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Abstract 

The CCTV monitoring operators miss up to 95% of intrusions when monitor-

ing multiple cameras simultaneously (Hyenkyun, et al., 2010). In order to 

tackle this problem, many monitoring centres utilize various motion detection 

approaches, as opposed to constantly watching the screens. These ap-

proaches work well in illuminated environments or indoors, but outdoors 

these tend to generate multiple false alarms. The problem is even worse 

when the camera utilizes Infra-Red lighting, as noise motion such as drops of 

rain, cobwebs and flies are much more visible. Since every detection needs 

to be investigated, operators are able to monitor less cameras than they 

would otherwise, which increases the monitoring service price. 

One potential solution to false detections is the installation of motion sen-

sors, such as PIRs. However, these tend to be expensive, require additional 

wiring and hardware, and can be extremely unreliable. 

This research investigates if the latest background segmentation algo-

rithms can be utilized to suppress noise objects efficiently enough, to be 

utilized on embedded devices such as those used by IP cameras. To answer 

this question, a number of utilities were developed to allow the testing of 

problematic feeds and analysing results. In addition, a number of post-

detection filters were built to suppress false detections even further. 

The tests were carried out on a variety of video feeds containing intruders 

and noise objects. These tests were carried out on a laptop and various em-

bedded devices such as Raspberry PI. The research methodology used was 

quantitative. The analysis of the data shows that a significant amount of 

noise objects can indeed be suppressed, with acceptable decrease in FPS 

rate. 
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1 Introduction 

CCTV monitoring operators miss up to 95% of intrusions when monitoring mul-

tiple cameras simultaneously (Hyenkyun, et al., 2010). In order to tackle this 

problem, many monitoring centres utilize various motion detection ap-

proaches, as opposed to constantly watching the screens. These approaches 

work well in illuminated environments or indoors, but outdoors these tend to 

generate multiple false alarms. The problem is even worse when the camera 

utilizes Infra-Red lighting, as noise motion such as drops of rain, cobwebs and 

flies are much more visible.  

One potential solution to false detections is the installation of motion sen-

sors, such as Passive Infra Red (PIR). However, these tend to be expensive, 

require additional wiring and hardware, and can be extremely unreliable. 

The following literature review looks into various approaches of the fore-

ground/background segmentation to identify algorithms efficient enough to be 

run on embedded devices, such as those used in IP cameras or DVRs, while 

capable of suppressing the detection of noise objects. 

 

1.1 Literature Review 

Mishra et al conducted a study which showed that there are three sensible 

ways to detect motion in the series of frames; those are background subtrac-

tion, optical flow and temporal differences (Mishra, et al., 2011). However, 

because optical flow algorithms require special hardware assistance 

(Widyawan & Muhammad, 2012), this type of algorithms will not be investi-

gated further as the target devices required for applications such as IP 

cameras, are limited in resources and processing power.  

The background subtraction is performed by comparing new frames against 

a particular static frame. The temporal differences approach is very similar, 

with the exception that there are multiple static frames available to subtract the 

incoming frame from. The incoming frame is not typically subtracted from all of 

the frames in the set, but instead the algorithm selects dynamically one frame 

that should be used for subtraction (Mishra, et al., 2011). 
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In both processes, the pixels similar to both frames (incoming and refer-

ence) are removed, resulting in a bit map, where some of the pixels could 

represent a moving object and others different parts of the background. This 

approach is reasonably simple to implement and it is considered to consume 

the least number of CPU cycles due to lack of complex mathematical calcula-

tions. However, although its accuracy can be acceptable indoors, it might not 

be acceptable in the outdoors environment. This is primarily due to the fact 

that indoor feeds tend to have clearer images than outdoors, where rain, snow, 

dust, sudden light intensity changes and other environmental noise constantly 

changes the frame contents, resulting in false detections. Furthermore, be-

cause the outdoor scenes generally cover larger areas, the resulting Infra-Red 

image can be much darker outdoors than indoors, as can be compared below. 

 

Figure 1: Outdoor Infra-Red sample 

 

 

Figure 2: Indoor Infra-Red sample (Drinkwater, 2010) 
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1.1.1 Motion Detection and Analysis with Four Motion Detectors 

Ching, et al. developed a motion detection system utilizing four of the most 

popular algorithms, which were: current vs. previous frame subtraction, pixila-

tion, blob counter and morph filter. The algorithms were modified in order to 

optimize their performance. These algorithms were implemented in C# and 

Matlab programming languages. (Ching, et al., 2011) 

The aim of their research was to determine which of the four algorithms 

would yield best results with the least CPU load. However, although the au-

thors stated that certain approaches proved to be the most accurate and CPU-

friendly, a limited amount of data was included in the paper. 

The developed system was able to estimate detected object's speed, which 

was then used to determine the alarm level. However, although the speed can 

certainly indicate whether the detected motion is environmental noise or real 

motion object (e.g. intruder), the program, theoretically, would have been able 

to provide much more accurate results if the alarm level was calculated based 

on object's speed and size together. This is because the smaller the real ob-

ject is, the slower it would move as opposed to a drop of rain, which 

depending on the distance from the lens, could be about the same size as the 

intruder, but would move much faster. Zulaikha, et al. took a similar approach 

in order to tolerate noise, but have observed that lower frame rates can have 

an adverse effect on this kind of algorithm (Zulaikha, et al., 2012). 

The first approach used in this paper is current vs. previous frame, which 

subtracts one grey-scaled frame from another. Following this, the erosion filter 

was applied to remove sparse pixels which don't normally represent an object 

(Heijmans & Ronse, 1990). Then the remaining pixels are counted and if the 

total exceeds a specified threshold, the alarm was triggered (Stanley R. 

Sternberg, CytoSystems Corporation, 1983). However, according to the re-

search conducted by Ching Yee Yong, et al., the problem with this algorithm is 

that it cannot detect motion if the object is moving too slow. Another slight 

variation of this algorithm is to compare the current frame to the first frame ac-

quired from the video sequence. The only difference is that the first frame is 

gently changed one colour tone at a time. This is required to ensure that over 
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time the foreground doesn't become too different from the real background, as 

otherwise a ghost object would be detected (Tetsuya, et al., 2010). 

The second approach used in this paper is the pixilation filter, which evalu-

ates the mean saturation value for pixels within a fixed size square. As a 

result, the frame would become a grid of saturation means, which is then 

compared against a grid from the previous frame. This approach can poten-

tially save CPU cycles as the mean doesn't have to be calculated for every 

pixel, but for every nth pixel (where n is a variable), as according to (Duarte, et 

al., 2006) and (Birmohan, et al., 2014), neighbouring pixels tend to be similar. 

However, as described in the paper, this algorithm has a potential flaw. Be-

cause the adjacent HUE indices can signify completely different colours, the 

mean saturation can cause false alarms. 

The third approach used in this paper is the blob counter, which extracts 

pixels that fall into a particular range of colours. The blob denotes connected 

motion pixels in motion map, which can also be acquired using simple back-

ground subtraction techniques. This approach is a popular choice in 

applications where object tracking is required (Zulaikha, et al., 2012). Once the 

blob is identified, its shape and size is checked to determine if it matches the 

shapes defined by an operator beforehand, and if it does, the tracking can 

start and alarm can be raised. 

The final approach used by (Ching, et al., 2011) was the morph filter, but 

there was not enough information given as to how it was utilized and the re-

sults it produced. 

The test results of the system showed that it was able to separate the back-

ground from the foreground, although the maximum frame rate achieved was 

approximately 6 FPS. The accuracy of the detection was not specified.  

It was observed by the authors that faster frame rates (circa 35fps) can be 

handled by the system using the morph filter.  



- 5 - 

1.1.2 Video Analytics Algorithm for Detecting Objects Crossing Lines In 

Specific Direction Using Blob-Based Analysis 

Zulaikha, et al. conducted a study and developed a system for detecting, 

tracking and notifying surveillance operators of potential perimeter breaches. 

The system was mainly based on simple background subtraction and blob 

counting algorithms. The system was able to outperform one of the commer-

cial products by approximately 5-10% in terms of accuracy of detection. 

However, the results cannot be considered very accurate as very little is 

known about the commercial system and no other reference data was pro-

vided. Furthermore, the comparison between the results achieved in clear and 

raining weather is not clear as there is no mention whether the test was con-

ducted during the night or day.  

 

 Day Night Clear Weather Raining 

Proposed 97.48% 81.45% 90.59% 76.28% 

Commercial 90.34% 68.01% 80.93% 59.27% 

Table 1: PCC rates achieved by Zulaikha, et at. 

 

This is important as the authors observed that Infra-red (IR) lighting, bad 

weather and bad weather together with IR lighting causes both systems 

(commercial and proposed) to produce significantly more false alarms, than 

video sequences acquired during the day with good weather. (Zulaikha, et al., 

2012) 

The performance tests showed that the proposed approach was able to 

achieve real-time frame rates (over 25 FPS), but the frame size and host ma-

chine parameters were not specified. 

One strong feature of the approach taken by Zulaikha, et al. is the virtual 

boundary functionality, which acts as a mask, so that only pixels within the 

boundary are processed. As a result, the amount of data to be processed had 

decreased, yielding better performance. Furthermore, virtual boundaries can 

be utilised to mask noisy areas of the view, such as moving water or trees, in 
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effort to reduce false detections. The system also implemented the "tripwire" 

functionality which in essence is just a virtual line on the frame, which once 

crossed, causes the alarm to go off. But unlike the "tripwire" algorithm pro-

posed by (Yun & Arun, 2009), it was configurable to only raise alarms if the 

tripwire was crossed in only one direction. Therefore, the algorithm proved to 

be efficient in areas of dense traffic. 

The background modelling was performed by selectively updating the aver-

age value of each pixel that wasn't part of a moving blob. The background 

model was constantly updated. When a pixel within a given threshold re-

appeared in frames to follow, it was considered to be part of the blob, and was 

given a value of 1, alternatively, the pixel was given a value of 0. This resulted 

in a pixel map, denoting moving blobs, which were then passed on to the ob-

ject tracking algorithms. This approach helped eliminate false detections 

caused by rain or other fast-moving noise objects. 

In order to track each blob of pixels, a simplified "particle filter" algorithm 

was utilized (Sze, et al., 2010), where each blob was assigned at least one 

tracker, which would estimate object's position on the frame. 

1.1.3 Adaptive Motion Detection Algorithm using Frame Differences and 

Dynamic Template Matching Method 

Widyawan & Muhammad have conducted a research into the development 

of a Dynamic and Adaptive Template Matching (DATM) algorithm, which is es-

sentially an enhancement of the Dynamic Template Matching (DTM) algorithm. 

The Dynamic Template Matching approach is defined as a process for deter-

mining the reference image dynamically. The resulting algorithm achieved an 

improvement in accuracy of approximately 5%, when compared against the 

DTM approach. (Widyawan & Muhammad, 2012) 

The functional difference between DTM and DATM algorithms is that DATM 

is able to constantly adapt to scene changes, such as sudden illumination. In 

order to do this, the reference frame is constructed by calculating average 

RGB values for each pixel. Subsequent frames would be compared against 

the reference frame, which would return a percentage of changes as a result. 

It should be noted that the reference frame would not be updated in areas 
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where a moving object is being detected. This is required to prevent the object 

from slowly fading into the background. 

The testing metric used by Widyawan & Muhammad was True Positives 

(TP) and False Positives (FP), where TP is the condition where the object ap-

peared in the view and was detected successfully. The FP on the other hand 

was when a ghost object was detected.  

The algorithm was tested using an IP camera, however, the camera and 

computer specifications, and CPU load were not disclosed. That said, frame 

size used during test was 256x192 pixels at 1 frame per second, therefore, the 

CPU load would've been reasonably low, even on a previous generation ma-

chine, such as Pentium 4 1.6 GHz. Nevertheless, despite of the low resolution, 

the algorithm was able to achieve 95.5% detection rate, which showed that 

large frames and fast frame rates might not be required for the approach to be 

effective.  

1.1.4 Environmentally Robust Motion Detection for video surveillance 

Hyenkyun, et al. observed that CCTV monitoring operators miss between 

45-95% of actual intrusions when monitoring numerous cameras simultane-

ously. Therefore, the authors proposed a motion detection algorithm which 

would help operators notice motion without having to look for it. This algorithm 

is able to automatically adjust its parameters based on the environment, in or-

der to suppress false alarms, by ignoring the noise caused by bad weather 

and sudden illumination. The primary objective of the proposed approach was 

to detect moving objects, but the exact shape and border of the object was not 

of the main concern. (Hyenkyun, et al., 2010) 

The authors claim that the proposed approach is suitable for devices with 

constrained resources, as it doesn't require fast CPU, nor a large RAM. How-

ever, although paper's benchmark showed that the algorithm was able to 

process video sequences at 125fps, the frame size was 160x120 pixels. The 

host machine used to perform the test was a Pentium 4 3.0GHz PC. This casts 

doubts on authors' claims in relation to suitability for resource-constrained de-

vices, as an average IP camera has a CPU of approximately 433-533MHz and 

resolution of at least 640x480 pixels(Business Wire, 2010).  
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The authors also claim that statistical background segmentation ap-

proaches are not always suitable because they require re-tuning between day 

and night environments, which is why the variational energy approach was 

chosen. This method is a complex equation often used in quantum mechanics.  

 

"Detection of moving objects is performed by thresholding the difference between two con-

secutive images. These methods work very well in day time since there is high intensity 

contrast among objects, while, at night, false alarms and detection failures are generated by 

low contrast and relatively high noise induced by poor lighting conditions. To overcome these 

problems, various statistical methods [9]–[14] are applied, but it is still hard to adapt abrupt 

changes of illumination without manual changes of their parameters. It is often necessary to 

adjust parameters of the model for satisfactory performance when environmental  conditions 

are changed such as illumination due to light." 

 (Hyenkyun, et al., 2010) 

 

"To overcome such difficulties, we introduce a variational energy model with low depend-

ency on parameters and robust to environmental changes and variation in signal-to-noise 

ratio." 

 (Hyenkyun, et al., 2010) 

 

The algorithm proved to be weak in scenes with swaying trees or fountains, 

in other words, scenes that have constant moving objects without a consistent 

shape. As a result, statistical background estimation approach was required, 

which defeated the purpose of the complex variational energy algorithm. 

 

"For more reliable motion detection algorithm, we need to adjust the background estima-

tion following statistical changes in image sequences." 

 (Hyenkyun, et al., 2010) 

 

That said, object detection masks could be set to ignore motion in certain 

areas using approach similar to that used by Zulaikha, et al.  
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In conclusion, although the algorithm proposed by Hyenkyun, et al. might 

look like a feasible option for accurate motion detection, more simplistic ap-

proaches are still required, which can potentially provide good performance 

and accuracy without the need for complex and potentially heavy algorithms. 

1.1.5 The OBSERVER: An Intelligent and Automated Video Surveillance 

System 

Duarte, et al. conducted a study for the development of a new approach for 

detecting humans' abnormal behaviours based on adaptive background sub-

traction algorithm. The research showed that criminal activity can indeed be 

predicted from real-time CCTV footage. The algorithm consisted of the follow-

ing steps: detect moving object, detect shadows, highlights and ghosts, 

remove shadows, highlights and ghosts from the motion mask and merge 

them back into the background. (Duarte, et al., 2006) 

Before any analysis can begin, the motion object should be detected and 

segmented. The segmentation logic should be able to accurately determine 

object's border and therefore shadows, highlights and ghosts should be re-

moved before determining the border. To do this, motion mask is generated 

using the difference between the background and current frames, which then 

is passed to the algorithms for removal of shadows and highlights. The 

shadow and highlight algorithms also generate a bit mask, but unlike the 

background subtraction, this happens in HUE colour space. The resulting 

masks are then subtracted from the initial motion mask. At this stage, noise 

and ghost objects might still be present in the new mask, therefore the noise is 

removed first, by applying a thresholding filter, which removes small sparse 

objects.  

In this paper, the ghost object was defined as: 

 

"false positives originated by displacements of background objects" 

 

(Duarte, et al., 2006)  
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In order to detect ghosts, a border of an object has to be determined. For 

this each pixel relative to the motion map is compared with its four neighbour-

ing pixels and if their similarity is higher than a predefined threshold, it is 

considered to be part of the edge. Following this, the edge of the object is 

compared against the background and if the displacement is higher than 10%, 

the object is considered as ghost. 

The following image shows the different stages of motion detection process. 

Figure 3: The OBSERVER motion segmentation (Duarte, et al., 2006) 

(a) Background Image; (b) Current Image; (c) Primary Motion Mask; (d) 

Shadow Mask; (e) Highlight Mask; (f) Filtered Motion Mask 

 

Following the detection of the object, it is passed onto the tracking logic, 

where a tracker is attached to the object, which is required by the behaviour 

detection and prediction. The behaviour detection and prediction logic utilizes 

a database where various object attributes are stored. These are classified by 

operators and then used to compare newly detected objects. If the new object 

is found in the database, then the probability of the event becoming abnormal 

is calculated based on attributes such as object speed, size, perimeter, area. If 

the probability exceeds the predefined threshold, an alarm event is raised. 

The test results of this approach showed that it could be utilized in real-time 

surveillance, however the test parameters were not given. In addition, the al-

gorithm was not tested with real CCTV footage, and more importantly, footage 
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obtained from IR cameras, as many background segmentation algorithms 

would fail to perform well under such conditions (Hyenkyun, et al., 2010). 

1.1.6 ViBe: A universal background subtraction algorithm for video se-

quences 

Olivier & Marc conducted a research into the development of a robust and uni-

versal algorithm for the foreground subtraction, which makes no assumptions 

related to the scenes or its attributes, instead it focuses more on what a poten-

tial object might be, which achieves a high degree of accuracy in object 

detection. (Olivier & Marc, 2011) 

 

"ViBe makes no assumption regarding the video stream framerate or color space, nor regard-

ing the scene content, the background itself, or its variability over time." 

(Olivier & Marc, 2011) 

 

The authors state that most of the background subtraction approaches are 

based on pixel A vs. pixel B comparison given the threshold T, however, abso-

lute comparison of the two pixels with a particular threshold is not always 

accurate, especially over time. Therefore the threshold T should be dynamic 

and should be relevant to the statistical pixel change rate.  

The algorithm builds a background model where each pixel has a set of his-

tory pixels from previous frames. Every incoming pixel is compared against the 

pixels of the set using the Euclidean distance. Where the number of history 

pixels that are identified to be within a radius R, is less than a constant thresh-

old, the incoming pixel is considered to be background. The following figure 

shows this logic in Euclidean colour space, where v(x) represents an incoming 

pixels and vn a sample. The radius R represents a threshold. 
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Figure 4: ViBe's background detection illustration (Olivier & Marc, 2011) 

 

The background model is built from the first frame of the sequence, allowing 

the detection to begin from the second frame, however, because sudden light 

changes in the scene might significantly alter the chromaticity component of 

the frame, in such cases the background model would be discarded com-

pletely and the latest frame would then be used to rebuild the background 

model. It should be noted that the background model is not always discarded 

due to sudden illumination, but only early in the cycle. The background model 

initialization is based on assumption made by (Pierre-Marc, et al., 2007), 

where the neighbouring pixels hold very similar temporal distribution.  

It was observed by the authors that in case the background model is initial-

ized from a frame containing a moving object, the approach would introduce a 

ghost object, which would eventually be dissolved due to constant model up-

dates. 

The algorithm uses a "conservative update" approach taking into account 

the temporal spacial distribution assumption described by Pierre-Marc, et al. 

(Pierre-Marc, et al., 2007), in order to update the background model. The con-

servative update means that a pixel belonging to the foreground should never 

be used to update the background. However, according to the authors, this 

approach could lead to ghost objects. To remedy this, temporal spacial distri-
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bution of neighbouring pixels is used to update background pixels covered by 

the foreground object. According to the authors, most of the background up-

date approaches simply remove the oldest frame, which is not correct as just 

because a particular pixel is old, doesn't mean it changed. Therefore, the pix-

els inside the pixel model are replaced randomly, although this approach might 

still lead to wrong pixels being replaced. It should be noted that neighbouring 

pixel models are also randomly updated. 

The tests were conducted on two different types of video sequences con-

taining complex backgrounds, such as moving trees and bushes. Then the 

results were compared against 2 simple and 5 advanced algorithms.  The 

comparison was made using Percentages of Correct Classification framework, 

which determines the percentage of correctly identified pixels. The results 

clearly showed that the rate of correct detections increased from approxi-

mately 88% to 99% as the number of samples increased from 0 to 20, after 

that the Percentage of Correct Classification (PCC) rate remain roughly the 

same. Given the fact that normal video frame rate is about 24 fps (Chaney, 

n.d.), it would take the algorithm close to 1 second to build reliable background 

model, and as a result, the additional complexity introduced with building the 

model from the first frame is largely redundant. 

 

 

Figure 5: ViBe PCC rates achieved by the authors (Olivier & Marc, 2011) 
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Figure 6: ViBe FPS rates achieved by the authors (Olivier & Marc, 2011) 

 

The tests conducted against other algorithms showed that ViBe was able to 

outperform all of them and was able to ignore moving trees. That said, the 

maximum frame rate achieved by ViBe is 250 FPS, which puts it on a second 

place after sigma-delta algorithm (Antoine & Julien, 2007). The host machine 

used in a test was a Core i7 2.67GHz with 6GB of RAM; the frame size was 

640x480 pixels. The MODE algorithm (Birmohan, et al., 2014) utilized very 

similar approach to that of ViBe, in fact it borrowed some of the concepts but 

the test was conducted on a significantly weaker machine, where the test re-

turned only 7fps. Therefore high frame rate achieved in ViBe's test could be 

the result of a very powerful machine rather than well optimized algorithm. 

1.1.7 Background Subtraction Based on a Robust Consensus Method 

Hanzi & David  conducted a research into the development of the SAmple 

CONsensus (SECON) algorithm, which is an adaptive background subtraction 

algorithm that can be utilized on both, static and dynamic scenes. The algo-

rithm utilizes the colour normalization technique in order to detect/suppress 

shadows and handle illumination changes. In this approach, the chromaticity 

and luminance of the RGB colour space are separated and luminance is ig-

nored, however, (Birmohan, et al., 2014) critique this approach, stating that it 
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causes too much detail to be ignored and that it performs poorly in low-

intensity frames, causing false detections. (Hanzi & David, 2006) 

The video sequence processing flow is the following: 

 

Figure 7: SECON Flow Diagram (Hanzi & David, 2006) 

 

In the flow chart above, TOM stands for Time Out Map, which is a map of 

pixels where the value for each pixel is increased every time the pixel is 

marked as a foreground. The SECON box represents the algorithm that classi-

fies pixels into background or foreground based on background samples. The 

result of this algorithm is a map of Foreground Pixels, which might contain 

holes in cases where the moving object contains similar colours to the back-

ground. At this stage, the pixels in holes (if any) have to be validated and the 

background updated with pixels that turned out to be background. The pixels 

that turned out to be representing the foreground would update TOM to keep it 

up-to-date for the sequences to follow. The hole pixels validation logic com-

pares the pixels of a hole against the pixels in the background frame that are 
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in the same location. If the difference between the colours is greater than a 

constant threshold, then the pixels are considered to be background pixels. 

The test was conducted using False Positive (FP), False Negative (FN) and 

Total Error (TE) metrics. The Wallflower benchmark (Kentaro, et al., 1999) 

conditions were utilized and tested indoors, although some of the tests in-

volved switching lights on and off. It should be noted that the algorithm wasn't 

tested with IR lighting and in outdoors environment.  

The results showed the Total Error rate for different configurations and dif-

ferent tests, but, although the paper states that it outperformed other state-of-

the-art algorithms, not enough data was provided to support this claim. The 

frame rate achieved was between 6 and 10 FPS for 160x120 pixels frame on 

Pentium M 1.6 GHz machine. This showed that the approach would not be 

suitable for real-time surveillance, which requires the frame rate to be up to 

24fps, unless of course even smaller resolution would be sufficient for accu-

rate detection. However, such condition was not tested and even if it was, it is 

unlikely that better results would've been achieved as the frame size of 

160x120 pixels is close to the minimum resolution required to identify moving 

objects, especially on wider angle views. 

1.1.8 Motion Detection for Video Surveillance 

Birmohan, et al. developed a novel approach to background subtraction which 

is independent from bootstrapping, illumination changes, noise and dynamic 

variations in scenes. In this paper bootstrapping is defined as: 

"The process of initializing the background model in which foreground ob-

jects are also available"  

(Birmohan, et al., 2014) 

 

This paper also presents a new colour model for the detection of illuminations 

and shadows, and a new object tracking technique. Unlike SECON approach 

(Hanzi & David, 2006), where the RGB luminance component is completely 

ignored, the authors suggested to reduce its importance in order to reduce 

false alarms, while suppressing shadows. 
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 The algorithm borrowed background initialization and updating techniques 

from SECON (Hanzi & David, 2006) and ViBe (Olivier & Marc, 2011) algo-

rithms, therefore, although the algorithm is based on statistical pixel data, it is 

able to initialize its model from the first frame, where the incoming pixels would 

be compared against neighbouring pixels of a background frame. The authors 

admit that initially this approach might lead to false detections, until a larger 

set of statistical data is available, which in case of ViBe is about 20 frames, 

and therefore translates to approximately 1 second for initialization. It should 

be noted that the background frame cache is constantly updated by com-

pletely replacing some of the frames (starting from second most recent). 

In order to detect whether the pixel belongs to the foreground or the back-

ground, Euclidean distance is utilized. The calculated distance between a 

particular pixel in background and foreground represents a rate of colour 

change between the pixels, where the shorter distance means that the two 

pixels are similar. The bit mask is then constructed where ones represent the 

foreground and zeros the background. 

The model update was performed randomly, where each pixel to be up-

dated was selected by summing the pixel indexes and frame number and then 

applying modulus constant. If the resulting value was zero, then the pixel, 

along with its neighbour pixels were updated. The random pixel selection algo-

rithm used was very similar to the one used in ViBe (Olivier & Marc, 2011). 

The testing of the algorithm was performed using two data sets of approxi-

mately 40 video sequences in total, covering a wide range of scenarios, such 

as sudden illumination, dynamic background and shadows, among others. The 

test results showed that the MODE algorithm performed better than any other 

tested algorithms, however, it was only able to provide a frame rate of 7fps on 

a 1.4GHz CPU with 1GB of RAM. The frame sizes were not included in the 

data provided and the data sets used could not be found.  

1.1.9 A new motion detection algorithm based on Σ-Δ background esti-

mation 

Antoine & Julien conducted a research into the development of a surveillance 

system that would automatically detect moving objects without having to fre-
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quently configure or adjust its parameters (Antoine & Julien, 2007). The main 

requirements of the system are that the system should be able to build the 

model from initial frames, handle sudden illumination and to be lightweight in 

order to be used in devices with limited resources, while processing feeds in 

real-time. In order to satisfy all of these requirements, the authors eliminated 

most of the popular approaches, such as first vs. current frame comparison, 

temporal average of the background, methods using histogram analysis, linear 

prediction, kernel density estimation and principal component analysis.  

The core of the proposed algorithm (pronounced as sigma-delta) is to incre-

ment or decrement the pixel representation of the model when building or 

updating the model. This results in a statistical model, which is then subtracted 

from the incoming frames. The values used to increment or decrement the 

pixel model are Gaussian distributions. However, (Olivier & Marc, 2011) and 

(Srivastava, et al., 2003) argue that Gaussian based statistical model is not 

always relevant to the natural images. In addition, (Olivier & Marc, 2011) 

stated that Gaussian based models cannot handle high speed moving objects, 

which wasn't tested by the authors of sigma-delta.  

The time variance of the pixel was calculated in order to classify pixels as 

foreground only if they remain in the view for a prolonged period of time. As a 

result, this algorithm should be able to cope with rain drops on IR feeds, as the 

drop would only remain in the view for a couple of frames only. The tests 

showed that this algorithm is able to accurately detect moving objects sur-

rounded by constantly moving background, such as grass.  

Following the detection of the foreground, the noise and ghost objects are 

removed using spatiotemporal regularization and binary morphology, which 

were claimed to be significantly complex but at the same time efficient.  

The performance of the algorithm was tested on an artificial retina device of 

200x200 8-bit pixels with a 25MHz processor, which achieved 2.25ms per 

frame, where only 0.75ms was spent on segmentation and the rest on image 

acquisition. This strongly suggests that the approach is well capable to proc-

ess high resolution images on embedded devices, but the accuracy of the 

approach was not tested. That said, (Olivier & Marc, 2011) had tested their al-



- 19 - 

gorithm against this exact implementation of the algorithm which left it on ap-

proximately third place in terms of accuracy and on the first place (by a long 

shot) in terms of speed of processing measured in FPS. 

1.1.10 The Pixel-Based Adaptive Segmenter (PBAS) 

Hofmann, et al. conducted a research into the development of a non-

parametric motion detection algorithm where some of the parameters for each 

pixel are adjusted dynamically at runtime (Hofmann, et al., 2012). This algo-

rithm is very much based on ViBe algorithm, so this approach can be seen as 

a potential improvement of ViBe. 

Just like in ViBe (Olivier & Marc, 2011) and SECON (Hanzi & David, 2006), 

this algorithm represents a background pixel as a "history of N", where N 

represents an incoming pixel. It uses a random update rule to update the 

background model,  similar to that in ViBe. The main difference between ViBe 

and PBAS is in the randomness approach taken by PBAS. Vibe uses a fixed 

randomness and threshold parameters for all pixels, whereas PBAS adapts 

these parameters dynamically at runtime for each pixel separately. Therefore, 

some pixels are not guaranteed to be updated at all, which could present a 

problem for mistakenly identified pixels. 

The algorithm detects whether the pixel is foreground or background by 

comparing it to the set of history pixels at the same coordinate. This compari-

son is made using the Euclidean distance, just like in ViBe, but the distance 

threshold is determined dynamically for every pixel N separately. The minimum 

number of pixels that must be closer than the distance threshold for classifying 

the incoming pixel as foreground or background, remained a constant value. 

Another dynamic parameter that PBAS has introduced, is the probability 

rate for updating the background model. Where the probability rate is higher 

than a dynamic threshold, the incoming pixel is used to update the history set 

of pixels, unlike the approach taken by ViBe, where this value is a non-

parametric constant. The size of the history set does not change, therefore 

some old background pixels need to be removed to make room for the incom-

ing pixel. The approach taken by PBAS is to choose randomly the pixel in the 

history set to be replaced with the incoming pixel. However, this approach 
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could result in the removal of pixels that more closely represent the back-

ground. Besides, by the time the background model needs to be updated, 

Euclidean distance would've been already calculated, therefore the resulting 

values could've been reused without further calculations to select the furthest 

(e.g. the least similar) pixel. 

Another one contrasting feature of the algorithm is that it would "eat-up" the 

foreground objects over time, in order words, the foreground objects would be 

slowly merged into the background from outside. The authors claims that this 

logic allows incorrectly detected foreground objects to be moved into the 

background quickly, at the price of slowly "eaten-up" real foreground objects. It 

is unknown how fast this would happen, therefore it is unknown if this is likely 

to cause problems with slow moving objects. 

The algorithm is able to learn which parts of the frame are foreground and 

which are background, therefore, more "active" parts of the frame result in 

background to be updated more frequently, which could lead to performance 

improvements as less background pixels need to be updated, especially given 

the fact that most of the time, most of the pixels represent a background. 

The performance tests were carried out against the "Change Detection 

Challenge" (Pierre-Marc, et al., 2010) data set, which contained a variety of 

different scenes. The metric used to record the accuracy of the approach was 

the Percentage of Bad Classification.  

 

Algorithm Percentage of Bad Classification 

PBAS 1.7693 

ViBe 3.1178 

Figure 8: PCC results comparison between ViBe and PBAS algorithms 

achieved by Hofmann, et al 

 

The test results showed that the algorithm outperformed all of the state-of-

the-art algorithms tested, with accuracy improvements of up to 51% percent. 

However, the processing frame rate was not specified.  
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1.2 Research Question 

The primary use of the foreground segmentation in CCTV monitoring centres 

is to detect intruders on numerous simultaneous feeds without having to look 

for them. This would not only decrease the chance of overlooking an intrusion, 

but could also decrease the amount of staff required to perform the monitoring.  

The task of segmenting the feeds can generally be located in two places, on 

a remote site or inside the monitoring station. The remote CCTV devices are 

generally low-powered and resource constrained, which typically deal with a 

smaller number of feeds (between 1 and 16). The monitoring station on the 

other hand, can be a powerful computer, however, it would need to be able to 

process hundreds of feeds simultaneously as it might be connected to numer-

ous sites.  

Given these constraints and that many monitoring customers opt-in for the 

IR types of cameras, this research attempted to answer the following question: 

Can latest background subtraction algorithms be utilized on embedded de-

vices, in order to successfully detect moving objects on IR video sequences, 

while ignoring environmental noise such as cobwebs or rain? 

1.3 Conclusion 

This chapter provided a brief overview of the different motion detection and 

background segmentation approaches, most of which could be suited for the 

surveillance purposes, however, none of these approaches have been tested 

against outdoor IR feeds. These kinds of feeds tend to cause a lot of false 

alarms in monitoring centres due to bad weather or insects living on the cam-

eras. 

The performance of the reviewed algorithms varied between acceptable to 

unacceptable for real-time detection on embedded devices, bearing in mind 

that most of the feeds were tested against extremely low resolution of about 

0.2MP, using which on wide angle feeds can have an adverse effect. 
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Therefore, this paper looks into the development of a tool which would allow 

testing various motion detection algorithms against problematic and generic 

night feeds, on a range of devices. In addition, the tool attempts to suppress 

noise objects through purpose built post-detection filters.  

The remainder of the document is structured as follows: 

1.3.1 Chapter 2 

This chapter describes the problems and benefits of motion detection, libraries 

available for video processing and state-of-the-art algorithms that could poten-

tially be suitable for the real-time monitoring on resource-constrained devices.  

1.3.2 Chapter 3 

This chapter describes in detail the testing harness, post-detection filters, tar-

get devices and result analysis tools, developed in order to conduct tests and 

inspect the results of various combinations of segmentation algorithms, filters 

and devices.  

1.3.3 Chapter 4 

This chapter describes the methodology, data sets and conditions used to per-

form the testing. Following this, the test results are analyzed and summarized. 

1.3.4 Chapter 5 

This chapter describes the results that have been achieved, the strengths and 

weaknesses of the approach chosen and draws a conclusion. 
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2 Theory and Background 

Operators miss up to 95% of true alarms/incidents when monitoring multiple 

cameras simultaneously (Hyenkyun, et al., 2010). Most situations require that 

the incidents are dealt with in a timely manner (Kevala & Sasse, 2006), there-

fore any potential intrusion has to be detected in real-time. 

Companies such as Group4 Security and Netwatch have a multitude of 

cameras that have to be constantly monitored and every detection has to be 

investigated. In order to stay competitive, monitoring centres often charge as 

little as €6.00 per 24 hours of monitoring of up to 16 cameras. Therefore, for 

the business to make a profit, the cameras to staff ratio needs to be high. This 

presents a problem when bad weather or cobwebs constantly set the alarm 

off, increasing the chance of missing an intrusion.  

The problem often can be solved by installing motion detection sensors, 

such as Passive Infra-Red or Point-to-point Infra-Red sensors, but these sen-

sors are expensive and for various reasons can be extremely unreliable. The 

motion detection, on the other hand, is the perfect solution, but it requires 

good lighting. However, due to high electricity costs, the Infra-Red lighting is 

often chosen. The IR light results in a black and white picture, making it hard 

for motion detection algorithms to determine whether the pixel is background 

or foreground, resulting in many false detections.  

The development of a new motion detection algorithm or filter that could de-

tect and/or suppress "noise" objects is crucial for today’s businesses, as it 

would allow increasing the cameras-per-person ratio, while decreasing the risk 

of missing an important event. 

2.1 Definition of "real-time" 

The real-time frame rate value varies as it is bound to a context where it's 

used, for example in movies at least 24FPS would typically be required, how-

ever, in CCTV monitoring environments, anything from approximately 12 FPS 

can be deemed acceptable, because the video feed would still be seen as 

"live", as opposed to "slide show" effect resulted from much lower FPS. Fur-

thermore, the vast majority of CCTV systems operate with frame rates 
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between 6 and 10 FPS (Honovich, 2011), although the article recommends 

frame rates of at least 12 FPS to remove erratic motion. Therefore, for the re-

mainder of this work the "real-time" frame rate would refer to at least 12 FPS. 

2.2 Video Processing Devices 

The foreground/background segmentation is a highly versatile process, which 

is used for many different purposes and devices, such as phones, security 

equipment, still shot cameras and others. Many of such devices have high-end 

processors and often dedicated graphics chips. The power of these devices 

tends to drive their price, which often is too high for CCTV purposes as nor-

mally at least 4 cameras are needed to secure the perimeter. As a result, lower 

end processors are generally used for CCTV video recorders and cameras. 

Therefore, for the purposes of this research, development boards Raspberry 

Pi 1 Model B (Raspberry PI Foundation, n.d.), Orange PI (Xunlong Software 

CO.,Limited, 2015) and Banana PI (Banana Pi, 2015) were used. This devel-

opment board is equipped with a 700MHz CPU and 512MB of RAM, among 

other peripherals such as USB host and an Ethernet adapter.  

2.3 Low-Resolution Frame Processing 

Many of the existing algorithms are CPU-intense (such as those based on his-

tograms or Gaussian models). This forces the processing to be based on 

much smaller frames, approximately 256x192 pixels. Although multiple re-

search papers suggest that such small frame size is sufficient for accurate 

detection [(Widyawan & Muhammad, 2012), (Hyenkyun, et al., 2010), (Hanzi & 

David, 2006)], it is arguable whether the detection rate would be acceptable on 

wide angle scenes, as the scene features would be much smaller. As such, it 

is possible that a single drop of rain could be larger than a person walking in 

front of the camera, making it practically impossible to tune down the sensitiv-

ity of the motion detection algorithm to suppress false detections. 
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Figure 9: Wide angle frames with snow too close to the lens(Anon., 2010) 

 

Another feature that is widely used, is the boundary mask. When the user 

marks certain areas of the frame as to be ignored, those pixels usually would 

not be iterated over, therefore speeding up the process of foreground segmen-

tation. It should be noted though, that the primary use-case of this feature is to 

ignore certain parts of the frame, the performance benefits are collateral. 

2.4 Computer Vision Framework 

The video processing and analysis is generally very complex, even in simple 

application that for example, only retrieve frames and iterate over pixels. In or-

der to avoid “re-inventing the wheel”, the OpenCV library (Open Source 

Computer Vision Library, 2015) has been used to aid the development of the 

prototype and testing harness. Perhaps one of the most important features of 

this library, is the automatic memory management, which guards against 

memory leaks (to some extent). Memory management aside, the OpenCV li-

brary also provides a number of motion detection algorithms, effective pixel 

manipulation helpers/utilities and frame analysis tools.  

The BSGLibrary (Andrews, 2015) was also utilized as it implements a num-

ber of motion detection algorithms, which can segment video feeds, but it is 

not able to compare the foreground against the ground truth or calculate re-

sults. Furthermore, this utility is compiled for windows environment and 

therefore would not run on a Linux development board. 
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2.5 Types of Motion 

When monitoring a large number of cameras in a setting such as a CCTV 

monitoring centre, it is crucially important that the moving objects are accu-

rately detected, as otherwise false-positives would trigger alarms, distracting 

the operators and causing them to become less vigilant. Many algorithms are 

well able to perform this task exceptionally well in cases where the scene is 

well illuminated by either street lights or day light. However, when Infra-Red 

light is used (e.g. during the night), moving objects such as dust, rain, snow, 

cobwebs, flies, etc. reflect much more (infrared) light than the rest of the back-

ground, causing the noise objects to be much more visible than they would be 

during the day, which triggers false alarms. From the perspective of the motion 

detection algorithms, these alarms cannot be classified as false detections, 

because they are actual moving objects, but the monitoring centre operator 

does not need to know about them.  

The most typical types of motion are the following: 

 Actual moving objects, such as a human or an animal 

 Background movement, such as that caused by waiving trees and 

running water 

 Small flying objects, such as rain or snow 

 Cobwebs and spiders in front of the camera 

As can be seen from the following images, the objects of interest tend to 

have less brightness, the cobweb are often transparent and the rain drops 

typically don't remain in the view for a prolonged period of time. Where rain 

could potentially be tolerated by advanced motion detection algorithms, such 

as those based on the temporal differences or statistical approaches 

(Manzanera & Richefeu, 2007), the cobwebs would still be detected, because 

they remain in the view much longer and often cover larger view area. 
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Figure 10: Contrast difference between a genuine moving and over-saturated 

object 

 

 

Figure 11: Semi-transparent cobweb over saturating the frame 

 

 

Figure 12: Wide angle frames with snow too close to the lens (Anon., 2010) 
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2.6 Background Subtraction 

The background subtraction technique is perhaps the simplest technique 

available for detecting motion. It generally works by subtracting pixels in one 

frame from another. The resulting set of pixels is considered to be the motion 

object. This approach is very popular due to its simplicity and low processing 

power requirements, however, it performs poorly in the outdoors environment 

with low lighting. In addition, this algorithm can be fooled, if the object is mov-

ing too slow, especially with the higher frame rate, in which case the difference 

between frames would always be minuscule (Ching, et al., 2011) (Olivier & 

Marc, 2011). In order to remedy this, a number of algorithms were developed. 

As already mentioned, the most popular approach is the simple background 

subtraction, where two grey-scaled frames (background and incoming) are 

subtracted from each other, then, sparse pixels are removed using the erosion 

filter and finally, the remaining pixels are counted, determining whether the 

alarm should be triggered. Then, the background frame is discarded and the 

incoming frame becomes the new background. 

2.7 Adaptive Background Subtraction 

This approach is slightly more complex but typically more powerful. Many sim-

ple algorithms just discard the old background frame, however, just because 

there is a more up to date frame, it doesn't mean that all of the pixels in the 

older frame no longer represent the background. As such, the main principle 

with this kind of approach is to adapt the estimated background to the actual 

background by gradually merging the incoming frames into the background. 

This prevents slowly moving objects from being undetected as the background 

is not completely discarded every time.   

The adaptive background subtraction approach is often based on statistics, 

where every frame coordinate has a collection of pixels from previous frames. 

The incoming frame pixels at the same coordinates are then compared against 

these collections, and generally the incoming pixel would be considered as 

foreground if it deviates too much from the pixels in the collection. 

The adaptive background subtraction algorithms used in this research were:  
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 PBAS (Hofmann, et al., 2012)  

 Sigma-Delta (Antoine & Julien, 2007) 

 ViBe(Olivier & Marc, 2011) 

The Pixel-Based Adaptive Segmenter (PBAS) algorithm was chosen primar-

ily because it is based on ViBe algorithm, but also because it showed a 

significant improvement in segmentation accuracy. The test results described 

in PBAS paper suggest that the approach is highly efficient and that it outper-

forms many of the state-of-the-art approaches, including ViBe, but testing 

hardware specifications and achieved FPS rate was not specified.  

The ViBe algorithm was chosen as according to its authors, the algorithm is 

capable of achieving very high FPS and PCC rates. In addition, the perform-

ance of ViBe can be seen in action on authors' website in form of a video, 

which shows that the algorithm is able to cope very well with sudden illumina-

tion, temporary motion and fast-moving objects. (Anon., n.d.) 

The Sigma-Delta algorithm was chosen because it outperformed ViBe in 

terms of CPU load by almost double, however, a lower PCC rate was 

achieved, with only 85%, whereas ViBe achieved close to 100% (Olivier & 

Marc, 2011). It can also adapt well to the constantly moving backgrounds and 

other noise objects. 

2.8 Performance Evaluation 

The selected algorithms were evaluated against the "Change Detection Chal-

lenge" database of videos (Pierre-Marc, et al., n.d.), which features a number 

of different scenes and scenarios, such as bad weather, night videos, dynamic 

background and many others. In addition to the database, a number of short 

clips captured by a local CCTV camera were used. These clips feature infra-

red-illuminated scenes, where cobwebs are moved by wind or spiders and/or 

falling drops of rain.  

All of the algorithms were tested with and without custom filters developed 

as part of this research in order to determine their effectiveness. The ground 

truth was established manually and was used in accuracy measurement (i.e. 
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PCC). The frame rate achieved during processing was also measured and re-

corded. 

The performance testing was carried out on a number of development 

boards, similar to the Raspberry PI. The tests were carried out with different 

frame sizes in order to determine if the frame size used for detection has an 

effect in accuracy. The Percentage of Correct Classification metric was used to 

measure algorithm’s accuracy and the FPS rate to determine if the algorithm 

would be suitable for real-time processing. 

 

2.9 Conclusion 

Every approach has its benefits, and many are able to accurately separate 

foreground from the background, but because the “noise” motion objects are 

actual objects, it is very hard to suppress them.  

Out of all of the reviewed papers related to motion detection, very little was 

aimed at detecting motion on IR frames and no test video database was found 

that would contain less perfect video clips, such as that where time to time a 

spider crawls in front of the camera.  

After observing closely the characteristics of the motion to be suppressed, a 

couple of key properties were detected. As it can be seen in Figure 11, the 

noise shape has a number of transparent sections. The operator can assume 

that an intruder would not be transparent, therefore, the background features 

identified on the provisional foreground objects can be removed from the fore-

ground, leaving only solid colour object.  

Another problem that can be observed on the frame from Figure 10: Con-

trast difference between a genuine moving and over-saturated object, is that 

objects located too close to the camera/lens reflect too much infra-red light, 

over-saturating the frame. These objects often become so over-saturated, that 

they appear in pure white colour. Therefore, the operator could make an as-

sumption that parts of the foreground that have a value higher than a particular 

threshold, should be ignored. This is because the objects of interest would 

normally reflect less light, and therefore would appear as grey. 



- 31 - 

The background segmentation on its own is quite error prone when it comes 

to black and white feeds (Ching, et al., 2011) (Tetsuya, et al., 2010), therefore 

additional video filters are required to filter out what the surveillance operator 

does not need to know about. These filters can be based on object speed, col-

our, direction, starting point and heading direction, movement patterns and 

others.  
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3 Segmentation Tester 

Motion detection is becoming a more and more popular choice for security 

companies specializing in CCTV monitoring, because it allows detecting in-

truders without having to install special hardware, such as PIR sensors, which 

is expensive, require additional maintenance and can be tampered with with-

out the operator knowing about it (e.g. sensor could be pushed to point to 

another direction).  Motion detection on the other is much harder to tamper 

with and doesn't require additional hardware. However, it can be a nuisance 

for an operator in cases where the monitored area is lit up by Infra-Red light. 

The main problem with IR is that most cameras have the IR LEDs located 

around the lens, and therefore, objects that are located very closely to the lens 

would reflect too much IR light, over-saturating the image. Furthermore, the IR 

light attracts spiders, which then weave the web around the lens resulting not 

only in over-saturated frames, but also constant false detections due to web 

movements.  

In order to address this issue, a utility was developed which allows testing a 

number of latest motion detection algorithms against problematic feeds. These 

algorithms were tested on normal computers and embedded devices, such as 

Raspberry PI. The reason for performing tests on Raspberry PI is because IP 

cameras are becoming more and more popular as they are able to deliver high 

resolution video for the price of analogue cameras and they utilize hardware 

with similar architecture to Raspberry Pi. As a result, the motion detection 

process is shifting from Digital Video Recorder devices to IP cameras, which 

tend to run on cut-down versions of Linux and on processor architectures such 

as ARM.  

The test results of this utility were used to identify motion detection algo-

rithms which could perform at real-time frame rate on embedded devices, 

while accurately separating the foreground from the background on IR video 

feeds. This also included classifying moving cobwebs (and other noise ob-

jects) appropriately and removing them from the foreground.  
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In order for the testing harness to determine whether the algorithm is suit-

able for the task, the segmentation results must be collected from feeds 

containing scenarios where: 

 an intruder appears in the view, while no noise objects are visi-

ble/moving 

 an intruder appears in the view, while noise objects are visi-

ble/moving 

 there is no intruder in the view but the noise objects are visi-

ble/moving 

The above condition was also tested on full-size frames in order to deter-

mine whether more frame detail can produce more accurate results. 

3.1 Testing Harness 

The testing harness encapsulates multiple motion detection algorithms and 

post-detection filters. Most of the implementations for the algorithms used 

were taken from a BGSLibrary project, with the exception of ViBe algorithm, 

which was acquired directly from the authors (Olivier & Marc, 2011).  

The harness was designed to run only in command line mode because the 

graphic user interface (GUI) adds more load on the embedded device as Linux 

X Server and the Window Manager would also need to be running. However, 

for debugging purposes it is possible to enable some GUI so that incoming 

and processed frames are shown, although this would only work on operating 

systems with Window Managers running (e.g. not SSH or command line). 

The harness expects a number of command line parameters, which are 

used for configuring the test run. These parameters allow specifying the 

source of the video (can be a path to a file, a URL to a video stream or device 

ID), test results destination path, ground truth source, the algorithm to be used 

for motion detection, optional post-detection filters, frame size and others (full 

list of parameters can be found in Appendix 4).  
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3.1.1 Frame Acquisition 

The testing harness is developed to be able to read frames from a variety of 

sources, such as video files, sequence of image files or video streams such as 

RTSP or raw streams, captured from a camera directly connected to the com-

puter running the test utility.  

The OpenCV library is able to automatically detect and read all types of 

sources mentioned above, however, it is not able to automatically read se-

quences of images as it wouldn't know which file name represents which 

frame.  

Therefore, since the file sequences provided by "Change Detection Chal-

lenge " use the file name format such as "in000001.jpg", this format was "hard-

coded" in the testing harness logic. The logic for reading this kind of se-

quences would record last read frame number and increment that value by 

one, in order to construct the file name of a next frame to be read when re-

quested next. The same logic is employed for ground truth frames. 

Before the read frame is segmented, it is resized proportionally to the width 

specified as a command line argument. Then, the resized frame is converted 

to greyscale.  Both of these operations are required to optimize performance 

and to test whether processing full-size frames can increase the detection ac-

curacy. The only exception is the Sigma-Delta algorithm, which requires colour 

frames, therefore in this case the greyscale conversion would happen after 

segmentation. The greyscale frame processing was enforced for most algo-

rithms because IR feeds are always black and white anyway. 

3.1.2 Test Results 

In order to be able to accurately analyze the results of the combination of 

settings for each test run, each frame would be saved onto the hard drive (or 

network drive) after the segmentation process. The file name would be com-

posed of a frame number followed, by the type of frame (e.g. input, output). In 

order words, the file name of each of the files would be in the following format: 

1234-motion.jpg 

1234-input.jpg 
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1234-ground.jpg 

 These file names would then be written to the CSV file used as output. All 

this data would be inspected at a later stage by the test result analyzer pro-

gram, which is described further down. 

It should be noted that "input" and "ground" types of frames would be cop-

ied from the source directory to destination even if they are stored in the 

source directory as a sequence of files, as opposed to a video file. This is re-

quired in order to be able to test the algorithms using footage saved in video 

file formats such as AVI, or live video feeds (although in this case no ground 

truth would be available). 

The frame processing rates, measured in frames per second (FPS) were 

written to the standard output stream every second and as an average at the 

end of processing. 

The testing harness would also measure and record the percentage of cor-

rect classification (PCC) for each of the processed frames in the CSV file.  

The detailed CSV file format can be found in the Appendix 6. 

3.1.3 Performance Testing 

In order to achieve accurate results, it was decided to only measure the per-

formance of frame segmentation and filtering procedures, while excluding the 

time taken by reads, writes and PCC calculation. This is required because 

otherwise some streams could be encoded, adding more load on the CPU 

when decoding such frames. In addition, network problems could slow down 

data transfer, resulting in slower reads or writes. Therefore, measuring only the 

time taken by the segmentation processes would result in most accurate fig-

ures and the target devices would not need to be run on a separate (low 

traffic) networks. 

3.2 Target Devices 

The test harness is developed to be run under Windows, Linux and Linux run-

ning on ARM architecture. However, although compiling for Windows and 

Linux is a reasonably quick procedure, compiling for Raspberry PI (and other 
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development boards) required the use of "distcc" (Pool, n.d.) tool because the 

development boards perform much slower when it comes to compilation, 

unlike standard computers. Therefore, to utilize the power of a standard CPU, 

the "distcc" tool sends the source code files to a machine with a faster CPU, 

where they're compiled and the resulted object file is returned back to the de-

velopment board.  

The linking stage is then completed on the development board, which is a 

relatively quick process. More details on compilation are available in Appendix 

3 

The following table contains the specifications for the devices used in the 

test: 

Device  RAM CPU GPU OS Price 

Raspberry PI 512MB Broadcom 

700MHz 

Broadcom 

VideoCore 

IV  

Linux (Rasp-

berrian) 

€32.00 

Banana PI 1GB ARM Cor-

tex-A7 1GHz 

(dual core) 

Mali400MP2 

GPU 

Linux (Rasp-

berrian) 

€32.00 

Orange PI 2 1GB ARM Cor-

tex-A7 

1.6GHz 

(quad core) 

Mali400MP2 

GPU - 

600MHz 

Linux (Rasp-

berrian) 

€35.00 

Lenovo 

ThinkPad 

x220  

8GB Intel i5 vPro 

2.6GHz (2 

core, 4 

threads)  

Intel Graph-

ics 3000 - 

650MHz 

Windows 8  

 

Table 2: Device Specification 
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3.2.1 Motion Detection Algorithms 

The BGSLibrary contains a number of different implementations of motion de-

tection algorithms, which is why it was decided to reuse the source code 

available in GitHub instead of re-implementing the algorithms to be tested. The 

latest version of the source code available at the time of writing of this thesis 

was used, which is 1.9.2. The only exception is the PBAS algorithm, which 

was removed from the later versions of the library, and therefore it was taken 

from an earlier branch. The only problem with earlier version of the library is 

that algorithms only returned the foreground mask and not the background 

model, as a result, transparency removal filter could not be utilized. To over-

come this, a custom background model filter was developed, which is 

described further on. Modifying the PBAS algorithm was not possible as the 

change would be too involved due to the way the background model is per-

sisted. In addition, in would add not only complexity, but also extra load on the 

CPU as the existing multi-layer background model would need to be converted 

into a single layer. 

The source code for the ViBe algorithm was acquired from its authors as it's 

not part of the BGSLibrary. This source code was modified in order to expose 

the background model. Although PBAS algorithm is based on ViBe, internally 

ViBe's background model is also kept in form of a single-layer frame, which 

allowed expositing it without extra processing. In addition, the algorithm was 

wrapped in a generic class so it can be called polymorphically, just like the 

other BGS algorithms. 

3.2.1.1 Algorithm Configuration 

It is important to keep the algorithm configuration separate from the compiled 

code - a requirement well taken care of by the BSGLibrary. The library stores 

the configuration in XML files, which makes it easy to modify it even at run-

time, if required. The configuration used for the algorithms is available in 

Appendix 5. 

As mentioned previously, the ViBe algorithm was wrapped in a generic 

class so it can be treated in code just like the other BGS algorithms. The so 

called "interface" (located in IBSG.h file) contains methods for loading and 
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saving configuration of the algorithm. These were implemented in the wrapper 

so that the configuration is also saved in XML format, just like other BGS algo-

rithms. It should be noted that, although method for updating the setting 

"number of samples" is available, the actual method is not implemented and 

therefore the default value is always be used. 

Additional configuration can be supplied with command-line arguments, 

however, this configuration is mainly specific to post-detection filters, rather 

than motion detection algorithms. The full list of available options is described 

in Appendix 4. 

3.2.2 Post-detection Filters 

The post-detection filters are filters that are applied to the segmentation output 

and perform their task only on pixels that were identified as foreground. These 

filters were developed to fix a specific problem, which generic motion detection 

algorithms can't. 

3.2.2.1 Transparency Removal Filter 

It was observed that very often a moving cobweb changes a large blob of pix-

els causing the blob to be classified as foreground. It was also observed that 

this blob of pixels very often looks transparent as it would often be out of fo-

cus. Although classifying this type of blob as a foreground would be correct 

from the perspective of the motion detection algorithm, this type of object 

would need to be suppressed, as the operator does not need to be aware of it. 

In order to do this, the incoming frames, foreground and background models 

are scanned to detect any feature points. Following the detection, the coordi-

nates of each of the feature points in the foreground are compared against 

those in the background. If the distance between the coordinates is within a 

given threshold, the section covered by the feature point is removed from the 

foreground mask. The section to be removed would have a square shape with 

side lengths configured through command-line parameter "Removal Shape 

Size". The feature point displacement threshold was also made dynamic, and 

therefore can be changed through command-line parameter "Distance 

Threshold". This detection method assumes that the intruder object would not 

have the same feature points in the same location as the background.  
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One of the important points about this approach is to ensure that the fore-

ground of interest (i.e. intruder) is not merged into background, as otherwise 

this would cause the feature points to be located within the displacement 

threshold, causing the motion object to be removed from the foreground mask. 

The feature detection algorithms used to detect feature points were those 

available in the OpenCV library. Although all of the tested algorithms showed 

similar results in terms of accuracy, the "FastFeatureDetector" proved to be 

the fastest and most accurate, therefore it was selected as the default detec-

tor. Other detectors can be selected dynamically using the command-line 

arguments.  

In order to optimize performance of this filter, the only pixels that were proc-

essed by the detector were those that were present in the motion mask.  

3.2.2.2 Colour-based Filter 

It was observed that in certain situations the moving objects in front of  the 

camera reflect so much light, that the object becomes completely white (see 

Figure 10: Contrast difference between a genuine moving and over-saturated 

object). 

The intruder on the other hand would normally reflect far less light and 

therefore would normally appear in grey colour.  

Given these two rules, the filter was developed so that pixels brighter than 

certain threshold are removed from the motion mask.  

 

3.2.2.3 Heat Map Filter 

It was also observed that noise objects would either have the same motion 

pattern or would be present in the frame temporarily, although it is enough to 

be detected as foreground by some motion detection algorithm. In order to 

take care of this scenario, the heat map filter was developed, which would 

classify a pixel as foreground only in situations where the same pixel was de-

tected as foreground in a number of previous frames subsequently. 
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The pixels that are detected as a foreground cause the relative pixels in the 

heat map model to be incremented (up to a value of 255), alternatively those 

pixels are decremented until the value reaches zero. 

The configuration of this filter is done through command-line arguments. 

The options available for this filter are the minimum and maximum heat values 

that the heat map should reach in order to classify the motion pixel as fore-

ground. Where the heat value of a pixel is under the minimum or over the 

maximum value, the pixel is not classified as foreground and is removed from 

the motion mask, but the heat value is still incremented or decremented. 

This filter works based on the assumption that the noise objects move too 

fast, whereas intruders would move slower as they're further away from the 

lens.  

Similar approach is used by the Sigma-Delta algorithm (Manzanera & 

Richefeu, 2007) where a statistical model is built by incrementing or decre-

menting related pixels. However, the core difference between the two 

approaches are that the Sigma-Delta algorithm increments and decrements 

Gaussian distributions, whereas the heat map filter operates on bit masks that 

represent foreground pixels. 

3.2.2.4 Custom Background Model 

Some algorithms, such as Sigma-Delta or PBAS, either don't have or don't ex-

pose the background model used internally, which makes it impossible for the 

transparency filter to perform it's task. In order to overcome this limitation, a 

custom background model was developed, which can be enabled on demand 

using the command-line argument. The model works by merging incoming 

pixels into the existing model by selecting pixels randomly, with the exception 

of the pixels that were detected as a foreground - these are ignored.  

The available command line arguments are the "pixel update step" and 

"frame update step". The first argument must be more than or equals to one, 

as it is used to determine which pixels should be skipped and which should be 

updated. At runtime, this value is used to get the random integer that is less 

than or equals to this value as otherwise some pixels would never be updated. 

If the value of this parameter is one, it would cause every pixel to be updated. 
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The second argument indicates how many frames should be skipped before 

the update happens and therefore the value must be more than zero in order 

to skip frames. The logic to skip frames is only required to improve perform-

ance. 

3.2.3 Ground Truth Comparison 

The ground truth is represented by a mask for each of the video frames 

captured by the camera. The pixel values of this mask are as follows: 

 0 - Static 

 50 - Hard Shadow 

 85 - Outside the region of interest 

 170 - Unknown Motion, such as distortion caused by a drop of rain 

on a lens 

 255 - Motion 

The ground truth comparison was performed between the foreground mask 

and the related ground truth frame. Some of the ground truth sets were sup-

plied by the " Change Detection Challenge ". The ground truth for the footage 

recorded using a local camera was established manually, which followed the 

same convention as in the " Change Detection Challenge " data set.  

The results of this comparison would be a percentage of correct classifica-

tion (PCC) and it would be written to a CSV file along with the frame number, 

input and ground truth file names.  

The pixels were classified as correctly identified only when at least one of 

the following conditions held true: 

 Ground truth pixel has a value of 50 (Hard Shadow) 

 Ground truth and motion mask pixels both have a value of 255 (Mo-

tion)  

 Ground truth and motion mask pixels both have a value of zero 
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The pixels matching the first condition above would essentially be ignored. 

This is because the shadow could be caused by an actual moving object, but 

not every motion detection algorithm is able to separate shadow pixels.  

3.3 Test Result Analysis Tool 

This GUI tool (MotionDetectionAnalyzer) was developed to facilitate the analy-

sis of the results generated by the testing harness. It was built using the 

Windows Forms .NET technology and therefore can only be run under Win-

dows environment. The tool allows the user to select a CSV file containing the 

mappings between the different frame types and the PCC rates. This tool 

works under the assumption that the CSV file and the files referred to in the 

CSV file are located within the same directory.  

When the CSV file is loaded, each of the files referenced in the first line are 

loaded into a corresponding section of the GUI window. The scroll bar below 

the frames can be moved back and forward in order to fast-forward or rewind 

the video sequence. This allows the user to carefully inspect each of the 

frames (and their different states) in order to understand better the weak-

nesses of a particular approach of configuration.  

 

 

Figure 13: Test Result Analysis Tool screenshot 
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The “Percentage of Correct Classification” label contains the percentage of 

pixels that were correctly detected for the frame identified by the “Frame Num-

ber” label, whereas the value next to “Average PCC” label contains the 

average PCC across all frames. 

 



- 44 - 

4 Results and Analysis  

The aim of this research is to identify background segmentation algorithms 

capable of accurately separating the foreground from the background on Infra-

Red feeds. These algorithms should be able to process video streams in real-

time, on resource-constrained devices. CCTV Monitoring centres often use 

motion detection as a way of detecting intrusions, but it normally leads to nu-

merous false detections caused by rain, flies and cobwebs. This causes 

operators to become less vigilant, increasing the chance of intruders gaining 

access undetected. 

4.1 Methodology 

 This research focused on a number of motion detection algorithms, which ac-

cording to their authors were able to accurately segment video sequences, 

while producing high FPS rate. Each of the algorithms was tested on a large 

data set containing a variety of night scenes. Furthermore, each of the algo-

rithms was also tested with different post-processing filters. Each of the test 

runs produced two main values, the FPS and PCC rates which were used to 

determine the suitability of a particular approach for the problem in hand. 

Therefore, the methodology chosen for this research was quantitative. 

4.2 Model 

A number of scripts were developed which encapsulated various configura-

tions for the Segmentation Tester utility, such as input and output paths to 

video feeds, working width, algorithms and filters to be used and filter configu-

rations. One script was developed per data set, containing various conditions 

to be tested. The Segmentation Tester tool would be called from within the 

script, which would iterate sequentially over the frames in the data set, sepa-

rate the foreground from the background and then compare the resulting 

foreground mask against the ground truth model. This would then produce a 

PCC value for each iteration. The tool would also accurately measure the time 

consumed by the segmentation process, excluding the time spent on frame 

acquisition and other pre-processing tasks. The time spent by the segmenta-

tion logic was then used to generate the FPS rate.  
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Each test run produced one CSV file, which contained the PCC rate. The 

FPS rate was not included in the CSV file, but instead was output to standard 

output (e.g. the command line window), which was then captured in a LOG 

file.  

4.3 Data Sets 

In order to accurately measure the performance of a particular algorithm, 10 

different data sets were used. Three of these data sets were recorded using a 

local CCTV camera. These contained footage of the same scene before and 

after the cobweb appeared in the view, and with intruder present and absent.  

In order to determine whether higher resolution frames has any positive effect 

on accuracy of detection, the first 3 data sets were produced with resolution of 

720x405 pixels. For lower resolution testing, each of the frames was resized 

on-the-fly by the testing utility.  

The remaining 7 data sets were acquired from "Change Detection Chal-

lenge" website. This data set contained night outdoor footage of public places, 

such as a street, bridge and motorway. The frames sizes and aspect ratios in 

these data sets varied, therefore, in order to achieve accurate test results, the 

working width was adjusted so that the total amount of pixels processed by the 

Segmentation Tester would be similar between all tests.  

4.4 Conditions Tested 

There are many variables involved in the configuration of each algorithm and 

filter. Since testing each one of them by "brute force" would be practically im-

possible, each algorithm was configured to optimum settings where the real 

motion object could be detected as close as possible to the ground truth, dis-

regarding the level of environmental noise detected along the way. The 

contents of the configuration XML files for each of the algorithms tested can be 

found in Appendix 5.  

Once the segmentation algorithms were set, post detection filters were config-

ured to suppress environmental noise with minimum knock-on effect on 

objects of interest. The configuration options for each of the filters are avail-

able in Appendix 4.  
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Although the primary focus of this research were algorithms ViBe, PBAS 

and Sigma-Delta, other algorithms available as part of BGSLibrary project 

were also tested for comparison. 

Each test run was made against 7 algorithms, 10 night-time data sets and 4 

types of devices. Every run was different, with variations in working width and 

filters applied. The following lists show the algorithms, data sets and variations 

used for every run. 

 

Algorithms Tested 

 Adaptive Background Learning 

 Adaptive Selective Background Learning 

 Weighted Moving Mean 

 Static Frame Difference 

 PBAS 

 Sigma Delta 

 Vibe 

 

Data Sets Tested 

 back yard without cobwebs and with intruder 

 back yard with cobwebs and with intruder 

 back yard with objects over-saturating the view 

 winter street 

 tram station 

 street corner at night 

 fluid highway 

 busy boulevard 

 bridge entry 

 

Test Variations 
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Working width 

proportional to 

320x180 pixels  

Working width 

proportional to 

720x405 pixels 

Transparency 

Filter Enabled 

Custom Back-

ground Model 

Enabled 

Heatmap Filter 

Enabled 

Y N N N N 

Y N Y N N 

Y N Y Y N 

Y N N N Y 

N Y N N N 

N Y Y N N 

N Y Y Y N 

N Y N N Y 

 

Table 3: List of conditions used for each test run 

 

 

4.5 Conditions Excluded  

Tests with working width proportional to 720 pixels and those that used PBAS 

algorithm were excluded from embedded devices and were only performed on 

a laptop against the data sets recorded by a local camera. This is because the 

data acquired from the first 3 tests carried out on the development machine 

was sufficient to answer the related question. 

In addition, tests on wide angle feeds was not carried out as such feeds 

could not be acquired. 

4.6 Experiment Results 

The experiment was conducted initially on the first 3 data sets recorded with a 

local camera. The first data set contained a clear image, without cobwebs and 

with intruder appearing in the view after approximately 220 frames. This test 

was performed in order to acquire the base PCC and FPS rates, which was 

then compared with the results from other data sets and algorithms of the 
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same scene. The "Change Detection Challenge" data set was used to acquire 

results from a wider range of scenarios, which don't necessarily have a cob-

web problem. 

The first test was executed on a development machine using high and low 

resolution feeds. The primary focus of this experiment was to determine 

whether the higher resolution images can have a positive effect on segmenta-

tion accuracy. Therefore, no post-detection filters were utilized during this test. 

 

 

Figure 14: FPS comparison from low and high resolution tests 

 

The test result showed that increasing the resolution of the feed does in-

deed increase the PCC rate, but this increase was negligible, especially when 

taking into account the dramatic decrease in FPS rate, as can be seen in Ta-

ble 7. The frame sizes for low and high resolution tests were 320x180 and 

720x405 pixels respectively. 

 

 

Following the high resolution tests, feeds with lower resolutions were tested 

on all devices and against all data sets. As anticipated, the PCC rate did not 
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change between tests conducted on different platforms, therefore the chart be-

low shows the average data acquired by all 4 platforms.  

 

Figure 15: Post-detection filter PCC rate comparison  

 

The results showed that every post-detection filter increased  the PCC rate, 

although the heat map filter was able to provide the highest and the most con-

sistent result. The transparency filter and custom background model also 

showed an improvement in detection accuracy, although the custom back-

ground model barely had any effect when used in conjunction with algorithms 

that expose their own background model. This indicates that the custom back-

ground model is at least as efficient as that in other state-of-the-art algorithms. 

The algorithms identified as the most effective were ViBe, Weighted Moving 

Mean and Adaptive Background Learning. The FPS rate achieved by these 3 

algorithms on Banana PI showed that only ViBe algorithm was capable of 

processing video feeds in real-time, whereas results obtained from Raspberry 

PI showed that none of these algorithms were able to perform fast enough. 

The Orange PI met the minimum requirement for real-time processing (ap-

proximately 12 FPS) for all 3 algorithms and 3 filters. However, the increase in 

FPS doesn't justify the increase in PCC in most cases, with exception of Adap-

tive Background Learning, as can be seen in the following tables. 
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 Adaptive Back-

ground Learning 

ViBe Weighted Moving 

Mean 

FPS 4.32% 5.56% 5.4 

PCC 3.5% 0.78% 0% 

Table 4: FPS increases proportional to PCC increases for Heatmap filter on 

Orange PI 

 

 Adaptive Back-

ground Learning 

ViBe Weighted Moving 

Mean 

FPS 64.2% 67.02% 72.11% 

PCC 1.8% 0.03% 0.51% 

Table 5: FPS increases proportional to PCC increases for Transparency Re-

moval filter on Orange PI 

 

The transparency filter was not able to achieve the minimum requirement 

for real-time processing on Banana PI, The heatmap filter, on the other hand, 

was able to achieve approximately 12.56 FPS on this board, as can be seen 

from the following charts. 
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Figure 16: FPS rates comparison between algorithms and filters. Test con-

ducted on a Raspberry PI. 

 

 

 

Figure 17: FPS rates comparison between algorithms and filters. Test con-

ducted on a Orange PI. 
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Figure 18: FPS rates comparison between algorithms and filters. Test con-

ducted on a Banana PI. 

 

The Saturation Remover filter was developed specifically to ignore parts of 

the motion mask which represents pixels that are much brighter than those of 

a potential intruder. Therefore, this filter cannot be classified as universal, 

unlike other filers and algorithms investigated in this research. As a result, this 

filter had to be tested using a feed that contained over-saturated pixels.  
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Figure 19: Saturation Remover filter PCC rates comparison  

 

The test results showed an increase in accuracy by almost 14%, as it is the 

case with Static Frame Difference algorithm. Other algorithms were also more 

accurate with this filter, but the increase in PCC was not as big.  

Orange PI was the only board capable of achieving real-time FPS rate with 

algorithms Adaptive Background Learning, Static Frame Difference, ViBe and 

Weighted Moving Mean. However, the increase in PCC didn't justify the in-

crease in FPS for ViBe and Weighted Moving Mean algorithms, as can be 

seen from the following table. 
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Table 6: FPS increases proportional to PCC increases for Saturation Remover 

filter 

 

The accuracy of detection was also measured separately for the two kinds 

on data sets. 

 

 

Figure 20: PCC rates achieved from feeds containing cobwebs 

 

The data in the above chart showed that the algorithms ViBe and Weighted 

Moving Mean were able to detect over 99% of pixels correctly on IR feeds. 

The 3 filters also showed a significant increase in PCC rates for some algo-

rithms. However, the chosen algorithms and post-detection filters were not so 

effective against feeds from "Change Detection Challenge" data sets, as can 

be seen in the following chart. 
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Figure 21: PCC rates achieved from "Change Detection Challenge" data sets 

 

Apart from the PCC rates, foreground and ground truth masks were in-

spected, which showed a significant decrease in detection of unwanted 

objects, whilst the moving object of interest was not affected badly.  

 

 

Figure 22: Noise object suppression example (no intruder)  

Top-left: input, Top-right: heatmap mask, Bottom-left: background model, Bot-

tom-right: ViBe foreground mask 
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Figure 23: Noise object suppression example (intruder present)  

Top-left: input, Top-right: heatmap mask, Bottom-left: ground truth, Bottom-

right: ViBe foreground mask 

 

It should be noted that the IR feed captured with a local camera was darker 

than normal, especially when compared to feeds as in Figure 10. As a result, 

more accurate detection happened when the moving object moved closer to 

the camera as it became brighter. This caused a decrease in PCC rate, mean-

ing that with brighter feeds, the results could've been much better. 

 

4.7 Conclusion 

The 7 algorithms and 4 filters were tested on 4 different devices, using 10 dif-

ferent data sets. Algorithms such as Adaptive Background Learning, ViBe and 

Weighted Moving Mean were able to segment the foreground from the back-

ground most accurately. However, the CPU on Raspberry PI board was not 

powerful enough to process video feeds in real-time.  

The Banana PI board was able to process video feeds in real time using al-

gorithms ViBe, Weighted Moving Mean and Heatmap filter. The Orange PI 

board was capable of processing video feeds in real-time using all 3 algo-

rithms. The 4 filters also reached the real-time requirements, but only for ViBe 
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and Weighted Moving Mean, as Adaptive Background Learning was not able 

to process feeds in real-time with Transparency Filter. 

Inspecting the resulting segmentation masks showed a noticeable decrease 

in incorrectly detected pixels, but none of the algorithms or filters were able to 

completely remove the noise objects. That said, the feed containing noise ob-

jects was too dark, therefore brighter IR feeds could potentially result in more 

accurate detections as a higher threshold could be used without affecting fore-

ground objects. 

Alternative data sets (without noise objects) were also tested in similar 

manner, which showed that the filters had a negligible increase in PCC rates, 

but significantly increased the FPS rates. 

High resolution feeds were also tested, which showed that increasing the 

frame size did not significantly increase the PCC rate, but did decrease the 

FPS rate substantially.  
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5 Conclusion and Future Work 

5.1 Conclusion 

The incorrectly detected objects on CCTV feeds is a big problem for monitor-

ing centres and security businesses as it increases the amount of people 

required to monitor customer sites. This increases monitoring costs to con-

sumers. With the growing popularity of IP cameras, the segmentation process 

is moving away from DVRs or monitoring centres to IP cameras, which are run 

on embedded devices. This research attempted to identify background seg-

mentation algorithms capable of accurately segmenting video feeds, while 

being run on cheap and low-power boards, such as Raspberry PI, Banana PI 

and Orange PI. In order to do this, a utility was created, which allowed per-

forming tests against various types of video feeds using different variations of 

algorithms, filters and configurations.  

In order to verify the effectiveness of different approaches, the test utility 

was run against data sets containing noise objects located too close to the 

camera and clear feeds, mainly featuring streets and boulevards without any 

noise objects. The results showed that although none of the tested algorithms 

were able to completely remove noise motion, algorithms such as ViBe and 

Weighted Moving Average were the most accurate. The results also showed 

that simple filters, such as Heatmap, can significantly increase the accuracy 

rates without serious knock-on effects on FPS rates. 

This research also investigated whether increasing the frame size could in-

crease the accuracy of the detection. The test was conducted against data 

sets with 320x180 and 720x405 pixel frames. The results showed that the FPS 

rate increased 5 times, but practically no increase in PCC was registered. 

The boards tested as part of this research showed that Raspberry PI is not 

suitable for surveillance purposes as it was not able to reach real-time frame 

rate with any of the algorithms. The results acquired from boards Banana PI 

and Orange PI showed that they could be suitable for surveillance purposes 

as they were able to reach real-time frame rate with most of the algorithms.  
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5.2 Future Work 

There is a multitude of studies done in an attempt to develop accurate fore-

ground segmentation algorithms, however, the testing of new algorithms is 

often performed against data sets containing images with clearly visible differ-

ences. Such tests can show promising results, but in real life and especially 

with IR feeds, could prove to be inefficient. This is why more research is re-

quired in this field, which needs to be conducted against problematic video 

feeds.  

This research evaluated the performance of boards containing more than 

one CPU core, however, it is unknown whether the algorithms tested utilized 

more than one core. The development of solutions capable to be run on multi-

ple cores simultaneously can be complicated, but could potentially double or 

quadruple FPS rates on boards such as Banana PI and Orange PI, as these 

have 2 and 4 cores respectively. 

The smallest frame size used to conduct testing was 320x180 pixels, which 

was above the average frame size tested by other researchers. Since this re-

search showed that increasing frame size has no noticeable effect on PCC 

rates, further investigation is required to determine the minimum size of the 

frame that could be used in foreground segmentation. If the amount of pixels 

decreases, the FPS rate would increase, allowing for more complex calcula-

tions to be performed instead. 

This research also showed that simple filters, such as Heatmap can make a 

big difference in PCC without big decrease in FPS. The Heatmap filter "re-

members" the most triggered pixels or patterns and tries to suppress them. 

However, suppressing such pixels can have an adverse effect on intruders 

which appear in the same area, as these could also be suppressed. Therefore, 

further research is required to determine whether pattern databases can be 

utilized to determine whether the detected shape is reoccurring in a specific 

location too often, and in case it is, it could be suppressed. This differs from 

the Heatmap filter because new shapes, even if appearing in areas of sup-

pressed shapes, could be detected as objects of interests, until classified 

otherwise. 
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Appendix 1 - Test Results 

  FPS for 320 pixel 
wide frames 

PCC for 320 pixel 
wide frames 

FPS for 720 pixel 
wide frames 

PCC for 720 pixel 
wide frames 

ABL 217.6 95.14 44.94 95.7 
ASBL 36.69 89.87 7.72 90.19 
PBAS 4.72 93.33 0.95 93.28 
SD 44.65 97.23 9.34 97.54 
SFD 519.45 92.95 132.39 93.63 
VIBE 200.98 98.49 42.11 97.64 
WMM 241.18 99.3 49.47 99.38 

Table 7: FPS and PCC comparison from low and high resolution tests con-

ducted on a laptop 

 

  With Custom Background and 
Transparency Filter 

With Transparency 
Filter 

With 
Heatmap 

Without 
Filters  

ABL 91.48 91.48 93.13 89.87 

ASBL 79.43 79.96 92.51 74.73 

PBAS 89.99 86.8 92.01 86.8 

SD 91.09 88.69 92.12 88.69 

SFD 87.98 87.98 92.97 84.64 

VIBE 94.34 94.39 94.36 93.62 

WMM 94.9 94.9 94.42 94.42 

Table 8: Post-detection filters PCC rate comparison 

 

  With Saturation Remover Without Saturation Remover 

ABL 87.343147 85.337051 

ASBL 82.797825 79.608691 

PBAS 83.847845 81.760345 

SD 88.072619 86.533222 

SFD 68.510458 60.21152 

VIBE 88.318311 87.971589 

WMM 88.695623 88.254402 

Table 9: Saturation Remover filter PCC rates comparison 

 

  With Satu-
ration 
Remover 

Without 
Saturation 
Remover 

With Custom 
Background 
and Transpar-
ency Filter 

With Trans-
parency Filter 

With 
Heatmap 

Without 
Filters  

ABL 200.94 214.555 114.47 113.25 217.11 219.2 

ASBL 52.09 52.9412 24.88 24.65 47.03 45.92 

PBAS 4.70 4.76244 3.89 4.2 4.19 4.14 

SD 36.31 46.4043 35.45 48.01 46.94 47.06 
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SFD 342.69 519.757 98.03 100.14 441.76 537.65 

VIBE 173.25 176.836 135.47 130.491 193.15 206.56 

WMM 228.30 233.607 187.83 180.71 229.88 242.2 

Table 10: FPS rates comparison between algorithms and filters. Test con-

ducted on a laptop 

 

  With Satu-
ration 
Remover 

Without 
Saturation 
Remover 

With Custom 
Background 
and Transpar-
ency Filter 

With Trans-
parency Filter 

With 
Heatmap 

Without 
Filters  

ABL 6.01901 6.17106 4.25 4.26 6.17 6.42 

ASBL 2.70356 2.72901 1.96 1.96 2.79 2.84 

SD 5.09535 5.22297 3.46 5.43 5.23 5.42 

SFD 10.4779 11.0537 4.77 4.79 10.67 11.49 

VIBE 8.49478 8.84635 6.2 6.22 8.73 9.24 

WMM 6.44796 6.57187 5.08 5.1 6.54 6.85 

Table 11: FPS rates comparison between algorithms and filters. Test con-

ducted on a Raspberry PI 

 

  With Satu-
ration 
Remover 

Without 
Saturation 
Remover 

With Custom 
Background 
and Transpar-
ency Filter 

With Trans-
parency Filter 

With 
Heatmap 

Without 
Filters 

ABL 14.653 15.0794 10.06 10.08 15.05 15.7 

ASBL 6.4577 6.5342 4.61 4.61 6.67 6.8 

SD 11.7769 12.1708 7.9 12.56 12.04 12.54 

SFD 24.1185 25.2959 10.75 10.78 24.29 26.22 

VIBE 19.0848 19.746 13.86 13.86 19.59 20.68 

WMM 15.7459 16.1169 12.09 12.1 15.92 16.78 

Table 12: FPS rates comparison between algorithms and filters. Test con-

ducted on a Orange PI 

 

  With Satu-
ration 
Remover 

Without 
Saturation 
Remover 

With Custom 
Background 
and Transpar-
ency Filter 

With Trans-
parency Filter 

With 
Heatmap 

Without 
Filters  

ABL 6.01901 6.17106 7.59 7.61 10.26 11.5 

ASBL 2.70356 2.72901 3.46 3.46 4.41 5.03 

SD 5.09535 5.22297 5.95 9.53 8.22 9.14 

SFD 10.4779 11.0537 8.11 8.14 17.42 18.71 
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VIBE 8.49478 8.84635 10.51 10.55 13.91 15.18 

WMM 6.44796 6.57187 9.14 9.17 10.94 12.15 

Table 13: FPS rates comparison between algorithms and filters. Test con-

ducted on a Banana PI 

 

 With Custom Background and 
Transparency Filter 

With Transparency 
Filter 

With 
Heatmap 

Without 
Filters  

ABL 88.48 88.48 90.27 87.23 

ASBL 72.75 72.75 89.35 67.16 

SD 86.41 83.53 88.74 83.53 

SFD 87.22 84.41 88.73 84.31 

VIBE 83.64 83.64 89.97 80.49 

WMM 91.83 91.91 91.85 91.18 

Table 14: PCC rates achieved from "Change Detection Challenge" data sets 

 

 With Custom Background and 
Transparency Filter 

With Transparency 
Filter 

With 
Heatmap 

Without 
Filters  

ABL 97.48 97.48 98.84 95.14 

ASBL 94.39 94.39 98.82 89.87 

SD 97.16 93.33 98.55 93.33 

SFD 98.84 97.23 98.9 97.23 

VIBE 96.68 96.68 98.97 92.95 

WMM 99.35 99.34 99.37 98.49 

Table 15: PCC rates achieved from feeds containing cobwebs 
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Appendix 2 – User guide 

In order to start testing motion detection algorithms using the Segmentation 

Tester, navigate to the directory of the segmentation tester executable file and 

simply execute the following command: 

ir-motion-filter md-algo VIBE work-width 320 show-gui true source "C:\bridgeEntry\input" 
source-type sequence ground-source "C:\Users\bridgeEntry\groundtruth" enable-transp-
filter FFD 5 5 enable-heatmap-filter 2 5 enable-custom-background-model 5 2 enable-
saturation-remover 160 destination "C:\temp\output" 

 

Once the executable finished running, the directory specified in “destination” 

argument, in this case it’s “C:\temp\output”, would contain input and output 

files generated by the segmentation tester. These can be inspected manually, 

or using the “Test Results Analysis Tool”. 

In order to inspect the results using the results analysis tool, find and start 

the “MotionDetectionAnalyzer.exe” executable. Once started, the following 

screen would come up: 

 

Click the “Browse” button and select the CSV file located in the directory as 

specified in the “destination” command line argument of the segmentation 

tester tool. This would load the metadata of the test and the states of the seg-
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mentation process. In order to fast-forward or rewind the video sequence, drag 

the horizontal scrolling slider. 
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Appendix 3 – Compilation Process 

The following describes the processes for compiling the segmentation tester 

for different platforms, such as Windows, Linux and Linux running on ARM ar-

chitecture. 

Compilation on Windows 

The compilation process on Windows environment is simple, but requires 

Visual Studio. To compile the application, open the solution in Visual Studio 

and press F6 or select Build Solution from the Build menu. 

Compilation on Linux 

The compilation process on Linux environments requires a number of de-

velopment libraries to be installed first. The following commands were tested 

on Ubuntu and Rasbian operating systems. These commands configure the 

development environment and allow the compilation process to be performed 

on a remote machine, as compiling large amount of code on development 

boards is very slow. 

The following commands must be executed on a development machine 

(e.g. Ubuntu) 

#checkout toolchain for RPi 
git clone https://github.com/raspberrypi/tools.git --depth=1 
cd tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/ 
ln -s arm-linux-gnueabihf-gcc gcc 
ln -s arm-linux-gnueabihf-g++ g++ 
ln -s arm-linux-gnueabihf-gcc cc 
ln -s arm-linux-gnueabihf-c++ c++ 
ln -s arm-linux-gnueabihf-cpp cpp 
     
export PATH=/your-path-to-tools/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-
raspbian/bin:$PATH 
 
 
sudo apt-get install subversion autoconf automake python python-dev 
  
#install libiberty, which is required for distcc 
wget https://toolbox-of-eric.googlecode.com/files/libiberty.tar.gz 
sudo tar -xvf libiberty.tar.gz 
cd libiberty 
sudo ./configure 
sudo make 
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sudo make install 
    
sudo apt-get install libgtk2.0-dev 
 
cd .. 
 
svn checkout http://distcc.googlecode.com/svn/trunk/ distcc-read-only 
cd distcc-read-only 
./autogen.sh 
./configure --with-gtk && make && sudo make install 
 
#start distcc daemon 
# --jobs sets the number of jobs this machine can take in parallel 
# --allow sets allows the machine with the given ip address to connect 
# ( for more than one IP, call --allow again, i.e.: --allow 192.168.1.1 --allow 192.168.1.2 ... 
# --log-stderr redirect the errors in the standard error output 
# --no-detach don't detach from this terminal, so we can track the log in real time 
distccd --daemon --jobs 4 --allow 192.168.178.25 --verbose --log-stderr --no-detach  

 

The following commands must be executed on a development board 

(e.g. Raspberry PI) 

 

sudo apt-get install subversion autoconf automake python python-dev 
  
#install libiberty, which is required for distcc 
wget https://toolbox-of-eric.googlecode.com/files/libiberty.tar.gz 
sudo tar -xvf libiberty.tar.gz 
cd libiberty 
sudo ./configure 
sudo make 
sudo make install 
    
sudo apt-get install libgtk2.0-dev 
 
cd .. 
 
svn checkout http://distcc.googlecode.com/svn/trunk/ distcc-read-only 
cd distcc-read-only 
./autogen.sh 
./configure --with-gtk && make && sudo make install 
 
sudo ln -s /usr/local/bin/distcc /usr/local/bin/gcc 
sudo ln -s /usr/local/bin/distcc /usr/local/bin/cc 
sudo ln -s /usr/local/bin/distcc /usr/local/bin/g++ 
sudo ln -s /usr/local/bin/distcc /usr/local/bin/c++ 
sudo ln -s /usr/local/bin/distcc /usr/local/bin/cpp 
export PATH=/usr/local/bin:$PATH 
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#SETTING ENV VARS  
# The remote machines that will build things for you. Don't put the ip of the Pi unless 
# you want the Pi to take part to the build process. 
# The syntax is : "IP_ADDRESS/NUMBER_OF_JOBS IP_ADDRESS/NUMBER_OF_JOBS" etc... 
# The documentation states that your should set the number of jobs per machine to  
# its number of processors. I advise you to set it to twice as much. See why in the test para-
graph. 
# For example: 
export DISTCC_HOSTS="192.168.178.31/2" 
 
# When a job fails, distcc backs off the machine that failed for some time. 
# We want distcc to retry immediately 
export DISTCC_BACKOFF_PERIOD=0 
 
# Time, in seconds, before distcc throws a DISTCC_IO_TIMEOUT error and tries to build the 
file 
# locally ( default hardcoded to 300 in version prior to 3.2 ) 
export DISTCC_IO_TIMEOUT=3000 
# Don't try to build the file locally when a remote job failed 
export DISTCC_SKIP_LOCAL_RETRY=1 
 
 
 
git clone --depth=1 git://code.opencv.org/opencv.git 
cd opencv 
mkdir redist && cd redist 
cmake -DCMAKE_BUILD_TYPE=DEBUG -DBUILD_JASPER=ON -DBUILD_OPENEXR=ON -
DBUILD_JPEG=ON -DBUILD_PNG=ON -DBUILD_TIFF=ON -DBUILD_ZLIB=ON -
DBUILD_DOCS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_TESTS=OFF -
DBUILD_opencv_gpu=OFF -DWITH_CUDA=OFF -DWITH_CUFFT=OFF -DWITH_OPENCL=OFF .. 
&& time make -j4 
time make -j4 
 
#update the following file in order for the system to find openCV's libraries when executing 
our program: /etc/ld.so.conf.d/opencv.conf 
#this file should contain a line which points to the location of the *.so files. 
#after directories have been added, run the following: 
sudo ldconfig -v 
 

This concludes the set-up on the environments. In order to compile the 

segmentation tester on either platform (Ubuntu or Raspbian) execute the fol-

lowing script: 

~/your-path-to-sources/ir-motion-filter/ir-motion-filter/compile.sh 
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Appendix 4 – Testing Harness Command Line Argu-

ments 

This section describes the all of the available command-line options of the 

testing tool. It should be noted that the sub-parameter order is extremely im-

portant where more than one sub-parameter must be specified.  

the argument values must follow the argument, casing important 

 source - Mandatory: path to the video source, can be a video file, 

video stream, physical device name or a directory containing each 

frame as a separate file 

  Example: source "c:\temp\video.avi"  

 source-type - Mandatory: indicates whether the source path is a video 

file/stream or a directory  

 Example: source-type sequence 

o sequence - used when source is a directory with a list of files 

o video - used when source is a video file or stream 

 ground-source - path to a directory containing a list of frames that rep-

resent the ground truth  

 Example: ground-source "c:\temp\ground-truth" 

 destination - path to a directory where each input, output and ground 

truth frames, and the CSV log file would be written to  

 Example: destination "c:\temp\dest" 

 show-gui - when set to "true", each of the frames would be shown on a 

screen as they travel through each of the layers of the application. It 

should be noted that this configuration has no effect on the motion de-

tection algorithms, which have similar configuration option in their XML 

files 

 Example: show-gui true 
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 work-width - the width to which each of the frames would be resized to 

before processing. The height of the frame would be proportional to the 

width. 

 Example: work-width 320 

 md-algo - Mandatory: the motion detection algorithm to be used, only 

one must be specified 

 Example: md-algo ABL 

o ABL - Adaptive Background Learning 

o ASBL - Adaptive Selective Background Learning 

o WMM - Weighted Moving Mean 

o SFD - Static Frame Difference 

o PBAS - Pixel-Based Adaptive Segmenter 

o SD - Sigma-Delta 

o VIBE - VIsual Background Extractor (ViBe) 

 enable-transp-filter - enables transparency filter. A feature detector, 

the distance threshold and removal shape size must be specified. 

 Example: enable-transp-filter FFD 5 5 

Feature Detectors: required, only one must be specified 

o FFD - Fast Feature Detector 

o GFTTD - Good Features To Track Detector 

o MFD - Mser Feature Detector 

o STRFD - Star Feature Detector 

o DFD - Dense Feature Detector 

o SBD - Simple Blob Detector 

o GAFD - Grid Adapted Feature Detector 

Distance Threshold: required, must be a whole number 

Removal Shape Size: required, must be a whole number.  
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 enable-heatmap-filter - enables the heat map filter; the heat map 

minimum and maximum values must be specified 

 Example: enable-heatmap-filter 2 5 

 Minimum: required, must be a whole number. 

 Maximum: required, must be a whole number 

 enable-custom-background-model - enables custom background 

model, requires two parameters: Pixel Update Step and Frame Update 

Step. If the first parameter is set to zero, every pixel would be updated, 

if set to 1, then every second pixel would be updated. The second pa-

rameter indicates how many frames should be skipped before the 

background model is updated, therefore, if zero is specified, then every 

frame would be used to update the background, alternatively, if 1 is 

specified, then every second frame would be used. 

 Example: enable-custom-background-model 5 2 

 enable-saturation-remover - enables saturation remover filter, re-

quires one parameter to be specified: Max Brightness Value.  

 Example: enable-saturation-remover 150 

 

Sample command used in final tests: 

ir-motion-filter md-algo VIBE work-width 320 show-gui true source "C:\bridgeEntry\input" 
source-type sequence ground-source "C:\Users\bridgeEntry\groundtruth" enable-transp-
filter FFD 5 5 enable-heatmap-filter 2 5 enable-custom-background-model 5 2 enable-
saturation-remover 160 destination "C:\temp\output" 
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Appendix 5 – Segmentation Algorithms Configuration 

The following XML is used to configure segmentation algorithms. The XML 

should be saved in a file named after the algorithm name, with extension 

".xml", for example: "ViBe.xml". These XML files must be located in the same 

directory as the Segmentation Tester executable. 

ViBe: 

<?xml version="1.0"?> 
<opencv_storage> 
<matchingNumber>2.</matchingNumber> 
<matchingThreshold>20.</matchingThreshold> 
</opencv_storage> 

 

Adaptive Background Learning 

<?xml version="1.0"?> 
<opencv_storage> 
<alpha>5.0000000000000003e-002</alpha> 
<limit>-1</limit> 
<enableThreshold>1</enableThreshold> 
<threshold>15</threshold> 
<showForeground>0</showForeground> 
<showBackground>0</showBackground> 
</opencv_storage> 

 

Adaptive Selective Background Learning 

<?xml version="1.0"?> 
<opencv_storage> 
<learningFrames>90</learningFrames> 
<alphaLearn>1.4999999999999999e-001</alphaLearn> 
<alphaDetection>5.0000000000000003e-002</alphaDetection> 
<threshold>5</threshold> 
<showOutput>1</showOutput> 
</opencv_storage> 

 

Sigma-Delta 

<?xml version="1.0"?> 
<opencv_storage> 
<ampFactor>1</ampFactor> 
<minVar>15</minVar> 
<maxVar>255</maxVar> 
<showOutput>1</showOutput> 
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</opencv_storage> 

 

Static Frame Difference 

<?xml version="1.0"?> 
<opencv_storage> 
<enableThreshold>1</enableThreshold> 
<threshold>15</threshold> 
<showOutput>1</showOutput> 
</opencv_storage> 

 

Weighted Moving Mean 

<?xml version="1.0"?> 
<opencv_storage> 
<enableWeight>1</enableWeight> 
<enableThreshold>1</enableThreshold> 
<threshold>15</threshold> 
<showOutput>0</showOutput> 
<showBackground>0</showBackground> 
</opencv_storage> 
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Appendix 6 – CSV Log Sample 

Input Foreground Background Heatmap GroundTruth PCC 

1-

input.jpg 

1-

foreground.jpg 

1-

background.jpg 

1-

heatmap.jpg 

1-ground.jpg 90 

2-

input.jpg 

2-

foreground.jpg 

2-

background.jpg 

2-

heatmap.jpg 

2-ground.jpg 92 

3-

input.jpg 

3-

foreground.jpg 

3-

background.jpg 

3-

heatmap.jpg 

3-ground.jpg 91 

 

 

 

 


