

Final Year Project Report

Notes
Application
Final Report
08872848 BSc in Computing

Conor Curran

1 | P a g e

Table of Contents
1. Executive Summary .. 3

2. Requirement Specification ... 4

2.1 Core Requirements: ... 4

 2.1.2 Actions (User Stories) .. 4

 2.1.2.1 Actor: User ... 4

 2.1.2.2 Actor: Guardian ... 5

 2.1.2.3 Actor: Student ... 5

 2.1.2.4 Actor: Teacher ... 5

 2.1.2.5 Manage Homework Use Case and User Stories: ... 6

2.1.2.6: Manage Grievance Use Case and User Stories .. 8

2.1.2.7 Actor: Administrator .. 9

Manage School, Overview: ... 9

2.1.2.8 Manage School – Manage Users .. 10

2.1.2.9: Manage School – Manage Settings ... 11

2.1.2.10: Manage School – Manage Classes ... 11

2.1.2.11 Actor: Super User ... 12

2.2 Project Scope: ... 14

3. Functional Requirements ... 15

3.1 Functional requirements: .. 15

3.2 Local and Cloud based Technologies: ... 17

3.2.2 Use Case Diagram(s): ... 22

3.2.3 SYSTEM OVERVIEW: .. 27

3.2.4 DATABASE OVERVIEW (as of November 2015) ... 28

3.3 Non Functional Requirements: .. 31

3.4 GRAPHICAL USER INTERFACE ... 34

4. REFERENCES ... 38

5. APPENDIX ... 40

5.1 Cloud Deployment:... 40

5.2 Twilio Implementation for messaging.. 42

5.3 Project Proposal Document ... 43

1 Table of Contents: .. 45

2 | P a g e

2 Objectives ... 46

3 Background ... 47

4 Technical Approach .. 47

5 Special resources required ... 49

6 Project Plan ... 50

7 Technical Details ... 51

8 Evaluation ... 51

6. MONTHLY JOURNALS ... 57

3 | P a g e

1. Executive Summary

Introduction

The core aim of this project is to provide a cloud based school administration system.

This document presents the final project report of the “Notes” application. Some changes

have been made from previous documents such as the Requirements Specification. Overall

the main characteristics and functionality of the application remain more or less the same.

In addition to the previous proposal I completed work on a homework tool that allows

students to confirm homework completion, render data on completion rates and other

various interaction tools. Any changes are described below.

Attached in the Appendix is the original project proposal document as well as the monthly

journals.

Background

During my internship in summer 2015 I gained a good insight in to the lack of standardised digital

record keeping in Irish schools. The vast majority of schools don’t even have a website and if they do

rarely are they maintained to any good standard. Below is a high level look at what I have

implemented.

It is common practice to this day that record keeping and school disciplinary procedures are still

carried out by the teacher, in the first instance, using traditional pen and paper. At a later date this

information may be put in to a spreadsheet.

Whilst this method may represent an adequate way of maintaining records it could be streamlined

to a much greater extent through the use of modern mobile web and cloud based technology.

By digitising this process it could save teachers and administrators time and the school money in

terms of paper and storage requirements. They should be able to do on a smartphone, lap top or

iPad what they would normally do on paper.

The purpose of this project is to provide a platform to enable them to do that.

4 | P a g e

The app also cuts out the need to send letters to student’s homes by sending automatic messages to

parents on the basis of any threshold (decided and implemented by the school through the app

administration) being exceeded which would indicate the student is having difficulty or is being

unreasonably disruptive.

The User Interface is designed to be as simple, quick and intuitive as possible with minimum input

required from the user through the front end view for maximum output from the back end. The

whole process only takes a few seconds.

In terms of practical implementation, I have implemented a small number of dynamic select

dropdown menus while avoiding text fields.

This is a much slender, streamlined and efficient way of maintaining records but it also gives much

greater latitude to the user in terms of time allocation.

The school decides what number of points are allocated to what area of disruption. They can do this

via the app administration. For example, a case of bullying may carry 5 points and the school could

decide at what point warrants a text to a parent or what action might be taken so that they are in

full control of their own disciplinary procedures.

2. REQUIREMENT SPECIFICATION

Technical Approach

2.1 Core Requirements:

2.1.2 Actions (User Stories):

 2.1.2.1 Actor: User

5 | P a g e

1. As a "User" I can "Log-in" so that I can “view/interact with my dashboard and the

system depending on the role associated with my account – Guardian, Teacher,

Student or School”

2.1.2.2 Actor: Guardian

1. As a “Guardian” I can “Log-in” so that I can “view my dashboard which contains

metricised graphical visualisations”

2. As a “Guardian” I can “View” automated notifications to my mobile device/phone of

remedies given to my child by the school through the system for breaches of

discipline

3. As a “Guardian” I can “Manage Notes” so that I can:

<manage notes use case>

A. “Create” a note for the teacher of my child

B. “View” notes sent to me by the teacher

4. As a “Guardian” I can “View Guardian Message” sent from teachers in the school so

that I am involved

5. As a “Guardian” I can “View Grievance” record for my child so that “I am informed

of my child’s discipline records”

6. As a “Guardian” I can “View Homework” so that I am aware of what homework is

given, completed and outstanding

2.1.2.3 Actor: Student

1. As a “Student” I can “Log-in” so I can “view my dashboard which contains graphical

visualisation of my individual behaviour metrics”

2. As a “Student” I can “View Student Message” so I can “view teacher messages

through my inbox”

3. As a “Student” I can View Grievance so I can keep check of my behaviour metrics

4. As a “Student” I can View Homework so I can Manage Homework

2.1.2.4 Actor: Teacher

1. As a “Teacher” I can “Log-in” so that I can “view my dashboard which contains

graphical visualisation of the behaviour metrics associated with all students in my

class”

6 | P a g e

2. As a “Teacher” I can “View Notes” so I can “keep track of notes sent to me by

guardians of students in my class”

3. As a “Teacher” I can “Manage Messages” so I can “communicate messages to

guardians of students in my class”

4. As a “Teacher” I can “View Messages” so I can “read messages sent from guardians

relating to their and respond/act accordingly”

2.1.2.5 Manage Homework Use Case and User Stories:

7 | P a g e

1. As a “Student” I can “Manage Homework” to:

A. “View Homework” assignments given to me by my teacher

B. “View Non-Interactive Homework Feedback” so I can view

feedback I have given for individual assignments

C. “Confirm Homework Complete” so I can “click to confirm

assignment completion for the teacher and my parent”:

i. Rate “Difficulty Score” so I can provide numerical

rating feedback (1 – 10) for difficulty on assignment

ii. Skip “Difficulty Score” so I do not need to provide

“Difficulty Score” feedback

iii. Rate “Interest Score” so I can provide feedback on

my level of interest in the assignment

iv. Skip “Interest Score” so I do not need to provide

“Interest Score” feedback

2. As a “Teacher” I can “Manage Homework” to:

A. “View Bucket Items” so I can view homework items in my

storage bucket:

I. “Delete Bucket Items” so “I can remove homework

items from my bucket”

 B. “View Homework Feedback” so that “I can view feedback on

homework assignments from my students”:

i. “Filter Homework Feedback” so I can filter through

students in the class

ii. “Select Homework Items for Storage” so I can

choose homework items I wish to store

iii. “Add Selected Items to Storage Bucket” so I can add

above items to my bucket

 C. “Create Homework” so I can create homework assignments

for my class:

I. “Create” Homework assignments and provide a due

date

II. “Edit” Homework assignments

3. As a “Guardian” I can “Manage Homework” to:

A. “View Homework Feedback” so I can view homework

feedback for the teacher from my child

B. “View Non-interactive Homework Feedback” ? <duplicate>

C. “View Homework” so that I can “view homework

assignments given to my child by the teacher”

4. As the “System” used to “Manage Homework” to:

8 | P a g e

A. “Calculate Cache Average Score” so the average homework

score for each student is calculated and stored in a cache

 2.1.2.6: Manage Grievance Use Case and User Stories

5. As a “Teacher” I can “Manage Grievance” to:

A. “Add Grievance” so I can “input a record through the form (choose

student name, choose grievance) for a student in my class”

B. “Select Behaviour Feedback” so I can “view class behaviour

records”:

I. “Select thought (through?) subject” so I can “filter the

records based on subject”

II. “View Black Sheep” so I can “view lowest 5 performing

students in each subject”

9 | P a g e

2.1.2.7 Actor: Administrator

 Manage School, Overview:

1. As an “Administrator” I can “Import Data” of users to the system through a CSV

uploader

2. As an “Administrator” I can “Log-in” to my administration console to

“administer records in the system”

10 | P a g e

2.1.2.8 Manage School – Manage Users

3. As an “Administrator” I can “Manage School” – “Manage Users” to:

A. “Add User” so that I can “add a new user to the system and assign

them a role within the system”

B. “Edit User” so that I can “update user details where required”

C. “List Users” so that I can “view a list of users and filter by their roles”

11 | P a g e

 2.1.2.9: Manage School – Manage Settings

4. As an “Administrator” I can “Manage School”-“Manage Settings” so I can:

A. “Choose Note Options” so that I can note options for guardians

B. “Choose Grievance Options” so that I can “input the behaviour items

to be measured”

C. “Set Behaviour Treshold” so that I can “set the rate in percentage

before automated communication is triggered with the guardian of

a student for breach of discipline”

2.1.2.10: Manage School – Manage Classes

12 | P a g e

5. As an “Administrator” I can “Add/Edit/Delete Students” so I can add students to

the system, edit their details or soft delete their records

6. As an “Administrator” I can “List classes/Teachers/Students” so I can view user

group records and filter by role or other attributes associated with a user

7. As an “Administrator” I can “Add/Edit/Delete Teachers” so I can add teachers to

the system, edit their details or soft delete their records

8. As an “Administrator” I can “Add/Edit/Delete Classes” so I can add classes

(student_groups) and subjects associated with those classes to the system, edit

these details or soft delete classes and subjects from the system

2.1.2.11 Actor: Super User

1. As a “Super User” I can “add” an administration user for the school

13 | P a g e

2.1.1: Bluemix:

Utilise IBM Bluemix platform to host project

2.1.2: Front end coding:

Ruby on Rails, jQuery, JavaScript, CSS and other attributes within framework

2.1.3: Back end:

MySQL using ClearDB service on IBM Bluemix (examining using NoSQL)

2.1.4: Twilio:

Integrate Twilio communication service through Bluemix thereby enabling SMS or messaging service.

2.1.5: User Login, Admin:

Devise and Active Admin to be used within Rails structure to form basis of user authentication and

site administration.

2.1.6 Database:

The project incorporates a MySQL database and contains the following tables:

 Users (typical user table data)

 Teachers (teacher information)

 Students (student information and parent contact number)

 Guardians (guardian information and contact number)

 Penalty (Grievance + Penalty association and count)

 Notes (core app records)

 Admin (admin user data)

 Archive (for soft delete)

The database is much bigger at this point. I have attached an additional document to the application

to reflect this.

It would be preferable to keep the number of tables under 8 to avoid having to implement a schema

load when pushing the app to the Bluemix platform and thus losing data in the database with each

upload.

2.1.7 Archiving: Due to the nature of the data intended to be collected these are not records that

should be able to be simply deleted. Records deleted from the main Notes table should be

automatically sent to archive which would only be accessed by admin.

2.1.8 Graphical Data Representation Dashboard: Highcharts JavaScript Library

14 | P a g e

2.2 Project Scope:
The scope of the project at the highest level is to design, build and deploy a functional web

and mobile application that will allow the user to create, add, edit and delete records in a

database.

The application has features built in, some from 3rd party sources, that provide for an

intuitive and easy to use program tailored to the needs of the customers – in this case

secondary schools and/or government agencies like the Dept of Education.

To achieve this within the constraints imposed by the subject matter that the application

deals with several crucial points had to be addressed:

 Data Protection

 Robust and reliable functionality

 Security

 School administration requirements

 Schedule

Data Protection:

The data intended for use with this application is highly sensitive and therefore research will

have to be completed involving the data protection commissioner and other parties to

ascertain what, if any, data protection issues exist that could have a detrimental or negative

impact on both the delivery and sustainability of the application.

Functionality:

The application has to be easy to use, quick, robust and reliable. The user interface must be

as simple and intuitive for the user as possible. The database must be designed to work as

efficiently and securely as possible.

Security:

As with data protection outlined above security must be to the highest standards to provide

reassurance and the safest possible environment in which to store the collected data.

Administration Requirements:

15 | P a g e

As outlined in the project proposal document a key part of this application is allowing the

customer to determine the rules and thresholds that trigger events such as email or

messages to parents. It is most important that the school is able to decide it’s own

procedures and implement them through simple steps in site administration.

Schedule:

A project plan and gantt chart has been provided within the project proposal document.

2.3 User Requirements Definition:

The customer requirement revolves around ease of access, time saving and cost

efficiencies.

 The User must be able to login (Priority – Highest)

 The User must be able to create records (Priority – Highest)

 Admin can update or destroy records (Priority – Highest)

 User must have access to Dashboards (Priority – Highest)

 Dashboard must be populated with graphical representation of data in

database(Priority – High)

 An archive must be provided for “soft delete” of records(Priority – High)

 Application must automatically deliver messages to parent of student (Priority

– High)

 Easy to learn and well laid out application documentation must be provided to

users (Priority – High)

3. Functional Requirements

3.1 Functional requirements:

 Requirement 1: Admin User Registration

It is intended that all new users will be registered through Admin. For the purposes

of the prototype and testing users can register their own accounts.

 Requirement 2: Login

16 | P a g e

All users must be able to log in and log out.

 Requirement 3: User differentiation, roles

Devise, Rolify and CanCan gems will be used to provide authentication. Admin sets

roles. The two roles are “admin” and “teacher”. A guest account will have access to

“about” only.

 Requirement 4: Form and dynamic select options

Form to consist of collection select dropdowns using grouped_collection_select

method:

 Requirement 5: Database

My SQL to be used with connection to local MySQL Workbench via ClearDB service

on the cloud platform. The application must be connected to the database.

The local database settings are configured in the database.yml file.

 Requirement 6: Graphical Dashboards

jQuery, JavaScript to be used to provide graphical representation of data.

 Requirement 7: Email, SMS or MMS

The application must be able to automatically send messages to parents based on

whether a student has breached a certain threshold in terms of points accumulated

that will trigger a “send” event.

 Requirement 8: Homework Tool

The application will contain an interactive Homework tool that will allow the teacher

to enter in homework for students. Students can engage through comments, can

mark their homework as completed and using a graphical quadrant can show

whether they thought the homework was easy or difficult.

17 | P a g e

3.2 Local and Cloud based Technologies:

 JavaScript

 Twilio

 Ruby on Rails

 MySQL

 Cloud Foundry

 ClearDB

 Auto Scaling

 AppScan Security Services

 Sublime Text

 GitHub Version Control

3.2.1 Use Case Diagram(s) (Original):

Flow Description

Precondition: The User must be logged in to the mobile application with the correct

privilege (teacher).

Activation: The User selects option from dynamic dropdown options.

Main Flow:

1. User selects applicable class module/subject

2. User selects student from automatically populated dropdown

18 | P a g e

3. User selects from a list of grievances

4. User selects “Submit Note” and verifies prompt

5. User routed to dashboard

6. User can enter new record or log out

Alternate flow: N/A

Exceptional flow: N/A

Termination: Automatic

Flow Description

Precondition: The User must be logged in with the correct privilege as an administrator.

Activation: The Administrator accesses the administration console.

Main Flow:

1. Admin inputs user and student data and assigns roles

2. Admin assigns students to classes in accordance with model relationship

restrictions

3. Admin sets “penalty” criteria for individual grievance options

4. Admin save changes

5. Admin logs out

19 | P a g e

Alternate flow: N/A

Exceptional flow: N/A

Termination: Automatic

Flow Description:

Precondition: Admin signed in to admin dashboard and has access to penalty table to set

parameters.

Activation: School admin determines count threshold for that particular school and uses

input field.

Main Flow:

1. Admin signs in

2. Admin accesses penalty table dashboard to edit parameters

3. Admin edits and saves new parameters

Alternate Flow: N/A

Exceptional Flow: N/A

Termination: Automatic or admin signs out or presence is idle for a set period of time in

which case they will be logged out automatically.

20 | P a g e

Description: This use case describes how the data added to the Notes record table is used to

update the dashboard within a data visualisation programme file. It also describes how the

Note record dashboard is subsequently updated in the web/mobile application.

Flow Description:

Precondition: The system is in constant initialisation mode.

Activation: Connect the chosen data visualisation tool to the ‘Notes’ record table.

Main Flow:

1. The data visualisation system shall update the graphs, tables and dashboard using the

updated information from the user.

2. The data visualisation system shall automatically update the API embedded in the ‘Notes’

web/mobile application.

Alternate flow: N/A

Exceptional flow: N/A

Termination: Automatic

21 | P a g e

Flow Description:

Precondition: Child is in attendance at source school and there is an update available on the

student’s note record.

Activation: Automatic

Main Flow:

1. The system checks the database to see if there is an update to the student’s note

record.

2. If one or more updates exist that are greater than a defined threshold an email,

message or SMS is sent automatically to the relevant parent’s device.

Alternate Flow:

1. The system checks the database to see if there is an update to the student’s records.

2. None exist, process ends.

Exceptional Flow: N/A

Termination: Automatic

22 | P a g e

3.2.2 Use Case Diagram(s):

Requirement 1: A User shall be able to log on to access resources based
on their user group.

 Requirement 2: The administrator will be able to select the
disciplinary actions that are equivalent to threshold breaches
subject to the School’s disciplinary procedure manual.

Add Grievance list
and minimum

acceptable
Thresholds

Login

Administrator

Admin only
access area

Login

Stakeholder

Notes and Journal
Application

23 | P a g e

Requirement 3: The administrator will be able to select the
parameters for Parent’s communication.

Requirement 4: Teacher can communicate relevant items,
(currently homework and grievances).

Requirement 4.1: Teacher can add a homework item to the system

Add Parent's Notes
Parameters

Login

Administrator

Admin only
access area

 Teacher's Homework
icon

Login

Teacher

add 'Homework item'
(including due date)

24 | P a g e

Requirement 4.2: Teacher can add a grievance item to the system

Requirement 5: Teacher can view a dashboard containing relevant information

via Teacher's Note icon

Login

Teacher
add 'Grievance'

View Dashboard

Login

Teacher

Notes and
Journal
Application

25 | P a g e

Requirement 5.1:Teacher can view homework feedback, provided by
Students.

Requirement 6: Parents can communicate relevant items to
School

Teacher’s Dashboard

Login

Teacher

View 'Homework Feedback'

Parent's Note icon

Login

Parent
add 'Note'

26 | P a g e

Requirement 7: Provide access to a Dashboard that provides a visual
documentation of a Pupil’s Grievance record and homework
requirements.

Requirement 7.1: Parents can view students behaviour record via an
interactive graph

Requirement 8: Permit Students to view their behaviour record
via an interactive graph

View Dashboard

Login

Parent

Notes and
Journal
Application

Parent’s Dashboard
Login

Parent

View Child/Teens
'Behaviour Record'

graphic

Student’s Dashboard
Login

Student

View 'Behaviour Record' graphic

27 | P a g e

3.2.3 SYSTEM OVERVIEW:

The core system layout as above has not fundamentally changed in recent months.

28 | P a g e

3.2.4 DATABASE OVERVIEW (as of November 2015)

Database May 2016:

29 | P a g e

30 | P a g e

Future: (the above Polymorphic User relationship in the long run will be difficult to scale)

31 | P a g e

3.3 Non Functional Requirements:

3.3.1 Performance/Response time requirement

The user should spend no more than 10 – 15 seconds creating a record. From log in to log

out should be no more than 1 minute. This is a key reason for avoiding input text fields in

favour of dynamic dropdowns. The interface will be designed to be as intuitive and easy to

use as possible. The application will provide instant response times to user actions.

3.3.2 Availability requirement

The application will be available during school hours with any required downtime,

maintenance or upgrading carried out outside of these periods.

Geographically the application will be available in and around school campuses as a first

priority but can be accessed anywhere with the right credentials.

3.3.3 System Capacity

Initially the system will have to support a minimum of 25 simultaneous users per school

(average size) and 50 transactions.

As the system gets bigger an auto-scaling service binded to the application will ensure that

the usage requirements are always met without any excessive drawdown of capacity. This

works the other way too meaning service is never interrupted because capacity constraints

are never exceeded.

3.3.4 Recover requirement

In case of system failure it is imperative that any downtime is kept to a minimum and that

recovery protocols are in place for all aspects of the application in the operations manual on

the back and front ends.

A development team must be provided with the proper tools and infrastructure to carry out

recovery operations particularly in relation to the database.

3.3.5 Robustness requirement

32 | P a g e

The application has a high level of fault and stress tolerance. Certain failures will not result

in the app failing to work. All external and internal interfaces of the system will have to

undergo frequent random testing.

The dashboards are fault tolerant to the extent that even if one is broken the page will still

load, it just won’t show the broken chart or graph. This is an important design characteristic

given the prominence of the dashboards within the application as a whole.

Load times will be instant.

3.3.6 Security requirement

All user accounts will be secure through the admin registration process. All users will be

required to login. A default password will be provided to each user which they will have to

change themselves by editing their profile.

Data integrity tests will be routinely carried out.

The highest standard security services will be binded to the application via the cloud

platform as well as local security features already added like data encryption and user

records.

3.3.7 Reliability requirement

The application must be running at all times during school hours. An application failure during these

periods would be very damaging.

The database will contain data that can be considered sensitive. There will be backup and recovery

systems to cover any potential compromise and provide reassurance to users as well as persistence

of service.

33 | P a g e

The role of the cloud provider in conjunction with the administrator will be to maintain services at all

times. This means, in practice, if an instance of the application fails another takes it’s place

immediately or if the cloud region in which the application is hosted is experiencing downtime

another region will be utilised to replace it automatically without interruption of service.

3.3.8 Maintainability requirement

The application will be hosted on the cloud and so a lot of the heavier maintenance load in

terms of databases and security is handled off site by the provider. The application and

database will require ongoing maintenance both in house and off site.

3.3.9 Portability requirement

The system uses portable languages like JavaScript and is designed to be used on different

operating systems or host machines as well as being 100% responsive to mobile design. The

percentage of code that is host dependent is minimal.

3.3.10 Extendibility requirement

The application must be scalable to handle new features, a growing user base and increased

traffic. With the aid of the cloud this is easier to achieve with Auto Scaling which means that

as new capacity is required it will come on stream automatically.

3.3.11 Reusability requirement

The code, documentation, design and interface will be reusable up until any upgrading of

the architecture is required.

Build: The application can be rebuilt as many times as required with the code and

architecture using version control.

Distribution: The application can function as an API that can be plugged in and used on

various operating systems or host machines.

Deployment: The application can be deployed through the cloud platform.

Upgrading: The application can be upgraded to take account of levels of demand, usage,

geographical spread and the integration of new web based technologies.

3.3.12 Resource utilization requirement

The application requires an administrator for maintenance and the registration of new

teachers.

34 | P a g e

The application and associated database will require continuous maintenance. The personel

required will have a competent knowledge of Ruby on Rails, JavaScript and Cloud

Deployment and maintenance.

The allocation of physical space to support this system is minimal to non-existent. The

premise is that a PAAS cloud solution will be utilised to host the application so most of this

requirement is off site and technical support is available off site also.

3.4 GRAPHICAL USER INTERFACE

The UI is designed to be as simple and intuitive for navigation and user input as possible.

Below are some selected screenshots.

Before Log in:

35 | P a g e

Log in:

After Log in:

Create Note (just 3 dynamic dropdowns):

36 | P a g e

Note submitted:

Dashboard examples:

37 | P a g e

38 | P a g e

4. REFERENCES

1. Bluemix (Cloud Deployment)

 Accessed throughout

 Accessed at www.bluemix.net

2. Twilio (Communications)

 Accessed throughout, automated text messaging

 Accessed at: https://www.twilio.com/docs/tutorials

3. Stackoverflow.com (code queries)

 Accessed occasionally

 Accessed at: www.stackoverflow.com

4. Ruby on Rails Guides

 Accessed throughout

 Accessed at http://guides.rubyonrails.org/

5. Ruby on Rails Docs

 Accessed throughout

 Accessed at http://ruby-doc.com/docs/ProgrammingRuby/

6. JSFiddle

 Accessed throughout

 Accessed at https://jsfiddle.net/

7. Rails Casts, Ryan Bates

 Accessed throughout

 Accessed at www.railscasts.com

http://www.bluemix.net/
https://www.twilio.com/docs/tutorials
http://www.stackoverflow.com/
http://guides.rubyonrails.org/
http://ruby-doc.com/docs/ProgrammingRuby/
https://jsfiddle.net/
http://www.railscasts.com/

39 | P a g e

8. railstutorial.org

 Accessed throughout

 Accessed at https://www.railstutorial.org/book

9. Youtube tutorials

 Accessed occasionally

10. Pluralsight Ruby on Rails resources

 Accessed occasionally

 Accessed at https://www.pluralsight.com/

11. GitHub (Gemfiles, Version control and application repository)

 Accessed throughout

 Accessed at www.github.com

12. Heroku (cloud hosting)

 Accessed occasionally

 Accessed at www.heroku.com

13. Rubygems.org (Gemfiles)

 Gemfile repository links and statistics

 Accessed at www.rubygems.org

https://www.railstutorial.org/book
https://www.pluralsight.com/
http://www.github.com/
http://www.heroku.com/
http://www.rubygems.org/

40 | P a g e

5. APPENDIX

5.1 Cloud Deployment:

Steps for deploying to Cloud Foundry (assumes Cloud Foundry command line tool has

been installed):

1. Prepare rake file:

2. Prepare Gem File (comment out sqlite gem as we won’t be using it), Bundle Install:

3. Configure Manifest.yml, provide root to buildpack:

41 | P a g e

4. Ensure following configuration settings in production.rb environment:

5. Stage application on cloud platform and bind relevant services:

42 | P a g e

6. Open command line, go to root directory of project and enter:

This will fail so after bundler is complete stop the deployment with ctrl C. Run the

following command to finish deployment:

5.2 Twilio Implementation for messaging

1. Create Twilio account

2. Set up Twilio phone number (with required capabilities like SMS)

3. Copy id and authentication codes for account

4. Define new action in relevant controller (in this case notes_controller.rb)

43 | P a g e

5. In view apply:

5.3 Project Proposal Document

“NOTES” Project
Proposal

44 | P a g e

Student Name: Conor Curran

Number: 08872848

Email: x08872848@student.ncirl.ie

BSc (Hons) in Computing

Specialisation: Cloud Computing

Date: 02/10/15

45 | P a g e

1 Table of Contents:
1. Objectives

2. Background

3. Technical Approach

4. Special Resources

5. Project Plan

6. Technical Details

7. Evaluation

8. UI Indicative Screenshots

46 | P a g e

2 Objectives

The core objective of this project is to develop a functional web/mobile API for secondary school teachers

hosted on a cloud platform utilising various cloud based services.

The application is intended to assist in the digitisation of school record keeping: in this case specifically

student disciplinary records.

In practice a teacher should be able to update and maintain disciplinary records on their smart phones.

The data stored in the database could then be used to produce graphical information which would be

readily accessible to the school or other stakeholders and could aid in planning, identifying trends and, if

needed, direct intervention with the student.

In the app it is intended that various tresholds in terms of points accumulated by individual students once

reached would trigger an event. Mostly this would be an automatic SMS and/or email to the student’s

parents. However other tresholds may include and won’t be limited to, for example, a detention list

whereby the student record is automatically placed in a new and separate table within the database

updated weekly which would list students in detention that week. There are various options I am

considering on what such output should be.

It is important that the data is presented in a positive light rather than a negative one. This is not about

punishing students, it’s about getting a better insight and method of recording behavioral issues, and

identifying problems that need to be addressed.

The UI shall be as simple and intuitive as possible. The two user groups/roles will be teachers and

administration.

Key objectives:

 Provide fully functional and tested cloud based web/mobile API

 If possible have the product tested by end user group

 Utilise relevant cloud based services to achieve desired outcomes

 Ascertain, in as much as possible, any issues that may pertain to data protection

47 | P a g e

3 Background

During my internship in summer 2015 I gained a good insight in to the lack of standardised digital record

keeping in Irish schools. The vast majority of schools don’t even have a website and if they do rarely are

they maintained to any good standard. Below is a high level look at what I am trying to implement.

It is common practice to this day that record keeping and school disciplinary procedures are still carried

out by the teacher, in the first instance, using traditional pen and paper. At a later date this information

may be put in to a spreadsheet.

Whilst this method may represent an adequate way of maintaining records it could be streamlined to a

much greater extent through the use of modern mobile web and cloud based technology.

By digitising this process it could save teachers and administrators time and the school money in terms of

paper and storage requirements. They should be able to do on a smartphone, lap top or iPad what they

would normally do on paper.

The purpose of this project is to try and provide a platform to enable them to do that.

The app would also cut out the need to send letters to students homes by sending automatic messages to

parents on the basis of any treshold (decided and implemented by the school through the app

administration) being exceeded which would indicate the student is having difficulty or is being

unreasonably disruptive.

The User Interface will be designed to be as simple, quick and intuitive as possible with minimum input

required from the user through the front end view for maximum output from the back end. Ideally the

whole process should only take a few seconds.

In terms of practical implementation I am of the view a small number of dynamic select dropdowns

would be ideal as an interface. It would be preferable to avoid, if possible, input text fields.

This is a much more slender, streamlined and efficient way of maintaining records but it also gives much

greater latitude to the user in terms of time allocation.

I think it is important that the school would decide what number of points would be allocated to what

area of disruption. They could do this via the app administration. For example a case of bullying may carry

5 points and the school could decide at what point warrants a text to a parent or what action might be

taken so that they are in full control of their own disciplinary procedures.

4 Technical Approach

2.1 Core Requirements:

48 | P a g e

2.1.1: Bluemix:

Utilise IBM Bluemix platform to host project

2.1.2: Front end coding:

Ruby on Rails, jQuery, Javascript, CSS and other attributes within framework

2.1.3: Back end:

MySQL using ClearDB service on IBM Bluemix (examining using NoSQL)

2.1.4: Twilio:

Integrate Twilio communication service through Bluemix thereby enabling SMS or messaging service.

2.1.5: User Login, Admin:

Devise and Active Admin to be used within Rails structure to form basis of user authentication and site

administration.

2.1.6 Database:

It is currently envisaged that MySQL or NoSQL would be used in the project which would consist of 7

tables (open to change):

 Users (typical user table data)

 Teachers (teacher information)

 Students (student information and parent contact number)

 Penalty (Grievance + Penalty association and count)

 Notes (core app records)

 Admin (admin user data)

 Archive (for soft delete)

It would be preferable to keep the number of tables under 8 to avoid having to implement a schema load

when pushing the app to the Bluemix platform and thus losing data in the database with each upload.

2.1.7 Archiving: Due to the nature of the data intended to be collected these are not records that should

be able to be simply deleted. Records deleted from the main Notes table should be automatically sent to

archive which would only be accessed by admin.

2.1.8 Graphical Data Representation Dashboard: jQuery or embedded Tableau views, exploring “High

Charts” as potential use.

49 | P a g e

5 Special resources required

 Extended Bluemix access

 Twilio account

 MySQL Workbench

 Tableau account

50 | P a g e

6 Project Plan

4.1 Timeline:

Start
Sat 19/09/15

Finish
Fri

27/05/16

Octob

er
Novemb

er
Decemb

er
Januar

y
Februa

ry
Marc

h
Apr

il
Ma

y C

o

n
Conceptual Evolution
Sat 19/09/15 - Wed 27/04/16

Pro

ject

Pro
Interface Design
Sat 19/09/15 - Fri 20/11/15

Cloud Hosting
Sat 19/09/15 - Wed 25/05/16

Form

Refinement
Sat 19/09/15 - Sat
Final Documentation and Code
Sat 19/09/15 - Wed 11/05/16

Software Development
Mon 21/09/15 - Mon 23/05/16

Twilio Integration
Tue 29/09/15 - Wed

02/12/15
Archive

Table
Tue 29/09/15
Project Analysis Document
Tue 29/09/15 - Fri 04/12/15

Visualisation Dashboard
Tue 29/09/15 - Tue 05/01/16

Database Functionality
Tue 29/09/15 - Wed 25/05/16

Monthly Journal
Tue 29/09/15 - Mon 02/05/16

Requirements

Specification
Mon 05/10/15

Mid Point Prototype, Presentation
Tue 10/11/15 - Tue 16/02/16

Beta Version/School Testing
Wed 06/01/16 - Wed 25/05/16

P

r

o

P

r

e

Today

51 | P a g e

7 Technical Details

 Implementation language : Ruby on Rails – (HTML, CSS, jQuery, Javascript, Ruby etc)

 Editor: Sublime Text 3, Jet Brains

 Cloud platform: Bluemix

 Cloud services: Twilio, Clear DB and/or IBM DB, potential to utilise more services like Watson.

Bind security services.

 Libraries : jQuery, javascript, Minitest

8 Evaluation

Evaluation and testing will be ongoing in development and production environments. The dedicated

standard rails test environment will be used to run regular tests on every model and controller. The

scaffold provides for a very comprehensive test environment. Integration tests will be run to ensure

controller and model interactions are sound and robust.

The database will also be routinely tested by running the migrations through the test database schema

against the development schema.

Unit testing will be conducted by providing one test for every validation and method in the models.

Functional testing will take the traditional request approach. Rails provides for 6 or these:

 get

52 | P a g e

 post

 patch

 put

 head

 delete

Assertions will be used with the default test library.

If possible the ideal outcome for user testing and evaluation would be to have this app in use in a school

from January.

Below are some indicative screenshots of how the app is currently envisaged. This will probably change

as the project progresses.

UI Indicative Screenshots:

User Interface (before log-in)

53 | P a g e

Log-in Screen:

After Log In, additional options and privilages appear:

User must be a teacher or administrator to access resources – “About” is open to all.

54 | P a g e

“Create Note” screen, currently 3 dynamic dropdowns using collection_select

“Note submitted”, details of record

55 | P a g e

Administration, creating student record:

Administration, users:

56 | P a g e

Notes Index, restricted access, note owner can edit, admin can send record to archive:

57 | P a g e

Indicative Index Search:

All images indicative.

Conor Curran 02/10/15

6. MONTHLY JOURNALS

September 2015

This month I spent most of my time planning the next steps in how to successfully deliver the

project. I have been investigating Twilio and looking at how to incorporate it in a Ruby on Rails

application with the emphasis on how I want to use it (i.e on submit, perform action). I have been

looking at the best method to deliver the visual dashboard as indicated in the proposal document.

I have encountered a big error when pushing my app to the cloud in the last week, one that I am still

trying to fix. This is from command prompt when trying to push the app to cloud foundry:

58 | P a g e

“…downloading and untarring DB2 CLI driver....

 setting DB2 ODBC driver ENV variables

 Running: bundle install --without development:test --path vendor/bundle --binstubs

vendor/bundle/bin -j4

 Could not load OpenSSL.

 You must recompile Ruby with OpenSSL support or change the sources in your

 Gemfile from 'https' to 'http'. Instructions for compiling with OpenSSL using

 RVM are available at http://rvm.io/packages/openssl.

 Bundler Output:

 Could not load OpenSSL.

 You must recompile Ruby with OpenSSL support or change the sources in your

 Gemfile from 'https' to 'http'. Instructions for compiling with OpenSSL using

 RVM are available at http://rvm.io/packages/openssl.

 !

 ! Failed to install gems via Bundler.

 !

Staging failed: Buildpack compilation step failed

FAILED

BuildpackCompileFailed…”

I have no idea what is wrong. It was working fine until a week ago and suddenly it won’t work. This is

extremely frustrating. I have tried to do this on multiple machines and the same error occurs. I have

changed the sources of my gemfiles as the error suggestion states, I have deleted completely my

Rails and Ruby versions and reinstalled. I have been trying to use RVM to recompile Ruby with

Openssl to get a solution but it’s not clear to me how to do this on Windows.

Clearly if I can’t host my applications this is a serious problem but I’m hopeful of getting a solution

ASAP and maybe my supervisor might be able to help.

So that is really annoying and it has sucked up a lot of time in the last week.

Other than that I have been focused on documentation as well, so the requirements spec specifically

I have been working on.

59 | P a g e

It’s going well overall so far.

October 2015

This month I concentrated on getting Data visualisation dashboards and text messaging working on

my application. I used Twilio for the text messaging and javascript for the graphs on the dashboards.

I just need to find a way to update the charts automatically from the table as currently I am having

to hard code the stats in. This is not sustainable in the long run.

I succeeded with both to an extent in that something works but I still have a lot to do to ensure it

works as it is intended to work in the final application. I also progressed the requirement spec and

updated the application interface.

I have developed a good understanding of Heroku platform in recent weeks and have staged a few

versions of the app there successfully utilising some services.

I have been researching more on the platform(s) I’d like to use to host the application. I am

impressed with Heroku. Very intuitive, easy to use. I’m still going to use Bluemix but for added

learning will choose one more too.

My supervisor recommended building a CV uploader gemfile which I thought was a bit daunting but I

will try because I think a CV uploader is important for this particular application as a lot of school

records will be recorded in Excel documents.

November 2015

This month I made reasonably good progress with my application. I attended various meetups

around town like ruby groups and IBM Cloud groups to get a better understanding and some new

ideas on the framework I am using.

I also did some market research on the product so I have spoken with teachers and parents. I also

shared through social media a couple of Surveymonkey surveys and actually got a good response.

Most respondents, both teachers and parents, were broadly enthusiastic about the idea. Some

specifically mentioned they would like to see more functionality in the application.

From a research perspective it has been a good month.

On the coding side I did stutter a little bit – specifically with the graphical information on the

dashboards – but I consulted with my supervisor Johnathan and made good progress here. This has

allowed me to progress other elements of the application.

Overall happy with progress but a lot of work to do.

60 | P a g e

December 2015

This month I started adding a tool that allows students to check their homework and teachers to

submit homework for them. The student knows when the homework is due.

I have also added a calendar that shows when homework is due or completed.

In addition I have added a table for the teacher to be able to see which students have completed

their homework.

I did encounter a deployment issue this month when support for my Ruby version was removed

suddenly from the build pack I was using. I targeted a different build pack but had to revert to Ruby

2.0. In the long run this is not ideal so hopefully a new build pack will be available shortly for later

Ruby versions.

January 2015

This month I concentrated more on the homework tool element of the application making

some refinements. I also cleaned up the Administration user interface as this is one of the

most important parts of the application.

The idea is that the schools should have full control over all parameters within the

application relating to discipline. To this extent it must be intuitive and easy to use.

I continued carrying out market research with some interesting findings. Most responses

amongst the targeted stakeholder appear to validate some assumptions I had made and

overall the general response has been positive regarding this application/service.

February Progress Report

The application is on track as per the original timeline in the project schedule however end

user testing can now not begin until June at the earliest and even then only in a primary

school as secondary schools will be closing for the summer. The intention would be to

approach a secondary school in June with the intention of starting user testing over a 3

month period from September 2016.

61 | P a g e

I am looking at doing a transition year design workshop for students shortly to get feedback

on design from both teachers and students.

I have carried out market research through meetings with the various stakeholders

(students, teachers and parents). I have carried out surveys through Facebook where the

response was positive to the idea. I also took part in an education hackathon over a

weekend in November to carry out further research.

March 2016

This month I focused on making the rendering of the data on the dashboards dynamic which

was not an easy task. I had to do research on the Highcharts API to find out exactly how to

dynamically render the data within the rails framework. This involved using a hash as below

after defining other calls:

def self.getData

 data = []

 self.subject_types.each do |type|

 data << Hash["name", type, "y", self.type_count(type)]

 end

 data

 end

I was awarded “Inventor of the month” by NCI for the project which was a nice recognition.

April 2016

This month I implemented additional functionality in the application including making

refinements to the homework tool and began the process of future proofing for

commercialisation to help ensure the application scales more easily and that I would not

have to come back and do a lot of repair work on what I have already done. In this regard I

scaled the database beyond what is currently used in the application and have started

coding new functionality.

May 2016

With exams this month the application had to take a back seat for most of the time and my

focus has been preparing for the project show case. I still managed to do some refinement

62 | P a g e

and additional work on the user interface. I stopped making big changes to the application

just in case these might be too ambitious and could cause problems at the show case if not

completed properly.

7. TESTING

During development of the application testing was undertaken in both the development and

production environments and I also used the dedicated test database Rails provides in the config

directory.

The following tests were carried out using the Rake_test command:

Model Unit Testing (for example:)

“rake test test/models/note _test.rb test_the_truth”

test "should not save note without student_name" do

 note = Note.new

 note_not note.save, "Saved the note without a student_name"

end

And more were carried out using the available assertions within the Rails framework.

Functional Controller Testing (for example:)

class HomeControllerTest < ActionController::TestCase

 test "should get index" do

 get :index

 assert_response :success

 assert_not_nil assigns(:homes)

 end

end

I used most of the available test types throughout development on the controllers and also the

@request and @response instance variable tests. This was very useful in identify issues that may not

have been a problem at the time but could have become serious problems later on.

View Based Assertion Testing

I tested the integrity of the views occasionally with commands like:

“assert_select 'header', "Welcome to Notes"

assert_select "ol" do |elements|

 elements.each do |element|

63 | P a g e

 assert_select element, "li", 4

 end

end

assert_select "ol" do

 assert_select "li", 8

end”

Interaction Controller Testing – Integration Testing (for example:)

“class UserFlowsTest < ActionDispatch::IntegrationTest

 test "login and browse site" do

 https!

 get "/login"

 assert_response :success

end”

Routes Testing (for example:)

“class NoteRoutesTest < ActionController::TestCase

 test "should route to note" do

 assert_routing '/notes/1', { controller: "notes", action: "show", id: "1" }

 end

 test "should route to create note" do

 assert_routing({ method: 'submit', path: '/notes' }, { controller: "notes", action: "create" })

 end

end”

Aside from the above I used R-Spec to simplify the testing process.

