
National College of Ireland
BSc in Computing

2015/2016

Michele Gravina
X12106623

Michele.Gravina@student.ncirl.ie

Technical Report

mailto:Michele.Gravina@student.ncirl.ie

Table of Contents
Executive Summary ...6
Introduction ..7

1.1 Background ..7

1.2 Aims ...7
1.2.1. Final Outcome ...8
1.2.2. Methodology ..8
1.2.3. Resources ...8

1.3 Technologies ...9
1.3.1. Android L ...9
1.3.2. Android Studio ...9
1.3.3. XML ...9

1.3.4. PostgreSQL ...9
1.3.5. SQLite ...9
1.3.6. GitHub ...9

1.4 Structure .. 10
System ... 10

2.1 Requirements .. 11
2.1.1. Functional requirements .. 11

2.2 Design and Architecture ... 17
2.2.1. System Architecture .. 17
2.2.2. Architecture Design ... 18
2.2.3. Use Case Diagram .. 19

2.3 Implementation .. 20

2.3.1. DataBaseHelper .. 20
2.3.2. CardSearch Symbols ... 20
2.3.3. Cookie and Session management ... 22

2.3.4. Authorization ... 23
2.3.5. Dynamic Header .. 23

2.4 Testing ... 23
2.4.1. Unit Testing ... 23

2.4.2. Test Driven Development (TDD) ... 24
2.5 Graphical User Interface (GUI) Layout ... 26
2.6 Evaluation .. 33

2.6.1. Human Evaluation ... 33
2.6.2. Machine Evaluation ... 33

Conclusions ... 33
Further development or research ... 33
Bibliography ... 34
Appendix .. 34

6.1 Project Proposal .. 34
Objectives .. 34
Background .. 35
Technical Approach ... 35
Special resources required .. 35
Project Plan .. 36

Technical Details .. 36

Evaluation .. 37
6.2 Requirement Specifications ... 38

Introduction .. 40

1.1 Purpose ... 40
1.2 Scope... 40
1.3 Abbreviations and Definitions .. 41
1.4 Overview .. 43

The Overall Description .. 43

2.1 Product Perspective ... 43
2.2 User Classes and Characteristics .. 43
2.3 Constraints ... 44
2.4 Operating Environment .. 44

2.5 Assumptions and Dependencies ... 44
Requirements ... 45

3.1 Functional Requirements ... 45

3.2 External Interfaces ... 51
3.3 Nonfunctional Requirements .. 57
6.3 User Feedback Form ... 58

6.4 Monthly Journals .. 59
September 2015 .. 59

October 2015 ... 61
November 2015 ... 62
December 2015 ... 65

January 2016 ... 69

February 2016 ... 71
March 2016 ... 71
April ... 72

Declaration Cover Sheet for Project Submission

SECTION 1 Student to complete

Name:

Student ID:

Supervisor:

SECTION 2 Confirmation of Authorship
The acceptance of your work is subject to your signature on the following declaration:
I confirm that I have read the College statement on plagiarism (summarized overleaf and printed in full in
the Student Handbook) and that the work I have submitted for assessment is entirely my own work.

Signature: ___ Date: ____________

NB. If it is suspected that your assignment contains the work of others falsely represented as your own, it
will be referred to the College’s Disciplinary Committee. Should the Committee be satisfied that plagiarism
has occurred this is likely to lead to your failing the module and possibly to your being suspended or
expelled from college.

Complete the sections above and attach it to the front of one of the copies of your assignment,

What constitutes plagiarism or cheating?
The following is extracted from the college’s formal statement on plagiarism as quoted in the Student
Handbooks. References to “assignments” should be taken to include any piece of work submitted for
assessment.

Paraphrasing refers to taking the ideas, words or work of another, putting it into your own words and
crediting the source. This is acceptable academic practice provided you ensure that credit is given to the
author. Plagiarism refers to copying the ideas and work of another and misrepresenting it as your own. This
is completely unacceptable and is prohibited in all academic institutions. It is a serious offence and may
result in a fail grade and/or disciplinary action. All sources that you use in your writing must be
acknowledged and included in the reference or bibliography section. If a particular piece of writing proves
difficult to paraphrase, or you want to include it in its original form, it must be enclosed in quotation marks
and credit given to the author.

When referring to the work of another author within the text of your project you must give the author’s
surname and the date the work was published. Full details for each source must then be given in the
bibliography at the end of the project

Penalties for Plagiarism
If it is suspected that your assignment contains the work of others falsely represented as your own, it will be
referred to the college’s Disciplinary Committee. Where the Disciplinary Committee makes a finding that
there has been plagiarism, the Disciplinary Committee may recommend

 that a student’s marks shall be reduced

 that the student be deemed not to have passed the assignment

 that other forms of assessment undertaken in that academic year by the same student be declared
void

 that other examinations sat by the same student at the same sitting be declared void

Further penalties are also possible including

 suspending a student college for a specified time,

 expelling a student from college,

 prohibiting a student from sitting any examination or assessment.,

 the imposition of a fine and

 the requirement that a student to attend additional or other lectures or courses or undertake additional
academic work.

Executive Summary
“mtgCardWallet” is a supporting Android Application that is built upon the success of the trading card game
Magic: The Gathering with over 15440 individual cards (Wizards, 2015) that fluctuate in price, similar to
stocks as seen in the image below.

(mtggoldfish.com, 2015)

“mtgCardWallet” will allow a User to organize and maintain his Magic: The Gathering trading card collection
more efficiently without the need of an active Internet connection and without the hassle of a registration.

Once a user’s opens the App, he will be directly able to add cards to his collection. The application will
provide an updated Database that includes all data related to each individual Magic the Gathering card and
each Set to enable a smooth creation process of the collection.

The User provides the name of the card and mtgCardWallet will highlight all available version. The user
selects the condition of the card, how many copies and any additional data such as promotional, signed by
the artist or altered. Once this process is completed for the whole collection “mtgCardWallet” will provide
the following main services.

• Details on Personal Collection
• Collection Value and individual cards
• Creation of Tournament Decks
• Card Wish List
• Life Counter

In addition to these main features, several additional features will be provided in a later stage. Such as:

• Daily Update of Pricing Information
• Easy Sale / Purchase of Cards on magiccardmarket.eu
• MTG Big Data Analytics on Collection
• Suggestion for additions to collection
• Feedback on played Tournaments

• Tournament Scheduler
• Recent Tournament Deck lists
• Available cards for recent Tournament Decks
• Deck suggestions based on availability of cards

The Application will be funded by participating in the affiliate Program for magiccardmarket.eu and based
on donations. There are options to enter additional markets and provide same services for other successful
trading card games such as Pokémon, Star Wars, NetRunners etc. There are currently no plans to
implement advertisement. Possible competitors are: mtgprice.com and deckbox.org but none of those are
providing the same service as “mtgCardWallet”.

Introduction
With the recent 20 Year anniversary and increasing success year after year, it is becoming essential to
utilize technology and find a viable alternative to the trading card management.
The aim of this project was to create an application for organizing and maintaining your Magic: The
Gathering collection, the main criteria being user friendliness in terms of both simplicity and design.
This report presents the designs for the mtgCardWallet application and it´s components such as: Database,
User Interface and development environment. It is aimed at players and collectors, independent of the size
of their collection. mtgCardWallet supports large and small collections alike.

1.1 Background

I´m an active part of the Irish Magic: The Gathering Community. This includes traveling internationally to
events and expanding a collection of thousands of Paper Magic: The Gathering Cards to play with and
collect. Cards can maintain a value of several hundred Dollars, fluctuating just like the stock market. It is
important to keep an eye on your collection to know when to buy and sell certain Cards to maximize your
efficiency.

The game is played usually in an assortment of 60 cards, that´s called a Deck. People like me can have
multiple Decks as subsets of their collection of cards. This makes it difficult to keep track of where cards
are currently being used, how many copies are owned of a particular card and also what version of the card
is available (language, promotional etc.). I often found myself in a situation that I purchased cards, just to
find out I already owned the card, resulting in a waste of Money. mtgCardWallet is an application that
allows me to keep track of my Magic: The Gathering Collection and will support me organizing it.

1.2 Aims

The Goals of this project is to create a functional Android application that allows to create, update and
delete cards in a user’s Magic: The Gathering collection that is stored in a local Database on his device.
Once the collection has been entered in mtgCardWallet, the User will have access to all of the Information
of his collection without the need of an Internet Connection.

1.2.1. Final Outcome

Project is considered complete when the mobile Application Interface is working and a user can edit
maintain and edit a collection using his Android device.

1.2.2. Methodology

Agile methodology has been used to develop mtgCardWallet. The Project has been broken down into
several Sprints of features that have been refined prior and planned accordingly for. After each sprint the
success of the feature has been reviewed in a refinement session and action plans created based on the
outcome of the session.

(strategicstaff.com, 2016)

1.2.3. Resources

Users will need access to Android L compatible mobile devices such as the Samsung Galaxy S7. It will
require around 100MB of space on the phone and relied on Gatherer, a tool provided by Wizards of the
Coast to access all data about specific cards.

1.3 Technologies

The project is implemented in a number of parts; the bulk of the Work is done using Android Studio and the
Android SDK, the main Mobile User Interface is designed for Android L and the Navigation Drawer in the
main Activity as highlighted by the material design specifications. (google.com, 2016), is done using XML.
A splash Image to show the mtgCardWallet Logo upon startup of the Application is also implemented using
XML.

Floating Action Buttons are used to provide an intuitive user Interface experience and to utilize features of
the latest Android L technology.

The project Database was initially designed in PostgreSQL but then moved to SQLite for compatibility
reasons with Android. A Database Helper class is implement using Java to provide the application access
to the Database and Version Control is implemented using GitHub.

1.3.1. Android L

As Google´s Material design has been respected, I wanted to utilize its latest features and decided to
develop and optimize the Application to Android´s latest release. Android L.

1.3.2. Android Studio

Android Studio has been used to do all development work for the mobile Application.

1.3.3. XML

XML is a vital part of Android Development. User Interface, Resources such as Strings, Colors and even
shapes are all implemented in Android using XML.

1.3.4. PostgreSQL

PostgreSQL is a sophisticated free a MySQL DB that has been chosen as default Database for its ease of
integration with Heroku and Rails.

1.3.5. SQLite

As the project has been moved from Rails to Android, the Database had to be converted to SQL as Android
provides a framework to easily access a SQLite Database from your application.

1.3.6. GitHub

GitHub has been chosen over other version control software as previous projects have been successfully
run without complications and the low ramp up time and ease of use were additional factors that
contributed to the decision of GitHub.

1.4 Structure

This document has been structured such that by reading the Introduction section, the reader will be
provided with a general overview and concepts of the Application. The following section will detail to the
reader about the background of the Application, what the main aims of the Application are and continues
then with an overview of technologies used in its creation.

The third section will provide details on functional and non-functional requirements, describing them and
how they will be addressed individually. It will also highlight concerns and issues associated with each of
the requirements. Dependencies to other requirements and risks will be addressed by this section, too.

In the next section, the Report will detail the Architecture and Design of the Application. How the
components of the Application have been tested and how the User Interface has been designed?

Finally, it will cover how the Application the Application has been tested by members of the Magic: The
Gathering tutorial and what feedback has been received by their evaluation. It will move on the list the
conclusions made after completing the project and what further development is planned to improve the
application and end up at the bibliography and used resources that contributed to the completion of the
application.

The final chapter will contain the appendices, original submitted project proposal. The requirement
specification document, monthly journals and any additional appendices

System
The “mtgCardWallet” System consist of two major parts. The Database that contains all details about the
trading Cards, Sets, Collection, Decks and Wish list. The Mobile Application used as the primary interface
for Users to interact with the System with its simplistic User Interface. As more cards are added to Magic:
The Gathering the application provides easy to use and upgradable process to keep the Card Database up
to date. A relational Database is used to centralize all the Data required by different parts of the System,
Interfaces have to be established to Read, Write, Delete and Edit Data within the Database directly by
Interacting with the User Interface. Security mechanics have been put in place to ensure those interfaces
only serve its purpose

The Diagrams in this section highlights how the individual parts of the System interact with each other.
Since this System follows a data-centric approach to its implementation the Collection, Users, Decks and
Cards have to be centralized and permanently stored within the System.
For that, a database will be used. Both the mobile application and web portal will communicate with the

2.1 Requirements

2.1.1. Functional requirements

2.1.1.1 Functional Requirement 1

Magic: The Gathering card and set database.

2.1.1.2 Description & Priority

This is the heart of the Application that includes data about every Magic: The Gathering card existing. A
user can only include cards into his collection that are included in the card Database.

2.1.1.2 Activation

When a User opens the Application, a check is performed if an updated card database exists, if that is false
it will build a new SQL Database that contains all details and data about cards and sets. It then sets up an
empty collection, wish list and deck´s table. The Application allows for maintenance of the collection by the
user.

2.1.1.3 Technical Issues

As a lot of data is accumulated, the System requires enough memory and hard disk space on the
smartphone to perform the action. If the smartphone has not enough space, the Database cannot be build
and the Application not used.

2.1.1.4 Risks

As the data is stored locally on the smartphone of the user, if the data is corrupted the collection cannot be
recovered.

2.1.1.5 Dependencies

For users to create collections the Card and Set data is required. This user requirement is essential to
mtgCardWallet.

2.1.1.6 Code Segment

This code segment details how the MTG_sets and MTG_cards table is created in the Database and what
data is associated to each set and card.

Check if DB exists:

//create Database if data does not already exist

myDbHelper = new DataBaseHelper(this);

try {

 myDbHelper.createDataBase();

} catch (IOException ioe) {

 throw new Error("Unable to create database");

}

try {

 myDbHelper.openDataBase();

} catch (SQLException sqle) {

 throw sqle;

}

MTG_Sets table:

CREATE TABLE MTG_sets(MTG_set_name text,MTG_set_code text PRIMARY
KEY,MTG_set_code_magiccards text,MTG_set_date text,MTG_set_is_promo
text,MTG_set_boosterpack_nM text,MTG_set_boosterpack_nR text,MTG_set_boosterpack_nU
text,MTG_set_boosterpack_nC text,MTG_set_boosterpack_nE text,MTG_set_boosterpack_pM
text,MTG_set_boosterpack_pR text,MTG_set_boosterpack_typeExtra1
text,MTG_set_boosterpack_typeExtra2 text,MTG_set_boosterpack_listExtra1
text,MTG_set_boosterpack_listExtra2 text,MTG_set_boosterpack_has_foil text,MTG_set_boosterpack_pF
text);

MTG_cards table:

CREATE TABLE MTG_cards(MTG_card_id text PRIMARY KEY,MTG_card_name text,MTG_card_set
text,MTG_card_type text,MTG_card_rarity text,MTG_card_manacost text,MTG_card_converted_manacost
text,MTG_card_power text,MTG_card_toughness text,MTG_card_loyalty text,MTG_card_ability
text,MTG_card_flavor text,MTG_card_variation text,MTG_card_artist text,MTG_card_number
text,MTG_card_rating text,MTG_card_ruling text,MTG_card_color text,MTG_card_generated_mana
text,MTG_card_pricing_low text,MTG_card_pricing_mid text,MTG_card_pricing_high
text,MTG_card_back_id text,MTG_card_watermark text,MTG_card_print_number
text,MTG_card_is_original text,MTG_card_name_CN text,MTG_card_name_TW text,MTG_card_name_FR
text,MTG_card_name_DE text,MTG_card_name_IT text,MTG_card_name_JP text,MTG_card_name_PT
text,MTG_card_name_RU text,MTG_card_name_ES text,MTG_card_name_KO text,MTG_card_type_CN
text,MTG_card_type_TW text,MTG_card_type_FR text,MTG_card_type_DE text,MTG_card_type_IT
text,MTG_card_type_JP text,MTG_card_type_PT text,MTG_card_type_RU text,MTG_card_type_ES
text,MTG_card_type_KO text,MTG_card_ability_CN text,MTG_card_ability_TW text,MTG_card_ability_FR
text,MTG_card_ability_DE text,MTG_card_ability_IT text,MTG_card_ability_JP text,MTG_card_ability_PT
text,MTG_card_ability_RU text,MTG_card_ability_ES text,MTG_card_ability_KO text,MTG_card_flavor_CN
text,MTG_card_flavor_TW text,MTG_card_flavor_FR text,MTG_card_flavor_DE text,MTG_card_flavor_IT
text,MTG_card_flavor_JP text,MTG_card_flavor_PT text,MTG_card_flavor_RU text,MTG_card_flavor_ES
text,MTG_card_flavor_KO text,MTG_card_legality_Block text,MTG_card_legality_Standard
text,MTG_card_legality_Modern text,MTG_card_legality_Legacy text,MTG_card_legality_Vintage
text,MTG_card_legality_Highlander text,MTG_card_legality_French_Commander
text,MTG_card_legality_Tiny_Leaders_Commander text,MTG_card_legality_Commander
text,MTG_card_legality_Peasant text,MTG_card_legality_Pauper text,FOREIGN KEY (MTG_card_set)
REFERENCES MTG_sets(MTG_set_code));

2.1.3.1 Functional Requirement 2

Magic:The Gathering collection maintenance

2.1.3.2 Description & Priority

This application is used to quickly add, remove and update cards in the collection by navigating the user
interface. It is essential that the user can perform any action (create, read, update and delete) on his
collection as deemed necessary without causing problems to his collection.

As it is the core functionality of mtgCardWallet the priority is as critical as FR1.

2.1.3.3 Activation

When a User opens the Application and the database has been successfully created, the user is directed to
the collection screen that provided UI elements to add cards quickly into his collection.

2.1.3.4 Technical Issues

Cards can have identical properties and duplication cannot be avoided.

2.1.3.5 Risks

Navigating though the User Interface requires a touchscreen and a running smartphone. Without them, the
collection cannot be accessed.

2.1.3.6 Dependencies

For users to create collections FR01 and FR03 is required.

2.1.3.7 Code Segment

This code segment shows how data is being added to the user’s collection.

public void addToCollection(String cardID, int amount, String language, String

condition, int foil, int signed, int altered){

 SQLiteDatabase db = getReadableDatabase();

 if (db == null) {

 }

 db.execSQL("INSERT INTO collections VALUES (NULL,'"+cardID+"', '"+language+"',

'"+condition+"', "+foil+","+signed+","+altered+","+amount+");");

}

Delete card from collection:

public void deleteCardFromCollection(int id){

 SQLiteDatabase db = getReadableDatabase();

 if (db == null) {

 }

 db.execSQL("DELETE FROM collections WHERE _id = "+id+"; ");

}

Update card in collection:

public void updateCollection(String cardID, int amount, String language, String

condition, int foil, int signed, int altered,int id){

 SQLiteDatabase db = getReadableDatabase();

 if (db == null) {

 }

 db.execSQL("UPDATE collections SET MTG_card_id = '"+cardID+"', altered =

"+altered+", signed = "+signed+", foil = "+foil+", card_language = '"+language+"',

condition='"+condition+"', quantity = "+amount+" WHERE _id = "+id+"; ");

}

2.1.3.8 Functional Requirement 3

Magic:The Gathering card search

2.1.3.9 Description & Priority

The user has to find the exact card to add into his possession without spelling errors. Auto populated Text
utilizes the User Interface so the user selects instead of providing a full card name. This is another core
functionality of the Application.

2.1.3.10 Activation

When a User adds cards to his collection, the system needs to know what exact card to add so the user
specifies the name of the card and the system provides an autocomplete textbox for the user to select the
correct card name.

2.1.3.11 Technical Issues

Identical cards can be in many sets with the same properties, however these are still different cards and the
user has to specify the exact card that will be added to the collection. This is ensured by accepting the
foreign key constrains and pairing each card with a card_set attribute which results in a unique search
result.

2.1.3.12 Risks

The performance of the search is slowing down the bigger the card database gets. Indexing is important to
optimize the speed in which the results can be generated.

2.1.3.13 Dependencies

For users to search for cards, the FR01 is required.

2.1.3.14 Code Segment

This code segment shows how the search for cards works.

//method responsible to return autocomplete text

public ArrayList<String> getSearchResult(String name) {

 SQLiteDatabase db = getReadableDatabase();

 if (db == null) {

 return null;

 }

 searchResults = new ArrayList<>();

 //apply escape for string in case of special characters

 String qname= name.replaceAll("'", "''");

 cr = db.rawQuery("SELECT DISTINCT MTG_card_name FROM mtg_cards WHERE

MTG_card_name LIKE '%"+qname+"%' OR MTG_card_name LIKE '"+qname+" %' OR

MTG_card_name LIKE '% "+qname+"' OR MTG_card_name LIKE '"+qname+"' ", null);

 if (cr.getCount() == 0){

 searchResults.add("No Card Selected");

 }else {

 cr.moveToFirst();

 searchResults.add(cr.getString(cr.getColumnIndex("MTG_card_name")));

 while (cr.moveToNext()) {

 //searchResults.add(cr.getString(cr.getColumnIndex("MTG_card_set"))+"

| " +cr.getString(cr.getColumnIndex("MTG_card_name")));

 searchResults.add(cr.getString(cr.getColumnIndex("MTG_card_name")));

 }

 }

 return searchResults;

}

Once the search identified results, it will fill an ArrayAdapter with the results and presents it to the user to
choose from.

@Override

public void onTextChanged(CharSequence s, int start, int before, int count) {

 array = myDbHelper.getSearchResult(cardSearchItems.getText().toString());

 ArrayAdapter<String> adapter = new ArrayAdapter<String>(getContext(),

 android.R.layout.select_dialog_item, array);

 cardSearchItems.setAdapter(adapter);

}

Update card in collection:

public void updateCollection(String cardID, int amount, String language, String

condition, int foil, int signed, int altered,int id){

 SQLiteDatabase db = getReadableDatabase();

 if (db == null) {

 }

 db.execSQL("UPDATE collections SET MTG_card_id = '"+cardID+"', altered =

"+altered+", signed = "+signed+", foil = "+foil+", card_language = '"+language+"',

condition='"+condition+"', quantity = "+amount+" WHERE _id = "+id+"; ");

}

2.2 Design and Architecture

2.2.1. System Architecture

The Model-View-Controller (MVC) design pattern assigns objects in an application one of three roles:
model, view, or controller. The pattern defines not only the roles objects play in the application, it defines
the way objects communicate with each other. Each of the three types of objects is separated from the
others by abstract boundaries and communicates with objects of the other types across those boundaries.

(Apple, 2015)

 View: How the System will end up looking on the phone. It includes all TextView, Buttons, Images
etc. The controller implements the view to display the model.

 Model: The model is where all computation takes place.

 Controller: The controller takes the result from model and transforms it into the View.

Model-View-Controller (MVC)´s main task is to take all the objects from memory and place them in each of
the above areas.

2.2.2. Architecture Design

(www.se.rit.edu, 2015)
This layer contains all of the pages that the user sees, and some of the basic logic to present them and
validate input. The second layer is the Web Service layer, this layer provides all Business Logic functions
and connects the Presentation Layer and the Data Layer. The third Layer is the Data Layer, this layer
consists of the Database, and utilizes stored procedures to keep the logic of maintaining the database
closer to the data.

2.2.3. Use Case Diagram

2.3 Implementation

2.3.1. DataBaseHelper

This class provides the Interface and connection from the Application to the Database.

2.3.2. CardSearch Symbols

private static final Map<Pattern, Integer> emoticons = new HashMap<Pattern,

Integer>();

static {

 addPattern(emoticons, "{C}", R.drawable.icon_colorless);

 addPattern(emoticons, "{W}", R.drawable.ic_icon_white);

 addPattern(emoticons, "{U}", R.drawable.ic_icon_blue);

 addPattern(emoticons, "{B}", R.drawable.ic_icon_black);

 addPattern(emoticons, "{R}", R.drawable.ic_icon_red);

 addPattern(emoticons, "{G}", R.drawable.ic_icon_green);

 addPattern(emoticons, "{0}", R.drawable.ic_icon_0);

 addPattern(emoticons, "{1}", R.drawable.ic_icon_1);

 addPattern(emoticons, "{2}", R.drawable.ic_icon_2);

 addPattern(emoticons, "{3}", R.drawable.ic_icon_3);

 addPattern(emoticons, "{4}", R.drawable.ic_icon_4);

 addPattern(emoticons, "{5}", R.drawable.ic_icon_5);

 addPattern(emoticons, "{6}", R.drawable.ic_icon_6);

 addPattern(emoticons, "{7}", R.drawable.ic_icon_7);

 addPattern(emoticons, "{8}", R.drawable.ic_icon_8);

 addPattern(emoticons, "{9}", R.drawable.ic_icon_9);

 addPattern(emoticons, "{10}", R.drawable.ic_icon_10);

 addPattern(emoticons, "{11}", R.drawable.ic_icon_11);

 addPattern(emoticons, "{12}", R.drawable.ic_icon_12);

 addPattern(emoticons, "{13}", R.drawable.ic_icon_13);

 addPattern(emoticons, "{14}", R.drawable.ic_icon_14);

 addPattern(emoticons, "{15}", R.drawable.ic_icon_15);

 addPattern(emoticons, "{16}", R.drawable.ic_icon_16);

 addPattern(emoticons, "{2W}", R.drawable.ic_icon_hybrid_2w);

 addPattern(emoticons, "{2U}", R.drawable.ic_icon_hybrid_2u);

 addPattern(emoticons, "{2B}", R.drawable.ic_icon_hybrid_2bl);

 addPattern(emoticons, "{2R}", R.drawable.ic_icon_hybrid_2r);

 addPattern(emoticons, "{2G}", R.drawable.ic_icon_hybrid_2g);

 addPattern(emoticons, "{BG}", R.drawable.ic_icon_hybrid_bg);

 addPattern(emoticons, "{BR}", R.drawable.ic_icon_hybrid_br);

 addPattern(emoticons, "{GU}", R.drawable.ic_icon_hybrid_gb);

 addPattern(emoticons, "{RG}", R.drawable.ic_icon_hybrid_rg);

 addPattern(emoticons, "{RW}", R.drawable.ic_icon_hybrid_rw);

 addPattern(emoticons, "{UR}", R.drawable.ic_icon_hybrid_ur);

 addPattern(emoticons, "{WB}", R.drawable.ic_icon_hybrid_wb);

 addPattern(emoticons, "{WU}", R.drawable.ic_icon_hybrid_wu);

 addPattern(emoticons, "{GW}", R.drawable.ic_icon_hybrid_gw);

 addPattern(emoticons, "{UB}", R.drawable.ic_icon_hybrid_ub);

 addPattern(emoticons, "{PW}", R.drawable.ic_icon_phyrexia_w);

 addPattern(emoticons, "{PU}", R.drawable.ic_icon_phyrexia_u);

 addPattern(emoticons, "{PB}", R.drawable.ic_icon_phyrexia_b);

 addPattern(emoticons, "{PR}", R.drawable.ic_icon_phyrexia_r);

 addPattern(emoticons, "{PG}", R.drawable.ic_icon_phyrexia_g);

 addPattern(emoticons, "{T}", R.drawable.ic_icon_tap);

 addPattern(emoticons, "{S}", R.drawable.ic_icon_snow);

 addPattern(emoticons, "{X}", R.drawable.ic_icon_x);

 addPattern(emoticons, "{Q}", R.drawable.ic_icon_untap);

 // ...

}

This code snippet above is to create a Hash map that will be used to replace certain character sequences
with Magic the Gathering Icons.

private static void addPattern(Map<Pattern, Integer> map, String smile,

 int resource) {

 map.put(Pattern.compile(Pattern.quote(smile)), resource);

}

This code add´s the mao from pattern to resource into the map.

public static boolean addMTGIcon(Context context, Spannable spannable) {

 boolean hasChanges = false;

 for (Map.Entry<Pattern, Integer> entry : emoticons.entrySet()) {

 Matcher matcher = entry.getKey().matcher(spannable);

 while (matcher.find()) {

 boolean set = true;

 for (ImageSpan span : spannable.getSpans(matcher.start(),

 matcher.end(), ImageSpan.class))

 if (spannable.getSpanStart(span) >= matcher.start()

 && spannable.getSpanEnd(span) <= matcher.end())

 spannable.removeSpan(span);

 else {

 set = false;

 break;

 }

 if (set) {

 hasChanges = true;

 spannable.setSpan(new ImageSpan(context, entry.getValue()),

 matcher.start(), matcher.end(),

 Spannable.SPAN_EXCLUSIVE_EXCLUSIVE);

 }

 }

 }

 return hasChanges;

}

public static Spannable getMTGIconText(Context context, CharSequence text) {

 Spannable spannable = spannableFactory.newSpannable(text);

 addMTGIcon(context, spannable);

 return spannable;

}

When the above methods are called, a String is passed into the method and compared against the map. It
will replace all character sequences and replace it with the correct Icon. The end result is the below
TextView.

*Rails Implementations

2.3.3. Cookie and Session management

 # Remembers a user in the session.
 def remember(user)
 user.remember

 cookies.permanent.signed[:user_id] = user.id
 cookies.permanent[:remember_token] = user.remember_token
 end

2.3.4. Authorization

before_action :logged_in_user
 before_action :correct_user

2.3.5. Dynamic Header

<header class="navbar navbar-fixed-top">
 <div class="container">
 <%= link_to "mtgCardWallet", root_path, id: "logo" %>
 <nav>
 <ul class="nav navbar-nav navbar-right">
 <%= link_to "Home", root_path %>
 <% if !logged_in? %>
 <%= link_to "Demo", demo_path %>
 <%= link_to "Log in", login_path %>
 <% else %>
 <%= link_to "My Collection", mycollection_path(current_user) %>
 <li class="dropdown">

 Account <b class="caret">

 <ul class="dropdown-menu">
 <%= link_to "Profile", current_user %>
 <%= link_to "My Collection", mycollection_path(current_user) %>
 <%= link_to "Account Settings", edit_user_path(current_user) %>
 <li class="divider">

 <%= link_to "Log out", logout_path, method: "delete" %>

 <% end %>

 </nav>
 </div>
</header>

2.4 Testing

2.4.1. Unit Testing

Whenever a feature was finished in development, I carried out unit testing to cross reference each
Requirement with its final implementation. This involved running the application on my Android device and
monitoring the ‘All Output’ in the Console to check for any flags the TDD test cases raise.

2.4.2. Test Driven Development (TDD)

require 'test_helper'

class UserTest < ActiveSupport::TestCase

 def setup
 @user = User.new(name: "Example User", email: "user@example.com",
 password: "foobar", password_confirmation: "foobar")
 end

 test "is user valid? "do
 assert @user.valid?
 end

 test "is name included?" do
 @user.name = "a" * 51
 @user.name = " "
 assert_not @user.valid?
 end

 test "is email included?" do
 @user.email = "a" * 244 + "@example.com"
 @user.email = " "
 assert_not @user.valid?
 end

 test "email validation valid?" do
 valid_addresses = %w[user@example.com USER@foo.COM A_US-ER@foo.bar.org
 first.last@foo.jp alice+bob@baz.cn]
 valid_addresses.each do |valid_address|
 @user.email = valid_address
 assert @user.valid?, "#{valid_address.inspect} should be valid"
 end
 end

 test "reject invalid entry in email field" do
 invalid_addresses = %w[user@example,com user_at_foo.org user.name@example.
 foo@bar_baz.com foo@bar+baz.com]
 invalid_addresses.each do |invalid_address|
 @user.email = invalid_address
 assert_not @user.valid?, "#{invalid_address.inspect} should be invalid"
 end
 end

 test "check if address in uinique" do
 duplicate_user = @user.dup
 duplicate_user.email = @user.email.upcase
 @user.save
 assert_not duplicate_user.valid?
 end

 test "transform email to lowercase" do
 mixed_case_email = "Foo@ExAMPle.CoM"
 @user.email = mixed_case_email
 @user.save
 assert_equal mixed_case_email.downcase, @user.reload.email
 end

 test "password included?" do
 @user.password = @user.password_confirmation = " " * 6
 assert_not @user.valid?
 end

 test "password minimum length" do
 @user.password = @user.password_confirmation = "a" * 5
 assert_not @user.valid?
 end

 test "is user authenticated? should return false with nil digest" do
 assert_not @user.authenticated?('')
 end

end

2.5 Graphical User Interface (GUI) Layout

Opening the “mtgCardWallet” App directs the user to the My collections page. This is a ScrollView and the
User can scroll left/right and up/down to browse through his collection.

Clicking on an Individual Card opens the Edit menu to allow a user to update his collection, the User can
also save changes directly. The cross in the middle provides the users with a reset function to set all the
changes to its origin.

The Icon in the bottom right corner opens the collections details menu. This menu shows useful information
and a summary of the collection inspected.

As with in the other menu, the user can add a card directly from here into his collection. A press on the
bottom left icon opens the card search menu.

Searching a card populates the information about the card and populates the price information.

Pressing the drawer menu on the top left corner opens the Navigation menu. From here the user has
always access to all features of the Application.

The Life Counter provides additional features to the user.

The card search utilizes the Card Database and allows the user to look up every available card and gain
insightful Information including its rules text.

2.6 Evaluation

2.6.1. Human Evaluation

mtgCardWallet was evaluated using the free Service of Google Forms which is attached in the Appendix.
37 people participated. 11 Female and 26 males. The summary of the results obtained is:

 Design 6.3/10

 User Interface: 6.1/10

 Performance: 4.9/10

 Reliability: 6.7/10

 7 People liked the User Interface the most.

 11 People liked the Card Search.

 5 People liked the Life Counter.

 3 People liked the Performance.

 11 People liked the Ease of Use.

12/37 Would recommend mtgCardWallet to a friend.

2.6.2. Machine Evaluation

2.8 Evaluation
2.8.1 All Test case results:
 33/33: [=================================] 100% Time: 00:00:00, Time: 00:00:00

Finished in 0.55242s
33 tests, 88 assertions, 0 failures, 0 errors, 0 skips

Conclusions
It was a good decision to move the development of mtgCardWallet to Android. A mobile application is more
suitable for the needs of mtgCardWallet. I was able to utilize my Android Development experience. I´m
happy with the look and feel of the Application and will continue working on it to add additional features that
can contribute to a successful launch of the app.

Further development or research
The potential of this application is great. A successful implementation of Magic: The Gathering could lead to
many more trading card games to follow. Pokemon, Yu-Gi-Oh! And Netrunner to just name a few. Each
individual game would lead to additional Revenue sources by taking part in affiliate programs.

The advantages for mtgCardWallet are clear. A Service like this does currently not exist. There are similar
functionalities available on Sites like mtggoldfish, mtgprice, mtgdecks etc but none of them utilize the
features of a smartphone.

Bibliography
Apple. (2015, 10 21). developer.apple.com. Retrieved 01 2016, from Cocoa Core Competencies:

https://developer.apple.com/library/mac/documentation/General/Conceptual/DevPedia-
CocoaCore/MVC.html

google.com. (2016, 04). Material Design - Patterns - Navigation drawer.
mtggoldfish.com. (2015, 11 18). mtggoldfish.com. Retrieved from mtggoldfish.com:

http://www.mtggoldfish.com/price/Magic+Origins/Jace+Vryns+Prodigy#paper
strategicstaff.com. (2016). Agile Development.
Wizards. (2015, 11 18). Gatherer. Retrieved from gatherer.wizards.com:

http://gatherer.wizards.com/Pages/Search/Default.aspx?name=+[%22%22]

Appendix

6.1 Project Proposal

Objectives

The Goals of this project is to create a functional Web Application that allows a
User to sign up for mtgCardWallet.
A signed up User can go to his collection and start entering Items into a list. After
submitting this list, they are stored into the Database and his collection is
created. He can adapt his Collection and apply different modifications to it, such
as what Decks are currently using this card, how many, which versions and
additional comments.
Final Outcome – Project will be considered as complete when the web and
mobile version is working. With a usable interface, the Magic: The Gathering card
Database is implemented and if users can add and edit their collection.
Methodology - I will use an agile methodology within the confines of the project
milestones laid out by the project brief.
Resources – Will need access to computer, mobile devices such as phones and
tablets. Access to MS Visio for development and Gatherer Extractor to create the
Card Database. I will also need to attend lectures and research Ruby to complete
the Project.
Monitor – Monitoring of the project will held by a Project Plan, I will assess
regularly through at least once a month to highlight the month´s progress and the
next week’s goals in an agile development and project methodology.

Background
I´m very actively playing the trading Card Game, Magic: The Gathering. This
includes traveling internationally to events and expanding a collection of
thousands of Paper Magic The Gathering Cards to play with and collect. Cards
can maintain a value of several hundred Dollars, fluctuating just like the stock
market. It is important to keep an eye on your collection to know when to buy and
sell certain Cards.
The game is played usually in an assortment of 60 cards, that´s called a Deck.
People like me can have up to 10 decks in addition to their collection of cards.
This makes it difficult to keep track of where the cards are being used at the
moment, how many cards are owned of a particular one and also what version of
the Card is available (language, promotional, foil etc). I found myself several
times in a situation that I purchased cards, just to find out I already had them in
one of the other Decks. mtgCardWallet is an application that allows me to keep
track of my Magic: The Gathering Collection and help me organize it.

Technical Approach
The project will be implemented in a number of parts, there will be a web front
end which will be on both a browser and a mobile app using bootstrap. This will
have a database to store the content. I intend to use Ruby as a means for the
web front end to talk to the database.

Implementations:

 SQL / Postgres Database

 Rails 4.2

 Frontend Bootstrap

 API (mtgcardmarket.eu)

 Web Services

Special resources required
Technical resources are an IDE and relevant web development libraries including
twitter bootstrap and a SQL database, gems etc.
The largest resources will be time and human, I need to learn a lot and quickly.
Research needs to be done to support the Project in all of its functionalities.

Project Plan

Technical Details
The project will be implemented in a number of parts, there will be a web front

end which will be on both a browser and a mobile app using bootstrap. This will
have a database to store the content. I intend to use Visual Studio and C# as a
means for the web front end to talk to the database.
Implementations:

 SQL / Postgres Database

 Backend Functionality

 Frontend Bootstrap

 Mobile Front End

Evaluation
In phase 1 every functionality will have a step by step Test Case prepared and I
will go through all the steps and document my findings and improve the code
directly or document and outline my refining phase and work in progress. If I’m
happy with a functionality I will move it to phase 2.
In phase 2 my initial findings and documentation is passed on to a fellow magic
the gathering player to re-evaluate and document his findings. I will adapt and
make changes based on the results in phase 2.
Once the functionality passed phase 2 will move into the beta phase and is
available publicly to test. I will use the magic the gathering community
(reddit/mtg) to provide feedback and maintain a Bugzilla Account to keep track of
bugs.
Methods will be imbedded to test the responds time of the Web Service including
10, 100, 10000 etc entries.

6.2 Requirement Specifications

Requirement Specifications

mtgCardWallet

Your trading card collection in your pocket.

Michele Gravina - x12106623

Table of Contents
1. Introduction 40

1.1 Purpose 40
1.2 Scope 40

1.3 Abbreviations and Definitions 41
1.4 Overview 43

2. The Overall Description 43
2.1 Product Perspective 43
2.2 User Classes and Characteristics 43
2.3 Constraints 44
2.4 Operating Environment 44
2.5 Assumptions and Dependencies 44

3. Requirements 45
3.1 Functional Requirements 45
3.2 External Interfaces 51
3.3 Nonfunctional Requirements 57

Introduction

This section provides clarification on purpose and scope for the web application “mtgCardWallet” and additionally
provides an Overview of the application, common abbreviations and definitions.

1.1 Purpose

The purpose if this document is to specify and outline requirements of the “mtgCardWallet” development process. It
will highlight key decisions and illustrate the development process behind this application. It will distinguish between
Functional and Non-functional Requirements and provide an overall – high level description of “mtgCardWallet”, how
Users interact and use the system.

It is primarily intended as a proposal to an Investor or Customer to receive the approval for the development.

1.2 Scope

“mtgCardWallet” is a supporting Web Application that is built upon the success of the trading card game Magic: The
Gathering with over 15440 individual (Wizards, 2015) that fluctuate in price, similar to stocks as seen in the image
below.

(mtggoldfish.com, 2015)

“mtgCardWallet” will allow a User to organise and maintain his trading card collection more efficiently and profit on the
fluctuations on the market by integrating “mtgCardWallet” with Europa’s leading sales and purchase platform of
individual trading cards “mtgcardmarket.eu” on an affiliate base.

Once a user’s registers his Account on “mtgCardWallet” he will be able to Login and create his collection. The
application will provide an updated Database that includes all data related to each individual Magic the Gathering card
and each Set to enable a smooth creation process of the collection.

The User provides the name, version, condition of the card, how many copies and any additional data that is required
to determine the value of the card such as language or premium. Once this process is completed for the whole collection
“mtgCardWallet” will provide the following main services.

 Details on Personal Collection

 Daily Update of Collection Value and individual cards

 Information of Recent Trades

 Creation of Tournament Decks

 Card Wish List

 Easy purchase of missing cards using magiccardmarket API

 Easy sale of collection using magiccardmarket API

In addition to these main features, several additional features will be provided in a later stage. Such as:

 Top Movers and Shakers

 MTG Big Data Analytics on Collection

 Suggestion for collection

 Feedback on played Tournaments

 Tournament Scheduler

 Recent Tournament Deck lists

 Available cards for recent Tournament Decks

 Deck suggestions based on availability of cards

The Application will be funded by participating in the affiliate Program for magiccardmarket and based on Donations.
There are options to enter additional markets and provide same services for other successful trading card games such
as Pokémon, Star Wars etc. There are currently no plans to implement advertisement. Possible competitors are:
mtgprice.com and deckbox.org but none of those are providing the same service as “mtgCardWallet”.

1.3 Abbreviations and Definitions

Term Definition

User Someone who interacts with the mtgCardWallet application.

Magic: The Gathering Magic: The Gathering (MTG; also known as Magic) is a trading card game created
by Richard Garfield.

Card A card is a physical playing card with the below properties:

 name

 manaCost

 cmc

 colors

 type

 supertypes

 types

 subtypes

 rarity

 flavor

 artist

 number

 power

 toughness

 layout

 imageName

 id

https://en.wikipedia.org/wiki/Trading_card_game
https://en.wikipedia.org/wiki/Richard_Garfield

Format MTG is played in a vast amount of different formats. The most common is Standard.
A format provides rules on what cards are allowed in tournament environments.
Standard for example consists of 60 card decks and no card other than basic land
card can be included more than 4 times. In addition to that, only the most recent
Sets are allowed. Highlander is another format where the deck consists of exactly
100 cards and no card other than basic land can be included more than once. Other
formats are Modern, Limited Sealed, Draft, Legacy, Vintage and Two Headed Giant
each with individual rules.

Deck A Deck is a subset of a collection that is designed to be legal in a specific format.

Trade An exchange of ownership of cards between trading card collectors.

MKM Short for magiccardmarket.com – Leading provider in Europe

Wizards of the Coast. Publisher of Magic: The Gathering

Collection All cards owned by a User

API An Interface for the application to exchange Data with other websites.

TAG A unique identifier.

GIST A description of the concept.

SCALE Scale of Measure.

METER Process or device used to establish Scale.

MUST Minimum Requirement.

PLAN Successful Requirement.

WISH Optimal Requirement.

DEFINED A Definition.

1.4 Overview

The remaining points of this document will include the Overall Description that will highlight the general System and
the main features of “mtgCardWallet”, it will also detail the Functional and Non-functional Requirements that will contain
all of the testing and quality requirements for “mtgCardWallet” and it will also provide a detailed description of the
system and all of its features.

Different specification techniques have been used to specify the requirements in a more precise method to
accommodate for different audiences.

The Overall Description

This Overall Description will highlight and provide an overview of the “mtgCardWallet” System. The System will be
detailed in its context and will show how the system interacts with other systems and the functionalities of them.
Additionally it will provide an analysis of the different stakeholders on how each of them interacts with the system and
what different functionalities are available for each individual stakeholder. At the end of this section we will present
constrains and assumptions of the “mtgCardWallet” System.

2.1 Product Perspective

The “mtgCardWallet” System consist on an ideal basis of three parts. The Database that contains all details about the
trading Cards, User Information and the Data related to each individual collection. The Web Application used as the
primary interface for Users to interact with the System with its simplistic User Interface and the API´s of several Web
Services to enhance the user experience of “mtgCardWallet. There are currently different solutions on the
Administration of “mtgCardWallet” and the decision has not been made at this point. There are options to administer
the Site directly using the User Interface by setting up Administrator credentials or to take the administration of the
System offline and separate it from User decisions. The final decision will be made in the 3rd Sprint of the Development

The Diagram in this section highlights how the individual parts of the System interact with each other.

Since this System follows a data-centric approach to its implementation the Collection, Users, Decks and Cards have
to be centralized and permanently stored within the System. .

For that, a database will be used. Both the mobile application and web portal will communicate with the

A relational Database will be used to centralize all the Data required by different parts of the System, Interfaces have
to be established to Read, Write, Delete and Edit Data within the Database directly by Interacting with the User Interface
on the Web Application. Security mechanics have to be put in place to ensure those interfaces only serve its purpose

2.2 User Classes and Characteristics

There will be up to 3 different types of users that interact with the System.

● Unregistered Users
● Registered Users
● Administrators

Each Individual User will interact differently with the system and will have different requirements and needs.

The Unregistered User will have to no access to the functionality of the application and only read access to FAQs,
Tutorials and Reviews. In order to create a collection the Registration step has to be completed.

Registered Users will have all functionalities available to them. They can pick cards and enter them in their collection,
modify it, add trades, they can see the total value of their collection, create decks, create wish list, buy cards from mkm
etc. Registered Users are what the application is designed to serve.

As mentioned in 2.1 the final decision on the use of Administrators has not been made yet however, in all cases they
should be able to maintain the Databases and ensure the MTG Card / Set Database is up to date and includes the
latest Data provided by wizards of the coast. To ensure this task they will have additional permissions and functionalities
available to them.

2.3 Constraints

A constraint of the System will be Internet access. All of its parts are not on the same physical location and need to be
permanently connected on the World Wide Web. It is critical for all involved parties (User + System) that a connection
is established.

The capacity of the Database is another constraint as Users will generate a large amount of records that will all be
stored within the same collections table.

The Framework of the Web Application will be generated using Ruby Rails.

2.4 Operating Environment

The Application will be able to run on every modern Internet Browser such as Google Chrome, Mozilla Firefox and
Internet Explorer.

2.5 Assumptions and Dependencies

We assume that “mtgCardWallet” will serve European Users primarily in English as it is highly connected with the
leading European Magic platform “magiccardmarket.eu”. A success in the European market could lead to integration
with the leading US platform “TCG player. This is also true for additional language support. It is also assumed that all
Users have access to Touchscreen or Mouse and Keyboard.

Requirements

3.1 Functional Requirements

3.1.1 Functional requirement 1.1

ID: FR1

Title: Publicly access “mtgCardWallet” on the WWW.

Description: Any user should be able to access the Website using the public available
URL.

Rational: In order for a user to access the application.

Dependencies: None

Priority: A

3.1.2 Functional requirement 1.2

ID: FR2

Title: User registration - Web application

Description: Given that a user has accessed the Web Portal, the user should be able to
register through the Interface. The user must provide password and a unique
e-mail address.

Rational: In order for a user to register on the Web application.

Dependencies: FR1

Priority: A

3.1.3 Functional requirement 1.3

ID: FR3

Title: Retrieve password

Description: Given that a user has registered, he should be able to retrieve his/her
password by email.

Rational: In order for a user to retrieve his/her password.

Dependencies: FR1 and FR2

Priority: A

3.1.4 Functional requirement 1.4

ID: FR4

Title: User log-in

Description: Given that a user has registered by providing a unique email and a secure
password, the user then should be able to log in to “mtgCardWallet”. The

log-in information can be stored in the browser cache to allow the user to be
logged in automatically.

Rational: In order for a user to gain access to the functionalities.

Dependencies: FR1 and FR2

Priority: A

3.1.5 Functional requirement 1.5

ID: FR5

Title: Add card to collection

Description: Given that the user has logged in successfully. The user should be able to
add individual cards to his collection by selecting the add card feature and
providing the card name and specify it´s set. Additional properties such as
promo, language and condition will also be provided.

Rational: In order for a user to add cards into his collection.

Dependencies: FR4

Priority: A

3.1.6 Functional requirement 1.6

ID: FR6

Title: Add card to collection – suggestion

Description: Given that the user is in the middle of FR5. A card suggestion can be made
after the user enters the first 3 characters of the card name. The suggestion
will include Set and Full card name. By clicking on the suggestion, the card
is added to the user’s collection after setting the additional properties.

Rational: In order for a user to increase user experience during FR5.

Dependencies: FR5

Priority: B

3.1.7 Functional requirement 1.7

ID: FR7

Title: Add card to collection – bulk

Description: Given that the user has logged in successfully. The user should be able to
make a bulk request to add many cards into his collection by using the add
bulk by set feature and selecting the set name from the dropdown. All cards
of the selected set will be provided and the user will be able to select the
cards he wants to add into his collection and specify the additional properties
of the individual cards.

Rational: In order for a user to bulk add cards into his collection.

Dependencies: FR4

Priority: B

3.1.8 Functional requirement 1.8

ID: FR8

Title: Remove card in collection

Description: A user should be able to remove cards added to his collection.

Rational: In order for a user to remove cards from his collection.

Dependencies: FR5 or FR7

Priority: A

3.1.9 Functional requirement 1.9

ID: FR9

Title: Edit card in collection

Description: A user should be able edit the cards in his collection and modify the
additional properties.

Rational: In order for a user to show he likes that Snippet

Dependencies: FR5 or FR7

Priority: B

3.1.10 Functional requirement 1.10

ID: FR10

Title: Get Card Value – current

Description: The system should be able to make a request to magiccardmarket to retrieve
the card value using the additional properties.

Rational: In order to provide the value of the card in users collection.

Dependencies: FR5 or FR7

Priority: B

3.1.11 Functional requirement 1.11

ID: FR11

Title: Collection Value – current

Description: The System should be able to provide the total collection value of the users
collection at this point in time by adding all individual cards and calculating
a total.

Rational: In order to provide the total collection value.

Dependencies: FR3 or FR5

Priority: B

3.1.12 Functional requirement 1.12

ID: FR12

Title: Collection Value – Historical

Description: The System should be able to store the total collection value of each
collection within the system and provide a historical evolution graph.

Rational: In order to generate an evolution chart of the users collection.

Dependencies: FR3 or FR5 and FR10

Priority: C

3.1.13 Functional requirement 1.13

ID: FR13

Title: Create Wish list

Description: The User should be able to select cards for his wish list using an identical
process to FR3.

Rational: In order to purchase cards from mkm.

Dependencies: FR3 or FR5 and FR10

Priority: A

3.1.14 Functional requirement 1.14

ID: FR14

Title: Purchase Cards from Wish list

Description: The User should be able to select cards from his wish list and make a API
request to put them directly into his shopping card on mkm.

Rational: In order to purchase cards from mkm.

Dependencies: FR3 or FR5 and FR10

Priority: A

3.1.15 Functional requirement 1.15

ID: FR15

Title: Add Deck to collection

Description: The User should be able to add a Deck to his collection by choosing a format
and a deck name.

Rational: In order to organize the collection.

Dependencies: FR3 or FR5

Priority: B

3.1.16 Functional requirement 1.16

ID: FR16

Title: Add Card to decks

Description: The User should be able to select cards from his collection that satisfy the
restrictions on the format on the deck and add them into his collection.

Rational: In order to organize the collection.

Dependencies: FR15

Priority: B

3.1.17 Functional requirement 1.17

ID: FR17

Title: Display Deck Information on Collection Overview

Description: The System should be able to display information about the deck a card is
currently in.

Rational: In order to organize the collection.

Dependencies: FR16

Priority: C

3.1.18 Functional requirement 1.18

ID: FR18

Title: Add trades to collection

Description: A user should be able to add a trade to his collection by selecting the option
in the menu. The user chooses a name, cards he received and cards he
traded out of his collection. The System then should make automatic
updates on his collection.

Rational: In order to maintain the collection.

Dependencies: FR5

Priority: C

3.1.19 Functional requirement 1.19

ID: FR19

Title: Display all trades by user

Description: The System should be able to list all trades and all details surrounding the
trade to the user. This should provide update on pricing and display
information about the deck a card is currently in.

Rational: In order to provide useful information to the user.

Dependencies: FR18

Priority: C

3.1.20 Functional requirement 1.20

ID: FR20

Title: Filter results of FR19 (trades by user)

Description: The System should be able to provide filter options to the user.

Rational: In order to enhance experience of FR19.

Dependencies: FR19

Priority: C

3.1.21 Functional requirement 1.21

ID: FR21

Title: Display most recent tournament decks – Data

Description: The System should be able to display deck lists of the most recent decks
gathering them from starcitygames and other leading online providers.

Rational: In order to add functionality to the System.

Dependencies: None

Priority: D

3.1.22 Functional requirement 1.22

ID: FR22

Title: Provided Details on Individual Cards

Description: The System should be able to display details about individual cards including
the information on recent tournament decks that included the card.

Rational: In order to increase user experience.

Dependencies: FR21

Priority: D

3.1.23 Functional requirement 1.23

ID: FR23

Title: Display % of cards owned that are part of a tournament deck.

Description: The System should be able to display a % behind each tournament deck
that shows the User the percentage of cards included in his collection.

Rational: Enhance User experience

Dependencies: FR22

Priority: D

3.1.24 Functional requirement 1.24

ID: FR24

Title: Add missing cards of FR23 to wish list.

Description: The System should be able to add the missing cards of the user’s collection
into his wish list.

Rational: In order to create revenue

Dependencies: FR23 and FR13

Priority: D

3.2 External Interfaces

The external Interfaces list the inputs and outputs of the system and provide a description of the software, hardware
components and communication interfaces. It also provides a basic prototype of the User Interface.

3.2.1 User Interface

Accessing “mtgCardWallet” via the Web will lead the User to the Home Page. It will provide a high level description of
the application, it´s features and an FAQ. An already registered user will be able to login to the site by entering a
username and password in the fields provided. New Users will be able to Sign up for “mtgCardWallet”. This Site will
also display sharing features in the footer of the page.

Clicking on the Sign Up Button on the middle of the page will direct the user to the Account creation task.

After the user signed up successfully for the Site he will be able to login. A successful login will direct the user to the
collection page.

The Collection Site will display the current collection and allow the User to add and Edit it. It will highlight the top Movers
and Shakers to provide more insight into the collection of the signed in User.

The Decks tab lists all decks of the User and additional statistics. This Site is used to maintain the Decks by providing
an “edit” and “new” interface.

The Wish List tab is connected with the API for macigcardmarket and allows the user to add cards into his collection
and buying them directly within the application. An affiliate agreement with macigcardmarket has been arranged and a
small % of the revenue will be added.

3.2.2 Hardware Interface

None of our application the web portal or mobile application have any designated hardware requirements as it does
not have any specific hardware interfaces.

3.2.3 Software interfaces

The Web application communicates with the Database in order to fetch information about Cards, Decks, Wish List, API
etc. The communication between the database and the portal consists of both reading and modifying data.

3.3 Nonfunctional Requirements

The requirements outlined in this section specify clearly the required reliability, availability and security of
“mtgCardWallet.”.

3.3.1 Performance requirements

ID: PR1

TAG: ResponseTime

GIST: The speed of the Database response.

SCALE: Response time of a request.

METER: Obtained from 100 Requests during testing.

MUST: No more than 2 seconds 98% of the time.

WISH: No more than 1 second 100% of the time.

ID: PR2

TAG: SystemAvailability

GIST: Fault tolerance of “mtgCardWallet”.

SCALE: If the Server is unavailable or a large Queue on process requests, the user
should be informed about it.

METER: Obtained from 10 hours during testing.

MUST: 100% of the time.

ID: PR3

TAG: InternetConnection

MUST: 100% of the time.

3.3.2 Security requirements

ID: SR1

TAG: AccountSecurity

GIST: Security of all user accounts.

SCALE: If a User tries to log in to the web portal with a non-existing account then he
should not be logged in.

METER: 10 attempts to log-in with a non-existing user account during testing.

MUST: 100% of the time

ID: SR2

TAG: DataCommunication

GIST: Security of the communication between “mtgCardWallet” and server

SCALE: The messages send should be encrypted for log-in communications.

METER: Attempt to get user-name and password through obtained messages on 10
log-in session during testing

MUST: 0% of all messages.

6.3 User Feedback Form

6.4 Monthly Journals

September 2015

Summary:

As I made the decision to host my site on heroku, they recommend using postgresql so I need to

find an efficient solution to create the Database using postgres.

 Requirements:

 More than 15.000 individual cards

 Around 50 properties for each individual cards

 More than 100 different Sets

 Around 15 properties for each set.

 Each individual card belongs to 1 set

 Prices for Individual Cards have to be updated daily (fetched from API?)

I found a tool Gathering Extractor that extracts all card and set Information from Gatherer (official mtg card
source) and exports it to SQL. They even provided pricing details but based on $ and only upon initial
setup.

Note to self: Could be run every day to implement pricing data based on snapshots.
Completed:

 Build Local PostgreSQL Database using pgAdmin|||

 Established connection between local Database and mtgCardWallet Ruby App

 Insert MTG Cards and Sets into Database based on Gatherer Extractor

Note that only Battle for Zendikar has been added as it´s sufficient for testing purpose

http://gatherer.wizards.com/Pages/Default.aspx

Enable Heroku deployment
Heroku has been implemented and the Site is now up and running on:
http://morning-brushlands-5143.herokuapp.com/
Enable GIT backup
Repository is online and used for Version control:
https://github.com/mgravina/mtgCardWallet
Ongoing:

 Database Design completion
 Create User Model for Login
 Create Login Screen and functionality
 Implement Classes for Bootstrap implementation

Research:
API Implementation research findings.
Best Source of European Pricing Information is magiccardmarket.eu
api -> https://www.mkmapi.eu/ws/documentation/API_Main_Page
In order to get the pricing using the mkmapi I need to use the version 1.1 or 2.0 which is currently in beta
and only available on Sanbox Server -> Created User: Racador on Sandbox server and requested API
tokens.
They provide details for enabling OAUTH for C#. VB, PHP but not ruby.
https://www.mkmapi.eu/ws/documentation/API:Auth_Overview
Will research Rails and see how to get Oauth to work and make requests that suit my need. Found support
on the topic. Will Download App and explore.
Found resources on the topic. Will investigate
https://github.com/oauth-xx/oauth-ruby
Notes:

 Create dump file using this command:

"C:\Program Files\PostgreSQL\9.4\bin\pg_dump.exe" -Fc --no-acl --no-owner -h localhost -U postgres
mtgCardWallet > mydb.dump

 Upload dump file onto Dropbox
 Upload dump file onto heroku DB using below command and change ending of URL to dl=1

https://www.mkmapi.eu/ws/documentation/API:Auth_Overview
https://github.com/oauth-xx/oauth-ruby

heroku pg:backups restore 'INSERT_DROPBOXURL_HERE' DATABASE_URL

October 2015

Summary:
Initialy I wanted to continue working on my Database and User Model and started thinking about how to
allow rails to look at the database created yesterday and implement a scaffold based on all of those values.
I realized quickly that I had a lot of catching up to do and started to go through Chapter 4
on https://www.railstutorial.org/book/rails_flavored_ruby to refresh my memory and read about a few
concepts that are helpful and applicable to my application.
I also touched on CSS and Bootstraps and in order to not have any further problems down the road I will
need to implement the underlying structure. Will add this to my todo list.

Completed:
TDD concept explored and implemented for Application
Testing added to application
Implementation of Ruby "DRY" Don´t Repeat yourself! principle
Ruby Code Test and minor code inmprovements

Ongoing:
CSS class structure
Database Design
Create User Model
Create Login Screen and functionality
Scaffold existing DB entries based on DB Schema

Research:
Research has been done to provide an answer to the question. How to efficiently approach controllers and
views for existing Database.
My approach at the moment will be:

 Create the User Model in Ruby and apply it to local postgres DB. (rake db:migrate)
 Create other tables and relationships in pgAdmin and create controllers etc automatically.
 Initial research lead me to: https://www.ruby-forum.com/topic/6875485 Will further investigate and

add to todo List.

Notes:
How to delete branch in git:
git branch -d branch1
git push origin :branch1
rails console to open ruby command line
rake test to enable test of changes
Application Snapshot:

https://www.railstutorial.org/book/rails_flavored_ruby
https://www.ruby-forum.com/topic/6875485

Hashes in Ruby:
>> user = {} # {} is an empty hash.

=> {}>> user["first_name"] = "Michael" # Key "first_name", value "Michael"

=> "Michael">> user["last_name"] = "Hartl" # Key "last_name", value "Hartl"

=> "Hartl">> user["first_name"] # Element access is like arrays.

=> "Michael">> user # A literal representation of the has

h

=> {"last_name"=>"Hartl", "first_name"=>"Michael"}

TDD test case layout:
test "should get home" do get :home

 assert_response :success

 assert_select "title", "Ruby on Rails Tutorial Sample App"end

November 2015

Summary:
I finished the Bootstrap and CSS work. The basic design is finished, after implementing the User Model. I´ll
start with the Sign Up and Profile Pages.

I started to look into available user models to implement into my application but it became very clear that
designing my own will have several benefits. I am able to customize it and make it compliant with all
alternative login methods (FB, Google etc). By researching the User Model on ruby I read about the
"bcrypt" gem (https://github.com/codahale/bcrypt-ruby) that gets around the idea of storying

passwords in my database. The user still needs a password but it won´t be stored. I´m happy with the
implementation and the next step will be designing the Sign Up Screen. I made a mock up and will stick to
the simple design.

https://github.com/codahale/bcrypt-ruby

The Database User model:

It is very basic and there are a few things still missing:
Foreign Key for Collection Table
Placeholder for alternative login info
Validation:
For the moment I implemented a very basic password validation that only checks for:
#ensure that all entries are saved as lowercase
 before_save { self.email = email.downcase }

 validates :name, presence: true, length: { maximum: 50 }
 VALID_EMAIL_REGEX = /\A[\w+\-.]+@[a-z\d\-.]+\.[a-z]+\z/i
 validates :email, presence: true, length: { maximum: 255 },
 format: { with: VALID_EMAIL_REGEX },
 uniqueness: { case_sensitive: false }
 has_secure_password

 validates :password, length: { minimum: 6 }

This will be reworked in a later version.
I increased the total number of TestCase and continued on my TDD.

Completed:

 TDD concept explored and implemented for Application

 Testing added to application

 Implementation of Ruby "DRY" Don´t Repeat yourself! principle

 Ruby Code Test and minor code inmprovements

 Create User Model

 CSS class structure

Ongoing:

 Database Design

 Create Login Screen and functionality

 Scaffold existing DB entries based on DB Schema

Research:
Research has been done on Regex and how to provide a proper validation.

Notes:
To check RegEx on Ruby use: http://www.rubular.com/

Application Snapshot:

December 2015

Summary:

Login / Sign Up:

http://www.rubular.com/

The next step of the completed user model was to create the Sign Up and Login functionality. I based it on
the earlier implementation of bootstrap but kept it simple for now.

Login Screen:

*Note that Login functionality within header added to todo list.

As you can see in the above Login Screen I also implemented session information and cookies. Highlighted
by the "Remember me". If the checkbox is ticked a cookie is created and stored within the browser.

Sign Up:

Security & Encryption:

As we covered Encryption and Security in the Business and Network Security module I looked at my
application and decided to implement a few common strategies to secure the Application as much as
possible.

I implemented the Secure Socket Layer (SSL) on the whole application. This ensures that all Data send
within the application is secure. Second, I looked for good technologies for passwords and implemented

added a gem called "bcrypt". This System ensures that no Passwords or other sensitive Data is stored in
my Database.

How bcrypt works:
A simple explanation is that i´m storing the result of a mathematical expression within my database instead
of the password. A user enters the password, it´s send through the bcrypt and a result string is generated.
The result string is stored in my DB. Whenever a user log´s in. The result string is checked and if they
match. The user us allowed to log in.

User Account Edit & Authorization
With the User Account created completed I had to allow the user to edit their own details. With this
implementation done, the next step was Authorization so the user can only edit his own page: This is done
using before_action:

+class MycollectionsController < ApplicationController

+ before_action :logged_in_user

+ before_action :correct_user

I´m doing 2 things here. 1st I ensure that only logged in users are able access the edit page and the 2nd is
that you can only access your own page.

The same implementation is done for "MyCollection" and will also be done for "Decks".
*It´s likely that I want people to share the collection with friends, therefor I might add an
additional functionality of public and private or share later.

Edit Account Settings:

I increased the total number of TestCase and continued on my TDD.

Completed:

 Create Login Screen and functionality

 Security and Encryption

 Authorization

Ongoing:

 Database Design

 Scaffold existing DB entries based on DB Schema

Research:

Research has been done on encryption methods, session information and cookies.

Application Snapshot:

January 2016

Summary:
Database Design:
The first version of the Database has been designed and implemented.

The design is not optimal and a few flaws have been identified in the implementation.

 User has_one magiccollection

 magiccollection has_many magiccards

 magiccards belong_to one or more magicsets

 magicconditions belongs_to magiccards within magiccollection

The flaw identified is:
magiccards belong to many magiccollection <-- I need to normalize and suggest come up with a different
structure.

ActiveRecord:
In Order to reference the Database within my Application Active Record is the correct way to handle it,
below is an example of the relationships of the Magic_collecton. As everything is inherited
by ActiveRecord::Base
it´s no problem to reference them within the program:

class Magic_collection < ActiveRecord::Base
belongs_to :magiccards
belongs_to :user
end
How to reference?
<%= @user.created_at %> <--- this will return the current user created_at entry in the DB.
*Note that Login functionality within header added to todo list.

Completed:

 Create Login Screen and functionality

 Security and Encryption

 Authorization

Ongoing:

 Database Design (1st draft)

 Scaffold existing DB entries based on DB Schema

Research:
ActiveRecord and Database Design: http://guides.rubyonrails.org/association_basics.html

Application Snapshot:

http://guides.rubyonrails.org/association_basics.html

February 2016

Due to the College Work and business travels not much work has been done in February. There is an open
argument that mtgCardWallet should be moved to a different platform as Heroku will not be able to support
the complexity of the Database. There are certain benefits that come with the move to Android.

ToDo:
Convert Database to SqlLite
Convert User Interface to XML

I will be moving to Android.

March 2016

I converted the Database from PostgreSQL to SQLite and also moved the Database from a testing
environment into a production environment.

All cards and set details have been added and i´m now working on a method to add the Database into my
Android App.

I found a solution that creates the Database from a db.file.

public DataBaseHelper(Context context) {

 super(context, DB_NAME, null, 1);

 this.myContext = context;

}

/**

 * Creates a empty database on the system and rewrites it with your own database.

 * */

public void createDataBase() throws IOException {

 boolean dbExist = checkDataBase();

 if(dbExist){

 //do nothing - database already exist

 }else{

 //By calling this method and empty database will be created into the

default system path

 //of your application so we are gonna be able to overwrite that database

with our database.

 this.getReadableDatabase();

 try {

 copyDataBase();

 } catch (IOException e) {

 throw new Error("Error copying database");

 }

 }

}

This requires a few modifications to the Database but it´s working.

April 2016

I made some progress on the User Interface and it´s layout design however exam time and project work is
coming up and I´ll continue after.

Submission date is close, I don´t know how I´ll finish it.

