body RestaurantAPIModel restaurantAPIModel);

@Headers("Cache-Control: max-age=1440")
@GET(BASE_URL + RESTAURANT_PATH + LOCATIONS_PATH)
Call<Map<String, Map<String, List<String>>>> getLocations();

@Headers("Cache-Control: max-age=1440")
@GET(BASE_URL + RESTAURANT_PATH)
Call<List<RestaurantAPIModel>> getRestaurantsInLocation(@Query("locality") String location);

The CommonRestConfiguration creates a static RestController, “service”, that can
be called by an Activity or Fragment within the application. The
JacksonConverterFactory class is used to map JSON formats.

public class CommonRestConfiguration {

public static RestController pervice() {

Retrofit restAdapter = new Retrofit.Builder()
.baseUr1("http://ec2-52-33-187-222.us-west-2.compute.amazonaws.com")
.addConverterFactory(JacksonConverterFactory.create())

.build();
return restAdapter.create(RestController.class);

PHRASEBOOK

The PhraseBookFragment class implements the service method to instantiate one
of the interface methods described in the custom RestController. onCreateView
creates a new Rest based request for service().getTranslations(currentLocale,
requestedTranslation). What this does is send a request to the app that looks like
this:

URL:

http://ec2-52-33-187-222.us-west-

2.compute.amazonaws.com/aa/phrasebook?translateTo=S${currentLocale}

Header:

“language” = “S{requestedTranslation}”

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle savedInstanceState) {
view = inflater.inflate(R. layout. fragment_phrasebook, container, false);

Call<Phrasebook> restControllerCall = service().getTranslations(currentLocale, requestedTranslation);
restControllerCall.enqueue(new Callback<Phrasebook>() {

@Override
public void onResponse(Response<Phrasebook> response, Retrofit retrofit) {
populatePhrases(response.body());

@Override

public void onFailure(Throwable t) { System.out.print(“Failed at " + t); }
b
view.setTag("activeTag");
return view;

RESTAURANT RECOMMENDATION

Google’s AutoComplete Place Picker is used to add restaurants to the Restaurant
store.

if (containsEatery) {

List<String> allergens = new ArrayList<>();

for (String allergen : prefs.getStringSet(Constants.ALLERGENS, new HashSet<>())) {
allergens.add(Allergens.values() [Integer.parseInt(allergen)].toString());

}

RestaurantAPIModel restaurant = new RestaurantAPIModel();
restaurant.setId(place.getId());
restaurant.setEatery(place.getName().toString());
restaurant.setAddress(place.getAddress().toString());
restaurant.setPriceLevel(place.getPriceLevel());
restaurant.setRating(place.getRating());
restaurant.setTelephoneNumber(place.getPhoneNumber().toString());
restaurant.setWebsite(place.getWebsiteUri().toString());
restaurant.setlLatitude(place.getLatlLng().latitude);
restaurant.setLongitude(place.getLatLng().longitude);
restaurant.setAllergensOfRecommendingUser(allergens);

Call<ResponseBody> restControllerCall = RestClient.getApi(this).addRestaurant(restaurant);
restControllerCall.enqueue(new Callback<ResponseBody>() {
@Override
public void onResponse(Call<ResponseBody> call, Response<ResponseBody> response) {
Snackbar.make(view, "Eatery successfully added to service. Thank you!!", Snackbar.LENGTH_LONG).show();
Intent restartCommunity = new Intent(RestaurantSelectorActivity.this, CommunityActivity.class);
startActivity(restartCommunity);

}

@Override
public void onFailure(Call<ResponseBody> call, Throwable t) {
System.out.println(“Throwable:" + t);
Snackbar.make(view, “There was an error. Please try adding the eatery again.", Snackbar.LENGTH_LONG).show();

H;

} else {

}

Snackbar.make(view, place.getName() + " is not a recognized eatery.", Snackbar.LENGTH_LONG).show();

The request validates that the returned data is an eatery. It then goes on to
populate the card.

| decided to design the mobile backend from a test driven approach, meaning |
wrote the tests first and then developed the “how to” after. In order for Test
Driven Development to be used as a design tool, it is very important to use a
human readable naming structure. Below is an example from the AllergenAdvice
model test. This unit test is asserting that the conversion from DynamoDb Item to
AllergenAdvice model mapping is correct. The name of the test class is
AllergenAdviceShould and any additional methods should be named after the
specific action. So a class + test method should read ClassNameShould ->
do_this_action

public class AllergenAdviceShould {

private AllergenAdvice allergenAdvice;
private Item allergenAdviceItem;

@Before
public void setup() {...}

@Test
public void
convert_item_to_allergen_advice() {...}

The setup method creates a new AllergenAdvice object and a DynamoDb Item,
populating them with the same data.

id setup() {

/ AllergenAdvice();
setCountryISO();
setCountryName();
setLinkToNationalAllergenHealthWebsite(
setListedHighRiskFoods (I
2. setSpecialInfo(Ik

The test method, convert_item_to_allergen_advice, asserts that when a new
AllergenAdvice object is instantiated using the DynamoDb Item created in setup,
then it should match the AllergenAdvice object also created in setup.

@Test
l\‘\\:\ 10
convert_ 1tem to_allergen_advice() {
AllergenAdv1ce allergenAdviceFromItemConversion =
new AllergenAdvice().convertItemToAllergenAdvice(al
assertThat(allergenAdv1ceFromItemConver51on getCountryIS ()
equalTo(aller ce.getCountryIS0()));
assertThat(allergenAdv1ceFromItemConver51on getCountryName(),
equalTo(al ice.getCountryName()));

assertThat(all genAdv1ceFromItemConver51on getLinkToNationalAllergenHealthWebsite(),
equalTo(: ce.getLinkToNationalAllergenHealthWebsite()));
assertThat(a ergenAdv1ceFromItemConver31on getListedHighRiskFoods(),
equalTo(all ce.getListedHighRiskFoods()));
assertThat(allergenAdviceFromItemConversion.getSpeciallnfo(),
equalTo(: ce.getSpecialInfo()));

For the mobile application | have used smoke tests only. My knowledge and
familiarity of Android’s Ul means that my tests did not suit the purpose. Instead |
manually tested the phone.

| opened the application up to a focus group in the Google Play Store.

' GooglePlay search [a | Nl O 4

é Apps Categories v Home Top Charts New Releases 2] fe}

My apps
Shop
7" AllergenAdvice
ap- More from
Games K Niall Whelehan Lifestyle
< - 3, developer
amily PEGI 3
o v -
Editors' Choice ‘ © This app is compatible with some of your devices. ’ o
h 2 "
Installed -,
v
L)
4
: M
Allergen Advice - W& i Allergen Advice - & i Allergen Advice .= #& i .
My Play activity . L — Allergen Advice
Ny wishilt HOME PHBASEBOOK FORMATION HOME PHBASEBOOK WFORMATION (SvocesTED seconnt s Niall Whelehan
Redeem United Kingdom Chapter One Restaurant o
elterqy ¢ ¢ 19 Pamell Square N,
Buy gift card Dublin 1, Ireland
= Yy Celery v c
Parent Guide - ‘9.
Crustaceans v

L a', Eggs A
5 Eggs are often found in cakes, cost
lsome meat products,
: mayonnaise, mousses, pasta, % % %
Allergen Adwce jquiche, sauces and pastries or
foods brushed or glazed with Average Rating

M o

Members of the group could download the latest builds. In the Google+ Community
that was setup along with the Beta | included a feedback and bug report tracker
where friends and focus group could leave their thoughts and point out what was
broken.

| found the focus group the most useful part of this. A lot of the manual tests | was
carrying out worked like a charm, but only because | had an idea of what | wanted
to do each time. It was amazing to see how many critical bugs were found after
the first User test period. | have included the Spreadsheets in the Appendix.

WORK CURRENTLY IN PROGRESS

GEOFENCE ALERTS

Implementing the Geofencing alerts in the application to notify the user when they
are close by a recommended restaurant. If the user has a smart watch synced with
their mobile the alert should be sent there.

Object : Mobile L Object : Google Object :

] I]
Mobile Start | ! !

. > | | | i
! Request All Restaurants ! !
| | |
! Send Back Restaurants | |
5 : |
| | I
| | | |
: Build Geofences } : :
: : o |

< Create Listeners !
opt Event Triggered

Send Alert

I | ! |
USER FEEDBACK

As mentioned earlier, the best tests | had were the focus group | opened the
application to. If the app were released as a Production deployment then | would
like to have users be able to have their voice, in an effort to better the app and
the user experience.

Allergen Advice

PHRASEBOOK INFORMATION

Spanish: Mani
Italian: Arachide
German: Erdnuss
French: Cacahueéte

Portuguese: Amendoim

Sulphites

The app makes use of Material Design to maintain a sense of flow. There are no
major clashes in the style and layout because there is one central color palette
being used.

Navigation is handled using tabs and a FloatingActionButton to go from the
Dashboard to the Community (Restaurant) area of the app.

In order to keep the size of the app down the Phrase images are added dynamically
from the server.

All of the icons used in Allergen Advice are Creative Commons and freely available
from https://design.google.com/icons/.

The Phrasebook images were taken from Creative Commons searches on Flickr.
Each image did not require any credits to be given so | have left them out.

WATERFALL VS AGILE

In terms of planning and forecasts one thing is certain when it comes to mobile
applications... the market moves too fast for Waterfall. Having hard deadlines and
dates set months in advance is not going to work when there are so many factors
and changing trends. | tried to apply an Agile approach to this project whereby |
had a roadmap of things I’d like to get done on this project as well as a rough idea
of what order and when. However, | worked in sprints of two weeks, whereby at
the end of a two-week period | reflected on the work done compared to what |
planned. As my knowledge of some of the technologies improved my vision of the
project changed. Not having hard targets allows for these kind of changes and |
think the application will be much better because of this.

ACTIVITIES VS FRAGMENTS

This is the first time that | invested so much into an Android application. So up
until now | was only ever aware of Activities. When you open an Android
application an Activity is launched and that is what you see. On top of that Activity
can be multiple Fragments similar to the idea of a placeholder in Ruby and

.NET. Activities are heavier on processing so should only be used when the view of
the application should completely change. If, however, a button like Phrasebook
were pressed that only needed to display some translations then it makes more
sense to load that within the currently running Activity.

AMAZON SERVICES ARE YOUR FRIEND

After using other cloud providers in the past | was more than impressed with
Amazon. DynamoDB is a fine solution for a hosted NoSQL database, although not as
user friendly or support ready as MongoDB. The developers console is easy to use.
Unless an app is incredibly successful, the cost of using the Amazon services is very
fair.

According to Google Dictionary - "A damaging immune response by the body to a
substance, especially a particular food, pollen, fur, or dust, to which it has
become hypersensitive.”

App/Application/Mobile Application/Client/Front End - The Allergy Advice Android
application

Backend/Mobile Backend - The Java instance communicating between the
application and the database.

Play Store - Official download resource for Android Applications

Cloud Solution - A solution that uses hardware or software that is not physically
attached or installed to your device and can be accessed via the web.

Philanthropic - A venture that is not motivated by monetary gains.

Rest Services - Representational State Transfer (REST) is an architectural style that
specifies constraints, such as the uniform interface, that if applied to a web
service induce desirable properties, such as performance, scalability, and
modifiability, that enable services to work best on the Web. (Docs.oracle.com)

Spring Frameworks - A popular solution for using Dependency Injection and Aspect
Orientated Programming

War File - A Web Application Archive is a file that wrap all java classes, servlets,
web formats and properties together for ready distribution to a server.

Hotfix - An unplanned release of an application to address a critical bug in the
system

GPS = Global Positioning System used to get coordinates on a global scope.

Thread (Java) = In Java a thread is a flow that is independent of other current
interactions within the program.

REFERENCES

Keane, John. Nut Allergy. 2009. Web. 28 Jan. 2016.
Docs.oracle.com,. "What Are Restful Web Services? - The Java EE 6 Tutorial". N.p.,
2013. Web. 24 Jan. 2016.

APPENDICES

APPENDIX (I & Il) - PROJECT PROPOSAL & PROJECT PLAN

Project Proposal & Project Plan

Niall Whelehan
x12102954

niall.whelehan@student.ncirl.ie

BSc (Hons) in Computing (Evening)

Allergy Ambassador

Travel Companion and Advisor for

persons affected by food allergies

https://mrgnx3@bitbucket.org/mrgnx3/allergenadviceandroid.qit

https://mrgnx3@bitbucket.org/mrgnx3/allergenadvicebackend.git

Background

Technical Details And Approach

Resources required

Evaluation

Milestones and Timeline

Objectives

Summary

Background

Food allergies are becoming more and more prevalent in modern society. The
shock of the first major attack is enough to make most people research the
information relevant to their condition. One thing that might not be taken into
consideration is that the laws that govern food allergies and general health are not
universally set. In the EU there are 14 food types that must be displayed in bold

if they are present in the product whereas in the USA there are only 8 compulsory
food items that must be stated.

This application will act as an advisor and educator. The target audience is parents
of children affected by food allergies who intend on travelling, backpackers who
find themselves in exotic locations and allergy sufferers with lifestyles that
require a lot of travel.

Technical Details and Approach

The three major components in this project will be:

- A java backend using a number of Spring framework's, a groovy +
cucumber based test suite and some jsp + spring web frameworks for any
wrapped external pages that require data input.

« An Android front end. Having less experience with front end development
I intend to use some time ramping up on Android standards and suggested
implementations.

« Research. I do not intend or expect to research every country’s laws and
policies regarding allergens in a single year, but I do intend to create a
transferable model that can easily be updated once more information is
sourced.

Using Spring contexts, I will create profiles for development, mock and
production. My knowledge of Spring is reasonable but I will also take some time
to improve my current understanding.

The main body of code will be written in Java while the tests will be written in
Groovy (due to its nicer integration with the Cucumber-jvm and the build tool
gradle).

The server should have taken care of most of the work to the point that the App
should just need to call the correct endpoint and the API will return the
information it needs. The major requirements of the application will be
establishing the connection and, if I decide to implement it, include a serializer
that maps gps coordinates to a specific country iso.

The information will be displayed using a template that will be constant between
each country. A default placeholder will be set explaining that information is not
yet available for selected country. Once research has been carried out on said
country the information should be stored in one place, be easily accessible and
editable.

Resources required

In order to successfully carry this project out I will need:
A better understanding of Android development.
« A better understanding of Spring Frameworks.
- A Database, most likely mongoDB.
« The correct IDE. Intellij for Backend, Android Studios for Client.
 Information and a maintainable resource to store information.

- A professional and attractive presentation tool for showcasing the
process. Eg, Cacoo.

« Time and advice.
« An Amazon account + AWS boxes to host the backend.
« Wunderlist will be used to keep track of work left to do.

« Github will be used to track work done.

Evaluation

I intend on designing a test suite in the mobile backend to ensure that any
changes made to the service will not break the current implementation.

For unit tests and integration tests a library such as Hamcrest should suffice.

For functionality testing I will use Groovy, Cucumber (or some other Gherkin
language) and gradle build scripts. If mocks are required I will include
Wiremock.

For the front end development, I might include some unit tests but, due to the
main workload being done on the backend, most of the testing on Android will
be smoke testing and UAT(User Acceptance Testing) sessions with friends and
family.

Project Plan - Milestones and Timeline

Note: I intend to implement an agile approach to this development. “Sprints”
are bodies of work carried out over 2 weeks. A Sprint can be planned in
advance, and can change as late as the day before, but once the Sprint starts
there is an agreement that only the planned work is carried out. This allows for
better focus, especially in larger projects. Any mentioned deadlines are purely
based on a high level estimate that is likely to change from one Sprint to
another. At the end of every Sprint there will be an updated planning and a
revision of work done/required. This is known as Sprint Planning and Sprint
Retrospective.

Week 2 - 21/09
Planning: Project Proposal approved.

Design: Initial wireframes and feature planning

Week 3 - 28/09

Server: Sign up for amazon account and setup an aws instance to work off of.
Set up github repo for project. Create Spring/tomcat Intellij Project and
configure required contexts

Sprint 1 - 05/10

Story: Create Dashboard (Mocks + Android)

Task: Research at least 2 different countries per Sprint

Sprint 2 - 19/10
Story (Continued)... Create Dashboard (Mocks + Android)
Task: Document API and begin planning server work for Dashboard

Task: Research at least 2 different countries per Sprint

Sprint 3 - 02/11
Story: Implement initial API calls for Dashboard interaction (Backend)

Task: Research at least 2 different countries per Sprint

Sprint 4 - 16/11

Story (Continued)... Implement initial API calls for Dashboard interaction
(Backend)

Task: Research at least 2 different countries per Sprint

Sprint 5 - 30/11
Story: Allergy information Template (Android)
Technical Task: Investigate gps coordinates to country iso serialization

Task: Research at least 2 different countries per Sprint

Sprint 6 - 14/12
Story: Allergy Information Template (Backend)

Task: Research at least 2 different countries per Sprint

Sprint 7 - 28/12
Xmas Break/ Exam Study

Task: Research at least 2 different countries per Sprint

Sprint 8 - 11/01
Technical Task: Investigate cms solution for country information.
Story: Implement allergen translator(Android)

Task: Research at least 2 different countries per Sprint

Sprint 9 - 25/01
Task: Research at least 2 different countries per Sprint

Story: Implement allergen translator(Backend)

Sprint 10 - 08/02
Task: Research at least 2 different countries per Sprint

Story Continued... Implement allergen translator(Backend)

Sprint 11 - 22/02
Task: Research at least 2 different countries per Sprint

Story: Add alert when entering a new country(Android)

Sprint 12 - 07/03
Task: Research at least 2 different countries per Sprint

Story Continued... Add alert when entering a new country(Android)

Sprint 13 - 21/03

Task: Research at least 2 different countries per Sprint

Story: Add alert when entering a new country(Server)

Sprint 14 - 04/04
Task: Research at least 2 different countries per Sprint

Story Continued... Add alert when entering a new country(Server)

Sprint 15 - 18/04

Buffered period for inevitable delays due to bugs/ unforeseen circumstances

Sprint 16 - 02/05

Buffered period for inevitable delays due to bugs/ unforeseen circumstances.

Objectives

Promised Features

- A template, that can be used to populate at least a country’s information
about allergen food law and policies.

« At least 2 dozen countries populated in the database using the above
template.

« A context controller to compare the differences between the user’s
country of origin and current/selected locale.

« A dictionary of known allergens in a minimum of 3 languages.

Desired Features

« A personal profile where users can keep a note of potential food sources
that triggered a reaction in themselves.

- A Content Management Service to store all translations and information.

A controller that manages gps to iso conversion, recognizing the country
the user is currently in.

Summary

The Allergy Ambassador (working title) is an ambitious project due to the amount
of work required. Every sprint will need to be managed in a way that allows time
for both development, planning, design and research. By using an Agile
approach, the task will be less rigid and allow for changes to the roadmap where
necessary. The intention of the app is to spread awareness of differences in food
laws and policies between countries. There is no intention of making the app a
profitable campaign.

APPENDIX(I1l) PROJECT JOURNALS

Software Journal September

Niall Whelehan
x12102954

niall.whelehan@student.ncirl.ie

BSc (Hons) in Computing (Evening)

Allergy Ambassador

First journal for the ongoing project

Month One (Jan 12th - October 5th)

As the heading states, the importance of this project to the overall mark has not been lost on
me. | created a list at the start of the year of potential final year project ideas, adding to and
removing from the list as the year went on.

The first phase in this process was to get as many ideas (good or bad) on paper. There is a
new philosophy on Software Development called the Hammock approach whereby the
developer thinks of a solution to an idea and then sits on that idea for a couple of days. With
any luck there is a eureka moment, a better implementation for the solution is thought up
and the developer has saved themselves and their team some unnecessary pain in
refactoring a piece of work that was rushed into. Once | had enough ideas on paper | looked
into phase two.

The second phase of the pre-project was to start considering how feasible the idea would be
for a single developer, with part time availability, to implement the project inside of 7 months.
Were there too many dependencies on third parties? Was there a hardware constraint that
might involve unavailable funds? Will the final result be easy to pitch to someone hearing
about it for the first time? Using these criteria and more | slowly dwindled the list down to
eight, and then six, and then four, and then two ...

The third phase was the beginning of the semester. Asking Eamon to fill in any gaps in my
understanding of what was required of the project. Knowing that | would not get the all clear
to proceed with my idea straight away | began the first couple of weeks with generic admin
tasks that would universally fit no matter what project | ended up with, e.g., setting up an
Amazon instance, prepping the tools that | would require, installing software needed,
beginning Android Tutorials.

In the end | chose the Allergy Ambassador idea, which at the time of writing this has yet to
be given the go ahead, for a couple of reasons.

* | wanted to experience working with native front end development. | am not
interested in doing Android in a Java way, I'd prefer to pick up the standards required
of an Android Developer to get a better view of how this side works.

» | felt that | could achieve the plan that | had laid out in the time available.

* My son has a peanut allergy that is as serious as they get. The thought of travelling
to a country and being unprepared for their customs and laws is a terrifying thought
that | am sure | share with a lot of parents.

Setting up the basics

The first task | undertook was planning how | should proceed and deciding on what was the
main deliverables that needed to be in the application. As well as that what were the
dependencies of those deliverables. Once | had that decided | started with the admin stuff.

My plan from the start was always going to involve taking advantage of the great offers with
Amazon cloud servers. It takes an entire field out of this project in Dev Ops, a discipline | am
interested in but felt would be one too many new things to explore in a project. Instead | will
now how an AWS instance and a Github web hook that will do all the heavy lifting, in terms
of deployment, for me.

The next process was to make some basic wireframes to think about. This is a simple throw
away process that means | have not invested too much effort into anything more should the
application idea get declined.

Putting the tutorials to the test

After going through two of the introductory tutorials in Pluralsight for Android development |
decided to implement the basic dashboard that | had created in wireframe form previously. If
the project proposal is accepted then great, | have a good start on the development, if not |
have gotten a good practice session on Android development.

The implementation and general layout of an Android project is a bit different that anything
I've worked on before. It is similar to some of the Model View Controller developments |
have worked on in the past but the view is very different. The resources are extensive in
terms of having global xml files and reference ids for every property defined in the
application. | work with property files everyday but the volume of properties that get stored in
these shared files is a lot more extensive than | have found on server side development.

Agile Development and Planning

I intend to use this monthly journal to reflect on the most recent Sprint (2-week body of
planned work). Obviously for the first report | have not got a retrospective to mention so |
shall skip the first part and go straight to the planning for the next 2 weeks. After two weeks
I'll update the first half of the next journal with Sprint 1 Retrospective, and Sprint 2 Planning.

Sprint Planning

The goals of the next sprint are:
* To continue the development of the basic Dashboard on Android.
* To continue the tutorial series on Pluralsight.

» Design a template to work with for highlighting basic laws and governance around
allergen laws.

Some tasks | intend to carry out and a rough estimate as to how long | expect each task to
take.

Estimated available time: 15 hours (7.5 hrs. per week)

Story: Develop Basic Dashboard on Android

Acceptance Criteria

Given: | navigate to the home Dashboard

As a user: | want to be able to select my country of origin

Then: The background image should change

And: The buttons on screen should show information in context

» Task: Investigate best approach to implement dynamic contexts on dashboard (3
hours)

» Task: Implement dynamic context logic in Dashboard (6 hours)

Story: Display Allergen Laws Information

Acceptance Criteria

Given: | navigate to the home Dashboard
When: | press the Allergen Laws button
Then: The information of the country set in Context is displayed

» Task: Design basic form for adding and updating allergen information (2 hours)

» Task: Investigate and document 2 countries/regions information around allergen laws
(2 hours)

Ramp Up: Continue Android Tutorial Series (2+ hours)

Agile terms and techniques

» Agile: A conceptual framework made up of many sub components intended to drive
reactive software projects.

Sprint: A two-week period of time devoted to a predetermined set of work goals.
Story: A description of a feature from the perspective of the end-user.
Acceptance Criteria: The functional requirements of a story.

Ramp Up: Period of learning set aside to learn a skill that a story has a dependency
on.

Sprint Planning: Review of hours available and deciding the work involved in the next
sprint.

Sprint Retrospective: Reviewing the current sprint on its last day to reflect on good
and bad decisions made and how to improve.

Software Journal October

Niall Whelehan
x12102954

niall.whelehan@student.ncirl.ie

BSc (Hons) in Computing (Evening)

Allergy Ambassador

Grinding Through the Early Pains

Month Two (Oct 6th - Nov 3rd)

| guess the best way to follow on from the last report is to give an update on how the
previous goals went.

To continue the development of the basic Dashboard on Android.

I have finished this to the point that | was happy to leave it and begin developing the
backend in the sprint that followed.

To continue the tutorial series on Pluralsight.

| have done 2 four hour tutorials on Android from Pluralsight as well as an introductory free
online course recommended from a colleague. | do not intend to do any further tutorials until
| progress with the backend development and return to Android.

Design a template to work with for highlighting basic laws and governance around
allergen laws.

| have created a mongo entry that covers

* The two letter ISO describing the country, e.g. “IE” for Ireland
* The country name

» Alist of strings stating the mandatory foods that are required to be specified on food
packaging for said country.

» Alink to the country’s official food authority

Retrospective

| found the hardest side of working on Android is breaking the link between it and Java
because the correct implementation is very different. Also it is even more important than any
other language I've used to decide on a naming convention early, because when you have
variables named “DASHBOARD_TEXT” that actually points to the Textbox object and not
the text value you very soon run into problems.

Going forward | think | will need to be looser with my estimates. When | planned how long a
task would take I did it with the same mentality | use when planning in work. The major
difference between working on a 15-hour piece of code in work is that | will probably get a
good 4-5 hours in one stretch.

From Front to Back and Front Again

Once | was satisfied with the basic layout of the Android Dashboard | began work on the
mobile backend that will support the app. The intention is to do any “heavy lifting” there so it
is very important to have a good API design to work with. As a result, | kept going between
Client and Server while thinking about what | wanted and needed from the api as well as the
dialogue that would pass between phone and server.

Test Driven Development

| was very lucky to have gotten the chance to attend JAX London this month, a Java
conference hosting a lot of exceptional thinkers and speakers. One such speaker was
Sandro Mancuso who is an advocate of TDD, or Test Driven Development. | left the
conference wanting to test out some of his teachings and thought this project is the best
chance | will get.

| decided that | would first tackle the main functionality, which is to retrieve Allergen Laws for
the country selected. So when | began to form the design | began at the highest layer of
abstraction, the AllergenAdviceController. From there | created a test using JUnit and
Mockito that slowly built into what | have now implemented.

So using TDD and only knowing that | wanted to make a controller to call Allergen
information | now have an interceptor that stores a context based on what country the phone
has requested information from, a mongo repository class, a set of tests and all the required
Spring configurations needed to implement this. Instead of trial and error development | feel
like | have saved myself an extra 2 weeks using this method.

Agile Development and Planning

Sprint Planning

The goals of the next sprint are:

* To return to Android and design correct dialogue between the allergen advice
controller implemented in backend.

» Continue studying android

Some tasks | intend to carry out and a rough estimate as to how long | expect each task to
take.

Estimated available time: 15 hours (7.5 hrs. per week)
Story: Develop Allergen Advice functionality on Android
Acceptance Criteria

Given: My country context is set

As auser: When | press the Allergen Advice button

Then: | retrieve information about the country set in context

Task: Create Allergen Advice implementation (12 hours)

Task: Research unit testing for Android (3 hours)

Agile terms and techniques

Agile: A conceptual framework made up of many sub components intended to drive
reactive software projects.

Sprint: A two-week period of time devoted to a predetermined set of work goals.
Story: A description of a feature from the perspective of the end-user.
Acceptance Criteria: The functional requirements of a story.

Ramp Up: Period of learning set aside to learn a skill that a story has a dependency
on.

Sprint Planning: Review of hours available and deciding the work involved in the next
sprint.

Sprint Retrospective: Reviewing the current sprint on its last day to reflect on good
and bad decisions made and how to improve.

Software Journal November

Niall Whelehan
x12102954

niall.whelehan@student.ncirl.ie

BSc (Hons) in Computing (Evening)

Allergy Ambassador

Backend Looking Good

Month Three (Nov 4th - Dec 1st)

| started this month by slightly off roading to investigate how to automate my deploy scripts.
The Amazon EC2 box that | am using is up and running (with relatively few bumps and
bruises). The problem I ran into was the physical deployment. Being blessed with having
professional operations engineers in my work life, | completely forgot that a war does not
build and deploy itself to a live instance. So with that realization | replanned my time to
include a spike in that area to get a better understanding of the work involved.

Once | got passed that | managed to finish off work on the backend server and resume work
on the Android App. | spent more time studying than implementing but feel like it was time
well spent. My understanding of fragments vs actions and the different type of layers has
improved enormously. The functionality of the app has not caught up to the backend like |
had planned but it is clear to see why. | now know how to properly display my layouts and
even better | know how to deploy my projects to run on a cloud instance.

Backend Is Working, Tests Up and Running

The backend can now be called from my local machine with a status endpoint and allergen
advice response. The integration with mongodb is tested, the country context header is
tested, the status response is tested and the Allergen Advice Controller itself is tested.

Agile Wizardry

I intend to continue my ramp up on all things Android in the next sprint, including setting up
unit tests to check if functional code is working. Another goal is to correctly incorporate the
async function in Android to interact with multiple Rest endpoints, or else look for a better
way to do this.

Retrospective

In truth | probably spent too much time researching the deployment of the war file, but it was
a very interesting topic that tied in with something | was working on in my day job. This
month as a whole was quite difficult because of family and work commitments. | did not get
to put the time in that | wanted, but still managed to modify the plan accordingly. | watched
more tutorials because | had more time on buses etc...

One thing | need to improve on is keeping focus when researching a topic. | started working
on Android async calls and ended up researching frame layouts. Maybe this was a planning
issue from the start or maybe it was my wandering brain, either way it probably cost me a
couple of hours of indecision.

Agile Development and Planning

Sprint Planning

The goals of the next sprint are:

* To complete the functionality on the app in relation to Allergen Advice call and
template

» Research using GPS to identify locale.

Some tasks | intend to carry out and a rough estimate as to how long | expect each task to
take.

Estimated available time: 15 hours (7.5 hrs. per week)
Story: Develop Allergen Advice functionality on Android
Acceptance Criteria

Given: My country context is set

As auser: When | press the Allergen Advice button

Then: | retrieve information about the country set in context

» Task: Create Allergen Advice implementation (8 hours)

» Task: Add unit tests (3 hours)

Technical Task: Investigate using GPS tracking to identify locale

Task: Research unit testing for Android (3 hours)

Agile terms and techniques

Agile: A conceptual framework made up of many sub components intended to drive
reactive software projects.

Sprint: A two-week period of time devoted to a predetermined set of work goals.
Story: A description of a feature from the perspective of the end-user.
Acceptance Criteria: The functional requirements of a story.

Ramp Up: Period of learning set aside to learn a skill that a story has a dependency
on.

Sprint Planning: Review of hours available and deciding the work involved in the next
sprint.

Sprint Retrospective: Reviewing the current sprint on its last day to reflect on good
and bad decisions made and how to improve.

Software Journal December

Niall Whelehan
x12102954

niall.whelehan@student.ncirl.ie

BSc (Hons) in Computing (Evening)

Allergy Ambassador

Refactoring City

Month Four (Dec 2nd - Jan 5th)

Due to a sudden loss in the family my December was did not reflect the plan that | had made
for it at all. | did not work on the project at all until the middle of the month. But this had a
positive impact because when | came back to the project | saw it fresh. | picked three key
things that needed to change and revised my plan for the remaining months.

Data is the core of this project

The project data was being stored in a mongo repository deployed locally to the server. It
occurred to me that if Amazon were to pull down the server then my code would be fine, but
all of my data would be lost. This completely scattered my brain and | began devising a
solution to avoid this.

| considered backing up my Mongo using scripts that were run on a timer. This would be
costly in terms of time and testing.

| considered hard coding the data to the server. This would mean having to restart the server
in a production environment every time some table needed to be updated.

In the end | decided to migrate the current data implementation to work with Amazons own
DynamoDB. The similarities with a Mongo are obvious: it is a NoSQL database, it uses
Items instead of Documents but both are represented as JSON format, they are both easily
scalable. Unlike a relational database, the schema does not need to be as rigid so additional
fields can be added as the application evolves.

DynamoDB, an obsession

There was a point in the middle of the holiday where | found myself awake at 3 AM studying
the source code for the Java code required to converse with the DB. | already had unit tests
for how | wanted my features to work so | decided | would leave the acceptance criteria
exactly the same and make the code do what | wanted.

In all the migration took about 12 hours, from conception to implementation but | now have a
database that is hosted by Amazon. With it | have a very useful developers console and the
promise of greater security and backup.

The features

The two additional changes | felt needed to be made were the core functionality of the

application. | did not want to saturate the application with unnecessary features but also did
not want to leave it too simple. | decided the two core features would now be Allergy Advice
and a Phrasebook of common terms that could be translated from one language to another.

In order to extend the functionality my second other decision was to invest in a Smartwatch
that | will include the Phrasebook feature. With no experience of Smartwatches and very
little experience of Android it is my plan to finish out the backend, database and build
environment by February so that | can focus purely on the client for the final months.

Retrospective

This was a funny sprint in which | achieved none of the goals | had set previously. Usually
this would be a bad thing, but instead the step back has left me with a clearer vision of
where | am and where | want to be. Had | chosen a hard target, rigid business plan like
Waterfall my project would be in flames right now, but because of the adaptive nature of the
Agile process | can replan and carry on with very little impact.

Agile Development and Planning

Sprint Planning

The goals of the next sprint are:
* Finish testing DynamoDB
» Assure that logs and build scripts are correct in the Amazon instance

* Finish implementation of Phrasebook feature in the backend

Some tasks | intend to carry out and a rough estimate as to how long | expect each task to
take.

Estimated available time: 15 hours (7.5 hrs. per week)
Technical Task: Finish testing DynamoDB
Acceptance Criteria

Given: | run the requested put/delete/retrieve/update command.

Then: The expected behavior is carried out.
» Task: Work with developer console and test java class (5 hours)

Technical Task: Inspect Amazon EC2 instance to ensure logs and build are deployed
correctly

» Task: Review shell scripts for deployment (local and Production) (2 hours)

» Task: Review logs of expected errors and HTTP 200 requests to ensure expected
behavior is being recorded. (2 hours)

Story: Complete Phrasebook implementation on backend

Task: Define and implement Phrasebook model (1 hour)

Task: Create Basic Controller to get, add, update and delete phrasebook entries(5
hours)

Agile terms and techniques

Agile: A conceptual framework made up of many sub components intended to drive
reactive software projects.

Sprint: A two-week period of time devoted to a predetermined set of work goals.
Story: A description of a feature from the perspective of the end-user.
Acceptance Criteria: The functional requirements of a story.

Ramp Up: Period of learning set aside to learn a skill that a story has a dependency
on.

Sprint Planning: Review of hours available and deciding the work involved in the next
sprint.

Sprint Retrospective: Reviewing the current sprint on its last day to reflect on good
and bad decisions made and how to improve.

Software Journal January

Niall Whelehan
x12102954

niall.whelehan@student.ncirl.ie

BSc (Hons) in Computing (Evening)

Allergy Ambassador

Starting Client Development

Month Five (Jan 6th - Feb 2nd)

This month [finished working on the backend and environments for now. My Android watch
arrived and | got to play around a bit with it, so getting excited about the prospect of
designing an application for it.

My reality check this month was learning what Android development was about compared to
what | thought it was about. There are a lot of pitfalls like strings overwriting other values
when naming conventions fail, or how too many activities is the death of an application.

Making Up for Lost Time

I managed to wrap up all the DynamoDB testing, environmental monitoring and Phrasebook
implementation within this Sprint with time to spare.

Naming Conventions

Everything in Android is referenced using Strings and int id’s. From layouts to class
placeholders, everything should be given an id to define within View states in the application
main flow. If the naming convention is not completely transparent you run the risk of not
being able to tell what the difference is between a String reference is to a ListView.

In certain cases, Compile time errors are not thrown to signify a compatibility issue and so
you need to navigate through the application to find problems.

Activities and Fragments

When an application is started the main Activity is what is opened. Within the activity can be
multiple Fragments. Fragments can be injected into Activities the same way that Ruby and
.NET use placeholders.

The problem with too many Activities is how expensive they are to system memory and
therefore slow the application down. Once | finished the server tasks from the last planning, |
spent a lot of time researching Fragments. My plan now is to use as few Activities as
possible and instead use Fractions for simple form displays. If a View is in some way
complex, then it probably warrants an additional Activity.

User Interface and User Experience

This month | reviewed my original View of the application and now believe that instead of
using multiple images based on what country is selected, a color palette and theme should
be applied. The motivation should be health and all things therapeutic. So calm, warm and
living colors should be present throughout the application.

Retrospective

This Sprint was very productive. | managed to make up for some lost time. The
environments, database and mobile backend are all in a good state. | have started on the
application planning and development. One thing | could have done better was to assess the
work required more accurately, because | finished the backend work very early.

| am excited to work with Android. It is a new experience for me to try to apply the
professional standard | have now acquired to a front end development. | have lots of ideas
but also lots of knowledge gaps, so | think | need to hit the books next month.

Agile Development and Planning

Sprint Planning

The goals of the next sprint are:

Create a development plan for front end
Investigate http request solutions

Implement Phrasebook and Allergen Advice models

Some tasks | intend to carry out and a rough estimate as to how long | expect each task to

take.

Estimated available time: 15 hours (7.5 hrs. per week)

Planning Task: Create a development plan for front end (6 hours)

Discovery Task: Investigate http request solutions

Review 3rd party http library “Retrofit” (3 hours)

Story: Implement Phrasebook and Allergen Advice models

Task: Create Allergen Advice model (3 hours)

Task: Create Phrasebook model (3 hours)

Agile terms and techniques

Agile: A conceptual framework made up of many sub components intended to drive
reactive software projects.

Sprint: A two-week period of time devoted to a predetermined set of work goals.
Story: A description of a feature from the perspective of the end-user.
Acceptance Criteria: The functional requirements of a story.

Ramp Up: Period of learning set aside to learn a skill that a story has a dependency
on.

Sprint Planning: Review of hours available and deciding the work involved in the next
sprint.

» Sprint Retrospective: Reviewing the current sprint on its last day to reflect on good
and bad decisions made and how to improve.

APPENDIX(IV) PLAY STORE FOCUS GROUP BUG TRACKER SPREADSHEET

4/15 completed
-]
Logged By
2 264 thetangtage-isrepeated-as-thetabet{exampte; 2 Nialt Major
§ oy .
21/4 Cannot exit the app using back button (restarts the Niall Critical M
app)
21/4 Settings does not auto update when something is Niall Minor M
changed
21/4 Only Ireland has full allergen information so far Niall Minor ;
21/4 tried to access settings button and app stopped and Paddy Critical N
forced closed
21/8 Phrase book scroll to bottom and back up results in Conor Critical M
crash
21/4 in information tab it is not clear country is selectable Paddy Minor -
21/4 app a]low_s user to back o'ut to gmail login screen Critical N
resulting in the app crashing Conor
21/4 Clicking into settings is crashing the build :(Conor Critical :
» i " .

APPENDIX(V) PLAY STORE FOCUS GROUP FEEDBACK SPREADSHEET

0/7 completed

-] = -]
Feedback Logged By Weight

Cards would be better than long text for allergen .
Tor4 advice. At the moment it is too much to read Niall Greatly Improve
19/4 Phrasebook is not iterative and should be Natasha Nice Touch
reviewed as a name
20/4 PhrasebookAtranAsIatlons should be in appearin a Niall Nice Touch
drop down view instead of a scroll view
20/4 More countries info needs to be added Niall Necessity
20/4 By changing language in settings all text should be Niall Necessity
translated
from the main screen | can swipe right but see no
images in phrasebook until the load, should be :
. N N . Nice Touch
some kind of loading pop up as its confusing for the
21/4 user Conor
kind of like above if you swipe back left before Nice Touch
21/4 phrasebook loads the data the app crashes Conor

