

National College of Ireland

Project Submission Sheet – 2014/2015

School of Computing

 Student Name: Jitendra Kumar Sharma

 Student ID: 01315057

 Programme: MSc Cloud Computing Year: 2015

 Module: Dissertation

Lecturer: Dr. Horacio Gonazalez-velez

Submission Due 17/12/2015
Date:

Project Title:

OpenStack cloud federation with

Single Sign-On via an Identity Management System

Word Count:

 15896

I hereby certify that the information contained in this (my submission) is

information pertaining to research I conducted for this project. All information

other than my own contribution will be fully referenced and listed in the relevant

bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

encouraged to use the Harvard Referencing Standard supplied by the Library. To

use other author's written or electronic work is illegal (plagiarism) and may result

in disciplinary action. Students may be required to undergo a viva (oral

examination) if there is suspicion about the validity of their submitted work.

Signature: Jitendra Kumar Sharma

Date: 16/12/2015

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple

copies).

OpenStack cloud federation with
single sign-on via an Identity

Management System

Jitendra Kumar Sharma

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

December 2015

Supervisor Dr. Horacio Gonzalez-velez

Abstract

The increasing popularity of cloud computing has led to the increased use of virtual-

ization technologies and underlying features. Many virtualization and cloud platforms

are being used independently or in conjunction with another environment to offer cloud

services. Most of these cloud services are being offered and shared across multiple cus-

tomers. Multiple customers on the same cloud enable features like multi-tenancy and

resource sharing. However, this also raises a few concerns on the identity of the cloud

users and confidentiality of the data and its privacy. Many researchers are still working

on multi-tenancy, data protection and identity management in the field of cloud com-

puting. Hence, this paper presents a Single Sign-On(SSO) solution for a data center

that addresses the issues of multi-tenancy and cloud security for IaaS and SaaS applica-

tions. The research is carried out with the goal to develop a pluggable middleware for

cloud authentication. The middleware should be able to provide SSO using a custom

built identity management system called ‘Membership’. It is possible to integrate cloud

services on the service level or the database level. Hence, this paper further discusses

the research and testing executed to ensure optimal approach on how Single Sign-On,

IDS system ‘Membership’ and cloud services can be integrated to mitigate security

risks with the multi-tenant cloud. As a proof of concept, this paper develops a fully

functional cloud, offering IaaS and SaaS solutions served over a Single Sign-On.

Keywords: Single Sign-On, SSO, Identity Federation, OpenStack, Cloud, Keystone,

IDM, OAuth.

ii

Declaration

I hereby declare that the dissertation entitled ‘OpenStack cloud federation with Single

Sign-On via an Identity Management System’, is a bonafide record composed by myself,

in partial fulfilment of the requirements for the MSc in Cloud Computing (2014/2015)

programme. This has not been used and accepted in any previous application for a

degree. All sources of information have been properly acknowledged.

Signed: Jitendra Kumar Sharma

Date: 16/12/2015

iii

Acknowledgement

Prima facie, I am grateful to National College of Ireland, Dublin and Cork Internet

eXchange (CIX), Cork for giving me the opportunity to carry out this research.

This thesis ‘OpenStack cloud federation with Single Sign-On via an Identity Manage-

ment System’ for Masters in Science degree was carried out in the Cloud Competency

Center, National College of Ireland, Dublin and Cork Internet eXchange, Cork.

I would like to express my sincere gratitude to my academic supervisor, Dr. Horacio

Gonzalez-velez for the continuous support in completing this research, for his patience,

feedbacks and suggestions and sharing immense knowledge. I am grateful to him for all

his time and efforts helping me complete the thesis. It would have never been possible

for me to carry out the research up to this level without his support and encouragement.

With an immense pleasure, I would also like to thank my industry supervisor Mr. Jerry

Sweeney (Managing Director, CIX), Karen O’Connell (Director & Financial Controller,

CIX) and Bob Grantham (Business Development Manger, CIX) who provided me an

opportunity to join their team for this research and allowed access to the research

facilities. Without their precious support, it would not have been possible to conduct

this research.

Besides, I would also like to thank Vikas Sahni, Keith Brittle, Dr. Adriana Chis, NCI

staff and IT support for helping me in the successfull completion of this course.

Last but not the least, I would like to thank my friends and family for continuous

support and motivation throughout writing this thesis.

iv

Disclaimer

All the information and content in this thesis is the property of Cork Internet eXchange

(CIX), Cork, Ireland and has been developed under the guidance of National College

of Ireland, Dublin. The content is protected by copyright laws, trademark and design

rights.

Any unauthorised use of the content will be considered a violation of Cork Internet

eXchange intellectual property rights. Unless otherwise stated in this document, CIX

reserves all tacit and direct rights to patents, trademarks, copyrights or confidential

information relating to the content of this thesis.

Unless otherwise stated in this document, no content may be copied, distributed,

published or used in any way, in whole or in part, without prior written agreement

from Cork Internet eXchange.

v

Contents

Abstract ii

Declaration iii

Acknowledgement iv

Disclaimer v

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 2

1.3 Hypothesis . 2

1.4 Contribution . 3

1.5 Outline of the Thesis . 3

2 Literature Review 5

2.1 Single Sign-On (SSO)- Application and Advantages 7

2.2 Single Sign-On Frameworks . 8

2.3 Insight on OAuth . 9

2.4 Identity Management . 11

2.5 Membership . 12

2.6 Identity Federation . 14

2.7 OpenStack Identity Federation . 16

3 Design 20

3.1 Specification . 20

3.2 Design Overview . 21

3.3 Abstract Protocol Flow . 22

3.4 Application Registration . 23

3.5 Workflow . 24

3.6 Openstack Federation Design . 25

vi

3.7 Additional Functionalities . 28

3.7.1 Problem Description . 28

3.7.2 Required Functionalities . 28

3.7.3 Impact on Clients . 28

3.7.4 Client Implementation . 28

3.7.5 Client Workflow . 29

4 Implementation 30

4.1 SSO Installation and Configuration . 31

4.1.1 Refreshing a Token . 32

4.1.2 SSO Login and Token Grant . 33

4.1.3 Auth Server . 36

4.2 Keystone Installation & integration with Membership 38

4.2.1 Keystone Installation . 38

4.2.2 keystone.conf configuration to use CloudCIX-Keystone 40

4.2.3 Test Run . 41

5 Evaluation 42

5.1 Requirements and Setup . 42

5.2 Use Cases . 43

5.2.1 Use–Case Basic Model . 43

5.2.2 List of Use Cases . 44

5.2.3 Use Case Diagrams . 44

5.2.4 Use Cases Details . 47

5.3 CloudCIX Performance testing with Rally 50

6 Conclusions 56

vii

List of Figures

3.1 Helicopter Overview of CloudCIX . 21

3.2 CloudCIX Architecture . 22

3.3 Abstract Code Flow . 23

3.4 Authorization Code Flow . 24

3.5 Implicit Code Flow . 25

3.6 Keystone Identity Manager . 26

3.7 Keystone Components . 27

3.8 OpenStack Ecosystem . 27

4.1 Network Design . 31

4.2 CloudCIX Login . 34

4.3 CloudCIX Dashboard . 37

4.4 CloudCIX Compute . 38

4.5 CloudCIX Instances . 41

5.1 User authenticated for one of the frontend 44

5.2 Browser session expired-Token Valid . 45

5.3 Browser Session valid-Token Invalid . 46

5.4 Rally Architecture . 51

5.5 Total durations . 54

5.6 Parallel Iteration . 54

5.7 Distribution . 55

viii

List of Tables

2.1 OpenStack Federtaion Comparison . 19

5.1 Installation Requirements . 42

5.2 Use Case:1 . 47

5.3 Use Case:2 . 48

5.4 Use Case:3 . 49

5.5 User Creation Response . 53

ix

Listings

4.1 Access Token Request . 32

4.2 Access Token Response . 32

4.3 Refresh Token Request . 32

4.4 Refresh Token Response . 33

4.5 CloudCIX Login Form . 35

4.6 Backend Authentication . 37

4.7 Keystone Installation . 39

4.8 keystone.conf . 40

4.9 Test Run . 41

5.1 Keystone authentication Testing . 50

5.2 Rally Installation . 52

5.3 Environment Variable . 52

5.4 Benchmark Scenario . 53

x

Chapter 1

Introduction

1.1 Background and Motivation

This thesis aims at developing a commercial cloud while considering the risks associated

with multi-tenancy and identity implementations. The purpose is to eliminate security

risks associated with the cloud. The research focuses on the implementation of a

Single Sign-On solution using a proprietary identity management solution. This identity

management solution is proprietary to the data center and is called ‘Membership’ and

is tightly coupled with the cloud services and offerings.

The importance of identity management is vital in managing the identity of an entity

in cloud. It relates to multi-tenancy and the extent to which it can help mitigate

the security risks. ‘Membership’ is also used as a basis for Software as a Service (SaaS)

applications developed for customers. It is capable of implementing true multi-tenanted

SaaS applications, as distinct from multi-instance SaaS applications. With the proposed

cloud, internal systems, and the SaaS product offerings operating from a single identity

framework is the optimal solution for the data center.

The importance of Single Sign-On explained below, describes the concepts and ad-

vantages of choosing the right framework for implementing Single Sign-On. This also

suggests the reasons why Single Sign-On is important for multi-tenancy. There are

many popular open standard framework for authentication and authorization. Some

of these are SAML, OpenID, and OAuth which are considered and researched for this

SSO solution. Single Sign-On to access cloud IaaS resources and SaaS applications

reduces the complexity of managing multiple user accounts for different services.

1

The proposed SSO solution provides the platform using which cloud members regis-

tered in ‘Membership’ handshake with the cloud services to authenticate the user. In

general, most of the cloud platforms handle authentication by using native username

and password. These credentials are stored in its local database. However, with the

help of proposed SSO solution and integration with ‘Membership’, a specific URL is

created that acts as a provider of authentication for all frontends. This will also be able

to create, refresh and scope access tokens on behalf of other frontends. After receiving

the access token, the client shall validate it against cloud services. Based on the vali-

dation, it either redirect to SSO login (if token becomes invalid during the process) or

create a local browser session using data received from the SSO response. The Single

Sign-On along with ‘Membership’ allow users to use same credentials to authenticate

for all the resources. It does not need to register individually for each cloud resource

offerings. This helps eliminate the security risks and complexity of managing users and

resource access in a multi-tenant environment.

1.2 Problem Statement

The data center already has few SaaS applications in place which are used by different

customers with varying needs. The problem was to develop a cloud to offer IaaS

services as well and link all the SaaS and IaaS offering together. Both the offerings

should be accessible via a Single Sign-On. The challenge was to write a new Identity

Management System keystone which should be pluggable to any cloud environment to

authenticate users. The new Identity Management System should allow access rights

based on privileges defined in the data center’s proprietary IDM system ‘Membership’.

This custom built keystone should not only manage users for IaaS offerings but also

control access to SaaS offerings through a Single Sign-On.

1.3 Hypothesis

The hypothesis for the research problem ‘’Is it possible to federate cloud with Single

Sign-On’ in this thesis can be claimed as ‘This is possible to federate cloud with Single

Sign-On ’. The hypothesis will be tested against the null hypothesis. The null hypoth-

esis can be listed as ‘This is not possible to federate cloud with Single Sign-On ’. The

null hypothesis will be tested and evaluated against few test cases which are explained

in detail in ‘Evaluation ’ section.

2

1.4 Contribution

The contribution of this dissertation is the research carried out to find the feasibility

of integrating OAuth based Single Sign-On with custom built Identity Management

System. During the evaluation, the requirements considered are to provide SSO to the

tenants. They should be able to access SaaS applications and OpenStack-based IaaS

offerings using the same login. In order to provide this solution, multiple experiments

have been carried out. As a result, it offered us a robust private cloud named CloudCIX.

This CloudCIX can be commercially used eliminating the risk of multi-tenancy. Few

of the requirements to carry out the experiment are as listed below

1. Implementation of a private cloud offering IaaS services.

2. Creation of multiple python based SaaS applications using python and .Net frame-

works offering SaaS services.

3. Creation of OAuth based configuration for SSO to access resources.

The research component to make the above experiments feasible is as listed below.

1. To build a trust with cloud internal Identity Management System and ‘Member-

ship’.

2. Implementation of required configuration in the cloud configuration files, ‘Mem-

bership’ and SaaS applications. This includes importing public certificates, im-

porting key pairs for the service provider, defining custom scopes in ‘Membership’,

disabling inbuilt user management of cloud, configuring SaaS applications to be

controlled via this trust and ‘Membership’.

3. Testing if the users are validated based on the scope defined in ‘Membership’ and

if the user belonging to a tenant is granted access to the resources defined for the

tenant.

4. Testing if an independent user is granted access native to particular resources and

no other offerings for a tenant.

5. Authentication is based on the configuration defined in ‘Membership’.

1.5 Outline of the Thesis

The research problem in this industrial dissertation: ‘Cloud federation with Single

Sign-On and an Identity Management System’ studies different available Single

3

Sign-On frameworks. The purpose is to provide a cloud with safe and secure multi-

tenant cloud environment. More significantly, this research claims that OAuth based

solution is the best suited SSO framework for proposed cloud federation. It supports

cloud customization for better identity management in a multi-tenant cloud.

To research the feasibility of Single Sign-On mitigating multi-tenancy risks in the cloud,

this research has been divided into four sections. The first section focuses on literature

review on the related work. This section analyzes similar works done by different

authors. It discusses the importance of Single Sign-On, Identity Management and

details on proprietary Identity Management System ‘Membership’. This section also

compares and contrasts previous cloud federations and their challenges. The second

section ‘Design’ includes the strategies on the integration of the proposed framework

with CloudCIX and ‘Membership’. This section discusses in detail the architecture

of cloud’s inbuilt Identity Management System. It also discusses ‘Membership’ and

its working schema with the underlying database. Further, this section tries to include

the algorithm for integrating CloudCIX with ‘Membership’ and support Single Sign-On

with the help of OAuth.

The third section of this thesis includes all the work involved in implementing the

private cloud, integration of cloud with ‘Membership’, design, implementation and

configuration of SSO to support multi-tenancy. The last section ‘Evaluation’ records

the performance of cloud Single Sign-On with the help of test user accounts and presents

the findings while accessing multi-tenant cloud resources and their access management

from ‘Membership’.

4

Chapter 2

Literature Review

The rapid growth of technology and increased user dependency on it has led to the

development of new computing paradigms. The usage of computing resources can vary

at times with changing user needs. Mishra et al. (2012) suggest that typical data

centers are provisioned to cater for the peak hour demands. It results in wastage of

resources during non-peak hours. These challenges of varied resource demand, usage,

and efficient resource utilization are sorted by the use of virtualization.

However, resource utilization on different virtualized servers can also vary based on

the services and applications it is hosting. Mishra et al. (2012) mention that changing

workload on VMs can create ‘hot spots’ i.e. resource crunch or ‘cold spots’ means

underutilization of resources. This condition defies the whole purpose of virtualization

as both conditions result in no uniformity in resource utilization and performance. This

further paved path for new paradigm called cloud computing. Cloud computing offers

compute, storage and network services on demand and users pay for only what they

use.

Cloud computing today has become a crucial component for IT industry. It is ex-

tensively helping companies manage resources and meet resource requirements within

the budget. National Institute of Standards and Technology (NIST) in furtherance of

its statutory responsibilities under the Federal Information Security Management Act,

outlined the formal definition of cloud computing and its architectural reference.

Mell and Grance (2010) of NIST define cloud computing as ubiquitous, on-demand

access to shared computing resources. They say these resources are connected via a

network and provisioned over the internet. They further add that these shared comput-

ing resources should be easily configurable and should be provisioned with minimum

5

management efforts. Mell and Grance (2010) compare cloud computing close to dis-

tributed computing where efficient use of computing resources can help to optimize

capital expenditure and operational expenditure.

Similarly, Armbrust et al. (2010) in their definition of cloud computing, include both

the applications which are provided over the internet and the hardware and the system

software in the datacenters that provide those services. Armbrust et al. (2010) refer

cloud services as Software as a Service defying other vendors who also refer it as IaaS

(Infrastructure as a Service) and Paas (Platform as a Service). They consider both the

services to be together and more alike than different.

Mell and Grance (2010) from NIST add to what Armbrust et al. (2010) suggest. They

define cloud computing further with minute details and explain cloud with five essential

characteristics, three service models and four deployment models for cloud computing.

The five characteristics of the cloud they list are On-demand self-service, Broad network

access, Resource pooling, Rapid Elasticity and Measured services. They categorize the

cloud service offerings by defining three service models as Software as a Service (SaaS),

Platform as a Service (PaaS) and Infrastructure as a Service (IaaS). Mell and Grance

(2010) also suggest four deployment models which can be listed as Private Cloud,

Community Cloud, Public Cloud and Hybrid Cloud.

As all the above definitions suggest cloud resources to be shared and delivered through

the internet, it is hence also prone to various limitations and internet related vulnerabil-

ities. Few of the authors have tried to list few challenges common in cloud computing.

For example Dillon et al. (2010) consider availability, performance, security, hard to

integrate with in-house IT, not enough ability to customize, bringing resources back

to in-house IT etc as some of the major challenges. Dillon et al. (2010) also point out

various security issues with multi-tenancy in the cloud. First being, shared resources

like hard disks, data and virtual machines etc on the same physical server. This makes

it prone to malicious side channels between a malicious resource and a genuine resource.

They point out the second security issue with multi-tenancy as ‘reputation fate-sharing’

where multiple cloud users share same computing resource and network addresses. As

a result, any notorious activity by any such users may be attributed to all the users

without differentiating any real subverts from genuine users.

As they outline generic challenges related to cloud, Grobauer et al. (2011) from Siemens

identify more detailed security issues and vulnerabilities specific to the IaaS and SaaS

service models. They distinguish cloud vulnerabilities based on difficulties in imple-

menting the controls on them. Grobauer et al. (2011) refer those vulnerabilities as

control challenges. Other than control challenges, Cloud Security Allowance (2015)

6

points one of the main issues of cloud called multi-tenancy and related risks.

Cloud Security Allowance (2015) also explain that multi-tenancy issues can be of dif-

ferent types and related to different resources based on service models. They identify

multi-tenancy issues in IaaS as same hardware shared by different tenants and in SaaS

as the same application being accessed by multiple cloud users. This is in line to the

work of other authors mentioned above who have identified issues with the cloud. Also,

we can see above that multi-tenancy is a major concern for cloud consumers considering

the security of identity and access management.

The next chapter of the thesis covers related work in the field of identity management

and cloud security. It also discusses how Single Sign-On can help reduce the security

risks of cloud offerings. Further, this paper critically analyzes various single Sign-On

frameworks. It also discusses in detail the existing identity management application

‘Membership’ that can be integrated with these frameworks. The last segment of this

section explains recent work on OpenStack cloud federation and our contribution to it.

All the above-discussed sections are as explained below.

2.1 Single Sign-On (SSO)- Application and Advantages

SSO has been defined by Cloud Security Allowance (2015) as a methodology used

to communicate the identity of the user to the service provider. Ghazizadeh et al.

(2012) point the challenge of maintaining multiple username and password with growing

number of applications. They advocate the need for a single login to address this

challenge. Supporting this Tsai and Sun (2013) point that any web user would have

multiple web accounts which are protected by passwords. They add that any user must

be using around eight password protected applications per day. Referring this challenge

Tsai and Sun (2013) suggest using Single Sign-On as a rescue. They mention that it

helps in using one account that is linked with multiple applications and can provide

access to them from the same login.

Revar and Bhavsar (2011) explain SSO as a process of gaining access to multiple re-

sources by authenticating once. They explain the objective of SSO being reducing

the number of user credentials in a heterogeneous environment and create balance for

security, efficiency, and usability. Karunanithi and Kiruthika (2011) consider SSO as

emerging technology employed in the process of identity management. It manages in-

formation about the identity of the users and control access to the company resources.

Similar to Revar and Bhavsar (2011), they also enlist the objective of SSO to reduce

7

the number of credentials a user needs to remember. They suggest using SSO to cre-

ate a more efficient and streamlined work environment for the user. Karunanithi and

Kiruthika (2011) also suggest that SSO was developed to reduce the number of logins

between various systems. They mention that as the name suggest, SSO is designed to

take a various number of login credential user needs to use and reduce them to a single

operation. Karunanithi and Kiruthika (2011) explain that the data that is required

during the login are presented to an application without the user having to remember

these values themselves.

Almulla and Yeun (2010) suggest same by highlighting that a user can be part of mul-

tiple sub-domains in an organization. They do not need to remember credentials for

different organization within the domain but can use the same trusted credentials to

log in. There can be multiple solutions to implement this. One such solution suggested

by Celesti et al. (2010) is where trusted credential of one cloud can be used to log into

the other. They call it SSO where authentication is done once to access various cloud

resources. Albino Pereira et al. (2014) support the same suggesting that cloud users

will not need to authenticate each and every time they need to access an application.

Albino Pereira et al. (2014) support the concept of IAM that provides federation be-

tween organizations and provides SSO. These all point towards reducing the number of

registration on the web. This will help reduce the trouble of remembering multiple user

credentials. These users can be of different types as suggested by Ghazizadeh et al.

(2012) who classify it as Identity Provider (IDP), Service Providers (SP) and web users.

Ghazizadeh et al. (2012) describe the role of IDP is to authenticate users based on the

credentials they supply. They further explain Service Provider that should trust and

agree on the authenticated credentials to leverage access to resources.

Though, Tsai and Sun (2013) compare Single Sign-On with Relying Party (RP) model.

They explain it as a model where IDP is also considered an application which is re-

sponsible for maintaining user identity and authenticating users.

The literature review above discussed the views of various authors on Single Sign-On

and different elements of it. It is notable that almost all of them support SSO for

efficient resource management and ease of operation. In continuation, the next section

discusses different frameworks that support SSO implementation.

2.2 Single Sign-On Frameworks

There are many proprietary as well as open-source SSO frameworks. Few of them can

be listed as Active Directory Federation services from Microsoft, CA single Sign-On

8

from CA Technologies, IBM Tivoli Access Manager and few open source like OAuth,

SAML, OpenID etc. The SSO solution for CloudCIX is based on one of the above

open source solutions. Hence, this section discusses few of these open standard SSO

solutions in detail.

These open standard SSO solutions are widely used and supported in the industry.

Cloud Security Alliance advocates this suggesting that all the cloud-based applications

should be compatible with open federation standards. They suggest using OAuth,

OpenID, and SAML. Similarly, Tsai and Sun (2013) suggest using SAML, OAuth and

OpenID to design SSO for applications.

In support to these authors, Murukutla and Shet (2012) also proposed using the open

source standard. They mention that there are three de-facto standards for providing

Single Sign-On. They name them as SAML, OpenID, and open authorization mech-

anism. They suggest that where SAML and OpenID are standard for authentication,

OAuth is more inclined towards authorization.

Different to these de-facto standards, there are other solutions as well like information

card. Information cards are the personal digital identities which people use online

and it is the key component of identity metasystems. Identity metasystems provides

the architecture for digital identity which employs multiple digital identities based

on multiple underlying technologies. Tsai and Sun (2013) support same stating that

information cards are one of the frameworks that can be used for SSO solutions. Though

many authors support using information card but it in actual, it is not that successful

as compared to other solutions. Ferdous and Poet (2012) discard information cards

citing the example of Microsoft. Microsoft discontinued their project of CardSpace due

to increasing standard and wide acceptance of other open standard SSO solution.

2.3 Insight on OAuth

The official website for OAuth Community (2015) defines it as “an open protocol which

allows secure authorization in a simple and standard method from the web, mobile, and

desktop applications”. E. Hammer-Lahav (2010) from the Internet Engineering Task

Force (IETF) states that OAuth helps in providing a method to clients for accessing

resources on a server. This is done on behalf of a resource owner which can be different

users. He further adds that using OAuth, an end user can authorize third party access

to their resources without being user credential shared across different parties.

Sun and Beznosov (2012) define it as an open and standardized web resource autho-

rization protocol. They suggest that it allows users to grant access to third party

9

application to their web resources. This is further done without the need of sharing

their login details or all the data. They focused on the architecture of the OAuth and

related security issues.

Mitchell (2015) explains that OAuth works by delegating user authentication to the

service that hosts the user account. It authorizing third-party applications to access

the user account. He explains in detail the OAuth roles and authorization grant types.

According to Mitchell (2015), OAuth consists of four roles which can be listed as Re-

source Owner, Client, Resource Server and Authorization Server. He described each

role as mentioned below:

Resource owners: They are the users who own a resource and authorize applications

to access their accounts. This access to the account is controlled by the ‘Scope’ of the

authorization granted. The scope can be extended to read or write access.

Resource Server/Authorization Server: The resource server and the authorization

server work hand in hand. Where resource server hosts the protected user accounts, the

authorization server verifies users and then issues an access token with defined scope

to the application.

Client: A client is the applications which need access to the user accounts. The

clients need to be authorized by the user and should be verified by the resource and

authorization server.

He further explains that in OAuth Abstract Protocol Flow, there are four steps in

obtaining an authorization grant and access token. This grant type obtained depends

on the method used by the client to request authorization. This also depends on the

grant types supported by the API. Mitchell further explains the four types of OAuth

grants as:

Authorization Grant: This grant type is mostly used with server-side applications.

Implicit Grant: This grant type is used with web applications or mobile apps or,

other words, applications that run on the user’s device.

Resource owner password credential: These grant types are used with trusted

applications such as the ones owned by service itself.

Client Credentials: These are used with applications API access.

The design section discusses in detail how these grant types have been used in our

implementation.

Sun and Beznosov (2012) also discuss OAuth and its security risks. They suggest that

10

Single Sign-On via OAuth is mostly implemented on existing web infrastructure and

hence vulnerable to Cross-Site Scripting (XSS), Cross-Site Request Forgery etc. They

also suggest that any vulnerability found in the browser can also lead to serious security

breaches when messages pass between the RP and IDP. They focused their research

on enhancing the security of OAuth by researching the extent of web vulnerabilities

that can be leveraged to compromise OAuth SSO system. They also studied the causes

and consequences, the frequency of compromise and how they can be prevented at the

practical level.

In our implementation, we used SSO in combination with cloud federation for better

identity management. Cloud federation and related work and contribution are discussed

in next chapter.

2.4 Identity Management

According to Hansen et al. (2008) creating and managing individual identity is a cen-

tral challenge of the digital age. Hansen et al. (2008) define identity management

as programs or frameworks to validate the collection, authentication or use of iden-

tity and information linked to an individual. They suggest that traditional identity

management systems are run by organizations who administer all mechanism for au-

thentication. This is establishing confidence in an identity claim about ‘who’ he is and

authorization i.e. what he should be allowed to do as well as any additional profiling

or scoring of individuals.

Similarly, Spencer (2012) explains identity management by categorizing it further in five

subgroups. These subgroups can be listed as authorization, authentication, federation,

user account management and auditing & logging of users. Same as the above two

authors, Faraji et al. (2014) also define identity management by categorizing it in three

essentials. These three essentials are authentication, management of user access and

audit and reports. These all authors suggest the purpose of identity management is to

validate who is who and ensure the one claiming to be a person is really he is.

Hansen et al. (2008) differentiate traditional identity management system from recent

work being more user-centric. They suggest that recent works attempt to put users

in charge of when, where, how and to whom they disclose their personal information.

They suggest that Identity Management System can help realize the potential of the

IT age. It is making e-commerce transactions more secure and seamless, using multiple

devices together, combating fraud or enabling yet unimagined services. Hansen et al.

(2008) point out that digitization of information by collecting, storing and sharing of a

11

large amount of data can make privacy risks inherent in identity management system.

It is hence important for system designers not to apply blanket privacy rules to it to

address the privacy risks. Instead, they must test and evaluate how good an IDM

system protects privacy in the context that is accounting for the system’s purposes,

participants and possible abuses. They suggest the need of a more users centric Identity

Management System which is complemented by Eap et al. (2007).

Eap et al. (2007) suggest that being proactive and vigilant is the best defense against

identity theft and invasion of privacy. They suggest that no identity management

system can provide full-proof security. According to them, the challenge of identity

protection is, even more, complex in Service-Oriented Architecture. It is because users

have their identity scattered across many services and they have no control over the

management of these identities. They advocate making user control and consent as the

key concept for identity management.

Celesti et al. (2010) also indicate the issues encountered by cloud services in authenti-

cation. They explain a scenario where cloud services manage their identity and security

management using their own internal mechanism to authenticate users.

Eap et al. (2007) propose a ‘Person’ al Identity Management (PIM) framework which is

a Service-Oriented Architecture framework. This proposed PIM gives users full control

over the management of their identity data and reduces the complex management of

trust and privacy.

When implemented in the cloud environment, Faraji et al. (2014) suggest authentication

as the privilege to a user to the cloud resources and Spencer (2012) defines authorization

as the amount of access to cloud resources given to a user. Faraji et al. (2014) also

suggest the need for separating the authentication logic from user credential so as to

support any authentication mechanism. The different definitions and views suggested

by above authors clearly indicate that single Sign-On and federated identities can help

manage users more efficiently in the cloud. This in turn effectively enhance cloud

interoperability.

2.5 Membership

‘Membership’ is the proprietary identity management system of the data center which

uses PostgreSQL as the backend to store user details. It uses Single Sign-On to au-

thenticate users for different services within the data center’s proposed cloud. ‘Mem-

bership’ is also used as a basis for Software as a Service (SaaS) applications developed

12

for customers within the cloud. It is capable of implementing true multi-tenanted SaaS

applications, as distinct from multi-instance SaaS applications. The data center intends

to develop a cloud to offer IaaS services from within the same cloud so that customer

can leverage the benefits of IaaS services along with all the SaaS capabilities. Though

the challenge faced was that most of the cloud platforms like OpenStack have their

own identity management service. These cloud Identity Management System manages

their own database for users, authentication, and authorization details.

OpenStack also has its own management portal to manage different services provided by

it. All the database members need to be recreated within OpenStack and need to use a

different interface to manage IaaS services. In this research at the data center, we tried

to integrate OpenStack cloud internal identity management with ‘Membership’.1cmto

authorize users registered with them without being recreated by in OpenStack. The

purpose was to maintain a single database that will be maintained by ‘Membership’.

All the SaaS and IaaS services will be authenticated based on the user privileges defined

in ‘Membership’ . Though this integration was possible at service level as well at the

database level, it was achieved considering the benefits at the database level.

The integration at service level means that system would remain separate, some data

duplication occurs and system can be slower (in theory). Integration on the database

level would mean that ‘Membership’ and OpenStack Keystone databases are merged.

This could benefit in the speed and data integrity. However, any upgrades will need

to be executed with extreme caution to not cause any problems in the ‘Membership’

database. This paper further presents the different approaches used to modify ‘Mem-

bership’ and OpenStack keystone to achieve this. Also, the OpenStack management

portal called dashboard is merged with Data center’s login page to manage all the SaaS

and IaaS services from one place.

In version 1 of ‘Membership’ , a user is referred as a ‘Person’ which can belong to a

single address at a time. Although working, this approach creates problems when the

user switches the address, it affects not only what that particular user sees but how

system sees him as well.

With V2 iteration, ‘Membership’ will extend Keystone and will merge the ‘Member’

with the ‘Domain’ and ‘Person’ with the ‘User’.

The new important change will be the approach to how ‘Person’ belongs to an address.

The current address should only affect what the user sees, not how the system interacts

towards this user. With suggested structure change, we should be able to separate

concerns of system and user view.

13

This solution is based on how users in keystone are assigned to the projects. A person

is assigned a role in an address and he is able to interact with that address for as long as

the assignment is active. Assignments are never deleted physically, once created they

stay in the system forever so that old data structure can remain intact.

The person will select his/her default address and will work within that address but

will be able to switch it at any time. This said the switch will affect only the person

changing the address (it will change the context of what person sees), it will not affect

the system.

2.6 Identity Federation

Identity federation is an arrangement where user’s electronic identity and attributes

stored across multiple distinct systems are linked together. It allows a user to use

same identification data across multiple applications. Our research is primarily focused

on building such a cloud which allows us to federate user identity based on our IDM

system ‘Membership’ . This should also allow all the applications to be accessible over

a Single Sign-On using OAuth.

Single Sign-On can be considered as a subset of identity federation in which user is

granted an authentication token that is trusted across multiple systems. In the case

of this cloud, it should be trusted across all the SaaS and IaaS offerings. The identity

federation for us is a two-step process where authentication is done using OAuth and

authorization is via ‘Membership’.

Identity federation has been explained in detail by Maler and Reed (2008). They define

federated identity management as a set of technology and process that allows computer

systems to dynamically distribute identity information and delegate the identity task

across multiple domains. Maler and Reed (2008) further add that identity federation is

the mean by which web applications can allow users to Single Sign-On across multiple

domains. They suggest that it allows users to authenticate once and thereafter gain ac-

cess to multiple resources and web applications elsewhere. Where this system provides

ease of user management, this also has its own risks. Maler and Reed (2008) correctly

point out that an identity federation not only increases the cost but also entails new

increased privacy and security risks. They highlight that valuable information is shared

across domains using lightly coupled network protocols and hence put them at risk.

Similarly, Dreo et al. (2013) have also raised same concerns but considering domains as

different clouds and identity federation between intercloud. They raise concerns over

the amount of user information that should be exchanged across domains and using

14

which protocol and in which format. Dreo et al. (2013) point that a user may have

different access rights across different domains. Hence, there may be need of extending

traditional and conventional authorization models, such as role-based access control or

mapping of permission between domains.

A similar concept has been used for CloudCIX Single Sign-On where authentication is

done using OAuth and authorization is done based on permission and access mapped

in ‘Membership’. A good comparison between ‘Membership’ and Identity Management

System developed by others may give an idea of how authorization in our work is

different and adding value to the existing concept of IDM.

For example Claußand Köhntopp (2001) developed an Identity Management System

that provides a tool for multilateral security and identity management. They focused

on controlling the amount of user data transmitted across the domains. More focus was

given to allow the user to control its interaction across domains and amount of data

it wants to share. Claußand Köhntopp (2001) considered pseudonymity as the core

mechanism of their identity manager and the identifier for an object or user. These

pseudonyms may have few characteristics linked by the means of digital signature to

disclose partial information about the user. The security management interface for their

Identity Management System provides users the possibility to configure their security

goals and preferred security mechanism. Their IDM system is more focused towards

allowing users to manage their identity and attributes while communicating with the

different application. Though this type of Identity Management System would not be

successful in the case of multi-tenant cloud environment like CloudCIX. The reason

being access and roles are defined based on tenants and services they are availing. The

access and roles are inherited based on the attributes of tenant and users being a mem-

ber of it. The attributes that will be associated with the user will be controlled by the

administrator of the tenant and not individual users. Once declared by administrator,

user will be granted an attribute and on authentication, he will be issued a token that

will allow him access to resources without sharing much information of the user as the

application will agree to the token. This added an extra level of security and identity

management where designated members of the tenant can act as an admin and control

user access to the resources.

The next section discusses in detail OpenStack, identity service keystone, keystone

federation and related work.

15

2.7 OpenStack Identity Federation

OpenStack is an open source software that provides IaaS layer for building private as

well as public clouds. The clouds build on OpenStack offer IaaS platform. It consists

of different modules offering individual services. Keystone is an OpenStack module

that provides identity management services, including authorization and authentica-

tion. OpenStack currently is seeing a huge growth in popularity and have widely been

adopted by corporations, small and medium businesses, service providers and value-

added resellers. As OpenStack is getting tremendously popular and more enterprises

begin to deploy it and is becoming very important for these enterprises to integrate

OpenStack Keystone with their existing federated Identity Management System. Iden-

tity federation was not supported in OpenStack until 9th release, Icehouse. OpenStack

Icehouse introduced new federation capabilities to keystone which enabled keystone to

integrate with popular identity management products like IBM Tivoli identity manager

and RSA access manager.

In an OpenStack deployment which works with non-federated authorization model there

are users, groups, and projects. A user once authenticated against a project is granted

an access token. This access token contains the attributes that specify his role on that

project. Any action performed by a user in OpenStack is verified against his token.

The role associated with the token helps determine if user is allowed for that action

or not. As opposed to it in a federated environment, the user information is no longer

stored in keystone but is managed by the identity provider. This creates a challenge for

associating OpenStack roles to the users as roles are defined by keystone, but the users

are not managed by keystone. As a solution to this keystone provides group support

that allow leveraging the attributes that are returned from the identity provider for a

user. It allows leveraging through a rule mapping that maps a user to a keystone group

based on the associated attributes.

This was an area of research for this data center as the identity provider ‘Membership’

needs to be built with roles and those roles needs to be replicated in keystone. Also, the

access policies need to be defined for these custom roles. Similar work with OpenStack

federation has been tried by few other enterprises and independent researcher though

it still remains an area of research. As there is not much research done on it, there is no

best tried and tested formula for OpenStack federation and it is still being researched

with individual experiments.

David Chadwick from the university of Kent worked extensively on OpenStack feder-

ation. He points out that though OpenStack federation makes the user management

easier, it has its own challenges as well. Chadwick et al. (2014) points IDP discovery

16

problem as one of the most challenging factors. It makes it difficult for OpenStack

to decide which IDP user wants to use. There are different IDP providers offering a

different set of option making it confusing for OpenStack. For example, Nascar solution

displays a set of IDP icons to the user. Similarly, shibboleth lets user pick/search for his

IDP. He also points out that it is difficult to decide which protocol (OpenID, SAML,

OAuth) will work best. Chadwick et al. (2014) worked extensively with OpenStack

keystone federation.

Chadwick et al. (2014) present a protocol independent federated identity management

to the OpenStack services. They point out that though most of the cloud deployments

are stand alone, there still is a need for community clouds and inter-clouds. Further,

they suggest that a protocol independent federation will enable authentication and

authorization to be flexibly enforced across federated environments. Chadwick et al.

(2014) in support of their statement presents a detailed federated identity protocol

sequence and implements protocol independent system components. Finally, they also

incorporate two other identity federation protocol i.e., SAML and OpenStack default

keystone. They further compare the performance against protocol independent federa-

tion. In support of the need for protocol independent identity federation, they quote to

the Mell and Grance (2010) US Government Cloud Computing Technology Roadmap

guidance. It suggests using Frameworks to support federated community cloud. This

guidance is to enable all manner of international, government-to-government, agency-

to-agency, or business-to-business collaborations.

Similar to these authors, Martinelli and Topol (2014) from IBM also worked on Open-

Stack keystone federation. However, Martinelli and Topol (2014) restricted their work

mainly to SAML-based federation using IBM proprietary Identity Management System

called ‘Tivoli Federated Identity Manager’. As Keystone federation support is based on

few libraries provided by Apache HTTPD, they implemented keystone within apache

and enabled keystone extensions to support federation and SAML-based authentica-

tion. Further using the Tivoli Federated Identity Manager admin console they created

a SAML 2.0 Identity Provider federation. They used all the default options, including

the default ip saml20.xsl mapping rule. Also, they disabled all the artifact profiles

and used only the browser-post profile for this integration. Further, they exported the

SAML 2.0 metadata for the Tivoli Federated Identity Manager and used it with apache

module ‘Shibboleth’ to communicate with Tivoli. To complete the setup, they added

Keystone as a SAML 2.0 Partner to the Tivoli Federated Identity.

Similarly, Chadwick et al. (2014) also configured the federated environment for Open-

Stack, however, they used the concept of Virtual Organization (VO) to design their

17

Identity Management System. Chadwick et al. (2014) explain that Virtual Organiza-

tion is a security context in which each member of VO is linked with a set of autho-

rization attributes (roles). These attributes can generally be managed from multiple

administrative domains. The administrative domains use an external VO Membership

Service (VOMS) which maintains all the information for a set of VOs. Each VO main-

tains its own administrator who can define all the groups, roles in a VO and can grant

or revoke any membership in that VO. Chadwick et al. (2014) further add that when

a user authenticates to VOMS for any VO, they receive SAML assertion defining the

user’s authorizations. The user’s client uses this to build an X.509 proxy certificate.

This proxy certificate is based on the user’s primary certificate, and this is used for

authorization for the protected service.

Chadwick et al. (2014) used this concept implicitly in their design though they used

an attribute mapping server to eliminate the need for a separate VOMS server. They

used this attribute mapping server to solve the problem of semantic interoperability of

mapping user identity into keystone’s model of tenant, project and roles. This mapping

allows in making proper authorization decision which was missing from Kerberos and

shibboleth.

They developed a protocol independent module responsible for both authentication

and attribute request messages and also getting them to the Identity Provider. These

messages are protocol dependent. However, converts it to standard format while re-

turning the user identity information to the keystone. Keystone does not, therefore,

need to process it and act as a relay to pass them across protocol specific modules.

They focused on making the module replaceable and making multiple modules sup-

ported simultaneously. This is to allow keystone be able to support different identity

providers. This helped them keep the keystone intact without any change in other

OpenStack services and how they interact with keystone.

However Chadwick et al. (2014) point to the challenge that vast majority of the IDPs

provide users browser-based logins for authentication, whereas the OpenStack clients for

different services are the command line. They investigated the feasibility of command

line client interacting with identity providers via HTTP. However, as they found it

to be very complex, they resorted to the web browser for the authentication phase

of the federated identity management implementation. They used SAML v2.0 for this

implementation as their request issuing function supports the SAML Web Browser SSO

profile.

Different to Martinelli and Topol (2014) and Chadwick et al. (2014) where both worked

with SAML and using existing approaches, we tried Single Sign-On using OAuth for

18

authentication and an IDM system built in-house for authorization. The Table 2.1

below compares CloudCIX OpenStack federation with other similar works.

OpenStack Federation

Researcher Framework Identity Management Integration Level Limitations

IBM SAML Tivoli Service Level Browser Based

Chadwick et al. SAML VOMS Service Level Browser Based

CloudCIX OAuth Membership Database Level CLI and Browser

Table 2.1: OpenStack Federtaion Comparison

19

Chapter 3

Design

3.1 Specification

This section explains all the strategies, planning and design concepts adopted to imple-

ment Single Sign-On using OAuth and Keystone federation. The OpenStack keystone

federation was carried out in phases. The first phase is the development of OAuth

middleware for SSO, integration of keystone with ‘Membership’, and customization of

dashboard for the user login, account, and Resource management. The major challenge

was to take the existing ‘Membership’ application and make it capable of supporting

the Keystone API. The figure 3.1 below shows how it is proposed that the components

in this stack will be integrated together.

20

Figure 3.1: Helicopter Overview of CloudCIX

The stack shown above is to include Infrastructure as a Service (IaaS). The IaaS Ser-

vices are based on OpenStack plus extensions such as billing, DNS etc and a SaaS

platform that exposes RESTful Web Services that can be combined to build business

applications. Such Web Services would support CRM, SCM, Financial and data/IOT

processes. With the introduction of Keystone API version 3, it is now possible to cre-

ate a database schema that is a superset of both the Keystone and ‘Membership’ API.

This suggests that with the recent release of the Kilo version of OpenStack this project

became more feasible.

3.2 Design Overview

As the research presents using Single Sign-On for CloudCIX, given below is the process

and data flow for the design. The figure 3.2 shows the overall architecture of the

federated OpenStack. This also depicts how ‘Membership’ has been positioned in the

stack.

21

Figure 3.2: CloudCIX Architecture

The dashboard shown above is developed using Django framework with python and

OAuth. The credentials supplied through the dashboard is validated by ‘Membership’.

Post validation, based on authorization defined, they are assigned a token which is

passed to Keystone. Keystone analyzes the token for associated attributes and allows

access to other OpenStack resources accordingly.

3.3 Abstract Protocol Flow

Explained below is the process flow for authentication and obtaining access token using

OAuth. Given below is the abstract protocol flow for the one of the four OAuth roles

used in CloudCIX and explained in above sections. The figure 3.3 below depicts this

flow and is explained in detail below.

22

Figure 3.3: Abstract Code Flow

The abstract protocol flow for OAuth shown in the figure 3.3 above is as explained

below:

1. The application requests the authorization to access service resources from the

user.

2. On user authorizing the request, an authorization grant is provided to the appli-

cation.

3. An access token is requested by an application from the authorization server by

presenting authentication of its own identity and the authorization grant.

4. On application identity being authenticated and authorization grant being valid,

an access token is granted to the application by the authorization server (API).

This completes the authorization process.

5. The application presents the access token for authentication and requests the

resources from the resource server.

6. Resource server serves the resources, on access token being valid.

3.4 Application Registration

Before using OAuth, The CloudCIX must register the applications with the service.

This is done through the API part of the service website where following information

23

is provided.

• Application name

• Application Website

• Redirect URL

Once the user is authorized or denied the application, they will be redirected to Redirect

URL that will manage the authorization code or access token.

3.5 Workflow

The authentication process is based on OAuth 2.0 standard and implements section

4.1 and 6 of the RFC6749. After receiving the access token, the client shall validate

it against Keystone. It will either redirect to SSO login (if token becomes invalid

during the process) or create a local browser session using data received from Keystone

response. The above explained Authorization workflow is shown below in the figure

3.4.

Figure 3.4: Authorization Code Flow

In addition to the Authorization Grant type, as shown above in the figure 3.4, there is

also an Implicit Grant type used. The implicit grant type is used for those mobile apps

and web applications where the client secret confidentiality is not guaranteed. This

grant type also has a redirection-based flow. Though, in this case, the token is granted

24

to the user-agent to forward to the application. As a result, the token may be exposed

to the user and other applications which are running on the device. This authorization

flow will not validate the identity of the application but rely on redirect URI to serve

the purpose. Also, the implicit grant type does not support refresh token. A detailed

flow for the implicit grant type is as shown below in the figure 3.5.

Figure 3.5: Implicit Code Flow

3.6 Openstack Federation Design

As the above section discussed in detail the design for SSO, given below is the design for

CloudCIX keystone and different components interacting with each other. A general

overview of keystone architecture is as shown below in figure 3.6.

25

Figure 3.6: Keystone Identity Manager

The OpenStack Identity service along with ‘Membership’ performs the following task.

1. Track users and their permissions.

2. Provide a catalogue of available services with their access API endpoints.

While installing each service of OpenStack, they are registered with identity service.

This is for keystone to keep a track of available services on the network. OpenStack

keystone confirms an incoming request by validating the credentials supplied by the

user. Once credentials are validated, keystone issues an authentication token which

allows users to access different services. As in the case of CloudCIX OpenStack, the

user is validated from the identity service ‘Membership’. On successful validation, they

get the access token which allows unrestricted access to all the resources on CloudCIX

including OpenStack. A small overview of how different components are distributed in

the OpenStack ecosystem can be shown as given in the figure 3.7 below:

26

Figure 3.7: Keystone Components

A flow chart to depict Customized OpenStack keystone interaction with other services

can is shown below in the figure 3.8. It shows how every user and service is authenti-

cated against Membership and keystone before getting access to different OpenStack

resources.

Figure 3.8: OpenStack Ecosystem

27

3.7 Additional Functionalities

3.7.1 Problem Description

With the introduction of Keystone tokens, it is no longer possible to extend token

validity. Instead, multiple tokens should be used to maintain the user session. By

default, the tokens are issued as a unscoped token. For some functionality (vault/swift),

we require project scoped tokens. In this case, SSO should act as the center point of

communication with keystone (except for token validation). If a frontend requires a

new token (scoped or just refreshed) it should fire a request to SSO. It will revoke the

previous token and force other frontends to refresh their tokens with the new instance.

This functionality will be implemented as per the specifications in section 6 of the

RFC6749.

3.7.2 Required Functionalities

1. Ability to refresh an expiring token or existing token.

2. Ability to request a scoped token.

3.7.3 Impact on Clients

Other frontends should be able to refresh tokens in the background. Furthermore, if

the request is a POST, frontends should be able to refresh token without affecting the

action. If a user POSTed some data and is required to log in, we should have some

ability to ‘record’ his action and ‘reply’ it after he logged in.

3.7.4 Client Implementation

If a client validates the token with every request and if keystone returns code 401 upon

token validation, the client should redirect to SSO login page. Secondly, If a client

caches the token, it should wrap around the API call and expect a code 401 response

from the service. If the service returns code 401, the client should check with SSO for

a new token and reply the API request if SSO returns a new valid token.

28

3.7.5 Client Workflow

The above explained workflow can be represented diagrammatically as shown below:

Reacting to Token Refresh

1 apps.cloudcix ---- change user ----> services

2 apps.cloudcix <-------- OK --------- services

3 apps.cloudcix --- refresh token ---> SSO

4 apps.cloudcix <----- new token ----- SSO

5 apps.cloudcix ----- more work -----> services

6 iaas.cloudcix ----- more work -----> services

7 iaas.cloudcix <----- NOES! 401 ----- services

8 iaas.cloudcix --- redirect to login ---> SSO

9 iaas.cloudcix <---- user already signed in, code ----- SSO

10 iaas.cloudcix ------ retrieve token ----> SSO

11 iaas.cloudcix <---- token ---- SSO

12 iaas.cloudcix ----- more work -----> services

Reacting to a no longer valid token

1 iaas.cloudcix ----- more work -----> services

2 iaas.cloudcix <----- NOES! 401 ----- services

3 iaas.cloudcix --- redirect to login ---> SSO

As this section described in detail the architecture, process flow, and design for au-

thentication and authorization within CloudCIX, Next section discusses in details the

implementation of OAuth and OpenStack installation and keystone integration with

Membership.

29

Chapter 4

Implementation

This part of the thesis discusses in detail, the steps carried out to install, configure and

test different component of CloudCIX. This includes installation and configuration of

OpenStack, OAuth and keystone integration with ‘Membership’. This section explains

in detail the customization of Keystone and different changes made to its configuration

to interact with ‘Membership’.

The CloudCIX consists of differenet components serving differnt purpose in the net-

work. A brief network desig for these components along with some other hardware

supporting CloudCIX are configured on the network as shown in the figure 4.1 below:

30

Figure 4.1: Network Design

Discussed below is the setup and configuration of different components for CloudCIX

to offer SSO and other cloud services.

4.1 SSO Installation and Configuration

A single page is implemented at a specific URL https://auth.cloudcix.com. All

frontends created by CIX should use that URL as an authority provider.

1. https://auth.cloudcix.com will be able to derive from which URL the authen-

tication request came from. (https://apps.cloudcix.com, https://apps2.

cloudcix.com) will be able to redirect back to that site.

2. https://auth.cloudcix.com will only allow specified URLs to contact with it

and will only redirect to URLs on that list, any unsupported clients will receive

an error response as per OAuth 2.0 specifications.

3. https://auth.cloudcix.com will act as a provider of authentication for all fron-

tends and will be able to create, refresh and scope keystone tokens on behalf of

other frontends.

31

https://auth.cloudcix.com
https://auth.cloudcix.com
https://apps.cloudcix.com
https://apps2.cloudcix.com
https://apps2.cloudcix.com
https://auth.cloudcix.com
https://auth.cloudcix.com

4. Other frontends will only connect to keystone to validate tokens. Other frontends

will direct all CUD token operations to SSO.

NOTE: State returned in the response from SSO is the same as state specified by the

client in the request. Both should be compared by the client upon retrieval to ensure

that the response is an actual response to send the request.

NOTE: The code will be a one-time use valid for 10 minutes after the redirect URL has

been created. After receiving the code, Client https://apps.cloudcix.com shall use

the code to request the Access Token and the Refresh Token from the SSO Provider

using the request shown in listing 4.1 over TLS:

1 POST /token HTTP/1.1 Host: apps.cloudcix.com Authorization:

2 Basic3465y3y3tg3346hrtgbwvf45gwrsfv Content-Type: application/x-www-form-urlencoded

3 grant_type= rant_type=authorization_code&code=3425g4weg54getg3 &redirect_uri=

4 https%3A%2F%2Fapps%2Ecloudcix%2Ecom%2Fcb

Listing 4.1: Access Token Request

This request will result in a response containing the Access Token (used for requests

to services) and the Refresh Token (used to request a new Access Token before its

expiry or to request a Scoped Token). The code for same is shown in the listing 4.2.

1 HTTP/1.1 200 OK

2 Content-Type: application/json;charset=UTF-8

3 Cache-Control: no-store

4 Pragma: no-cache

5 {

6 "access_token":"2YotnFZFEjr1zCsicMWpAA4tg35trbws",

7 "token_type":"Bearer",

8 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA"

9 }

Listing 4.2: Access Token Response

4.1.1 Refreshing a Token

The token is about to expire, is expired or a scoped token is required, client shall send

the following request mentioned in listing 4.3 to the SSO Provider over TLS.

1 POST /token HTTP/1.1 Host: apps.cloudcix.com Authorization:

2 Basic 3465y3y3tg3346hrtgbwvf45gwrsfv Content-Type: application/x-www-form-urlencoded

32

https://apps.cloudcix.com

3 grant_type= refresh_token\&refresh_token=tGzv3JOkF0XG5Qx2TlKWIA

Listing 4.3: Refresh Token Request

This request will result in a response containing the access token (used for requests to

services), refresh Token will be omitted, example shownn in listing 4.4.

1 Content-Type: application/json;charset=UTF-8

2 Cache-Control: no-store

3 Pragma: no-cache

4 {

5 "access_token":"2YotnFZFEjr1zCsicMWpAA4tg35trbws",

6 "token_type":"Bearer",

7 }

Listing 4.4: Refresh Token Response

After receiving the access token, client shall validate it against Keystone and either

redirect to SSO login (if token became invalid during the process) or update the local

browser session using data received from Keystone response.

4.1.2 SSO Login and Token Grant

The OpenStack login page called Dashboard has been integrated with data center

login portal for SSO and this single page will be used for all logins. SSO login page is

as shown below in the figure 4.2.

33

Figure 4.2: CloudCIX Login

This has been deployed on Apache2. Apache uses mod proxy to create a pass from

one server to the second server for the sake of downloading files (Background jobs are

executed on the second server and that’s where the resulting files are located).

34

The Application framework is connected to messaging queue rabbitmq on the worker

server. This means that every celery task started by the services is executed by the

worker server. Apache config was adapted to run with 8 processes and 1 thread. Ap-

plication framework accesses keystone on the admin port (35357) to distribute resource

usage a bit easier on the keystone server. Once there are enough resources it can be

switched to pub (5000) port. Application framework settings local.py allow for 50 re-

quests per second which should be tuned down. Clients should be informed that they

should implement a back-off procedure in case of HTTP 429 - TOO MANY REQUESTS

error codes

A simple implementation of login using the form above is as depicted below in the

codes 4.5

1 class AuthenticationForm(forms.Form):

2 """

3 Basic authentication form for users, it checks credentials and if correct

4 returns instance of CIX User that is stored in local Session.

5 """

6 username = forms.CharField(label=_("Email address"), max_length=50,

7 widget=forms.TextInput(attrs={

8 ’class’: ’form-control’,

9 ’required’: ’required’,

10 ’placeholder’: "Email address",

11 ’autofocus’: ’autofocus’}))

12 password = forms.CharField(label=_("Password"),

13 widget=forms.PasswordInput(attrs={

14 ’class’: ’form-control’,

15 ’required’: ’required’,

16 ’placeholder’: "Password"}))

17 error_messages = {

18 ’invalid_login’: _("Please enter a correct username and password. "

19 "Note that both fields are case-sensitive."),

20 ’no_cookies’: _("Your Web browser doesn’t appear to have cookies "

21 "enabled. Cookies are required for logging in.")

22 }

23 def __init__(self, request=None, *args, **kwargs):

24 """

Listing 4.5: CloudCIX Login Form

35

4.1.3 Auth Server

SSO Auth

https://auth.cloudcix.com auth server is the single point of authority for all Cloud-

CIX frontends. It is responsible for providing Single Sing-On functionality and issuing

any (scoped and unscoped tokens). Scoping is also done via interaction with the Single

Sign-On server.

IMPORTANT NOTES

1. ALLOWED LOGIN REDIRECT HOSTS should be a list of domains that SSO

should be able to redirect to. After successful login, the user will be redirected

to those domains so that a call to retrieve a token can be made.

2. CLOUDCIX SSO CLIENTS should contain pairs of client id: client secret. Only

frontends that use a pair listed in this dictionary will be allowed to use SSO

functionality. Currently, only 2 pairs are used. This should be extended to allow

better security auditing: - Each frontend should have its own client id client secret

pair - Each SSO usage and token retrieval should be logged along with client id

and IP address

3. In the case when the SSO is distributed on many machines, each deployment

should use the same SECRET KEY, DATABASE and CACHE instances should

be shared.

4. Frontends should use PickelSerializer as SESSION SERIALIZER until the Open-

Stack auth is able to serialize the Token instance.

A simple backend authentication is done by calling different modules and can is shown

below in the listing 4.6

36

https://auth.cloudcix.com

1 # python

2 from __future__ import unicode_literals

3 from datetime import datetime

4 import logging

5 # libs

6 from cloudcix import utils

7 from dateutils import relativedelta

8 from django.conf import settings

9 from django.utils.translation import ugettext_lazy as _

10 from keystoneclient import exceptions as keystone_exceptions

11 from keystoneclient.v3 import client as keystone_v3

12 from openstack_auth import exceptions

13 from openstack_auth.backend import KeystoneBackend

14 from openstack_auth.user import create_user_from_token

15 # local

16 from .exceptions import AdditionalAuthRequired

17 from .user import Token

18 from .utils import read_address_link

19

20 LOG = logging.getLogger(__name__)

21 logging.getLogger(’suds’).setLevel(logging.CRITICAL)

22 KEYSTONE_CLIENT_ATTR = "_keystoneclient"

23

24 class CloudCIXBackend(KeystoneBackend):

25

26 def get_user(self, user_id):

27 """Returns the current user (if authenticated) based on the user ID

28 and session data.

29 """

Listing 4.6: Backend Authentication

A successful sign-on gives access to all the CloudCIX applications from where they

can be installed to appear on the dashboard. An installed app will appear on the top

of the screen as shown below in the figure 4.3.

Figure 4.3: CloudCIX Dashboard

37

Further clicking on ‘Compute’ app redirects to the customized dashboard for Open-

Stack. It allows the authenticated user to access the resources based on the attributes

in the token. The customized dashboard for CloudCIX is as shown below in the figure

4.4

Figure 4.4: CloudCIX Compute

4.2 Keystone Installation & integration with Membership

OpenStack keystone has been integrated with ‘Membership’ with the help of python

libraries which has been developed as a plugin for keystone. While this document

describes the installation process step by step, it is advised to upload cloudcix keystone

to a /opt/ folder on a destination server and execute install script for keystone.

4.2.1 Keystone Installation

1. Install Keystone on the machine. The preferred way is to download the correct

release and install via python setup.py. A detailed installation instruction is

shown in listing 4.7

38

1 #git clone https://github.com/openstack/keystone.git

2 #cd keystone

3 #git fetch;git checkout origin/stable/kilo

4 #sudo pip install

5 %item Prepare Apache

6 #enable mod ssl and wsgi

7 #sudo a2endmod ssl wsgi

8 #sudo service apache2 stop

9 % Clone CloudCIX-keystone, install and copy required configs.

10

11 NOTE: A private id_rsa key accepted by https://git.cix.ie will be required. ←↩
Additionally if the account that owns the id_rsa key is not root, it is ←↩
advised to clone cloudcix_keystone where the user has write access and ←↩
link the cloudcix_keystone dir with python dist-packages dir. Alternative ←↩
would be to use mv every time cloudcix_keystone is updated.

12

13 #cd /opt

14 #git clone\\ ssh://git@git.cix.ie/diffusion/KEYSTONE/cloudcix_keystone.git / ←↩
opt/cloudcix_keystone

15 #install cloudcix-keystone-requirements

16 #sudo apt-get install libpq5 libpq-dev

17 #sudo pip install -r /opt/cloudcix_keystone/deployment/requirements.txt

18 %item Copy the configuration files from deployment to required places

19 #sudo mkdir /etc/keystone

20 #sudo mv /etc/keystone/keystone.conf /etc/keystone/keystone.conf.orig

21 #sudo mv /etc/keystone/keystone-paste.ini /etc/keystone/keystone-paste.ini. ←↩
orig

22 #sudo mv /etc/keystone/policy.json /etc/keystone/policy.json.orig

23 #copy cloudcix_keystone prepared configs#

24 #sudo cp /opt/cloudcix_keystone/deployment/keystone.conf /etc/keystone/ ←↩
keystone.conf

25 #sudo cp/opt/cloudcix_keystone/deployment/policy.json /etc/keystone/policy. ←↩
json

26 #sudo cp /opt/cloudcix_keystone/deployment/keystone-paste.ini /etc/keystone/ ←↩
keystone-paste.ini

27 #copy apache configs and wsgi files\, replacing what is already in the apache ←↩
directories#

28 #sudo cp /opt/cloudcix_keystone/deployment/apache_keystone.conf /etc/apache2/ ←↩
sites\-available/keystone.conf

29 #mkdir /var/www/keystone

30 #sudo cp -r /opt/cloudcix_keystone/deployment/wsgi/* /var/www/keystone/

31 #sudo chown -R administrator:administrator /var/www/keystone

Listing 4.7: Keystone Installation

39

2. Remove any apache sites enabled by default and enable the newly copied key-

stone.conf NOTE: keystone.conf is set to use mod-SSL (cloudCIX certs are re-

quired) and run as administrator user

NOTE: If the root user can’t clone the repo from the https://git.cix.ie it is

better to create a symbolic link in from /opt/cloudcix keystone to just-packages

as it makes updates easier.

4.2.2 keystone.conf configuration to use CloudCIX-Keystone

If the configs were copied from CloudCIX-keystone, the keystone is already pre-

configured to use CloudCIX Stage environment. Notable differences between original

keystone.conf and CloudCix-keystone keystone.conf are denoted below in listing 4.8.

NOTE: If keystone is supposed to run as a production system, the only option that

needs to be changed is [database]/connection to point to the live database.

1 [database]

2 connection = postgresql+psycopg2://postgres:xxxxxxxx@x.x.x.x/Membership

3

4 [identity]

5 driver = cloudcix_keystone.backends.identity.Identity

6

7 [token]

8 provider = cloudcix_keystone.backends.token.ExtendedUUIDProvider

9

10 driver = cloudcix_keystone.backends.token.Token

11 [resource]

12

13 driver = cloudcix_keystone.backends.resource.Resource

14

15 [auth]

16 methods = external,password,token,cloudcix_auth

17

18 token = cloudcix_keystone.backends.auth.token.Token

19

20 external = cloudcix_keystone.backends.auth.domain.Domain

21

22 #The cloudcix_auth plugin module#

23 cloudcix_auth=cloudcix_keystone.backends.auth.cloudcix.CloudCIXAuth

24

25 [trust]

26 driver = cloudcix_keystone.backends.trust.Trust

Listing 4.8: keystone.conf

40

https://git.cix.ie

4.2.3 Test Run

Keystone can be started without apache and ensured it is in working state by starting

it from command line and requesting a token as shown in code 4.8.

1 %item From same Console%

2 #keystone-all -d

3

4 %From other console window %

5 curl -i -H "Content-Type: application/json" -d ’{"auth":{"identity":{"methods": [" ←↩
cloudcix_auth"], "cloudcix_auth": {"username": "you@cloudcix.com", "password": " ←↩
your_password"}}}}’ "http://keystone:5000/v3/auth/tokens"

Listing 4.9: Test Run

On successful completion of the test, the user can log in to CloudCIX and can access

Compute App to launch an instance. A successful authentication and validation will

allow him to access his project and instances as shown below.

Figure 4.5: CloudCIX Instances

Next section explains the evaluation for CloudCIX to assess the performance. A detailed

load test is run to test the load on different nodes including keystone to validate the

number of requests it can process.

41

Chapter 5

Evaluation

This section of the thesis discusses in detail the environment used for implementing

and testing the CloudCIX for the proposed SSO solution. Different use cases have been

defined and CloudCIX is evaluated against them. Also, few testing tools are used to

test the number of requests processed by the customized keystone implemented in this

solution. Given below is the detail for test and evaluation of CloudCIX.

5.1 Requirements and Setup

This section discusses in detail setting up the pre-requisites for the CloudCIX Com-

pute offerings. Table 5.1 shows the hardware resources required for installation and

configuration of CloudCIX.

Installation Requirements

Service Number of Nodes Hardware vCPU RAM(GB)

Controller 1 Dell Poweredge R710 24 24

Compute 4 Dell Poweredge R710 96 200

Network 1 Dell Poweredge R710 24 24

Keystone 2 Dell Poweredge R710 24 24

Table 5.1: Installation Requirements

42

5.2 Use Cases

5.2.1 Use–Case Basic Model

Actors

Tenant: Tenants are the companies registered in ‘Membership’Ṫenant is a collection

of persons who are linked to an address for that tenant. The cloud access rights are

granted on tenants and are inherited by the users with additional attributes.

Users: Users are the persons listed under any particular tenant. They are the actual

cloud users. An attribute associated with the tenant decides if a person can use the

cloud resources or not. Further, the additional attributes for the user decide its role.

Admin Users: The Tenant admin manages the users within a tenant and defines their

access level.

Tokens: Tokens are the attribute bearers which define the role and access rights for

the users who have been granted the token

Additional Information

The users and the tokens only, seen in the use case are considered essential to the

system developed. Of the three essential use cases, User authenticated for one of the

Frontends, Browser session expired-Token Valid, Browser session valid-Token Invalid,

the use case considered highest priority in the system is User authenticated for one of

the Frontends and has been focused on. The figures shown in section 5.2.3 shows the

currently implemented use case for illustrative purpose.

System Under Design

The system under design is a multi-tenant cloud, offering Single Sign-On. The actors

described above represent the system and actions it takes.

Cloud Administrator

A cloud administrator is a user who administers the whole system by controlling the

overall aspects of the cloud. Few of the tasks include registering new tenants, granting

them access rights, allocation of resources etc.

43

5.2.2 List of Use Cases

CloudCIX User Use Cases

1. User authenticated for one of the Frontends

2. Browser session expired-Token Valid

3. Browser session Valid-Token Invalid

5.2.3 Use Case Diagrams

Use Case:“User authenticated for one of the Frontends”

Figure 5.1: User authenticated for one of the frontend

44

Use Cases:“Browser session expired-Token Valid”

Figure 5.2: Browser session expired-Token Valid

45

Use Case:“Browser Session valid-Token Invalid”

Figure 5.3: Browser Session valid-Token Invalid

46

5.2.4 Use Cases Details

Use Case:User authenticated for one of the Frontends

Use Case:1

Use Case Name: ID: Priority:

User authenticated for one of the Frontends UAF High

Primary Actor: Source: Use Case type: Level:

CloudCIX User auth.cloudcix.com Evaluation Overview

Interested Stake Holders:

CloudCIX Users, Tenant admin, Cloud Administrator

Brief Description:

This use case describes the authentication of a cloud user which is the key function of the

system. In this use case,the actors goal is to obtain an authentication token.

Goal:

The successful authentication of a cloud user.

Success Measurement:

The user is authenticated and granted access to cloud resources.

Precondition:

i.User is registered under a tenant in Membership.

ii.Cloud access is enabled for the tenant.

iii.User has a role defined for that tenant.

Trigger:

CloudCIX user has reached a point in the their workflow where he has

passed his credentials to be validated against membership.

Typical Flow of events:

1.User goes to the login page @ https://auth.cloudcix.com.

2.He logs in and is redirected to https://apps.cloudcix.com

3.He tries to access the dashboard called Horizon which is

hosted on a different server @ https://apps2.cloudcix.com

4.Browser session for apps2.cloudcix.com does not exist.

5. User is redirected to the auth.cloudcix.com.

6. Since user already logged in @ https://auth.cloudcix.com, code auth automatically.

7. https://apps.cloudcix.com receives the code, uses it, to retrieve the token and create

a browser session for user behind the token.

Assumption:

i)It is assumed that user is already registered in Membership and providing correct credentials.

Table 5.2: Use Case:1

47

Use Case:Browser session expired-Token Valid

Use Case:2

Use Case Name: ID: Priority:

Browser session expired-Token Valid SE-VT High

Primary Actor: Source: Use Case type: Level:

CloudCIX User auth.cloudcix.com Evaluation Overview

Interested Stake Holders:

CloudCIX Users, Tenant admin, Cloud Administrator

Brief Description:

This use case describes the redirection of user to login page in case browser session expires.

Goal:

To allow users acquire same token which is still valid from last browsing session.

Success Measurement:

User is redirected to login page when Browser Session expires.

Precondition:

i.User has already authenticated.

ii.User already has an authentication token and a browsing session.

Trigger:

CloudCIX user has reached a point in the their workflow where browser session expire

passes his credentials to be validated against membership.

Typical Flow of events:

1.https://apps.cloudcix.com browser session expired, page redirects to

https://auth.cloudcix.com.

2. https://auth.cloudcix.com finds a browser session for the user and validates the token.

3. https://auth.cloudcix.com responds with a code that should be used to retrieve the token.

4. https://apps.cloudcix.com receives the code and retrieves the token behind it.

Assumption:

i.It is assumed that cloud user had already authenticated itself before.

ii.It is assumed that the browser session expires before the token.

Table 5.3: Use Case:2

48

Use Case:Browser Session valid-Token Invalid

Use Case:3

Use Case Name: ID: Priority:

Browser Session valid-Token Invalid BV-TI High

Primary Actor: Source: Use Case type: Level:

CloudCIX User auth.cloudcix.com Evaluation Overview

Interested Stake Holders:

CloudCIX Users, Tenant admin, Cloud Administrator

Brief Description:

This use case describes the need for reauthentication when token expires

even though browser session is valid.

Goal:

To allow users acquire a new token even when browser session is valid.

Success Measurement:

User is redirected to login page when token life time expires

Precondition:

i.User has already authenticated.

ii.User already has an authentication token and a browsing session.

Trigger:

CloudCIX user has reached a point in the their workflow where browser session is still

valid though lifetime of token has expired.

Typical Flow of events:

1. Calls to the service fail with the invalid/expired token.

2. https://apps.cloudcix.com recognizes the error and redirects the user to

https://auth.cloudcix.com

3. https://auth.cloudcix.com nds a browser session for user viewing the

page and retrieves the user token.

4. After token validation if the token is invalid, the user is displayed with the login box.

5. After user logs in he is redirected back to https://apps.cloudcix.com

with a code for token retrieval.

Assumption:

i) It is assumed that cloud user already has an authentication token.

ii)It is assumed that the user already has a valid browsing session

Table 5.4: Use Case:3

49

Testing Methods

The above ‘Use Cases’ have been tested and results have been verified using the

browser logins as well as command line. A token authentication tests have been

performed using the command shown below and the results have been analysed. The

command below has been used with different user credentials with different access

rights. The result has been analysed to come to the conclusion that the single Sign-On

is working as intended. A sample output for this test is as shown below:

1 curl -i -H "Content-Type: application/json" -d ’{"auth":{"identity":{"methods": [" ←↩
cloudcix_auth"], "cloudcix_auth": {"username": "jks@cix.ie", "password": " ←↩
xxxxxxxxx"}}}}’ "http://keystone-server:5000/v3/auth/tokens"

2

3 HTTP/1.1 201 Created

4 Date: Tue, 15 Dec 2015 17:00:55 GMT

5 Server: Apache/2.4.7 (Ubuntu)

6 X-Subject-Token: c5debb8848d34a22b9d856a157bc9151

7 Vary: X-Auth-Token

8 x-openstack-request-id: req-d27624d7-16e9-485c-ad67-a77eb07e344e

9 access-control-allow-headers: Origin, Content-type, Accept, X-Auth-Token

10 access-control-expose-headers: etag, x-timestamp, x-trans-id, vary, x-subject-token

11 access-control-max-age: 3600

12 access-control-allow-credentials: false

13 access-control-allow-origin: *

14 access-control-allow-methods: GET, POST, PUT, DELETE, OPTIONS

15 Content-Length: 1940

16 Content-Type: application/json

Listing 5.1: Keystone authentication Testing

5.3 CloudCIX Performance testing with Rally

Rally

Rally is a standard tool for benchmarking OpenStack-based cloud. Rally provides

different scenarios with varying workloads for stress testing. It helps improve the

performance, reliability and SLA (Service Level Agreement) for the cloud. Rally

benchmarks a cloud by automating the deployment and report generation. It has

different test cases for benchmarking keystone and other components for its efficiency

in processing requests from different services within the cloud. The figure 5.4 shows

the architecture of Rally and benchmarking methodologies.

50

Figure 5.4: Rally Architecture

Components

The three major components of Rally are as listed below:

Deploy Engine: It is the deployer for Rally. It has a pluggable mechanism which

helps it simplify work with different automated installers like DevStack.

Benchmark Engine: It contains a big repository of benchmark using which it creates

parameterized load of the cloud for testing.

Verification: This is still in development and will use tempest to verify the function-

ality of an OpenStack cloud.

Rally Installation

1. Step 0:Installation

The first step includes downloading the installation packages for Rally and

51

running the installation from the setup files. This is shown below in the list 5.2

1 wget -q -O- https://raw.githubusercontent.com/openstack/rally/master/ ←↩
install_rally.sh | bash

2 # or using curl

3 curl https://raw.githubusercontent.com/openstack/rally/master/install_rally.sh ←↩
| bash

Listing 5.2: Rally Installation

2. Step 1:Setting the environment variables

This step includes registering CloudCIX with Rally. The CloudCIX login cre-

dentials are passed through an openrc file which sets the environment variable.

The listing 5.3 shows how CloudCIX deployment is registered with Rally.

1

2 export OS_TENANT_NAME=admin

3 export OS_PROJECT_NAME=admin

4 export OS_USERNAME=jks@cix.ie

5 export OS_PASSWORD=XXXXXXXXX

6 export OS_AUTH_URL=https://keystone.cloudcix.com:35357/v3

7 export OS_REGION_NAME=RegionOne

8 export OS_IDENTITY_API_VERSION=3

9 export OS_USER_DOMAIN_ID=1

10 export OS_PROJECT_DOMAIN_ID=1

11 export OS_DEFAULT_DOMAIN=1

Listing 5.3: Environment Variable

With the above environmental variables the CloudCIX deployment was registered

within Rally and is ready for benchmarking.

Benchmark Scenario

Rally offers multiple scenarios to benchmark the OpenStack Cloud. It has predefined

templates and test cases defined in JSON or YAML files These files can be modified

as per the cloud environment and can be used for benchmarking. In this deployment,

we are mainly focused on benchmarking the performance of keystone. A simple test is

performed on keystone to verify authentication as well as performance.

Test1: Create Users

52

This test was performed on keystone to identify if it allows an admin to create users in

the system. Also, it measures the time taken by keystone to create ‘n’ number of users.

The test was performed with a different number of users and concurrency and results

were compared. The test criteria are defined in the JSON file and is shown below in

the listing 5.4

1 {

2 "KeystoneBasic.create_user": [

3 {

4 "args": {},

5 "runner": {

6 "type": "constant",

7 "times": 100,

8 "concurrency": 10

9 }

10 }

11]

12 }

Listing 5.4: Benchmark Scenario

Given below are the results of the test.

100 Users with Concurrency 10

Response Times (Sec)

action min median 90%ile 95%ile max avg success count

keystone.create user 0.737 1.389 2.357 2.77 4.07 1.618 100.0% 100

total 0.737 1.389 2.357 2.77 4.07 1.618 100.0% 100

Load duration: 17.2923059464

Full duration: 28.2163949013

Table 5.5: User Creation Response

The result above suggests that keystone is authenticating admin successfully. Also, it

allows admins to create users. A detailed performance report is as shown below in the

graphs.

53

Figure 5.5: Total durations

Figure 5.6: Parallel Iteration

54

Figure 5.7: Distribution

The evaluation results from above test cases and benchmarks confirm that the Cloud-

CIX SSO is working accurately as intended. The test results not only confirm the

successful authentication but also the performance of keystone in processing a request.

55

Chapter 6

Conclusions

Based on the findings from the above research and experiments, it can be suggested

that OAuth is the most appropriate Single Sign-On framework that could be used in a

multi-tenant environment. This very well allows such an environment where the SaaS

and IaaS offerings are accessed by multiple tenants from the same login. With the

increase in the popularity of cloud computing, the concern related to the multi-tenancy

has also increased. This thesis helped develop a robust Single Sign-On for all cloud

offerings controlled by an internal identity management system. This also helped reduce

risk and complexity of user and resource management in a multi-tenant environment.

This thesis analysed multiple SSO frameworks and solutions that can be used to mit-

igate multi-tenancy issues. Based on the findings from this analysis we can conclude

that there are multiple solutions and have different use cases depending on the needs

and requirements.

SSO solutions like OpenID and SAML have their own advantages and shortcomings

though they do not fit in all kinds of requirements. For example as in the case of

CloudCIX where SSO solution needs to be integrated at two different levels that are

keystone and membership.

In the scope of this dissertation, as the requirement was to mitigate multi-tenancy risks,

OAuth has been considered.

The novelty of this dissertation is to implement such a solution which uses existing

solutions like OpenStack keystone and ‘Membership’ together with OAuth to provide

a robust Single Sign-On Solution the for multi-tenant cloud.

We can conclude that OAuth can be integrated with keystone and ‘Membership’ to

reduce the risks of multi-tenancy and manage identities for a cloud that offers IaaS and

56

Saas Services together.

57

Bibliography

Albino Pereira, A., Bosco M.Sobral, J. and Merkle Westphall, C. (2014), Towards scalability for fed-

erated identity systems for cloud-based environments, in ‘New Technologies, Mobility and Security

(NTMS), 2014 6th International Conference on’, pp. 1–5.

Almulla, S. and Yeun, C. Y. (2010), Cloud computing security management, in ‘Engineering Systems

Management and Its Applications (ICESMA), 2010 Second International Conference on’, pp. 1–7.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson,

D., Rabkin, A., Stoica, I. and Zaharia, M. (2010), ‘A view of cloud computing’, Commun. ACM

53(4), 50–58.

Celesti, A., Tusa, F., Villari, M. and Puliafito, A. (2010), Three-phase cross-cloud federation model:

The cloud sso authentication, in ‘Advances in Future Internet (AFIN), 2010 Second International

Conference on’, pp. 94–101.

Chadwick, D., Siu, K., Lee, C., Fouillat, Y. and Germonville, D. (2014), ‘Adding federated identity

management to openstack’, Journal of Grid Computing 12(1), 3–27.

URL: http://dx.doi.org/10.1007/s10723-013-9283-2

Clauß, S. and Köhntopp, M. (2001), ‘Identity management and its support of multilateral security’,

Comput. Netw. 37(2), 205–219.

URL: http://dx.doi.org/10.1016/S1389-1286(01)00217-1

Cloud Security Allowance (2015).

Dillon, T., Wu, C. and Chang, E. (2010), Cloud computing: Issues and challenges, in ‘Advanced

Information Networking and Applications (AINA), 2010 24th IEEE International Conference on’,

pp. 27–33.

Dreo, G., Golling, M., Hommel, W. and Tietze, F. (2013), Iceman: An architecture for secure federated

inter-cloud identity management, in ‘Integrated Network Management (IM 2013), 2013 IFIP/IEEE

International Symposium on’, pp. 1207–1210.

E. Hammer-Lahav, E. (2010), in ‘Internet Engineering Task Force (IETF)’.

URL: https://tools.ietf.org/html/rfc5849

Eap, T., Hatala, M. and Gasevic, D. (2007), Enabling user control with personal identity management,

in ‘Services Computing, 2007. SCC 2007. IEEE International Conference on’, pp. 60–67.

Faraji, M., Kang, J.-M., Bannazadeh, H. and Leon-Garcia, A. (2014), Identity access management

58

for multi-tier cloud infrastructures, in ‘Network Operations and Management Symposium (NOMS),

2014 IEEE’, pp. 1–9.

Ferdous, M. and Poet, R. (2012), A comparative analysis of identity management systems, in ‘High

Performance Computing and Simulation (HPCS), 2012 International Conference on’, pp. 454–461.

Ghazizadeh, E., Zamani, M., Ab Manan, J.-L., Khaleghparast, R. and Taherian, A. (2012), A trust

based model for federated identity architecture to mitigate identity theft, in ‘Internet Technology

And Secured Transactions, 2012 International Conference for’, pp. 376–381.

Grobauer, B., Walloschek, T. and Stocker, E. (2011), ‘Understanding cloud computing vulnerabilities’,

Security Privacy, IEEE 9(2), 50–57.

Hansen, M., Schwartz, A. and Cooper, A. (2008), ‘Privacy and identity management’, Security Privacy,

IEEE 6(2), 38–45.

Karunanithi, D. and Kiruthika, B. (2011), Single sign-on and single log out in identity, in ‘Nanoscience,

Engineering and Technology (ICONSET), 2011 International Conference on’, pp. 607–611.

Maler, E. and Reed, D. (2008), ‘The venn of identity: Options and issues in federated identity man-

agement’, Security Privacy, IEEE 6(2), 16–23.

Martinelli, S., R.-J. M. S. and Topol, B. (2014), ‘Integrate openstack keystone with tivoli federated

identity manager’, pp. 1–13.

URL: http://www.ibm.com/developerworks/cloud/library/cl-keystone-tfim/

Mell, P. and Grance, T. (2010), ‘The nist definition of cloud computing.’, Communications of the ACM

53(6), 50.

Mishra, M., Das, A., Kulkarni, P. and Sahoo, A. (2012), ‘Dynamic resource management using virtual

machine migrations’, Communications Magazine, IEEE 50(9), 34–40.

Mitchell (2015), Simple cloud infrastructure for developers.

URL: https://www.digitalocean.com/

Murukutla, P. and Shet, K. (2012), Single sign on for cloud, in ‘Computing Sciences (ICCS), 2012

International Conference on’, pp. 176–179.

OAuth Community (2015).

URL: http://oauth.net

Revar, A. and Bhavsar, M. (2011), Securing user authentication using single sign-on in cloud computing,

in ‘Engineering (NUiCONE), 2011 Nirma University International Conference on’, pp. 1–4.

Spencer, T. (2012), ‘Identity in the cloud’, Computer Fraud & Security 2012(7), 19 – 20.

URL: http://www.sciencedirect.com/science/article/pii/S1361372312700751

Sun, S.-T. and Beznosov, K. (2012), The devil is in the (implementation) details: An empirical analysis

of oauth sso systems, in ‘Proceedings of the 2012 ACM Conference on Computer and Communica-

tions Security’, CCS ’12, ACM, New York, NY, USA, pp. 378–390.

Tsai, W.-T. and Sun, X. (2013), Saas multi-tenant application customization, in ‘Service Oriented

System Engineering (SOSE), 2013 IEEE 7th International Symposium on’, pp. 1–12.

59

z

60

	Abstract
	Declaration
	Acknowledgement
	Disclaimer
	Introduction
	Background and Motivation
	Problem Statement
	Hypothesis
	Contribution
	Outline of the Thesis

	Literature Review
	Single Sign-On (SSO)- Application and Advantages
	Single Sign-On Frameworks
	Insight on OAuth
	Identity Management
	Membership
	Identity Federation
	OpenStack Identity Federation

	Design
	Specification
	Design Overview
	Abstract Protocol Flow
	Application Registration
	Workflow
	Openstack Federation Design
	Additional Functionalities
	Problem Description
	Required Functionalities
	Impact on Clients
	Client Implementation
	Client Workflow

	Implementation
	SSO Installation and Configuration
	Refreshing a Token
	SSO Login and Token Grant
	Auth Server

	Keystone Installation & integration with Membership
	Keystone Installation
	keystone.conf configuration to use CloudCIX-Keystone
	Test Run

	Evaluation
	Requirements and Setup
	Use Cases
	Use–Case Basic Model
	List of Use Cases
	Use Case Diagrams
	Use Cases Details

	CloudCIX Performance testing with Rally

	Conclusions

