
DOCKER CONTAINER CLUSTER
DEPLOYMENT ACROSS DIFFERENT

NETWORKS

YASVANTH BABU

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

January 2016

Supervisor Mr. Michael Bradford

Abstract

In this era, cloud computing plays a major role in IT organizations. Virtualization

being major reason for the high growth of cloud computing, therefore it is in high focus

in the industries. Virtualization is a technique which creates and imaginary of any

resources and made available for multi-tenant or application. Virtual machine is the

individual component which runs imaginary of entire computer system or an individual

application. Improvement in virtualization moved to an another extent and brought

kernel level virtualization such as Linux virtual machines and Linux container were

virtual machine can be created in Linux environment. Though the improvement of vir-

tualization process brought bene ts to the providers but left some challenges to deploy

to the cloud. The Software De ned Networking (SDN) is network virtualizations were

the networking functionality will work on two layers such as control plane (controller

for the network which administrates the flow of the traffic) and date plane (which just

forward the packets to the destinations). Open switch is a virtual or software switch

which is used in the virtualized environment to make communication between the Vir-

tual Machines. The major issues in docker container is resolved by software de ne

networking and made available for cloud deployments. In this research, we present a

novel approach that VxLAN cloud overlay network will leverage open vswitch docker

networking for deployment of the container cluster in di erent network regions.

Keywords: Virtualization; Software Defined Networking; Open vSwitch; Docker con-

tainers; Mongodb.

ii

Submission of Thesis and Dissertation

National College of Ireland

Research Students Declaration Form

(Thesis/Author Declaration Form)

Name: Yasvanth Babu

Student Number: X14123720

Degree for which thesis is submitted: Master in Cloud Computing

Material submitted for award

(a) I declare that the work has been composed by myself.

(b) I declare that all verbatim extracts contained in the thesis have been

distinguished by quotation marks and the sources of information

specifically acknowledged.

(c) My thesis will be included in electronic format in the College

Institutional Repository TRAP (thesis reports and projects)

(d) Either *I declare that no material contained in the thesis has been

used in any other submission for an academic award.

Or *I declare that the following material contained in the thesis formed

part of a submission for the award of

Master of science in cloud computing awarded by QQI at level 9 on the

National framework of Qualification

Signature of research student:

Date: 25th January 2016.

Submission of Thesis to Norma Smurfit Library, National College of Ireland

Student name: Yasvanth Babu Student number: x14123720

School: Computing Course: Msc in Cloud Computing

Degree to be awarded: Msc in Cloud Computing

Title of Thesis: Docker Container Cluster Deployment Across Different Network

One hard bound copy of your thesis will be lodged in the Norma Smurfit Library and will be available for consultation. The electronic

copy will be accessible in TRAP (http://trap.ncirl.ie/), the National College of Ireland’s Institutional Repository. In accordance with

normal academic library practice all theses lodged in the National College of Ireland Institutional Repository (TRAP) are made

available on open access.

I agree to a hard bound copy of my thesis being available for consultation in the library. I also agree to an electronic copy of my thesis

being made publicly available on the National College of Ireland’s Institutional Repository TRAP.

Signature of Candidate:

For completion by the School:

The aforementioned thesis was received by__________________________ Date:_______________

This signed form must be appended to all hard bound and electronic copies of your thesis submitted to your school

Acknowledgement

I would like to extend my gratitude to our program director Dr. Horacio Gonzalez-

Velez for giving me such a great oppurtunity. I would also like to thank my mentor

and guide Mr. Michael Bradford for his continous support and encouragement through

each and every step of my dissertation. It wouldn’t have been possible for me to achieve

the desired results without his guidance.

My sincere thanks to Dr. Damien Mac Namara, Dr. Adriana Olariu for for their

kind guidance and for providing all necessary information to accomplish the research.

I highly appreciate the efforts and the timely advices they provided me to uphold

motivation during studies.

Last but not the least, I thank CloudHouse (My friends) for their co-operation and

moral support throughout the completion of my masters degree in Cloud Computing

v

Declaration

I hereby declare that the dissertation entitled ‘Docker container cluster deployement

across different networks’, is a bonafide record composed by myself, in partial fulfill-

ment of the requirements for the MSc in Cloud Computing (2015/2016) programme.

This thesis is a presentation of research and development carried under the guidance

and supervision of Mr. Micheal Bradford.

Signed Date......................

Yasvanth Babu

vi

Contents

Abstract ii

Acknowledgement iii

Declaration iv

1 Introduction ix

2 Background xi

2.1 Virtualization and Virtual Machines: . xi

2.1.1 Virtual Machines: . xii

2.2 Linux Containers and Virualization: . xiii

2.2.1 Peer-to-Peer: . xiv

2.2.2 KVM and Linux Container: . xvi

2.3 Docker: . xvii

2.4 Clusters and Deployment of cluster using Virtualization technology: . . xix

2.5 Networking virtual machines and containers: xxii

2.5.1 Network Virtualization: . xxii

2.5.2 Software Defined Networking: . xxiii

2.5.3 Open vswitch: . xxv

3 Design xxvi

3.1 Specification: . xxvi

3.1.1 Cloud overlay networks: . xxvi

3.2 YCSB: . xxviii

3.2.1 Benchmark Tiers: . xxx

3.3 Weave Docker plug-in: . xxxi

3.4 MongoDB sharding cluster: . xxxii

3.4.1 Auto-Sharding Architecture: . xxxiii

4 Implementation xxxv

vii

4.1 The basic networking for the server using Ovs Bridge: xxxv

4.1.1 Creating virtual ovs bridge br0: xxxv

4.1.2 Attaching ovs bridge to docker0 bridge: xxxvi

4.1.3 Creating new IP pool for the docker0: xxxvii

4.1.4 Connecting the servers with the VxLAN tunnels: xxxviii

4.2 Deploying MongoDB cluster: . xxxviii

4.2.1 Creating Mongodb dockerfile: . xxxix

4.2.2 Creating containers for the cluster configuration: xxxix

4.2.3 Container shard cluster setup: . xl

5 Evaluation xli

5.1 Server Resource Utilization: . xli

5.1.1 Before the deployment of the cluster: xlii

5.1.2 Resource utilization after deployment of a cluster: xliv

5.2 Bandwidth Availability: . xlvi

5.3 Performance of the Cluster: . xlvi

5.3.1 Read Operation: . xlvii

5.3.2 Update operation: . xlviii

5.4 Throughput of a cluster: . xlix

5.5 Scalability of a cluster: . l

6 Conclusion: lii

6.1 Future Work: . lii

Appendix lvi

.1 MongoDB image Dockerfile . lvi

.2 Shard Setup . lviii

.3 Abbrivation . lix

viii

List of Figures

2.1 KVM and LXC Architecture Beserra et al. [2015] xvii

2.2 Implementation of Docker Dusia et al. [2015] xix

2.3 Virtual Machines with GRE Tunnels Costache et al. [2014] xxiv

3.1 Proposed Architecture . xxvi

3.2 VXLAN FRAME . xxvii

3.3 VXLAN Multicasting. xxviii

3.4 Container Segments . xxviii

3.5 YCSB Architecture Cooper et al. [2010] xxix

3.6 Weave Plug-in Kereki [2015] . xxxii

3.7 MongoDB Auto-sharding Setup Liu et al. [2012] xxxiv

4.1 Description of OVS Bridge . xxxvi

4.2 Attaching OVS bridge br1 to eth0 of the server. xxxvi

4.3 Bridging docker0 and eth0 via OVS bridge xxxvii

4.4 servers connected to via VXLAN tunnel xxxviii

4.5 Containers created with mongodb image xxxix

4.6 Container Cluster . xl

5.1 Memory Utilization of Weave plug-in . xlii

5.2 Memory Utilization of OVS-VXLAN . xliii

5.3 CPU Utilization between weave and OVS-VXLAN xliii

5.4 Memory Utilization of Weave plug-in after clustering xliv

5.5 Memory Utilization of OVS-VXLAN after clustering xlv

5.6 CPU Utilization between weave and OVS-VXLAN after clustering . . . xlv

5.7 Average bandwidth between cluster nodes in Weave and OVS-VxLAN

architecture. xlvi

5.8 Average read latency in Weave and OVS-VxLAN architecture. xlviii

5.9 Average update latency in Weave and OVS-VxLAN architecture. xlix

5.10 Throughput between Weave and OVS-VxLAN architecture. l

ix

5.11 Scalability between Weave and OVS-VxLAN architecture. li

x

Chapter 1

Introduction

Cloud computing is an emerging technology in the eld of computing that many organi-

zation are migrating to a cloud. The term cloud refers to the services that is e ciently

delivered to users based on their requirements and can access on the go. Buyya et al.

[2009] defines that Cloud is provisioned by the interconnection of parallel computing

and distributed computing in the virtualized environment. Cloud computing services

are categorized into Infrastructure as a Service, Platform as a Service, and Software

as a Service. In an Infrastructure as a Service, the computing resources such as server

space, storage, network topology are provided through either physical or virtualized

hardware. Implementing virtualization in Infrastructure will bene t to the service

provider to reduce the investment and to provide the resources to multi-tenant. In

this paper we going to look about docker containers will overcome the existing virtual

machine technologies and the networking challenges in the docker containers.Docker

contributes basic networking features that helps user to characterize ways to which

various docker container are connected with each other over the network. This technol-

ogy is growing very quick where we can take complicated application, Dockrizing every

component of the application and disburse them among larger number of server and

have good collaboration between them .The main component of networking in docker

is an Ethernet bridge known as docker0.When docker is started on Linux server, it

form default docker0 bridge inside the Linux kernel, and docker0 construct a virtual

subgroup on the docker host. Furthermost, it transfer packets backwards and forwards

within the container on that host. Docker also made up a pair of virtual Ethernet

interfaces on every container, the containers randomly allot an IP address and a subnet

from a private address range not already used by the host machine.(3) . First challenge

was connection between the container between the host and it was resolved by various

xi

docker plug-in such as weave, pipework, and annel. For high availability and perfor-

mance, the containers across di erent network regions. The plug-in will be running as

a container in docker, which leads to lack of memory and process speed, resources and

scalability. The problem is ” Is the docker cluster deployment across different

network regions is possible with OVS-VXLAN cloud overlay networks ” -

studies the docker container cluster deployment.

To address the approach, the research is categorized into four sections, section one

Literature Review 2 highlights about the concept of virtualization, the comparative

analysis between virtual machine, Linux containers and docker containers. Then we

address several challenges faced while implementing this technology on to the cloud and

solution approaches such as Network virtualization and software de ned networking to

the virtual machines.

Further, In second Section Design 3 first half discusses about the proposed architecture

of deploying the container cluster using VxLAN cloud overlay networks across different

host in the di erent network regions. In the second half we have provided the speci

cation/requirement to achieve our aim.

In section Implementation 4, the setup conguration is described into two parts. The

rst part describes the basic open vswitch network con guration with Docker Bridge and

connecting the entire server through VXLAN encapsulated tunnel. Whereas in second

part, the main theme that is the deployment of the cluster using docker container.

Additional, we also provided some important con guration algorithms that are behind

the actual implementation.

Evaluation section 5 is the final section where we performed several test on the ar-

chitecture to analyse the behaviour and compared with existing architecture. The

comparison is made to prove better solution for the production deployments. The

section also presents some of the observations that are captured during the analysis.

Expected Contribution: In an attempt to leverage the open vswitch docker net-

working by VXLAN for the container cluster deployment, the research may provide

certain contribution such as:

1) The prototype can be deployed in the fewer requirements.

2) Server utilization will be less in terms of Memory and CPU utilization.

3)High bandwidth between the nodes and high scalability.

xii

Chapter 2

Background

The literature review compares and evaluates the technologies that are essential in or-

der to prove that OVS Networking is boon for the deployment of clusters using docker

containers in di erent network regions and also discusses various strategies undertaken

that are necessary for understanding the novel approach. Further, the review is divided

into four sections. In First Virtualization and Virtual Machines 2.1. In the rst half we

discuss and evaluate what is virtualization and what are the di erent stages of virtu-

alization. In the next half we understand the architecture and the working of virtual

machines and their importance in virtualizing a system. The review also addresses dif-

ferent states of virtual machines,such as System virtual machines and Process virtual

machines.

2.1 Virtualization and Virtual Machines:

Cloud computing paradigm is rapidly using virtualization technology. Some extra soft-

ware may use for virtualization for resource utilization is done and to solve native

system problems virtualization technology is useful. Using OS raw image or disk image

we can create virtual machine on Hypervisor Ku et al. [2011]. Virtualization in com-

puter means request for system resources in a way that it cannot affects the underlying

hardware. Hypervisor is an extra level place between hardware and host operating

system. Hypervisor shares system resources using three virtualization techniques: Full

virtualization, Para-virtualization and OS level virtualization. Full virtualization is

totally based on underlying hardware of the system, responsible for creating Virtual

machine for guest operating system. Hypervisor is acts as middle level manager or

virtual machine manager (VMM). VMM is responsible to run each VM separately and

xiii

manage system resources. In full virtualization technique VMs performance is less than

the host OS because of hypervisor layer. In Para-virtualization technique we have to

modify guest operating system. Virtualization can be done by coding guest OS and

hypervisor itself. Operating system in para-virtualize framework running on the hy-

pervisor so it could directly interact with the host hardware. Para-virtualization gives

better performance with low computing overhead. OS-level virtualization not includes

hypervisor layer in its framework. Host operating system is capable to virtualize any

application or to create virtual machines. This method can virtualize server on host

OS layer Costache et al. [2014]. Cloud Computing enhances the use of VMs to schedule

the workload and distribute the workloads in the network.

2.1.1 Virtual Machines:

To aggregate the distributed resources over the network Virtual machine and network

technology is used. Virtual machine is nothing but emulation technique of computing

system. Virtual machine can be implemented in different ways and it depends on their

usage. Native or bare metal virtual machine is executed directly on the system hard-

ware. OS-level virtualization offers to run software application on the host OS which is

design for different CPU architecture. In OS level virtualization system resources are

shared using OS kernel. Hardware-assisted virtualization offers full virtualization with

virtualize capabilities. System Virtual Machine: System VM allow to run multiple OS

on a single HDD with virtual partitions. VMs can share files on either host OS or

guest OS. All files and data will be stored on the host machines disk. It offers different

Instruction Set Architecture than host machine using emulation technique. Process

virtual machines: It is also called application virtual machine or managed runtime

environment (MRE). It will execute as application programme on the host OS with

single process. VM is created with process initialization and destroys with process

completion. It offers programming environment with various platforms. Interpreter

is used to implement the process VMs. Process VMs offers high level programming

languages like java and .NET. The process VMs are used for communication systems

with heterogeneous computer cluster. Cluster contains separate process per VM but

VM does not contain only one process. After understanding the importance of virtu-

alization and the architecture of virtual machines, the second section Linux containers

and Virtualization 2.2 discusses what are Linux containers and how are they used to

virtualize a system in a Linux environments. Further, we also discuss about different

levels of virtualization, namely 1)Peer-to-Peer. 2)KVM and Linux Containers.

xiv

2.2 Linux Containers and Virualization:

Linux containers are used to distribute this workload by deploying VMs. As per Fel-

ter et al, 2015 containers performance is better than the virtual machines. They test

the performance over KVM as a Hypervisor and Docker. Docker is used as a Con-

tainer manager when works with Hypervisor applications are able to perform very well

in cloud environment. Virtual machine and Container performance can check using

KVM and Docker. KVM test results are increases its performance. Infrastructure in

cloud computing can be implemented using virtual machine technology and platform

services in cloud computing can be implemented using containers. But container can

also use for infrastructure services in cloud and it gives better performance. Container

completely removes the difference between infrastructure and bare-metal severs. Con-

tainers manage and control VMs separately. It is difficult to maintain different images

of VMs for virtualization so, we can deploy same Docker image in system Felter et al.

[2014]. As per cloud definition described in (National Institute of Standard and Tech-

nology) NIST, cloud offers on-demand and shared computing resources. HPC cloud

offers ability to scheduling workloads. Infrastructure-as-a-Service is one of the service

models of cloud computing, cloud service providers can use this to provide engineering

and scientific services or applications Gentzsch [2014] .Virtualization technique helps to

improve the performance of Linux container. Peer-to-Peer (P2P) networking will help-

ful to explore this kind of research. Widely used Peer-to-Peer network is popular in

end users, organizations and scientists. BitTorrent protocol is used to measure perfor-

mance and evaluation of P2P network. Different types of methods are used to measure

the performance of P2P network, starting from tracker-centric to data collation of long

time duration. Probes are used as a testing point for protocol that used for internal

measurement Bardac et al. [2010]. High Performance Computing (HPC) technologies

are used for cloud applications to allocate resources in network. Cloud computing is

based on virtualization technology but there are some performance related issues. Es-

pecially for Message Passing Interface (MPI) virtualization presents poor performance

with Beowulf Clusters Beserra et al. [2015]. Small/medium size organizations and col-

lege departments use HPC server to obtain better performance. But its cost expensive

and hard to maintain a larger server. UberCloud HPC is new technology in cloud

computing that offers big platform for researchers. End-to-end process in HPC cloud

used to solve the end users issues. Linux Containers The various stakeholders like ap-

plication software provider, HPC resource providers, HPC experts etc. are plays an

important role in service-based HPC. The Application Software Provider in HPC stake-

holder role, are holders of software such as ISVs, developers and public organizations.

The industry end-users are nothing but small manufacturers who design and build new

xv

products; they are primary user of HPC-as-a-Service. The HPC resource providers are

any stakeholder who holds the HPC resources including storage, compute and network.

The HPC experts are those who are expert in HPC and clustering. It also includes

PhD students who are studying applications and doing research on it Gentzsch [2014].

2.2.1 Peer-to-Peer:

It is a distributed networking system, where various peers or nodes are connected with

each other through their resources, especially disk storage. This frame work is dif-

ferent than client server design that each peer can act as a client and server both.

eDonkey, Napster and Gnutella protocols are used to established P2P network in col-

laboration with Bit Torrent. Bit Torrent is very popular in Internet era as it uses low

bandwidthBardac et al. [2010]. Full virtualization framework contains the guest OS

is running on the top of the hardware without any kernel level modification. Virtual

machine outcome becomes poor in this full virtualization environment. Hardware as-

sisted virtualization can run by running some instructions to run the processor and IO

operations. In Para virtualized mode, guest OS kernel need to be modifiedNussbaum

et al. [2009]. Operating System (OS) level virtualization builds containers with indi-

vidual processes. Each process is present with its own resource without any binary

code translation. Container is present in one system and can share kernel and host OS

but each container having its own OS. HPC performance already measured by com-

paring KVM and Xen. CPU consumption, network results and CPU overhead tests

were taken into consideration. To share one native host VM sends the packets, KVM

is better performed than Xen in this paradigm. By evaluating OS level performance of

VMs who running HPC, Xen gives performance like native one. In packet forwarding it

takes some time in network and it depends on size of packets. LXC give better result in

packet transferring so it is good for HPC based on container system. Cluster network

where processes communicate with each other Linux Container is the best option. LXC

gives less fluctuation in performing most of the tests. LXC is useful in cloud frame-

work to offer scientific computing services. In such type of service end user require

same availability and performance in service. In cloud computing environment to give

better performance LXC is better than KVM for HPC solutions. LXC is also useful to

minimize and control the issues related to Virtualization overheadBeserra et al. [2015]

. UberCloud is container service cloud to run software packages. Different tools can

depend on these packages for testing multiple users. UberCloud allows multiple users

because they are vary from server to server and one cloud to another cloud. Orga-

nizations need not be installing important software they can depends on UberCloud.

UberCloud Containers uses Linux platform for and its services like LXC, lib container

xvi

and cGroups. To toss the UberCloud Containers, Docker is used as an Open Source

outcome. UberCloud Containers consists of Linux OS, C Libraries, utilities and cloud

connectors. UberCloud is compatible with Ubuntu and CentOS and user can select

any of them. Linux OS is used when UberCloud launches new Container. UberCloud

offers utilities like screen sharing and remote visualizing applications. Data connectors

are used by different cloud providers like Amazon S3to transfer data of services. Ad-

ministration is done by using tools like password generation, and to check performance

Gentzsch [2014]. Linux containers include multiple methods of OS-level virtualization.

Number of separate Linux containers works on one host OS, so kernel offers the process

level isolation and resource scheduling. Docker is used for open source platform to man-

age Linux containers. Dockers can produces very lightweight VMs and execute code

with separate containers Costache et al. [2014] . The developers are able to develop

new software and deploy it in cloud architecture using Linux Container. Its an ideal

technology in developers perspective, because Linux Containers are runs information

intensive scientific operations. Skyport is new technology invented by Gerlach et al.

[2015], it is next version of AWE/Shock. Docker Containers are used to automatically

deploy and schedule workload on the VMs through Skyport. To gain a scientific bet-

ter scientific results software installation need to be done separately to avoid conflicts

of different library versions. AWE/Shock is a platform with core component Shock.

Shock is mainly used to store and manage data in the form of object like Amazon

S3. Resource management and scheduling work is done by AWE server. AWE server

verifies the documents of workflow and then makes it smaller so they can be compiled

by AWE workers. Workflows can be managed using directed acyclic graph to show

co-relation between processes and their workloads. AWE Workers do all necessary op-

eration including checking workflows and downloading necessary inputs and data from

Shock Gerlach et al.. Skyport executes the Docker Container images using Shock. The

Docker image contains necessary input files to run Docker; these are stores in Shock

database. After finishing execution all process files in Shock database will be deleted.

In multi-cloud architecture HTTP request in used to establish the connection with the

Shock from its clients. This connection will work out in multiple domains so AWE

can work in multi cloud architecture. Skyport is mainly used to achieve the software

separation in Docker containers. AWE workloads may runs on VMs; tasks running on

the Docker container are given better performance with high throughput than the bare

metal architecture. If Skyport will run on Docker by executing AWE worker on bare

metal architecture we can achieve various runtime results of workflows Gerlach et al.

[2015]. The novel purpose behind usage of container is nothing but High Availability

(HA). HA means offers services whose functional availability is 99.999% for some period

of time. It is possible to deploy cloud applications with good management of scheduling

xvii

methods. Monitoring to these containers is necessary thing those who run the critical

components. Monitor with check points is easy to recover in case of failure. It is easy

to recover from the recent check point with its full working state. Cloud computing

technology offers VMs with IaaS (Infrastructure as a Service) in multitenant framework

with on-demand self-service. Linux containers provide execution framework for cloud

bases services and applications. Containers are do virtualization in Operating System

(OS) using isolated sandboxes for each running application to provide secured frame-

work. The best option to achieve HA in cloud application for virtualized environment

is by using Linux and Containers. Some middleware tools and techniques can also use

as a set of agents to help containers in HA. Each application wrapped up inside the

separate container, which offers transparency with containers to achieve HA Liu and

Zhao [2014] .

2.2.2 KVM and Linux Container:

KVM is kernel based VM and used as open source tool for virtualized environment.

Figure 2 shows architecture of KVM and LXC Beserra et al. [2015]. IO and network

monitoring is done by QEMU in KVM. Every request for IO in KVM is sent to the

QEMU that further send to the host OS. LCX is responsible for lightweight virtualiza-

tion so native emulation is not required. LCX executes whole copy of Linux kernel OS

in Linux Container without any Hypervisor. Tasks and file system can share between

host OS and LCX. Containers can do resource allocation and is good replacement of

legacy virtual machines. In case of group services it is necessary to offer isolation be-

tween each service inside the container. These services are call on demand by end users.

Linux Containers are light weight in nature so the cloud service providers can reach to

the high availability of containers with same amount of resourcesCostache et al. [2014]

.

xviii

Figure 2.1: KVM and LXC Architecture Beserra et al. [2015]

To design the network multiple techniques need to be implement from design models

to physical infrastructure. Many simulation tools are available to implement network

framework, they are cheap and repeatable and offer reliable network. Netmap/VALE

is interconnection technology that achieves high performance and less computational

overhead with LCX containers Casoni et al. [2013]. The above topics briefly explain

what virtualization is and also we discuss the difference between virtualizing a system

through virtual machine and virtualizing a system through Linux container and also

help understanding which of these techniques are more efficient. Although in the third

section Dockers 2.3, we analyse how dockers use light weight VMs to virtualize con-

tainers and how they prove to be much more efficient than the virtual machines or

Linux containers itself. Thereafter, we also explain the levels of QOS Docker two tier

architecture and why they are important, they are 1) Node level QOS. 2) Cluster level

QOS

2.3 Docker:

Docker is nothing but process to virtualize containers using light weight VM. The prob-

lem focus in Docker is VM is heavy weight machine to compute workload. Docker can

achieve high scalability by installing Hypervisor on Host OS. Due to light weight its

easy for developer to build Docker stack and execute their application on their lap-

tops. Docker is built on containers which offers separate framework for user code.

Cgroup technique is known as control groups which controls the resources available

xix

for containers. Linux kernel is another technology on which containers are based upon.

Namespaces is a system call to create new process Anderson [2015]. Docker is a program

for open source framework used for Linux applications and their containers. Containers

are responsible to separate applications from each other with virtualization technique.

These applications are run in user space of Host OS to utilize the resources Ludvigh

et al. [2015]]. Docker offers Quality-of-Service (QoS) to end users on the network.

Dockers assigned multiple service based on the priority. Docker minimizes the opera-

tion cost and cost to access resources. To handle high traffic network Docker config-

uration is required. But configuration methods are limited and resulting performance

for critical operations is not good. To boot up process docker0 is build is also called

as virtual Ethernet Bridge. Each container has its own IP address and use bandwidth

of same share. Figure describes the process of implementing docker . Two important

components are process scheduler and packet classifier. Incoming packets are classified

into one of the three queues i.e. high, medium and low. Packet scheduler decodes

the packets and forwards them to respective container. Medium priority is default

priority valued that is assigned to the packetDusia et al. [2015]. Virtualization tech-

nology is something about generating virtual version of system. Docker is packaging

tool used in application installation. A dotCloud is powered by Docker as a deploy-

ment machine; it is clouds Platform-as-a-Service. Containerization is popular method

of sandboxing to provide isolated container for each application. Docker is developed

in Go and core system is has its namespaces and cGroups. Control group feature of

Dockers makes hardware resources available to containers. Union File System or UFS

acts as a building blocks and Docker may use multiple UFS like Device Mapper, btrfs

and AUFS Liu and Zhao [2014]. Docker expands Linux Containers using Linux kernel

and Application programming Interface (API). Kernel and API will run multiple pro-

cesses simultaneously. These processes are related to CPU, Memory, Network and IO

operations. Virtual machine image can be created using Docker, each instruction or

command creates a new layer on old one. Command can run through Docker files, is a

command script and run automatically. Unlike VM Container offer only some part of

OS and you can run application directly on that OS. Docker Containers are behaving

well in PaaS environment and they are well performed in distributed system framework

Bernstein [2014].

xx

Figure 2.2: Implementation of Docker Dusia et al. [2015]

Linux containers reduce the memory overhead on OS due to virtual machines. Various

applications may use same system resources; it will result in performance degradation.

IO contention problem is major issue in two tier Docker architecture. To achieve QoS

Docker container two tier architecture can be use McDaniel et al. [2015].

Node level QoS: The main goal in node level QoS is achieve the capacity to enforce

the resources on cluster level. High, medium and low level priorities are used to schedule

containers. Blkio controller use flag to force the container to achieve capacity for IO

operations McDaniel et al. [2015].

Cluster level QoS: Entire cluster is responsible to maintain QoS so its necessary to

monitor all containers. Docker swarm is group of native clusters that behave like a

single system. Swarm is used to manage the clusters in the container and check IO

performanceMcDaniel et al. [2015]. Now we have idea about the vietualization and how

the virtul machine /container plays a major role in cloud computing. Next Section we

going to dig into the idea cluster and how they are deployed in the data centre using

above technologies.

2.4 Clusters and Deployment of cluster using Virtualiza-

tion technology:

Sadashiv and Kumar [2011] defined cluster as an assembly of hooked parallel or dis-

tributed computers using high-speed networks such as gigabit Ethernet, SCI, Myrinet

and Infiniband. The interconnected computers co-operate each other for executing data

intensive and compute intensive tasks which are suitable to execute on single computer.

According to Sadashiv and Kumar [2011] clusters are needed for high availability, load

balancing and for computing. Cluster provide superfluous nodes which provides service

during failure of system component so that they are used for high-availability purpose.

This advantage of clusters enhance the performance of the system as the standby node

xxi

handle the task. The computational workload is shared among the interconnected com-

puters in the cluster. The clusters are generally used for computational purpose rather

than handling IO operations. From users perspective clusters are the multiple machines

who works as a single virtual machine. Sadashiv and Kumar [2011] states that the num-

ber of users requests are accepted and shared between the standalone computers to form

a cluster. Sharing computational load among different standalone computers helps to

improve the performance. Uthayopas et al. [2013]defined virtual cluster and advan-

tages of its usage. According to Uthayopas et al. [2013] benefit of using virtual cluster

in high performance computing (HPC) operations is elimination of complex physical

infrastructure and contribute native HPC environment to users. Virtual Cluster is set

of virtual machines arranged to work together as a single system. According to Uthay-

opas et al. [2013]flexibility of creation and distortion of virtual cluster whenever it is

required. Along with advantages Uthayopas et al. [2013]also state the difficult process

involved in virtual cluster system originating from preparing a physical infrastructure,

creating virtual machine templates, disk images, to defining network configurations. A

large virtual cluster is hosted on multiple physical infrastructure for larger computing

resources for users. Uthayopas et al. [2013] address challenges in organizing number of

physical machines from different sites and work these machines together. According to

Uthayopas et al. [2013] for deploying multi-site virtual cluster there should be typical

way for creating virtualized network over multiple sites that virtually link the system

into one typical network. For the complex multi-site infrastructure the configuration of

virtual cluster should be custom fit. Murphy et al. [2009]also describe virtual organiza-

tion clusters are systems which is combination of virtual machines that gives dedicated

computing clusters for respective virtual organization. According to also describe vir-

tual organization virtual organization cluster design allows each virtual machines to be

independent of the underlying physical hardware, to span number of grid sites. Also

describe virtual organization focus the issue of scheduling and provisioning of physical

resources to virtual machine when adopting virtual organization cluster as grid com-

puting. Also describe virtual organization explain a virtual cluster scheduler based on

the Condor High Throughput Computing system. The virtual machines to respective

virtual organizations are provisioned and booted using the real-time monitoring of Con-

dor job queue. The jobs assigned to individual virtual organization are then execute

on the particular virtual machines that helps to create clusters devoted to particular

organization. As the queued job is completed the virtual machines are eliminated and

allow the physical resources to be restored. Guedes et al. [2014] explain the container

based operating system virtualization. The container based operating system virtual-

ization provides number of isolated execution environments in a single operating system

kernel. According to Guedes et al. [2014] Container is an isolated program execution

xxii

environment, which behaves as an independent physical server, with its individual set

of processes, file systems, users and network resources.Guedes et al. [2014] list that

OpenVZ is an example of a container based virtualization implementation for Linux

systems. OpenVZ kernel accumulate virtualization and isolation, that set up loads of

containers in a single kernel, resource management, that restrict subsystem resources,

just as CPU, RAM and disk access, on a per-container basis; check pointing maintain

the state of container which makes the migration of containers possible. The guest OSs

of OpenVZ are instantiated according to the templates. The templates are prior images

which can generated a chrooted environment. The programs that running on the guest

OS as a normal applications required system call interface from host operating sys-

tem.Guedes et al. [2014] also describe the KVM. KVM(Kernel-based Virtual Machine)

is a Virtual Machine Monitor(VMM) which converts code execution of guest operating

systems. KVM contains loadable kernel module that gives core virtualization execution.

KVM depends on the hardware virtualization technology like Intel-VT and AMD-V,

to accomplish better performance.Guedes et al. [2014] states that KVM is more flexi-

ble than the OpenVZ because of full virtualization solution. Due to full virtualization

solution, there is no need of kernel correlation between guest OS and Host OS. Pahl

and Lee [2015] state virtualization techniques such as virtual machines and containers.

According to Pahl and Lee [2015] virtual machines are at the main element of the com-

pute infrastructure layer that gives virtualized operating systems.Pahl and Lee [2015]

state that though VMs and containers are virtualization techniques but they resolve

different problems. Containers are a resolution for number of interoperable application

packaging in the cloud. Compare to VMs, containers are more flexible tool for packag-

ing, delivering, and orchestrating both software infrastructure services and applications

that is tasks that are typically a PaaS (Platform-as-a-Service). According toPahl and

Lee [2015] Containers are developed on current advances in virtualization but allows

more interoperability while utilizing operating systems virtualization. Furthermore

VMs are about hardware allocation and management. With VMs Infrastructure-as-a-

Service(IaaS) targets hardware virtualization.Pahl and Lee [2015] state that containers

can replace VMs for some specific cases such as allocation of hardware resources is

done through containers by componentizing workloads in between clouds. Pahl and

Lee [2015] state the basic features of containerization such as a lightweight portable

runtime, the capability to develop, test and deploy applications to a large number of

servers and the capability to interconnect containers. According to Pahl and Lee [2015]

Containers have reference to the cloud PaaS level. They also related to the IaaS level

through sharing and isolation aspects that exemplify the evolution of OS and virtualiza-

tion technology. In the fifth section, we discuss about the Networking 2.4 component.

Here we discuss what SDN is. SDN is the current approach used for networking. We

xxiii

mainly argue over how SDN is used for networking in virtual machines verses how they

are used for networking in containers and which one is a better approach among them

for networking. The different approaches for networking through SDN are: 1) SDN for

Virtual Machines 2) SDN in Containers 3) Open VSwitch

2.5 Networking virtual machines and containers:

2.5.1 Network Virtualization:

Virtualization is the key element in cloud infrastructure. It has the changed the way

of the computing. Virtualization provides the features like easy provisioning, high

availability and much more. In Virtualization, An operating system, server storage,

networks can be virtualized. By virtualizing network, we can provision the services.

According to the Gartner report, that there no decrease in acceptance of virtualization

to the computing infrastructure. Network virtualization is a process of combining the

available resources in network by separating the available bandwidth into channels.

Each bandwidth is independent of the other bandwidth and assigned (or reassigned)

to a unique server or device in the network. Every channel is individually protected.

Every tenant has a shared access to all the resources on the network from a single

computer Pfaff et al. [2009]. Network virtualization is projected to the improve la-

tency, cost efficiency to develop the infrastructure. Network virtualization is intended

to enhance availability, high bandwidth, consistency, elasticity, scalability, and firewall.

Network virtualization is said to be effective for the networks that are sudden, large

and unforeseen surges in usage. Virtualizing the network environments will implement

lots of service such as high availability, scalability, which is beyond to the services that

are available in a physical network. For instance, if lots of tenants use the same re-

sources in the infrastructure lots of issues arises in the physical network but network

virtualization isolates the tenant by providing Virtual LAN ID to overcome the avail-

ability issues. Network virtualization indicated as a source for creating new networking

approaches in the paralyzed Internet architecture and brought lots of development in

the network services Friis-Christensen et al. [2009]. Network virtualization reduces us

to provision the network is made easy. Network virtualization differs from Software

defined Networking where the networking function are been separated from the un-

derlying network hardware. Which give efficient management of the networking and

benefits the infrastructure.

xxiv

2.5.2 Software Defined Networking:

The term SDN (Software-Defined Networking) was originally coined to represent the

ideas and work around Open Flow at Stanford University. As originally defined, SDN

refers to a network architecture where the forwarding state in the data plane is man-

aged by a remote control plane decoupled from the former Kreutz et al. [2015]. Those

conveyed control, Whats more, transport organize conventions running. Inside those

routers Also switches would the magic advances. That permit information, in the

manifestation about advanced packets, will. Head out around the globe. Regard-

less of their broad adoption, Accepted IP networks are perplexing and hard will wrist

bindings. With express the fancied high-keyed system policies, organize. Operators ne-

cessity will design each unique system gadget. Independently utilizing low-level whats

more frequently all the vendor-specific commands. Furthermore of the setup complex-

ity, organize. Situations must continue the Progress of faults Also. Adjust on load

transforms. Programmed reconfiguration and reaction. Components need aid basically

non-existent previously, present IP networks. Enforcing the required approaches done

such a changing surroundings. Will be accordingly exceedingly testing.

Features of SDN: Software-Defined Networking (SDN) gives really intriguing offers

which will change whats to come networks in. Concentrate control system /expense effi-

ciency, innovation, programmability, versatility, security, Virtualization, cloud support,

automation, unwavering quality, Whats more, proficient natures domain should back

Big-Data. Clinched alongside paper the thing that SDN offers us is stated. It provides

for us an incorporated control instrument from claiming Different systems administra-

tion fittings gadgets starting with. Numerous vendors, further organize mechanization

will be significantly moved forward with the assistance about APIs which need aid used

to unique. System points a standout amongst those fundamental targets of SDN is

should furnish improvement through the web alternately that network, this guarantee.

Challenges of SDN; Troubleshooting and visualization. Determining the network state

at any given time. Inspecting and replaying events learned both from the controller and

the network devices. Comparing routing state and paths when a service/application

is performing well and when it is not. Monitoring paths for changes in hops, metric,

delay, and bandwidth.

Software Defined Networking For virtual machine: Software Defined Network

(SDN) is one network architecture used to control the network traffic using open net-

work protocols. SDN is containing three layers in its framework: Physical Layer, SDN

controller and Application Layer. SDN Controller works at central level uses Open

xxv

Flow protocol to established communication in network. The SDN used in Linux con-

tainers. Now a days containers are used as VMs. They are light weight in nature

with better performance result than VMs. Time to start the VM in container is in

seconds because container never uses hypervisor. Containers performance is very near

to bare metal performance. Figure shows, VMs with their GRE configuration. GRE

is Generic Routing Encapsulation used for tunneling between VMs. open vSwitch is

software used for open source switches. Every instance of open vSwitch is connected

through GRE tunnels. Tunnel Bridge can build on every isolated switch for network

interface Costache et al. [2014]

Figure 2.3: Virtual Machines with GRE Tunnels Costache et al. [2014]

SDN for Containers: Docker programming makes holder situations that can host

multiple applications, with that objective of settling on them more lightweight further-

more convenient. Holders permit it with conveying another provision without devoting

a whole committed Operating system (OS) occurrence Also virtual machine (VM) to it

- various holders can run on an absolute VM alternately a committed physical server.

As a result a Docker deployed provision will be composed of the compartment interface

instead of a particular working system; it likewise revels in more stupendous portability.

Clients might get those apps in a holder running under At whatever working framework

that dockers needs to be been ported to, including the vast majority Linux OS, Cen-

tOS, Mac Operating system X, Windows and the significant cloud platforms De Simone

[2014] . Docker does, however, need An association should todays looser understanding

about SDN - which could envelop organize virtualization, network programmability

and the detachment of the control and information plane, independently or On any

consolidation. Docker employments virtual networks will interface containerized provi-

sions for that network, and join compartments with other compartments on the same

xxvi

host. It disappointments and outrage on his/her staff might also define, specifically

through docker or through connected instruments for overseeing docker environments,

for example, Flocker alternately Rancher, virtual overlay networks should associate

compartments over hosts Whats more again bigger networks (such data centres, WAN,

and the Internet). Containers permit to manage and oversee the app server itself and

additionally those cloud infrastructures, including network resources. Thus, that req-

uisition server might scale with respect to interest controlled by the provision itself

and balanced for optimized system works that need aid outlined requisition particular.

For addition, every last bit about these preferences needs aid contributed with a cloud

provider. The key advantage containers have over the more traditional hypervisor and

virtual machine-based approach is that each container workload can share a host OS,

rather than each virtual machine having its own host or guest OS image. A virtual

machine takes up considerably more space in memory, and takes more time (minutes

rather than fractions of seconds) to deploy and provision De Simone [2014].

2.5.3 Open vswitch:

Open vswitch act as a virtual software switch in virtual environment and it offers vari-

ous features for managing the network like VLAN, QoS, and flow control Rao and Rao

[2015]. The Open vSwitch is an Open-Flow based open source switch implementation

which is used as a virtual switch in virtualized environments. The OpenFlow specifi-

cations are targeted for Layer2 and layer3 functionality. The latest networking shift is

to enable the switch with L4-L7 services like load balancers, proxies, firewalls, IPSec,

etc. This would make the middle boxes redundant in the networking deploymentsGorja

and Kurapati [2014]. Performance of Open vswitch is measured by three ways namely

Security Evaluation QoS Evaluation Network performance Evaluation.

Security Evaluation: Rao and Rao [2015] suggests a method to evaluate the perfor-

mance of security in Open vswitch, Making two virtual LAN to four virtual machines

Also each virtual machine will regulate ARP show with separate VMs clinched alongside

notable LAN, and view if ARP broadcast might transverse different VLAN alternately

not. Furthermore, those creators Moreover lead those ping tests around dissimilar

virtual machines will see if VM Might adequately join with other VM done different

VLAN.

QoS Evaluation: Utilize the QoS characteristic of an open switch with execute those

stream control for every one framework interface. The target is will exhibit that fine-

grained managerial assistance for open vswitch. Network performance Evaluation: To

find the overhead caused by the software switching. Comparison of performance with

and without virtual machine is carried out.

xxvii

Chapter 3

Design

The study provides the detailed description of the tools which we used to build our

prototype to deploy cluster using docker containers and interconnecting the host using

VxLAN tunnels. The Fig 3.1 shows that we have deployed three server in different

network regions and these servers are cluster together using cloud overlay networks.

The below describe the tool specification for implementing our design and for testing

our prototype.

Figure 3.1: Proposed Architecture

3.1 Specification:

3.1.1 Cloud overlay networks:

Virtual Extensible Local Area Network: In cloud, the virtual machines are located at

separate physical servers on different locations. If the servers are located in same lo-

cation we could your underlay network (layer 2 physical network) for communication

xxviii

between different VMs. At present layer 2 network use Spanning tree Protocol (STP

model) to eliminate duplicate path and frame replications. STP model has limitation

such as no multipath communication; Inter-VM communication is not possible over

layer 2 networks. This limitation can be avoided by configuring servers over layer 3 net-

works (cloud overlay networks). For the communication between the virtual machines

that are located at different network using underlay network is not a right architect. In

cloud computing and multi-tenancy well they go hand and hand. So does the require-

ment for an application is on demand. It just makes good sense for the tenants and

their applications to be isolated from each other. A three tire app can have multiple

virtual machines in each tier require a logical isolation between them. The problem

with is only 4096 VLAN Ids and isolation options. To overcome a new technique called

VXLAN is introduced by CISCO, VMware and citrix. The first thing to tackle the

VLAN Ids by placing 24 bit VXLAN ID, which increased to 16 million logical networks

Mahalingam et al. [2014].

Figure 3.2: VXLAN FRAME

Figure 3.2: VxLAN FRAME

Mahalingam et al. [2014] states that advantage of this is that the packets are transmit-

ted at layer 3 networks. In VXLAN, the Mac/UDP uses switch hashing to look at the

UDP packets and distribute the data across all the links in port channel group. Where

in MAC/MAC or MAC/GRE the packets are transferred inefficiently and cannot be

distributed in all port channels were the bandwidth in data center is wasted. VXLAN

IN CLUSTER NETWORK: Actually, VXLAN works like a layer 2 bridges. VXLAN

Bridge learns containers Mac host VXLAN and IP tupples. Then the Encapsulated

traffic is distributed according to the port profile of the containers attached. Here the

IP address is actual multi-casters.

xxix

Figure 3.3: VXLAN Multicasting.

As the tenant comes online will be assigned to the multicast group by the containers

to carry broadcast, multicast and unknown unicast are carried through the segment

but unicast traffics are not directed to the destination. When all the containers are

in same multi-cast group. If a container receives a broadcast from red container the

bridge looks at the segment ID and drops the packet to the green container because

the ID doesnt match to the destination container.

Figure 3.4: Container Segments

3.2 YCSB:

YCSB v0.4.0 is a tool which is optimize for benchmarking system. In order to work

with this tool we need to download the updated version from the sources or we get it

xxx

from the git repository. The primitive role of this tool is to compare and contrast the

performance of various cloud platform database. Furthermost, its framework include of

package of the standard workload units taking into consideration the other parameters

such as read-heavy load, scan workload ,write work load and so on. Among all the

feature attain by YCSB one of the parameter which is consider as the best part of YCSB

is the workload generators which depends on the various parameters confine to it. By

using workload generator, designing and generating of any kind of data required for

comparing the performance of the database can be performed easily. This incomparable

character of YCSB leads to evolution of the new data frames to benchmark cloud data

serving system is the major achievement for the usage of YCSB. Extensibility is one of

the basic objectives of YCSB so that it is possible to implement on different latest cloud

database system and benchmark its performance. This section depict the architecture

of YCSB client, it will also brief on some of the challenges in providing distribution

for the workloads in database. Initially, YCSB client is a java program which is using

for generating the data to be transfer to the database; similarly it will generate the

specific operations which will perform the work load. The architecture below shows the

architecture of the YCSB client.

Figure 3.5: YCSB Architecture Cooper et al. [2010]

Workload properties characterize the work load, sovereign of the provided database or

experimental run .For instance, the read or write property falls under this category,

for distribution to use zipfian, latest etc and the size and various numbers of fields in

records. However, runtime properties are explicitly to a provided experiment. Illustrat-

ing this, let us consider HBase database interface layer to be used in our experiment,

xxxi

so this properties used to initialize that layer like the database service host-names and

various client threads.

3.2.1 Benchmark Tiers:

This section we will illustrate the purpose of two benchmarking tiers for evaluating the

performance and scalability of cloud distributing system Cooper et al. [2010]. These

two tiers are said to be basic benchmark tier of YCSB their properties are discuss

individually below

Tier 1:- Performance: The performance tier of the benchmark spotlights highly on

the latency of request at the time when the database is under load. Latency is been

considered to be very essential in cloud serving system, because it make the impatient

user waiting for the web page to load. Moreover, we present the natural adjustment

between latency and throughput, on a provided hardware setup, consequently as the

chunk of loads increase it tends to increase the latency request of the users because

there is more conflict for disk ,CPU ,network ,and many more. The main goal of

this tier is to define the trade-off for every database system by analyzing latency as

we raise the throughput, till the time where the database system is saturated and

the throughput stops rising. Concerning to work with this benchmark tier, we need

a workload generator, they serve two major desires, firstly to characterize the data

set and push them in the database, secondly to execute operation across the dataset

when checking the performance. On implementing YCSB client specifically for both

purposes, a group of parameter files depicts the environment of the dataset and the

transaction performed against the data. YCSB client permits the client to describe the

offered throughput as command line parameter and the instruct

Tier 2:- Scaling: Cloud system mainly focus on their ability to scale elastically, in

order to be able to manage raise of load as the application increase the features and

become advance in popularity. Scaling tier of the database analyze the effect on the

performance as more number of machines are updated to the system. There are two

main metrics available for analyzing in this tier they are scale up and elastic search and

we will discuss in detail individually. Scale up: This metrics characterize the kind of

question like what will be the performance of database as the number of machines is

added to the system. In this instance, we load the provided chunk of server with the

data and perform the workload. Following, we then erase the data, add more servers,

perform higher load of data on the larger cluster, and then run the workload ones

xxxii

again. In case if the database system seem to produce good scale up properties ,then

the performance should stay constant .as the number of servers, chunks of data and

the offered throughput measure proportionally show that it is equal to the scale up.

Elastic speedup: This kind of metrics we answer to the question which is similar

like how does the database perform with the raise of machines in the system while

the system is uder processing state in the other words we can say when the system is

running. In such case, we push the provided amount of server with the data and run

the workload .We add more than on server to the workload which is running currently

and we check the effect on the performance. Henceforth, the system that provides good

elasticity should display improvement in the performance with the addition to the new

servers, without any conflicts while the system is configuring itself when it try to use

the newly added server. To sum up this is said to be similar comparatively to the

speedup metrics, with the added curves to the new server added on the time when the

workload is running.

3.3 Weave Docker plug-in:

Weave are optimize in such a way that it creates virtual network which is connecting

to the docker container where is then deploy across end number of host and enables

automatic discovery. The application in weave utilize the network in such a way as

if the container were all connected into the single switch, likewise no configuration of

port mapped links and many more need not to be performed as its all done by it. The

application container in weave provides the services which is accessible to the external

world specifically to where the containers are operated. On the other hand the cur-

rent system is accessible to internal container irrespective to their location. Weave has

special features of bisecting the firewall and perform in passively connected network,

in which network traffic can be encrypted and permitting host to be connected over

the untrusted network Kereki [2015]. Weave router creates network bridge locally over

the server where it runs and vapidly known as weave. They also add virtual Ethernet

connections from every container and from weave router itself to the bridge. Likewise,

when the local container request for association with remote one, the packets are trans-

ferred to the other weave router probably with multi hop, till the packets reached the

remote weave router to the weave container. The following figure demonstrate on how

weave adds various virtual gadgets to switch the traffic finally to the other servers.

xxxiii

Figure 3.6: Weave Plug-in Kereki [2015]

Figure 3.6: Weave plug-in On connections of dual weave routers, they swap the topology

data to have knowledge about the rest of the network. The collected data are used

for routing the resolution to keep away from the unwanted broadcast of packets. In

order to encounter the feasible changes and to perform across any network error that

might pop up, weave router sequentially monitor the connection. To detect possible

changes and to work around any network problems that might pop up, Weave routers

routinely monitor connections. To connect dual routers, on a server, type the weave

connect the .ip.of.another.server command. To drop a Weave router, do weave forget

ip.of.the.dropped.host.On connecting new weave router to the available network, we

need not to connect to every existing router. Everything you need to do is to provide

the address of any one existing weave instance in the single network, so straight away

from that point it will collect all topology information on its own. The remaining

routers will update their own information in the processor in the similar form.

3.4 MongoDB sharding cluster:

The aim is to deploy the cluster in docker container and we have chosen for mongodb

cluster. Below we have given the detailed description of the Sharding is the way to

which the data are distributes and stored across end numbers on machines. Mongodb

xxxiv

make use of sharding methods to hold up the deployments of very massive dataset

and high throughput operations. The primitive goals of sharding is to improve load

balancing when the huge data is to be loaded to the database, also possess improvement

in failover of the system and no single point of failure . Purpose of Sharding: Database

system having huge data set and high throughput application which may challenge the

capacity of ingle server. Adding to this, huge query rate can cripple the capability of the

CPU of that server. The impact of larger data set extends the storage capacity of the

single server. Database systems with large data sets and high throughput applications

can challenge the capacity of a single server. High query rates can exhaust the CPU

capacity of the server. Larger data sets exceed the storage capacity of a single machine.

Finally, working set sizes larger than the systems RAM stress the I/O capacity of disk

drives. To address these issues of scales, database systems have two basic approaches:

vertical scaling and sharding. Vertical scaling adds more CPU and storage resources

to increase capacity. Scaling by adding capacity has limitations: high performance

systems with large numbers of CPUs and large amount of RAM are disproportionately

more expensive than smaller systems. Additionally, cloud-based providers may only

allow users to provision smaller instances. As a result there is a practical maximum

capability for vertical scaling. Sharding, or horizontal scaling, breaks the data set and

transfer the data across multiple servers, or shards. Each shard said to be independence

database, additionally, as a group the shards make up a single logical database.

3.4.1 Auto-Sharding Architecture:

The primitive approach of MongoDB sharding is to divide group of data into smaller

chunks. The chunk which was scattered among the various shards is responsible for

the subset of the whole data set. In order to separate the group of chunk, MongoDB

will define a group of shard key which name many fields to specify the key to which we

shared the data Liu et al. [2012]. The architecture of Auto-Sharding is exhibit below:

xxxv

Figure 3.7: MongoDB Auto-sharding Setup Liu et al. [2012]

MongoDB Shard clusters consists of three major components: shards, config server)

and query routers. Each component are characterize in detail below:

1)Mongod(Shard server):The major role of shards is to store the data. Every shard

attains of one or more servers and the data are stores using mongod process. In produc-

tion section of shared cluster, in order to maintain high availability and data consistency

every shard is a replica set.

2)Mongod (Config server): This component store the clusters metadata. This data

abide of the outline clusters data set to the shards. Furthermost, query router makes

use of this metadata to target operations to specific shards. Production sharded clus-

ters have accurately three config server.

3)Mongos(Router server): It can be assumed as the routing and coordinating pro-

cess as its other name is query router. When the client make the request to mongodb

server, the mongos routes that request to the specific server and match the result to

be transfer back to the client machine. A sharded cluster may contain more than one

query router to balance the client request load; however sharded clusters have many

query routers.

xxxvi

Chapter 4

Implementation

In our implementation we are using the three virtual private servers (VPS) with Ubuntu

14.04 as operating system and Docker 1.9.1 on different network locations. The setup

could be categorized into two steps such as (1) Basic ovs configuration. (2) Cluster

deployment.

4.1 The basic networking for the server using Ovs Bridge:

4.1.1 Creating virtual ovs bridge br0:

A Linux bridge can be utilized to unite two different interfaces at layer 2 level (as like

a normal switch). Normal applications incorporate proxying, separating by utilizing

iptables and which reduces physical resources for networking. In our implementation

we going to bridge the interface of the server eth) and the default docker bridge docker0.

In order to bridge these interface we use open vswitch. The details of the docker0 and

ovs bridge is briefly explained in the chapter 4. We create an ovs bridge with br1 as

a bridge name, the bridge name can be user defined. The description of new bridge is

given below:

xxxvii

Figure 4.1: Description of OVS Bridge

The bridge br1 has to be enabled to attach the interface to the server. The bridge br1

will be isolated until the bridge is connected to an interface. To make bridge br1 to

communicate to the outer world, it should be attached to the eth0 of the server.

Figure 4.2: Attaching OVS bridge br1 to eth0 of the server.

4.1.2 Attaching ovs bridge to docker0 bridge:

Docker bridge docker0 is the default docker bridge which connects all the containers

together for communication between the containers. The docker bridge as default IP

sub netting such as 172.17.41.0/16. If we spin the container the IP of the containers

will assigned accordingly form subnet. Here we going to disable this docker bridge and

build our own bridge with our IP configuration and sub netting. For building our own

bridge we used a small automation script that shown in appendices. We use new docker

bridge for connecting to the ovs bridge using vtep interface, the vtep interface will be

the medium in connection between docker bridge and ovs bridge. The IP address for

new docker bridge should be of same network subnet but will different host address.

xxxviii

Figure 4.3: Bridging docker0 and eth0 via OVS bridge

4.1.3 Creating new IP pool for the docker0:

Even though, if we launch containers with new docker bridge there will be IP conflicts

when we deploy a cluster system. To resolve the IP conflicts we define another IP stack

in a docker network. To configure new IP pool the below configuration can be added

in the DOCkER OPTS:

1 "newbr=newbr1

2 CIDR=<ip_address>

3 wait_ip() { address=$(ip add show $newbr | grep inet | awk {print $2}) [-z " ←↩
-

4 $address"] && sleep $1 || : } wait_ip 5 wait_ip 15

5 DOCKER_OPTS= -H unix:///var/run/docker.sock -H tcp://0.0.0.0:2375 fixed-cidr=$<ip ←↩
address>

6 --bridge $newbr"

Listing 4.1: creating New IP Stack

xxxix

4.1.4 Connecting the servers with the VxLAN tunnels:

Right now we have three remote servers with full network configurations using open

vswitch as show in fig(complete config) and these server will be connected each other

using Encapsulated tunnel called virtual Extensible Local Area Network (VXLAN). To

connect we need two create another two vtep interface will be created in ovs bridge;

the tunnel which connects two servers should have the same interface name. We are

using three tunnels so the vtep interface name will be vx1, vx2, vx3. More interfaces

can be created if we use more the three servers. After the interface has been created

we trigger the below command to connect the remote servers as show below.

1 ovs-vsctl add-port br1 vx1 -- set interface vx1 type=vxlan options:remote_ip=< ←↩
remote_ip> option:key=flow ofport_request=10

Listing 4.2: Vxlan Tunnel command

Note: we execute the above command to connect multiple server we have to change

remot ip and interface.

Figure 4.4: servers connected to via VXLAN tunnel

4.2 Deploying MongoDB cluster:

In this section we going look about that how can we deploy high availability mongodb

cluster using docker containers among different server that are distributed across differ-

ent regions. This section categorizes of following section and detailed implementation is

xl

given below: 1) Creating base image. 2) Creating server containers. 3) Sharded cluster

setup.

4.2.1 Creating Mongodb dockerfile:

Docker file is the small automation process with set of argument and definitions are

place in a stack to build our own pre-defined base image for the containers. The major

advantage of building an image using dockerfile is that we can reduce the amount of

time take for installing an application. In our case we need to create containers with

mongodb server application running and to create a database path were the meta-datas

and documents can be stored. For our setup, we need total of 12 containers; each server

runs 4 containers, installing mongodb application and to provide user permission for

the path or directory in 12 containers requires more time.In our docker file we use the

base image as Ubuntu 14.04, Mongodb server version 3.1 as an application and creating

list of directories for dbpath. Refer appendix for the script of Dockerfile.

4.2.2 Creating containers for the cluster configuration:

As we said that we have created an image and named as mongo. Now we can use this

image for create mongo containers by using following command:

1 docker run restart=always -it -P name <container name><image_name>

Listing 4.3: Creating Node container with mongodb image

Note: In above command we used: restart=always to keep the container running and

to start when the docker service is started in server. -P= To Expose the ports to

the container. We have 12 independent container running, these container take their

desired action by implementing shard cluster setup among them

Figure 4.5: Containers created with mongodb image

.

xli

4.2.3 Container shard cluster setup:

For Mongodb shard cluster setup we are advised to run the shard cluster setup that

was released by mongodb organization. We going to modify the IP address for the

setup, were the container will get it IP form the new docker bridge which is defined

by us. The Configuration setup is available in appendix. The figure shows the com-

plete sharded cluster setup and VXLAN tunnelling network to other server in different

network regions for the communication.

Figure 4.6: Container Cluster

xlii

Chapter 5

Evaluation

In this chapter, we will analyse the outgrowth of our prototype with respect to various

experiment which we have tested and review the performance of our proposed archi-

tecture. The test performance is evaluated between OVS architecture networking and

compare with the performance of Weave networking architecture. We will provide the

evaluation result with regards to various categories firstly, resources usage where we

will check the amount of resources used when clustered is deployed, secondly we will

measure the network bandwidth, followed by finding the performance of the cluster and

finally we will provide the scalability of cluster.

5.1 Server Resource Utilization:

The main approach of server consolidation is to achieve no resource is being idle, which

will benefit an organization it term of using less number of physical servers. The face

that we have to keep in mind that consolidation shouldnt utilize more resource of the

server which will reduce the performance. In our experiment we are going to evaluate

the amount of resource utilized by the networking configuration with online monitoring

tool called newrelic. In Newrelic monitoring tool, we could capture the amount of

resources being utilized (1) Before cluster deployment. (2) After cluster deployment.

The resource utilization of the network configuration is analysed in terms of CPU and

Memory using Newrelic online monitoring tool.

xliii

5.1.1 Before the deployment of the cluster:

The below figure depicts the amount of memory resource utilized by the OVS-VXLAN

architecture with comparison of weave architecture in this contrary, we could claim

efficiently that OVS-VxLAN consume 56% less resources than the weave before the

cluster is being deployed. In the weave architecture, docker utilizes more memory

because the weave plug-in are running as a container in the docker. Whereas ovs is a

separate piece of virtual software that run on the host server.

Table 5.1: Memory Utilized by weave Plug-in before clustering

weave Memory (mb)

docker 42
weave 30

weave proxy 29
total 101

Figure 5.1: Memory Utilization of Weave plug-in

Table 5.2: Memory Utilized by OVS-VXLAN

ovs Memory(mb)

docker 11
ovs-switchd 31

ovs-db 2
total 44

xliv

Figure 5.2: Memory Utilization of OVS-VXLAN

Fig below characterize the amount of CPU consumed by OVS and Weave. The chart

clearly explain that OVS consume lesser amount of CPU which is almost half of which

consumed by the Weave.

Table 5.3: CPU Utilization rate between weave and OVS-VXLAN

CPU utilization

OVS-VxLAN 0.15%
weave 0.41%

Figure 5.3: CPU Utilization between weave and OVS-VXLAN

xlv

5.1.2 Resource utilization after deployment of a cluster:

In first half of server resource utilization we have captured the amount of resource is

consumed by our prototype and weave plug-in when the server is not been clusters or

being idle. Now the server is configured to cluster and some communication is made

between the cluster nodes. The fig below shows the memory utilized by OVS-VXLAN

and weave. There in 10% increment in memory and CPU process of both architecture.

Table 5.4: Memory Utilized by weave plug-in after clustering

weave Memory(mb)

docker 80
weave 38

weaveproxy 32
total 150

Figure 5.4: Memory Utilization of Weave plug-in after clustering

Table 5.5: Memory Utilized by OVS-VXLAN after Clustering

ovs Memory(mb)

docker 35
ovs 40

total 75

xlvi

Figure 5.5: Memory Utilization of OVS-VXLAN after clustering

The Figure Below shows the amount of Processing power is consumed by weave plug-in

and OVS-VxLAN after MongoDB cluster is deployed.

Table 5.6: CPU utilization rate between weave and OVS-VXLAN

CPU utilization

OVS-VxLAN 0.27%
weave 0.64%

Figure 5.6: CPU Utilization between weave and OVS-VXLAN after clustering

xlvii

5.2 Bandwidth Availability:

It is important to monitor the available bandwidth of a cluster because the lower

bandwidth will reduce the performance speed of a cluster. The Bandwidth between

two nodes is evaluated using network monitoring tool called IPERF by client and server

model. One container node will be acting as a server and another will be as a client.

The bandwidth is calculated by making request form server to client as shown in the

fig. After performing the test it shows that the available bandwidth is high in OVS

than weave. The result is described in the chart below.

Table 5.7: Available bandwidth between cluster node that deployed in weave and OVS-
VXLAN

Bandwidth(MBs)

ovs 237
Weave 160

Figure 5.7: Average bandwidth between cluster nodes in Weave and OVS-VxLAN
architecture.

5.3 Performance of the Cluster:

In this section the performance of the cluster is evaluated using a benchmarking tool

called YCSB by Yahoo. We use database benchmarking tool because we have deployed

a mongodb database cluster. The performance of mongodb is captured by triggering set

of workloads into the database and analysed on different parameter such as the workload

xlviii

read/ write latency and throughput. The workloads properties such as record counts,

operation counts and read/update prepositions are listed in the below tables:

Table 5.8: Test Operation for MongoDB Cluster

Properties Test A Test B Test C Test D Test E

Read/Update 50/50 50/50 50/50 50/50 50/50
Record Update 1000 10000 20000 50000 100000

Operation Count 1000 10000 20000 50000 100000
Read Operation 0.5 0.5 0.5 0.5 0.5
Update Operation 0.5 0.5 0.5 0.5 0.5

Table 5.9: MongoDB Configuration Parameters

Properties Default Value

mongodb.url mongodb://¡svr ip:23000/ycsb?w=1 DB= ycsb
mongodb.batchsize 1

mongodb.writeConcern acknowledged
mongodb.readPreference primary

mongodb.maxconnections 100

All the tests are performed 10 times in each experiment and result is given below.

5.3.1 Read Operation:

The read operation is the set of data is pulling out from the database and the latency is

calculated by the time taken to return the out from the database. The Fig show () that

the test is executed in both OVS-VXLAN and weave architecture with five different

workloads and the average read latency is around 966 us(min) to 1461us (max), whereas

in weave the latency is around the 4337 us(min) to 5836 us (max).

Table 5.10: Average Read Latency of the MongoDB cluster Between Weave and OVS-
VXLAN

Average Read Latency

Record Count OVS(VXLAN) WEAVE
1000 1081 4407

10000 982 5782
20000 966 4337
50000 1013 4683

100000 1461 5863

xlix

Figure 5.8: Average read latency in Weave and OVS-VxLAN architecture.

5.3.2 Update operation:

The read operation is the set of data is written into the database and the latency is

calculated by the time taken to write in the database. the Fig() shows that the average

update latency is less in OVS-VXLAN ranging from 933 us(min) to 1461 us(max) than

the latency in weave ranges from 628 us(min) to 2921 us(max).

Table 5.11: Average Update latency of MongoDB cluster between weave and OVS-
VXLAN

Average update Latency

Record Counts OVS(VXLAN) WEAVE
1000 933 2921

10000 572 904
20000 560 706
50000 492 628

100000 537 965

l

Figure 5.9: Average update latency in Weave and OVS-VxLAN architecture.

5.4 Throughput of a cluster:

The more important thing is to find the overall throughput of the clusters. Throughput

is the amount of the instruction or operations are performed in given period of time. In

throughput the lesser time indicates the high throughput; this is based on the system

configuration and network speed. Since our research s based on the networking of

container cluster, we trigger set of workload such as 1000, 10000, 20000, 50000 and

100000 to evaluate the amount of through operation is executed in a second. From our

experiment the overall throughput is higher in OVS-VXLAN than weave.

Table 5.12: Throughput of the cluster between weave and OVS-VXLAN

Total ops OVS-VxLAN Weave

1000 470 253
10000 990 460
20000 1046 415
50000 1074 603

100000 985 401

li

Figure 5.10: Throughput between Weave and OVS-VxLAN architecture.

5.5 Scalability of a cluster:

Scalability is the ability of a computer system or an application to perform well and to

provide full availability, even though the set of operation/instruction is increased. To

check the Scalability of mongodb cluster we increase the number of workload that is

triggered by the YCSB in mongodb. Since we have mongodb sharded database cluster

with 3 replicated shards which have 12 shard servers. Scalability of sharded cluster is,

If all these serves are up (i.e. works fine) without any down time as long as we increase

the workload in the cluster.

Table 5.13: Scalability of the cluster

OVS-VXLAN weave

Scalability 170000 130000

lii

Figure 5.11: Scalability between Weave and OVS-VxLAN architecture.

liii

Chapter 6

Conclusion:

The research present novel approach that VxlAN will leverage open vswitch docker

networking for deployment of the container cluster in different network regions.We have

reviewed the challenges of docker networking that are arised during cloud deployment in

the section 4 and provided a novel solution 4by using VxLAN tunnelling in openvswitch.

we have tested the behaviour of the prototype in section 5 with different parameters

such resource utilization, network performance and cluster behaviour; achived expected

result.

6.1 Future Work:

Since docker and open vswitch is receving lots innovation our research could be still

continued for the following approaches:

Migrating cluster nodes: Each nodes can be migrated to nearest regions or accross

different cloup providers for the high avaiblilty.

Static routing in openvswitch: By implementing static routing in open vswitch to

exten the routing protocols to upper layers of OSI model.

liv

Bibliography

Charles Anderson. Docker [software engineering]. IEEE Software, (3):102–c3, 2015.

M. Bardac, R. Deaconescu, and A.M. Florea. Scaling peer-to-peer testing using linux containers. In

Roedunet International Conference (RoEduNet), 2010 9th, pages 287–292, June 2010.

David Bernstein. Containers and cloud: From lxc to docker to kubernetes. Cloud Computing, IEEE,

1(3):81–84, Sept 2014. ISSN 2325-6095. doi: 10.1109/MCC.2014.51.

D. Beserra, E.D. Moreno, P. Takako Endo, J. Barreto, D. Sadok, and S. Fernandes. Performance analysis

of lxc for hpc environments. In Complex, Intelligent, and Software Intensive Systems (CISIS), 2015

Ninth International Conference on, pages 358–363, July 2015. doi: 10.1109/CISIS.2015.53.

Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. Cloud

computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th

utility. Future Generation computer systems, 25(6):599–616, 2009.

M. Casoni, C.A. Grazia, and N. Patriciello. On the performance of linux container with netmap/vale

for networks virtualization. In Networks (ICON), 2013 19th IEEE International Conference on,

pages 1–6, Dec 2013. doi: 10.1109/ICON.2013.6781957.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Bench-

marking cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC ’10, pages 143–154, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0036-0.

doi: 10.1145/1807128.1807152. URL http://doi.acm.org/10.1145/1807128.1807152.

C. Costache, O. Machidon, A. Mladin, F. Sandu, and R. Bocu. Software-defined networking of linux

containers. In RoEduNet Conference 13th Edition: Networking in Education and Research Joint

Event RENAM 8th Conference, 2014, pages 1–4, Sept 2014. doi: 10.1109/RoEduNet-RENAM.2014.

6955310.

Luigi De Simone. Towards fault propagation analysis in cloud computing ecosystems. In Software

Reliability Engineering Workshops (ISSREW), 2014 IEEE International Symposium on, pages 156–

161. IEEE, 2014.

A. Dusia, Yang Yang, and M. Taufer. Network quality of service in docker containers. In Cluster

Computing (CLUSTER), 2015 IEEE International Conference on, pages 527–528, Sept 2015. doi:

10.1109/CLUSTER.2015.96.

Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance comparison

of virtual machines and linux containers. technology, 28:32, 2014.

lv

http://doi.acm.org/10.1145/1807128.1807152

Anders Friis-Christensen, Roberto Lucchi, Michael Lutz, and Nicole Ostländer. Service chaining archi-

tectures for applications implementing distributed geographic information processing. International

Journal of Geographical Information Science, 23(5):561–580, 2009.

W. Gentzsch. Linux containers simplify engineering and scientific simulations in the cloud. In Informa-

tion and Computer Technology (GOCICT), 2014 Annual Global Online Conference on, pages 22–26,

Dec 2014. doi: 10.1109/GOCICT.2014.11.

Wolfgang Gerlach, Wei Tang, Andreas Wilke, Dan Olson, and Folker Meyer. Container orchestration

for scientific workflows. 2015.

Prasad Gorja and Rakesh Kurapati. Extending open vswitch to l4-l7 service aware openflow switch.

In Advance Computing Conference (IACC), 2014 IEEE International, pages 343–347. IEEE, 2014.

Erico Guedes, Luis ET Silva, Paulo RM Maciel, et al. Performability analysis of i/o bound application

on container-based server virtualization cluster. In Computers and Communication (ISCC), 2014

IEEE Symposium on, pages 1–7. IEEE, 2014.

Federico Kereki. Concerning containers’ connections: on docker networking. Linux Journal, 2015(254):

2, 2015.

Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Esteve Rothenberg, Siamak

Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive survey. proceedings

of the IEEE, 103(1):14–76, 2015.

Mino Ku, Dugki Min, and Eunmi Choi. Analysis of virtual machine creation characteristics on virtu-

alized computing environment. In Networked Computing and Advanced Information Management

(NCM), 2011 7th International Conference on, pages 1–6, June 2011.

Di Liu and Libin Zhao. The research and implementation of cloud computing platform based on

docker. In Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2014

11th International Computer Conference on, pages 475–478. IEEE, 2014.

Yimeng Liu, Yizhi Wang, and Yi Jin. Research on the improvement of mongodb auto-sharding in cloud

environment. In Computer Science & Education (ICCSE), 2012 7th International Conference on,

pages 851–854. IEEE, 2012.

R. Ludvigh, T. Rebok, V. Tunka, and F. Nguyen. Ruby benchmark tool using docker. In Computer

Science and Information Systems (FedCSIS), 2015 Federated Conference on, pages 947–952, Sept

2015. doi: 10.15439/2015F99.

Mallik Mahalingam, D Dutt, Kenneth Duda, Puneet Agarwal, Lawrence Kreeger, T Sridhar, Mike

Bursell, and Chris Wright. Virtual extensible local area network (vxlan): A framework for overlaying

virtualized layer 2 networks over layer 3 networks. Technical report, 2014.

S. McDaniel, S. Herbein, and M. Taufer. A two-tiered approach to i/o quality of service in docker

containers. In Cluster Computing (CLUSTER), 2015 IEEE International Conference on, pages

490–491, Sept 2015. doi: 10.1109/CLUSTER.2015.77.

Michael A Murphy, Brandon Kagey, Michael Fenn, and Sebastien Goasguen. Dynamic provisioning of

virtual organization clusters. In Proceedings of the 2009 9th IEEE/ACM International Symposium

on Cluster Computing and the Grid, pages 364–371. IEEE Computer Society, 2009.

lvi

Lucas Nussbaum, Fabienne Anhalt, Olivier Mornard, and Jean-Patrick Gelas. Linux-based virtualiza-

tion for hpc clusters. In Montreal Linux Symposium, 2009.

Claus Pahl and Brian Lee. Containers and clusters for edge cloud architectures–a technology review.

In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on, pages

379–386. IEEE, 2015.

Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott Shenker. Extending

networking into the virtualization layer. In Hotnets, 2009.

Vedula Venkateswara Rao and Mandapati Venkateswara Rao. Performance metrics and issues in net-

work virtulization with cloud environment. Journal of Cloud Computing Research, 1(1):1–15, 2015.

Naidila Sadashiv and SM Dilip Kumar. Cluster, grid and cloud computing: A detailed comparison.

In Computer Science & Education (ICCSE), 2011 6th International Conference on, pages 477–482.

IEEE, 2011.

Putchong Uthayopas, Kazuhisa Ichikawa, H Abe, et al. An implementation of a multi-site virtual

cluster cloud. In Computer Science and Software Engineering (JCSSE), 2013 10th International

Joint Conference on, pages 155–159. IEEE, 2013.

lvii

Appendix

.1 MongoDB image Dockerfile

lviii

lix

.2 Shard Setup

lx

.3 Abbrivation

AWE=Address Windowing Exentension.

VxLAN= Virtual Extensible Local Area Network.

OVS= Open Virtual Switch.

YCSB= Yahoo! Cloud Serving Benchmark.

LXC= Linux Container.

VM= Virtual machine.

lxi

	Abstract
	Acknowledgement
	Declaration
	Introduction
	Background
	Virtualization and Virtual Machines:
	Virtual Machines:

	Linux Containers and Virualization:
	Peer-to-Peer:
	KVM and Linux Container:

	Docker:
	Clusters and Deployment of cluster using Virtualization technology:
	Networking virtual machines and containers:
	Network Virtualization:
	Software Defined Networking:
	Open vswitch:

	Design
	Specification:
	Cloud overlay networks:

	YCSB:
	Benchmark Tiers:

	Weave Docker plug-in:
	MongoDB sharding cluster:
	Auto-Sharding Architecture:

	Implementation
	The basic networking for the server using Ovs Bridge:
	Creating virtual ovs bridge br0:
	Attaching ovs bridge to docker0 bridge:
	Creating new IP pool for the docker0:
	Connecting the servers with the VxLAN tunnels:

	Deploying MongoDB cluster:
	Creating Mongodb dockerfile:
	Creating containers for the cluster configuration:
	Container shard cluster setup:

	Evaluation
	Server Resource Utilization:
	Before the deployment of the cluster:
	Resource utilization after deployment of a cluster:

	Bandwidth Availability:
	Performance of the Cluster:
	Read Operation:
	Update operation:

	Throughput of a cluster:
	Scalability of a cluster:

	Conclusion:
	Future Work:

	Appendix
	MongoDB image Dockerfile
	Shard Setup
	Abbrivation

