

Offloading Mobile App Components to Conserve Constrictive

Mobile Resources

By

Mark Ryder

Supervisor: Mr. Michael Bradford

2 | P a g e

Declarations

I hereby certify that this material, which I now submit for assessment

of the programme of study leading to the award of Master of Science in Web

Technologies is entirely my own work and has not been taken

from the work of others save and to the extent that such work has been citied and

acknowledged within the text of my work.

Signed:

Date:

Student Number:

3 | P a g e

Abstract

This dissertation aims to answer the question - Under what resource is it energy efficient to

migrate a partition from an application to remote device or to run the application locally? This

aim was achieved by combining a close examination of the relevant literature and developing

an application to test.

Chapter 2 reviews the relevant academic articles and papers on partitioning mobile

applications, and mobile client architecture. This background helped develop an

understanding of up-to-date knowledge in this area. It also provided a solid research

foundation to base this dissertation on.

Chapter 3 sets out the available research methods and justifies the research methods selected

to answer this research question. Also this chapter outlines of the experiments carried out to

answer the research question.

Chapter 4 lays out the architecture design of the application to be built to help answer the

research question. The application to be built will be capable of running a computation either

locally on a mobile device or availing of a remote instance hosted on Microsoft Azure.

Chapter 5 describes in detail the type of experiments outlined in chapter 3. The devices

environment, and software tools are also discussed.

Chapter 6 sets out the experiment environment, as well as their results. The results are

displayed in comparison charts and tables. The findings are discussed at the end of the

chapter.

Chapter 7 concludes with the answer to the research question based on the findings at the

end of chapter 6. This chapter also discusses future work based on the findings of this

dissertation.

Acknowledgements

I would like to thank the following people:

My supervisor, Mr. Michael Bradford (michael.bradford@ncirl.ie), for helping me stay on

track.

Jonathan Lambert (jonathan.lambert@ncirl.ie), for all his help involved with the data analysis

involved in this dissertation.

And finally to my wife, Claire, and son Matthew, who were always there when I was at my

lowest to pick me back up again.

mailto:michael.bradford@ncirl.ie
mailto:jonathan.lambert@ncirl.ie

2 | P a g e

Contents

Abstract…………………………………………………………………………………………. ii
Acknowledgements………………………………………………………………………… iii

Chapter 1 Introduction………………………………………………………………….. 1

Chapter 2 Background....……………………………………………………………….. 2

2.1 Partitioning 3
2.2 Runtime Partitioning Technique for Mobile Web 5
Services, 2011
2.3 Calling the cloud: Enabling mobile devices as interfaces, 2009 6
2.4 CloneCloud: Elastic Execution between Mobile Device and Cloud, 2011 8
2.5 Energy efficiency of mobile clients in cloud computing, 2010 9
2.6 Mobile Application Architecture 11
2.7 Summary 13

Chapter 3 Research Methodologies………………………………………………..14
 3.1 Quantitative Approach 14

 3.2 Qualitative Approach 14

 3.3 Mixed Method Approach 15

 3.4 Chosen Approach 15

Chapter 4 Design………………………………………………………………………….. 17
4.1 App1 and ServiceApp Architecture 17
4.2 App2 Architecture 20
4.3 Log Files 21
4.4 Eclipse Luna 21

Chapter 5 Implementation…………………………………………………………….22
 5.1 Device Specifications 22

 5.2 Tools used for Experiments 22
 5.2.1 Trepn Profiler 23
 5.2.3 Ookla Speedtest 23
 5.3 Experiments Design 25

Chapter 6 Evaluation……………………………………………………………………….. 27
 6.1 Experiment Environment 27
 6.2 Data Analysis 28
 6.2.1 Baseline experiments 28
 6.2.2 Local v Remote Experiments 31
 6.3 Exp3 v 4 Output Results 33
 6.4 Exp3 v 5 Output Results 79
 6.5 Exp3 v 6 Output Results 127
 6.6 Findings from Data Analysis 171

3 | P a g e

Chapter 7 Conclusions………………………………………………………………………173
 7.1 Answer to Research Question 173

 7.2 Future Work 174
 7.2.2 Data Compression 174

 7.2.3 Using 4G Networks 174

 7.2.3 Build the proposed Application 175

References……………………………………………………………………………………………… 176

Appendix………………………………………………………………………………….. 178

1 | P a g e

Chapter 1 – Introduction

Mobile technology has advanced rapidly in the last few years. However due to the size of

mobile devices, they have constricted resources, battery power in particular. One possible

solution to save the mobile device’s battery power is to offload components from a mobile

application to a remote node. Unfortunately, a possible side effect is that the energy required

could be greater to offload application components than actually using the device’s local

resources. The aim of this dissertation is to answer the question - Under what resource is it

energy efficient to migrate a partition from an application to remote device or to run the

application locally? It would be hoped by achieving this aim that a cost efficient formula could

be found and potentially used in an application.

The research was set out in the following manner. Firstly, in chapter 2, relevant academic

papers and articles were reviewed and discussed in order to provide a strong foundation for

this dissertation. Chapter 2 reviews four paper on offloading mobile application components.

Each paper reviewed is discussed in separate sections. The chapter also reviews the different

types of mobile application client architectures. The chapter then surmises which direction to

take the research based on the background review.

Chapter 3, entitled Research Methodologies, reviews the different types of research methods

that can be used. The methods discussed are Quantitative, Qualitative and Mixed Method

Research. This chapter will decide which method best suits the dissertations aim. Also

outlined are the experiments required to reach the dissertation’s aim.

Chapter 4, Design, reviews the design of the application required to carry out the

experiments. This will include the different components and software tools required to build

the application.

Chapter 5, entitled Implementation, goes in to more detail regarding the experiments,

outlined in chapter 3, required to complete the dissertation’s aim. The chapter will discuss

the devices involved in the experiments, specifications, how the experiments will be carried

out and software tools required to record the results.

Chapter 6 will show how the experiment results were gathered and sets out a detailed

analysis of the data. The final findings will be outlined at the end of the chapter.

Chapter 7 will conclude with the answer to the question posed, based on the final findings

from chapter 6. This chapter will also discuss potential future works based on this research.

2 | P a g e

Chapter 2 – Background

A mobile application “is either written as a monolithic process, cramming all it needs to do on

to the mobile device; or it is split in the traditional client server paradigm, pushing most

computation to the remote server” (Princeton, Dept. of Computer Science, 2011, p181/182).

Since all mobile devices (known as device/devices from hereon in) have different

specifications, such as memory size or CPU power, it is hard to design an application to meet

every device’s specifications; some devices could handle more heavy computation (CPU

cycles) than others. In theory the split would be different for these devices with higher

specified CPU than others with a less powerful CPU. It would make more sense for the device

to have the capability to decide what should stay and what should be hosted on a server. This

would apply to the native mobile applications hosted locally on the device. Another local

resource that is critical is the device’s finite battery capacity. The heavier the computation

being processed the more energy is consumed. As well as heavy computation, the amount of

data transfer between the device and server will also have an impact on the energy

consumption. This paper aims to find the ‘sweet spot’ or trade off point as to when and which

components should be offloaded to a server to save the energy consumption of the device.

The application performing this procedure must not impede on the device’s constricting

resources, including its battery.

The following papers, Calling the cloud: Enabling mobile devices as interfaces, 2009 and A

Runtime Partitioning Technique for Mobile Web Services, 2011 discuss techniques in

offloading, or automatically partitioning, components from a device, both papers objectives

were to have the mobile applications obtain better response times. The techniques and

algorithms involved in completing an offload were very similar as well as using middleware

programing to carry out their objective. CloneCloud: Elastic Execution between Mobile Device

and Cloud, 2011 also uses some similar techniques to the first two papers, however instead

of using middleware, the papers proposal involves cloning the whole device on to a cloud

platform. The offloaded components, or partition, is migrated to this platform and re-

integrated back into the original device after computation has completed on the clone. The

first two paper’s approach will be very similar to this paper albeit with a different objective.

This paper’s objective will be similar to Energy efficiency of mobile clients in cloud computing,

2010, outlined at the end of the pervious paragraph.

3 | P a g e

2.1 Partitioning

The idea of offloading parts of an application to different machines, known as partitioning of

an application, is not a new technology. It is a process where components of an application

are distributed across multiple machines and has been used by many companies in distributed

computing for years. The advantages are distributed computing:

1. Allow Application scalability

2. Support multiple, diverse hardware/software configuration

3. Ease of maintenance

4. Object/component reuse

The second advantage applies to mobile computing, where an application can use multiple

hardware and software from different machines to execute components with heavy

computation.

There are two types of partitioning, design-time and run-time. Design-time partitioning

involves mapping all the components to be partitioned and are decided while the application

is being designed. Run-time partitioning is where the components are mapped out as the

application is executed (Asif, M. and Majurndar, S., 2011). Both partitioning options “use

system load information and device characteristics for achieving an effective partitioned

system” (Asif, M. and Majurndar, S, 2011, p82). Design-time partitioning is the easier to

implement, as it will not take the device’s specifications (or constraints) into consideration

before execution. With this option the decision is made to offload, partition or run locally

and does not deviate from this decision. Run-time partitioning involves monitoring the

device and application at different times throughout the applications run-time. A partition

could be offloaded if deemed necessary at any of these monitoring times. A graph based

algorithm is used to decide what components are to be offloaded. A data flow graph is used

to show all the components and which components communicate with other components.

The graph G in figure 1 is made up of two finite sets known as Vertices (V, singularly known

as a Vortex) and Edges (E, singularly known as an Edge). V represents all the components of

the application while E represents the line of communications between components. All

circles numbered 1 – 7 are in the set V and all the lines are in the set E

4 | P a g e

Figure 1

The heavier V the more computations this component requires. Also the weight of E

indicates the amount of data transfer between components. The partitioning algorithm

decides where to cut the graph depending on the situation. This is known as the “Edges Cut”

(Asif, M. and Majurndar, S, 2011, p83) or “optimal cut” (Giurgiu, I., Riva, O., Juric, D.,

Krivulev, and Alonso, G., 2009, p2). Everything inside the cut is offloaded to the server,

known as a partition, as shown in figure 2.

Figure 2

The main factors to be considered before partitioning are:

Edges

Cut

1

4

3

6

5

7

2

1

4

3

6

5

7

2

5 | P a g e

1. Communication (how much data to be transferred between components)

2. Processing (how many CPU cycles in a component are required to execute)

3. Source Vortex (first component to be executed in the application)

4. Vertex Distance (least amount of edges required to get to Source Vertex to any given

vertices)

5. Graph size (maximum number of the Vertex distance in any of the Vertices from 1 -

7)

Each model proposed by each paper profiles each component before applying their

partitioning algorithm. It is necessary to identify which component has the heaviest

computation involved, which components are involved in the heaviest data transfer, which

components starts the application computations and the size of the application. After this

point each paper starts to go in different directions to achieve their objective.

2.2 Runtime Partitioning Technique for Mobile Web Services, 2011

Before starting into the algorithm, the middleware programing needs the following inputs;

1. Graph model G with sets of V and E (something similar to what was outlined above).

2. Number of execution plans, NE (number of different predefined execution plans)

3. Upper Bound on Processing costs (maximum processing cost, CPU cycles, that can be

offloaded) on each plan.

4. Objective function (defines the goal of the algorithm).

To calculate the Upper Bound on processing costs, first the Fixed Size step has to be

calculated which is determined by the number of execution plans. The Fixed Size Step (F.S.S.)

separates the Upper Bound on processing costs of two consecutive execution plans.

F.S.S. = ∑Wv / NE (where ∑Wv is the sum of all the weights of V from graph G)

The Upper Bound on Processing costs (U.B.) for each plan is found as:

U.B. = k * F.S.S (where k = 1,2,3…….NE)

The objective function must meet two conditions:

1. The difference of the processing cost of the partition (Pi) (∑Wv in Pi) and the

communications cost of Pi (∑WE in Pi) must be maximised.

2. The processing costs < Upper Bound on Processing costs of NE.

6 | P a g e

Now that all the inputs are gathered and components profiled the algorithm begins. The

algorithm gathers together a number of potential partitions and compares them to the

objective function. Algorithm steps:

1. All of vertices from graph G except for the source vortex are put in to a new set Q.

2. The boundary vertices, vertices with the maximum vertex distance, are put into a

new set B. (the vertices furthest from the source vortex are more suitable to

offload).

3. The heaviest vortex in new set B is set as B1, the starting point in B.

4. A set of vertices starting with B1 are put in to a new set X, this is the first candidate

partition (P1).

5. α(P1) = ∑Wv in P1 - ∑WE in P1, this is the difference between the processing costs and

communications in proposed partition. α(P1) and ∑Wv are added to the table of

partitions (T).

6. To start the next iteration, a new set N is created. This is a set of vertices in Q but

not in X but are connected to vertices in X. The vortex with the heaviest weight is

the starting point and step 5 is repeated on these new vertices and the results added

to T.

7. Repeat step 4 for the remaining number of vertices in Q, the results are added to T.

8. The partition the has the highest α (1st condition of objective function) and whose

∑Wv is less or equal to Upper Bound on Processing costs is the most ideal partition.

2.3 Calling the cloud: Enabling mobile devices as interfaces, 2009

In this paper, the different types of partitioning are discussed, ALL or K – Step. ALL

partitioning is essentially the same as design-time partitioning as discussed in the previous

paper. K – Step is a very similar concept to run-time partitioning also discussed in the

previous paper. In the proposal, Alfred-O platform is used to physically offload between the

mobile and server. It is used traditionally to decompose and loosely couple Java applications

in to software modules known as bundles. “AlfredO allows developers to decompose and

distribute the presentation and logic tiers between the client and server side, while always

keeping the data tier on the server”(Giurgiu, I., Riva, O., Juric, D., Krivulev, and Alonso, G.,

2009, p3). This means this tool could be used to suit this papers proposal just as easily.

First, the bundles (Bi) are profiled under the following headings:

 Requires (Dependencies)

7 | P a g e

 Provides (Name of bundle)

 Memory (Memory consumption)

 Code (Amount of code used)

 Type (Moveable or non-moveable)

Non-moveable type bundles are the ones that involve the heaviest computation. These

should always be hosted on the server never on the local device. The profiled bundles are

used to create a graph G = {B,E}. Every vortex in set B is a bundle Bi and every edge in the set

E represents a service dependency between Bi and Bj. Each Bi has five characteristics:

 Type: moveable or non-moveable.

 Memory: memory consumption on device for Bi.

 Code_size: size of compiled code for Bi.

 Inji:data taken in by Bi from Bj.

 Outij : data send by Bi to Bj.

The objective function takes the minimum sum of the cost of data exchange, cost of fetch,

install and start of bundles on device and cost of local proxies to interact with the bundles

hosted on server.

Pre-Partitioning

To limit the amount of bundles the algorithm has to go through, in effect reducing the graph

size without “eliminating optimal solutions” [Giurgiu, I., Riva, O., Juric, D., Krivulev, I., and

Alsono, G., 2009, p1]. Bundles with high communication costs need to be found and kept on

the server. Take Bundles Bi and Bj for example; if the edge between them has data inji + outij

> datamax then the bundles should be merged and become non-moveable.

ALL Partitioning

This type of partitioning is set up during the applications design stage. First the program

generates a set of valid configurations of different bundles that are dependent on each other.

Second it checks the bundles (k) from each configuration to make sure the meet the device

constraints:

1. ∑ memoryi <= memorymax ;

2. ∑ code_sizei <= code_sizemax;

k

i =1

k

i =1

8 | P a g e

Lastly the remaining bundles after passing those constraints are evaluated with the objective
function. The configuration that is closest to the objective function is the selected partition.

K-Step Partitioning

The ALL algorithm checks all configurations and identifies the optimal cut. K-Step algorithm
reduces the configurations to find a local optimal, which is faster than but not as accurate as
the ALL algorithm.
It finds the best configuration at different steps of the applications execution. It can also
generate possible configurations on bundles waiting in a queue to be executed. At different
steps of execution, the algorithm evaluates a new possible configuration by comparing the
configuration to the objective function. If it passes the function, it will continue with new
configuration but if the new proposed configuration fails, it is dropped. K could be any number
from one to five so the algorithm could be one step through to a five step algorithm.

2.4 CloneCloud: Elastic Execution between Mobile Device and

Cloud, 2011

The CloneCloud paper offers a flexible architecture solution that works out which part of the

application should be off loaded (migrated) from the device and then suspends the

applications operation and off loads this part (partition) to a cloned version of the device

hosted on a cloud. The applications operation resumes using the clouds resources and when

operation is finished the results are reintegrated back onto the user’s device. “Automatically

transforms’ a single machine execution (e.g. computation on a smartphone) into a distributed

execution” [CloneCloud: Elastic Execution between Mobile Device and Cloud, 2011].

The main components of the solution are:

1. Static Analyser

2. Dynamic Profiler

3. Optimization Solver

Static Analyser decides where is the best place for the migration entry points and where the

re-integrated exit points. In the analyser also determines the three main properties (or

constraints) of a legal partition.

“PROPERTY 1 Methods that access specific features of a machine must be pinned to the

machine” (Princeton, Dept. of Computer Science, 2011, p184). This means if a method is

dependent on a local resource stored on the local device, than it must be executed on the

mobile device. This is a very similar constraint to non-movable type bundles in the previous

paper.

9 | P a g e

“PROPERTY 2 Methods that share native state must be collocated at the same machine”

(Princeton, Dept. of Computer Science, 2011, p184).Some methods need to access the native

state. Since the migration component does not migrate the native state, these methods must

be collocated at the same machine as the native state.

“PROPERTY 3 Prevent nested migration” (Princeton, Dept. of Computer Science, 2011,

p184).No nested suspensions or resumes allowed throughout the program. Once a program

is suspended for migration, it cannot be suspended again without the program resuming. The

diagram below shows a program C with methods a, which contains to nested methods b and

c.

Dynamic Profiler collects data that will be used to create a cost model for the application

under different execution settings. Cost metrics are execution time and energy consumed by

the mobile device. A profile tree (similar to the graphs used in previously discussed papers) is

produced. The profiler uses randomly chosen input data executed on the mobile device and

cloud respectively.

Using the legal entry and exit points found in the Static Analyser and Profile trees in the

Dynamic Analyser, the Optimization Solver picks which application methods to migrate to the

cloned mobile architecture in the cloud. The chosen migration operates at the granularity of

a thread. This allows a multi thread process to run on the mobile device, such as the User

Interface (UI) and worker thread. The user could still use the UI as the worker thread is

carrying out the partition without affecting the UI performance.

2.5 Energy efficiency of mobile clients in cloud computing, 2010

This paper looks at computation offloading whose main objective is to save battery life of the

device whereas the pervious papers were more concerned about execution time and

response time. A ratio relationship between the computing costs to communication costs is

C.a exit

C.b entry

C.b exit

C.c exit

C.c entry

C.a entry If method a is suspended at
the entry point, it can only
resume at exit point

10 | P a g e

used to find the balance of local computation and offloading computation. This means at

some point or points in a program it is more energy efficient to use the mobile devices local

resources to carry out computations. In different scenarios it is more efficient to offload

computation (partition).

Another important variable to the trade off point, as well as the amount of transferred data

between device and server, is the data traffic pattern. For example sending a sequence of

small data pockets uses more power than sending the same data in a single burst.

Energy trade off analysis

1. Energy consumed by computation (E local)

2. Energy consumed by communication (E cloud)

For beneficial offloading E cloud < E local

D = amount of data to be transferred in bytes
C = computation requires for workload in CPU cycles
D off = measure for amount of data that can be transferred with given energy (bytes per Joule)
C off = measure for amount of computation with given energy (cycles per Joule)

E cloud = D/D off
E local = C/ C off

The relationship between computing and communication for offloading to be beneficial is
C/D > C off/D off

The paper used an energy profiler to record results from their experiments. The energy
profiler was monitoring the battery usage during different scenarios of computation
offloading. Different devices with different power and frequency usage were used and
compared. They found that the device with the lowest power and frequency increased the
computation energy efficiency (C off) of the mobile device. The energy profiler also found that
the device with the highest bit rate of data traffic increased the energy efficiency of data
communication (D off). This means a high burst of data traffic was more efficient than little
bursts of small data packets.

11 | P a g e

2.6 Mobile Application Architecture

There are three types of mobile application Architecture:

1. Native application architecture
2. Web application architecture
3. Hybrid application architecture

Native Application Architecture

Native applications are built specially for a particular device and its operating system. They
are installed onto the device from a web store, for example Google play or App store. When
installed an icon is created on the home screen of the device. When the icon is clicked the
application runs. A native is used where a rich experience is required by the user, when an
application requires use of device features (address book, camera or GPS) or if the application
is required to work offline. The native application layer is made up of activities and design
specific activities. Each page in the application has its own activity, which contains code to
execute onto that particular page. These activities have access to particular web service suited
to the native applications functionality, i.e. what the application was designed to do. The
device-specific activities are responsible for interaction with any of the device features that
the native application needs to access. (Neilson Norman Group, 2012)

(Mehta, N., 2012)(IBM, 2012)

Web Application Architecture

Web applications are actually not applications but websites created to give the appearance
of a native application. The user is actually viewing HTML 5 web pages on a browser. The user
is still able to access web services required. The ‘application’ is not installed onto the device.
A first time user has to navigate to a particular URL through their browser. They are prompted
to ‘install to their device’. The icon that is installed to the device home screen is actually a
bookmark to the website. As the application can be accessed through a browser, it allows the
application to operate through a cross platform environment. (Neilson Norman Group, 2012)

Activities (Home, Category, Shopping cart)

Device – Specific Activities (Address book, camera, GPS)

Native

Application

layer on device

Web Services Server

12 | P a g e

(Mehta, N., 2012)(IBM, 2012)

Hybrid Application Architecture

Hybrid applications are a combination of a native application and web application. These
applications have a native container, which allows hybrid applications to obtain native
application characteristics. Like the native application, it can installed onto the device from a
web store. Typically a user would not be able to tell the difference between a native and a
hybrid application. The difference is the user is actually viewing is HTML rendered to a
browser that is embedded into the application. This allows hybrid application to have native
application features as well as being able to operate on a cross platform environment like a
web application. (Neilson Norman Group, 2012)

(Mehta, N., 2012)(IBM, 2012)

HTML 5 Web Pages Web Services Server

Renders HTML 5 Web Pages to user
Browser on

device

HTML 5 Web Pages Web Services Server

Embedded browser Native App container

Hybrid

Application

on device

13 | P a g e

2.7 Summary

The first two papers researched in this chapter were profiler CPU and memory usage to find

a cost efficiency formula. This formula would migrate particular components of the

application both before and during execution. The third paper groups together which

components can be migrated and creates a background thread which migrates these

components to a cloned device hosted in a cloud environment if it is deemed to optimize

performance. These three papers are more concerned about performance optimization

rather than energy optimization. However a lot of the findings can be implemented into this

paper proposed application solution. For example the first three papers, Runtime

Partitioning Technique for Mobile Web Services, 2011, Calling the cloud: Enabling mobile

devices as interfaces, 2009 and CloneCloud: Elastic Execution between Mobile Device and

Cloud, 2011, divide the components up into a group that can be migrated and another group

which is dependent on the device. Similarly this paper’s solution will keep the components

required for user interaction on the local device, and give the business logic of the solution

the option of running locally or remotely. The solution will follow the native application

architecture outlined in the mobile application section. This paper will determine which one

of the following options is the most energy efficient option to execute the application, much

like the final paper, Energy efficiency of mobile clients in cloud computing, 2010.

Execution Option 1 – locally.

Execution Option 2 – remotely.

Taking these conclusions and objectives of the researched papers into account, this paper will

find a cost efficiency formula by monitoring a specifically designed, computation heavy

application, which will be described in detail in the next chapter. The application can be

executed using options laid out above while been monitored by an energy profiler. In Energy

efficiency of mobile clients in cloud computing, 2010 paper, it was found that there were

issues with network strength particular with 3G mobile data networks. ”The 3G network cases

consume more energy than WLAN because of communication latencies” (Usenix, 2010, p4).

As a result of this, the application will be run in different locations to test how the remote

execution works in areas with high network latencies. The main metric to be monitored will

be battery usage, as well as CPU load from 0% to 100% and memory (RAM) usage in

Megabytes. The metrics measured will then be analysed to optimize the application to

operate at an energy efficient level. The cost efficiency formula will be used to create a model

which will be used in a redesigned application which will automatically decide which

execution option is the most energy efficient. This cost efficiency formula will answer the

question posed by this paper – Under what resource is it energy efficient to migrate a partition

from an application to remote device or to run the application locally?

14 | P a g e

Chapter 3 Research Methodologies

This paper aims to answer the question posed at the end of chapter two, under what resource

is it energy efficient to migrate a partition from an application to remote device or to run the

application locally?

The three main research approach methods need to be reviewed to the one most suitable to

answer the question posed. The three research approach methods reviewed are:

1. Quantitative Approach

2. Qualitative Approach

3. Mixed Methods Approach

3.1 Quantitative Approach

Quantitative research method is where statistical or mathematical techniques are used to

measure particular variables. There are two types of variables.

1. Independent variables

2. Dependent variables

The independent variables are characteristics that have been identified to cause, influence or

effect outcomes and the dependent variables are effected by the outcomes of these

independent variables. Generally the strategies of inquiry are experiments and surveys

designed to “collect data on predetermined instruments that yield statistical data” (Creswell,

2003, p18). Quantitative method are most commonly used in natural science research

studies.

3.2 Qualitative Approach

Qualitative research method is used to gather data explaining behaviour and attitudes. Unlike

Quantitative method, the data is not measurable. The main strategies of inquiry are surveys,

interviews or case studies with test subjects. “The researcher collects open-ended, emerging

data with primary intent of developing theme’s from the data.” (Creswell, 2003, p18). Surveys

can be used as strategies of inquiry in Quantitative also. The difference between a Qualitative

survey and a Quantitative survey is that qualitative question are designed to be open ended.

Qualitative methods are most commonly used in social science studies.

15 | P a g e

3.3 Mixed Method Approach

A Mixed Method Approach is a combination of both Quantitative and Qualitative research

methods. Historically, researchers would either use one approach or the other. In recent

times, some questions posed by papers have led researchers to use data collected by one

research method to back up data collected by the other. A Mixed Method approach would be

ideal for a researcher testing the usability of a piece of software. The researcher could pick

variables from the software to measure performance and also interview test subjects who

have used the software. (Creswell, 2003)

3.4 Chosen Approach

After a careful review of the research methods, it has been deemed that the Quantitative

approach is the most suitable to answer the question posed by the paper. To answer the

question, the power used by the device to run the application locally and remotely must be

recorded and compared. Data recorded from a Qualitative approach experiment would not

be able to measure and therefore compare such data. There have been two dependent

variables identified that would have a bearing on the power used during the experiments.

1. CPU load

2. Memory Usage

These two variables will be measured along with other dependent variable, the battery power

consumed, by a power profiler. Another variable that will affect the experiments, is network

coverage. The stronger the network signal, the more efficient the remote side of the

application will be. The experiments will take place in various locations of different network

strength. This will determine if the device uses more/less power while attempting to

communicate remotely in places with weaker network signals. The device and server for

instance will log how long the computation take. The device will also log how long it took from

the moment the button was pressed until the moment the result appears on the device

screen. These variables will also be used. The Independent variables have been identified as

which mode the experiments will run. The other variables are dependent on which way the

experiment will run. The Experiments will run in either of the two following modes:

1. Locally

2. Remotely

Microsoft Excel and IBM SPSS Statistics version 22 will be used to analysis the recorded data

from the experiments. IBM SPSS (Statistical Package for the Social Science) Statistics Version

22 is a software package used for statistical analysis. Originally produced in 1968 by SPSS

16 | P a g e

Inc., which was acquired by IBM in 2009. The raw data will be first inputted in Excel, where

it will be formatted in to a readable spreadsheet. Comparison charts will be created from

the data of the spreadsheets. The new spreadsheets will be copied into SPSS where the data

will be first tested for normality. A normal result will mean an Independent T-Test will be

performed on the data. If the data is non-normal, a Mann-Whitney test will be performed.

17 | P a g e

Chapter 4 - Design

As specified in chapter two, a computation heavy application will be created. The application

will be designed in such a way that if the user increases the input value, it will increase the

parameters of the computation. This will make the application memory intensive as well as

CPU intensive. The same computation will be hosted on azure and made available to the

application. The computation will be a multiplication matrices program. This is where two

different randomly generated sets of matrices will be multiplied together and the result will

be displayed to the user. There will be an input field on the local application, allowing the user

to input an integer. This integer will determine the amount of rows and columns in each

matrix generated to both local and remote computation. i.e. when three is entered there will

be three rows and three columns of randomly generated numbers in each set. As well as the

input field, there will be three buttons and placeholder, where the result will be passed into.

One button will start the local computation, simply called “Local Start”. The second button,

called “Remote Start”, starts the computation hosted remotely. (IdleWorx, 2011). Finally the

“Reset” button clears the placeholder, so the application is ready for the next computation.

The application installed on the mobile device will be known as App1 and computation hosted

on Azure will be known as ServiceApp. App1 will be used in experiments, which will be

discussed in detail in a later chapter. The experiments will be monitored by an energy profiler,

known as Trepn Profiler. The metrics to be measured by the profiler are battery usage

(measured in % remaining), CPU load (ranging from 0% to 100%) and memory usage

(measured in Kilobytes). A thorough analysis of the profiled data will lead to the

implementation of an energy efficient cost efficiency formula. This cost efficiency formula will

not only be used in a re-designed application, known as App2 but will also answer the

question posed at the end of the last chapter.

4.1 App1 and ServiceApp Architecture

Classes for App1: Classes for ServiceApp:

Main Activity.java MyServlet.java

AppIntentService.java Computation.java

WebService.java

Computation.java

See the diagram below, each block represents a class in the application, the red arrows show

the direction and flow of communication between classes.

18 | P a g e

The Main Activity contains the logic for the User Interface (UI). The code initializes all the

components that are on the device screen. The computation code will be located in a separate

class of its own called Computation class. Both Computation classes in App1 and ServiceApp

are identical. The computation method in the Computation class creates two sets of matrices.

The size of each matrix is determined by the integer inputted in the Main Activity. For

example, 5 will create two matrices with 5 rows and 5 columns. Both sets of matrices will

contain random numbers. The two random generated matrices will then be multiplied

together and the method returns the result. The Computation class also contains a method

to format how the result will be shown on the screen. (Programming Simplified, 2015).

The reason why the computation code is not run on the Main Activity is because this class

uses the UI or main thread. If code that requires high CPU load or high memory usage runs in

this thread, the mobile device would hang or crash. All classes that contain such code are run

on a background threads. These background threads are created by services such as Asynctask

App1 Architecture

ServiceApp Architecture

AppIntentService Computation

Main

Activity

WebService

Computation MyServlet

19 | P a g e

or IntentService. IntentService class are designed to handle large amounts of data and are

therefore better suited to implement in App1 than Aysnctask. In App1, there are two

IntentServices called AppIntentService and WebService. The Main Activity will start both of

these services. (Haseman, 2011).

The AppIntentService class contains the logic to create a background thread which will

execute the local computation class and send the result back to the Main Activity. The integer

inputted into the Main Activity is sent to this service, which in turn passes the integer into the

computation class as a parameter which determines the size of the randomly generated

matrices. The AppIntentService service uses a Local Broadcast Manager method to send the

result to the Main Activity. (Haseman, 2011).

The WebService class logic is responsible for sending the inputted integer, received from the

Main Activity, as query string to the ServiceApp Application. The service opens a HTTP

connection to the servlet. The servlet runs computation class that is hosted on the same

platform and returns the result using its HTTP get method. The servlet is also responsible for

getting the parameter sent via query string and passing it through to the Computation class.

The WebService uses a bufferedReader method to get the result from the servlet. A Local

Broadcast Manager method similar to AppIntentService is used to post the result to the Main

Activity. (The Open Tutorials, 2012).

A Broadcast receiver is an Android application component that responds to system wide

broadcasts. They’re are generally used to communicate between services on a device.

However since they’re broadcast globally through the system, they’re are not suitable to be

used to communicate between services in the same application. Also they are only designed

for the minimal amount of work. Local Broadcast Manager is a helper class that is designed

to work within an application and is more efficient. Two different receivers are registered on

the Main Activity, one listens for a broadcast from AppIntentService while the second receiver

listens out for the WebService. Depending on which service has been used, the corresponding

receiver will display the result on Main Activity. (Developer. Android, 2015).

Another important part of the application is the AndroidManifest file. This is an xml based file

that contains several types of important information that control the environment. It contains

the Operating System version and SDK level the application is designed to run on. All activities

and services must be registered in this file. The AndroidManifest also contains all the

permission rules. For example, the remote side of the application needs to communicate with

the servlet. So there is a permissions rule that allows the application access to the internet.

Also the intents and intent filters required for the services to work are also registered.

(IBM, 2012).

20 | P a g e

4.2 App2 Architecture

After the data from experiments with App1 and ServiceApp has been analysed, a cost

efficiency formula will be calculated. This formula will be used in a redesigned application

called App2. In this application there will be two buttons on screen instead of three. The

“Reset” button will remain the same, but a new button will be introduced instead of “Local

Start” and “Remote Start”. This will be simply called “Start” and will activate a new

IntentService called CostEfficiency.java.

The CostEfficiency service will contain the logic for running the formula in background thread.

The service will also contain logic which will return the battery usage, CPU load and memory

usage which will be needed to complete formula. The result will be posted back to the Main

Activity. This result will determine which computation should be run.

Diagram of App2 and ServiceApp architecture showing classes and how the classes

communicate below.

4.3 Log Files

Cost Efficiency

Main

Activity
AppIntentService Computation

WebService

App2 Architecture

ServiceApp Architecture

MyServlet Computation

21 | P a g e

There are two log files created and are hosted on Logentries.com. One log file, called

HTCDetails, is for the App1 on mobile device and the second one, AzureDetails, is for

ServiceApp hosted on Azure. Both Services contain timestamps, one at the start and one at

the end. There is also a timestamp before and after both the local and remote Computation

classes are executed. Using these timestamps, the time taken to carry out the computations

and each service can be calculated. At the end of each service, a time stamped message is

send to HTCDetail log. This message contains the parameter used, how long the computation

took (in Nano Seconds and Milli Seconds) and how long the service took (in Milli Seconds and

Seconds). The Servlet class on ServiceApp takes the timestamps before and after the remote

computation. After the time taken is calculated, a message is sent to AzureDetails with the

calculated time in Nano Seconds and Milli Seconds. There had to be two different logs as two

different devices can send data to the same log. Each device has a unique token which allows

it to communicate with a particular log. Hosting the log files on a 3rd party website, frees up

valuable storage space on the mobile device. The logs can be downloaded from logentries

dashboard in csv text file. The timings will be used in conjunction with metrics recorded by

the Trepn Profiler to find the cost formula. The logs will also give the start time of each run,

so they can be pinpointed on the csv files produced by the Trepn Profiler. (logentries, 2015)

4.4 Eclipse Luna

The IDE (Integrated Development Environment) to be used for creating both App1 and

ServiceApp is Eclipse Luna version 4.4.2. Eclipse was first developed by IBM in the late

1990’s. All versions of eclipse since 3.0 have been developed solely by the non-profit Eclipse

Foundation. Eclipse platform is mostly written in Java but can used to create applications

with different languages using different plugins. To create an environment to build the

Android application, an ADT plugin needs to be installed. There also need to be an

environment to create the servlet ServiceApp, which is created by the Eclipse Web Platform

Tools plugin.

Eclipse platform also contains an Azure plugin. This allows applications designed in Eclipse to

be deployed to Azure platform. (Eclipse Foundation, 2015)

22 | P a g e

Chapter 5 Implementation

The application that has been built using the architectural design detailed in chapter four will

be used to conduct experiments. These experiments have been developed in order to collect

data which will be used to find the cost efficiency and answer the question posed in chapter

two. The experiments will start off with low memory usage and CPU computations and

increase the memory usage and CPU computations. During the experiments, three variables

will be measured.

1. Battery Usage (percentage remaining)

2. Normalized CPU Usage (load will be represented by a percentage)

3. Memory Usage (in Kilo Bytes)

Normalized CPU load is where the figure recorded is a ratio of the maximum possible load of

the CPU. Standard load would record ratio of the load of the allocated to the application. An

outside variable of these experiments is the strength of the network coverage. The

experiment will be conducted in different locations with different network strength. This

chapter will outline specifications of the mobile and remote devices, the different tools used

to measure the variables and how the experiments were developed.

5.1 Device Specifications

The mobile device used in this experiment is a HTC One Mini M8. The specifications are as

follows:

Operating System: Android OS Version 4.4.2.

Chipset: Qualcomm Snapdragon 400.

CPU: Dual-core 1.4.Ghz Krait 200.

Memory: 16 GB storage

 1 GB RAM

Wi-Fi: Wi-Fi 802 II a/b/g/n, dual band, DLNA (GSMArena, 2015)

The Java Servlet containing the same computation class as App1 is hosted as a Cloud App on

a Windows Azure Virtual Machine. The specifications are as follows:

Server: Apache Tomcat Version 7.0.6.2

CPU: A-series A1, small instance, 1 core

23 | P a g e

Note: The instance range has been set to scale up to A3, which contains 4 CPU cores. The

instances or cores have set to scale up or down to keep CPU usage range between 60% and

80%.

Memory: 1.75 GB RAM

Note: If the instance A1 scales up to A3, the memory will go up to 7 GB of RAM. (Microsoft

Azure, 2015)

5.2 Tools used for Experiments

5.2.1 Trepn Profiler

Trepn Profiler version 6.1 is a power and performance profiler application for mobile devices.

It was developed by Qualcomm Technologies Inc. This profiler was chosen as it works best

with Snapdragon chipsets, also developed by Qualcomm, which is used in the HTC One Mini.

Features of the Trepn Profiler that are significant to the experiments:

 Profile device or a particular application.

 Displays battery power (in watt or amperes)

 View CPU and GPU frequency and utilization

 Display network usage (Wi-Fi and mobile data)

 Runs on Android 4.0 or higher

 Advanced mode allows the user to select data points (for example battery usage, CPU

usage, memory usage) to be measure and saved for later analysis

The advanced mode is extremely useful to the experiments. The three data points (or

variables) selected can be measured and saved as a csv file. Although the profiler can show

battery usage in both amperes usage and wattage usage, it could not be used in the

experiments. This is because the Operating System (OS) and the App1 would be running

together. It would be very hard to pinpoint which one, the OS or App1, would be using the

most power. The battery remaining metric would give a clearer picture as to how much

energy App1 would be using. The memory and CPU metrics could also be susceptible to

surges and drops from OS. A baseline experiment without App1 running should show how

the OS behaves and would help explain any surges or drops found in the experiments with

App1. (Qualcomm, 2015)

5.2.2 Ookla Speedtest

The Ookla Speedtest determines how good the internet coverage is at each location where

the experiments take place. The application measures the time taken in milli-seconds for the

device to ping the nearest server, how many bits of data can be downloaded per second and

24 | P a g e

how many bits of data can be uploadeded per second. The better the network coverage the

quicker it takes to ping a server and the higher the amounts of bits of data can be uploaded

and downloaded. The ping time is a measure of the latency of the network coverage.

(Speedtest, 2015).

25 | P a g e

5.3 Experiment Design

The experiments will be run in two different modes.

1. Locally

2. Remotely

In both modes, the application will run in different sizes. The sizes are determined by the

parameter inputted before pressing the start button. The different sizes are:

1. 50

2. 100

3. 200

4. 400

There needs to be a sample range between 30 and 100 of each size. Sample range is the

amount of samples or how many times the application has been run of that particular size.

The higher the size the more accurate the final data will be. There are formulas for working

out a sample size, they are outside the scope of this dissertation. In this experiment the

sample range will be 45, any higher would provide too much data to go through in such a

short time frame for this dissertation. The application needs to be run 45 times at each size.

This means the application will run 180 times firstly in mode 1 and secondly run the same

amount of times in mode 2.

The Trepn profiler will record the three variables, battery, CPU and memory usage. The data

will be saved into two files, one for mode 1 and another for mode 2.

To test the variable values from mode 2 in areas with low network coverage, the application

will be run twice, firstly using Wi-Fi and then with 3G mobile data, in two different locations.

1. National College of Ireland

2. Celbridge, Co. Kildare

Both of these locations have varying degrees of network coverage. National College of Ireland

has better coverage with mobile data but Celbridge has better Wi–Fi signal. The Ookla

speedtest will record the longitude and latitude of each location as well as ping time and

download and upload speeds. Mode 1 is not effected by location so it shall only be run once.

Hence there will be five experiments, where the application will be run 180 times in each

experiment.

26 | P a g e

The log files from logentries.com and recorded data from Trepn Profiler will be cross

referenced to find the battery, CPU and memory usage for each time the application was run.

The results will be inputted into the IBM SPSS Statistics for comparison results, which will be

shown in the next chapter.

27 | P a g e

Chapter 6-Evaluation

Upon completion of the experiments, the log files and metric readings, of the memory, CPU

load and battery remaining, needed to be downloaded and combined together for data

analysis. The log files, hosted on logentries .com, contain the start time for each application

was run, with the parameter used. They also contain the computation time and the service

time. The computation time shows how long it took to complete the computation class while

the service time shows how long each Intent Service took to complete.

The metric readings, from the Trepn Profiler, were recorded every 200 mS throughout the

length of each experiment. For example, the first experiment ran for nearly two hours, so

there were over 6,000,000 readings for that particular experiment alone. The timings for each

of these readings needed to be compared with the start time from the log files to pick out the

metric readings as the application was executed.

There were six experiments run in total. The Ookla Speedtest was used to determine the

network speed at the time of each experiment. To get a baseline the mobile device was

monitored without App1 running and with all non-essential applications disabled. Disabling

non-essential applications meant there was no background processes downloading or

uploading data from the internet. The only internet data transfer in experiments with non-

essential applications disabled will be from App1. However applications such as the Android

Operating System (OS) could not be disabled. As a result the memory and CPU recordings will

have sudden peaks while the OS is running processes and drops while it is in idle state. All

experiments started with device at full power.

6.1 Experiment environments

The network type for the first four experiments were:

Network type: UPC 25Mb Wi-Fi broadband.

While the network type for the two final experiments were:

3 Network, 3G mobile data.

Experiment 1 (Exp1): Baseline recording of the memory, normalized CPU load, and battery

remaining metrics of mobile device. All non-essential applications disabled and App1 was not

running.

Ping Time: 25mS

Download speed: 30.49 Mbps

Upload speed: 6.51 Mbps

28 | P a g e

Experiment 2 (Exp2): Metrics of mobile device recorded. All applications re-enabled and App1

was not running.

Ping Time: 17mS

Download speed: 20.83 Mbps

Upload speed: 7.00 Mbps

Experiment 3 (Exp3): Metrics of mobile device recorded while App1 is running local

computation. All were non-essential applications disabled.

Ping Time: 17mS

Download speed: 28.75 Mbps

Upload Speed: 6.61 Mbps

Experiment 4 (Exp4): Metrics of device recorded while App1 was running computation

remotely. All non-essential applications were disabled.

Ping Time: 18mS

Download Speed: 19.27 Mbps

Upload Speed: 6.27 Mbps

Experiment 5 (Exp5): Metrics of device recorded while App1 was running computation

remotely.

All non-essential applications were disabled.

Ping Time: 68mS

Download Speed: 2.15 Mbps

Upload Speed: 1.45 Mbps

Experiment 6 (Exp6): Metrics of device while App1 was running remotely. All non-essential

applications were disabled.

Ping Time: 71mS

Download Speed: 0.49 Mbps

Upload Speed: 0.13 Mbps

6.2 Data Analysis

6.2.1 Baseline Experiments

Exp1 and Exp2 were two experiments to get a baseline metric of Memory usage, Normalized

CPU Usage and Battery Remaining without App1 running. Exp1 had all non-essential

applications disabled while Exp2 was run while the mobile device was in normal use. The

recorded data was inputted to a spreadsheet in Microsoft Excel. The following comparison

charts were created using the spreadsheets.

29 | P a g e

The average Memory consumption for Exp1 is 755421.355 KB and average Memory

consumption for Exp2 is 761662.622 KB as shown in Exp1 and Exp2 spreadsheets in disc

attached. The maximum memory used during both experiments are labelled on the chart.

764864 KB

775768

720000

730000

740000

750000

760000

770000

780000
3

6
8

0
0

2
5

7
6

0
0

4
7

8
4

0
0

6
9

9
2

0
0

9
2

0
0

0
0

1
1

4
0

8
0

0

1
3

6
1

6
0

0

1
5

8
2

4
0

0

1
8

0
3

2
0

0

2
0

2
4

0
0

0

2
2

4
4

8
0

0

2
4

6
5

6
0

0

2
6

8
6

4
0

0

2
9

0
7

2
0

0

3
1

2
8

0
0

0

3
3

4
8

8
0

0

3
5

6
9

6
0

0

3
7

9
0

4
0

0

4
0

1
1

2
0

0

4
2

3
2

0
0

0

4
4

5
2

8
0

0

4
6

7
3

6
0

0

4
8

9
4

4
0

0

5
1

1
5

2
0

0

5
3

3
6

0
0

0

5
5

5
6

8
0

0

5
7

7
7

6
0

0

5
9

9
8

4
0

0

6
2

1
9

2
0

0

6
4

4
0

0
0

0

M
em

o
ry

 (
K

B
)

Time (mS)

Exp1 v 2 Memory

Exp_1_Mem Exp_2_Mem

5…
4… 4…

0

10

20

30

40

50

60

3
6

8
0

0

2
5

7
6

0
0

4
7

8
4

0
0

6
9

9
2

0
0

9
2

0
0

0
0

1
1

4
0

8
0

0

1
3

6
1

6
0

0

1
5

8
2

4
0

0

1
8

0
3

2
0

0

2
0

2
4

0
0

0

2
2

4
4

8
0

0

2
4

6
5

6
0

0

2
6

8
6

4
0

0

2
9

0
7

2
0

0

3
1

2
8

0
0

0

3
3

4
8

8
0

0

3
5

6
9

6
0

0

3
7

9
0

4
0

0

4
0

1
1

2
0

0

4
2

3
2

0
0

0

4
4

5
2

8
0

0

4
6

7
3

6
0

0

4
8

9
4

4
0

0

5
1

1
5

2
0

0

5
3

3
6

0
0

0

5
5

5
6

8
0

0

5
7

7
7

6
0

0

5
9

9
8

4
0

0

6
2

1
9

2
0

0

6
4

4
0

0
0

0

C
P

U
 (

%
)

Time (mS)

Exp1 v 2 CPU

Exp_1_CPU Exp_2_CPU

30 | P a g e

The CPU chart on the previous page has the maximum load achieved during each experiment.

The average CPU load in Exp1 was 6.438% and 8.494% in Exp2.

The Battery Remaining Chart shows the minimum value remaining on both experiments. The

average value for battery remaining for Exp1 was 92.45% and 92.33% in Exp2.

8…

8…

75

80

85

90

95

100

105

3
6

8
0

0

2
5

7
6

0
0

4
7

8
4

0
0

6
9

9
2

0
0

9
2

0
0

0
0

1
1

4
0

8
0

0

1
3

6
1

6
0

0

1
5

8
2

4
0

0

1
8

0
3

2
0

0

2
0

2
4

0
0

0

2
2

4
4

8
0

0

2
4

6
5

6
0

0

2
6

8
6

4
0

0

2
9

0
7

2
0

0

3
1

2
8

0
0

0

3
3

4
8

8
0

0

3
5

6
9

6
0

0

3
7

9
0

4
0

0

4
0

1
1

2
0

0

4
2

3
2

0
0

0

4
4

5
2

8
0

0

4
6

7
3

6
0

0

4
8

9
4

4
0

0

5
1

1
5

2
0

0

5
3

3
6

0
0

0

5
5

5
6

8
0

0

5
7

7
7

6
0

0

5
9

9
8

4
0

0

6
2

1
9

2
0

0

6
4

4
0

0
0

0

B
at

te
ry

 R
em

ai
n

in
g

(%
)

Time (mS)

Exp1 v 2 Battery Remaining

Exp_1_Battery Remaining Exp_2_Battery Remaining

31 | P a g e

6.2.2 Local v Remote Experiments

IBM SPSS Statistics was used to analysis the data recorded in Exp4, Exp5, and Exp6 (which all

ran remotely) compared to data recorded from Exp3 (which ran locally). Three data sets

were created:

1. Exp3 v 4

2. Exp3 v 5

3. Exp3 v 6

Each row in the data set represents each time the application was run and contains seven

variables.

1. Mode: the values for Mode were 1 = “locally” and 2 = “Remotely”. This variable was

used to show which row in the dataset run locally or remotely.

2. Size: this was the parameter inputted to the App1 before the start button was pressed.

It was used to decide the size of the computation.

3. CompTime: the CompTime shows how long it took to complete the computation.

4. TotalTime: the TotalTime represents how long it took the Intent Service on the device

to complete.

5. Memory: shows the average device memory for each run in KiloBytes.

6. CPU: shows the average Normalized CPU load for each run as a percentage.

7. Battery remaining: shows how much battery power was remaining on each run.

The mode variable was determined to be the Independent or Factor variable. The other

variables results were determined by which mode they ran in, locally or remotely. This would

make them Dependent or Test variables. Each Dependant Variable has to be tested to see if

they differ based on what mode they ran on. Each data set was also divided up based on the

size variable. This means when the tests were run the output would display results divided

into the sizes used. (Laerd Statistics, 2013).

The type of tests required to analysis the data sets depends on how many groups are being

tested and are these groups normally distributed. In the data sets the Independent variable,

Mode, is split into two values, locally and remotely. These represent the two groups to be

tested.

There are two tests used for comparing two groups of data:

1. Independent Samples T-Test

2. Mann-Whitney U Test

32 | P a g e

An Independent T-Test can only be used if both groups are normally distributed. If this is not

the case, then a Mann-Whitney U Test is performed. To determine if the groups are

distributed normally, SPSS can explore the descriptive statistics and tests the statistics for

normality. The output displays three different tables (Case Processing Summary, Descriptives,

and Tests of Normality) and a histogram for each group with a curve showing the groups

distribution. (Laerd Statistics, 2013).

1. Case Processing Summary: this table shows how many cases or sample size were

tested. The cases represent how many times the application was run.

2. Descriptives: shows all the descriptive statistics for both distribution groups. The main

statistic of interest is the mean of each group.

3. Tests of Normality: this table shows the statistics from normality tests. The main

statistic of interest is the sig. (significance) value of the Shapiro-Wilk test from each

group. If both of these values are over 0.05, than the two groups are normally

distributed and T-Test can be performed. If one of the values is under 0.05, then only

the Mann-Whitney U Test can be performed.

In both tests output, there are two key values, the mean for each group and sig. The mean

shows the average value for each group and sig. will indicate if there is a significant difference

between the two mean values. If the sig. is less, then there is a significant difference between

the two groups mean value. (Laerd Statistics, 2013).

33 | P a g e

6.3 Exp3 v 4 Output Results

Memory variable tests

Normality Test for size 50
Table 1

Table 2

34 | P a g e

The Descriptives table is shown above. The Mean Memory value for local group at size 50 is

754238.48 Kilo Bytes and the Mean Memory value for remote group at the same size is

578208.00 Kilo Bytes.

Table 3

The Sig. value for both groups are under 0.05, which means there are non-normal and Mann-

Whitney test is required. The histograms below show the distribution curve for both groups.

35 | P a g e

 The distribution curve for both groups are both left of the centre of Histogram. The curve

should look something like below.

Also to the right of the Histogram, the total mean value and the number of times the

application was run is display as N

Normal distribution curve example

36 | P a g e

Normality Test for size 100

Table 4

Table 5

37 | P a g e

Table 6

The Local Mean value is 768288.71 Kilo Bytes and the Remote Mean value is 763024.5. The

remote Sig. value is under 0.05 and the Histogram for remote group also show the remote

group is non-normal so a Mann-Whitney U Test will be carried out for size 100.

38 | P a g e

Normality Test for size 200

Table 7

Table 8

39 | P a g e

Table 9

The Local Mean memory value is 765475.7 and Remote Mean memory value is 76747.39.

Both groups Sig. value is under 0.05 and the Histograms show the two groups are non-

normal so the Mann-Whitney test while be carried out.

40 | P a g e

Normality Tests for size 400

Table 10

Table 11

41 | P a g e

Table 12

The Remote Mean memory value is 760926.07 Kilo Bytes and Local Mean Memory is

752902.31 Kilo Bytes. The Remote Sig. value is under 0.05 and Remote Histogram show a

non- normal curve. This means a Mann-Whitney test needs to be performed.

42 | P a g e

Test results for Exp3 v 4 Memory variable

Table 13 Table 14

Table 14 Table 15

At size 50 and 200, local mode uses significantly less memory then remote mode. However at

size 100 and 400, the remote mode uses significantly less memory than the local mode.

43 | P a g e

CPU Variable Tests

Normality Tests for size 50

Table 16

Table 17

44 | P a g e

Table 18

The Sig. value for both groups are under 0.05 in the table above and the Histograms below

show that the Local Mean was 37.31% and ran 45 times and Remote was 42.09% and ran 45

times. The distribution curves are both off to the right.

45 | P a g e

Normality tests for size 100

Table 19

 Table 20

46 | P a g e

Table 21

Both Sig. values are under 0.05 in the Test of Normality table above. The Histograms

both show the distribution curves are also both off. The Local Mean is 52.69% and ran

45 times while the Remote Mean was 50.39% and ran 45 times.

47 | P a g e

Normality Tests for size 200

Table 22

Table 23

48 | P a g e

Table 24

The Sig. value for both groups are under 0.05 and distribution curves are non-normal

means that a Mann-Whitney U Test needs to be carried out. The Histograms also show

that the Local Mean value was 52.49% and The Remote Mean was 52.3%. The Local

group was run 47 times while the Remote group was run 44 times.

49 | P a g e

Normality Tests for size 400

Table 25

Table 26

50 | P a g e

Table 27

The Local Sig. value is under 0.05 and the curve on Histogram below shows this group is non-

normal which means Mann-Whitney Test has to be performed. The Local Mean was 54.12

and Remote Mean was 53.09

51 | P a g e

Test results for Exp3 v 4 CPU variable

Table 28 Table 29

Table 30 Table 31

All the Sig. values are over 0.05. This means there is no significant difference between the

device CPU loads on any of the sizes throughout this experiment.

52 | P a g e

Computation Times Variables Test

Normality Tests for size 50

Table 32

Table 33

53 | P a g e

Table 34

In the Tests of Normality table above, the Local Sig. value is under 0.05 which means it is

non-normal and only a Mann-Whitney U Test can be performed. The Local Mean value is

12.2 and Remote Mean is 0.303

54 | P a g e

Tests of Normality for size 100

Table 35

Table 36

55 | P a g e

Table 37

Both Sig. values are under 0.05. Both groups are have non-normal distribution curves in the

Histograms below. The Mann-Whitney Tests will be performed as a result. The Local Mean

value is 19.22 and Remote Mean is 1.839

56 | P a g e

Normality Tests for size 200

Table 38

Table 39

57 | P a g e

Table 40

The Local Sig. value is under 0.05 and curve on the Local Histogram is non-normal meaning

the Mann-Whitney Test is to be performed for this size. The Local Mean value is 11.894 and

Remote Mean is 24.570

58 | P a g e

Normality Tests for size 400

Table 41

Table 42

59 | P a g e

Table 43

Both Sig. values are under 0.05 and curves in both Histograms are non-normal. This means

the Mann-Whitney U Tests are to be performed for size of 400. The Local Mean value is

41.927 and the Remote Mean value is 320.844

60 | P a g e

Test results for Exp3 v 4 Computation Time variable

Table 44 Table 45

Table 46 Table 47

In size 50 and 100, the Remote Means for computation time are significantly better than

Local computation Times. In the bigger sizes of 200 and 400, the Local Means for

computation times is significantly better that Remote Computation Times.

61 | P a g e

Total Times Variable Tests

Normality Tests for size 50

Table 48

Table 49

62 | P a g e

Table 50

Both Sig. values in the table above are under 0.05 and the curves in the Histograms below are

non-normal. This means that only a Mann-Whitney test can be performed for this size of 50.

The Local Mean value is 23.6 and Remote Mean is 188.6

63 | P a g e

Normality Tests for Size 100

Table 51

Table 52

64 | P a g e

Table 53

As in the Tests of Normality for size 50, the Sig. values are under 0.05 and the curves in the

Histogram below are non-normal. Only the Mann-Whitney Test can be performed for size

100. The Local Mean value is 67.71 and the Remote Mean is 697.98

65 | P a g e

Normality Tests for Size 200

Table 54

Table 55

66 | P a g e

Table 56

The Remote Sig. value is under 0.05 and the curve for Remote Histogram is non-normal. As in

the two previous Normality Tests, only a Mann-Whitney Test can be performed. The Local

Mean value is 577.85 and the Remote Mean value is 465.09

67 | P a g e

Normality Tests for size 400

Table 58

Table 59

68 | P a g e

Table 60

Both Sig. values from the Table above are under 0.05 and the curves are non-normal in the

Histograms for both groups below. Which means only the Mann-Whitney Test can be used

for size 400. The Local Mean value is 5114.73 and the Remote Mean is 6585.09

69 | P a g e

Test results for Exp3 v 4 Total Time variable

Table 61 Table 62

Table 63 Table 64

In all the sizes the Remote mode Total Timings are significantly higher than the Local Total

Timings.

70 | P a g e

Battery Remaining Variable Tests

Normality Tests for size 50

Table 65

Table 66

71 | P a g e

Table 67

Both Groups have Sig. Value lower than 0.05 in the table above and both groups Histograms

have non-normal curves. As a result, the Mann-Whitney U Test will be performed for this size.

The Local Mean value is 99.2 and Remote Mean value is 99.44

72 | P a g e

Normality Tests for Size 100

Table 68

Table 69

73 | P a g e

Table 70

As in the last size, both Sig. values are under 0.05 and both have non-normal curves in the

Histograms. Only the Mann-Whitney Tests can be performed for this size. The Local Mean

value is 98.31 and Remote Mean is 98.34

74 | P a g e

Normality Tests for Size 200

Table 71

Table 72

75 | P a g e

Table 73

Both groups have Sig. values under 0.05 and both Histogram have produced non-normal

curves. As with the previous two sizes, the Mann-Whitney Test has to be performed for size

200. The Local Mean value is 95.17 and the Remote Mean is 95.52.

76 | P a g e

 Normality Tests for Size 400

Table 74

Table 75

77 | P a g e

Table 76

In the table above, the Local Sig. value is just under 0.05 and the curve is non-normal in the

Local Histogram. As with the previous different sizes the Mann-Whitney test must be

performed. The Local Mean is 54.66 and the Remote Mean is 84.58

78 | P a g e

Test results for Exp3 v 4 Battery Remaining variable

Table 77 Table 78

Table 79 Table 80

In size 50 section of the experiment, the Remote Battery Remaining Mean is significantly

larger than the Local Mean. In the rest of the sizes, there is very little difference between both

groups.

79 | P a g e

6.4 Exp3 v 5 Output Results

Memory Variable Tests

Normality Tests for size 50

Table 81

Table 82

80 | P a g e

Table 83

The Local Sig. value is less than 0.05 and the curve on the Local Histogram is non-normal. This

means a Mann-Whitney Test must be performed on the groups for this size. The Local Mean

value is 753238.49 and the Remote Mean is 763701.34.

81 | P a g e

Normality Tests for Size 100

Table 84

Table 85

82 | P a g e

Table 86

The Sig. value for Remote group is less than 0.05 and its curve is non-normal. As with the

previous size, a Mann-Whitney Test must be performed. The Local Mean value is 768288.71

and the Remote Mean is 770288.53.

83 | P a g e

Normality Tests for Size 200

Table 87

Table 88

84 | P a g e

Table 89

From the table above, both groups produce Sig. values less than 0.05 and curves from both

Histograms are both non-normal. A Mann-Witney Test must be performed. The Local Mean

is 765475.7 and the Remote Mean is 757753.09

85 | P a g e

Normality Tests for Size 400

Table 90

Table 91

86 | P a g e

Table 92

Both groups have produced Sig. values that are greater than 0.05 and curves from both

Histograms are normal. Therefore an Independent Sample T Test must be performed for this

size. The Local Mean value is 760267.4 and Remote Mean is 750935.45

87 | P a g e

Test results for Exp3 v 5 Memory Variable

Table 93 Table 94

 Table 95

In the Mann-Whitney Test results above, the Local Mean is significantly better than the

Remote Mean in the size 50 and 100 tests. The Independent T-Test results for size 400 are

shown on the next page.

88 | P a g e

Table 96

The Mean for Memory used in remote group is significantly less than the Mean from the

Local group in the size 400 test.

89 | P a g e

CPU Variable Tests

Normality Tests for Size 50

Table 97

Table 98

90 | P a g e

Table 99

The Local Mean value is 37.31 and the Remote Mean is 13.66 as shown in the Descriptive

table on previous page and Histograms below.

91 | P a g e

Normality Tests for Size 100

Table 100

Table 101

92 | P a g e

Table 102

The Local Mean value is 52.69 and the Remote Mean is 53 as shown in the Descriptive table

on previous page and Histograms below.

93 | P a g e

Normality for Size 200

Table 102

Table 103

94 | P a g e

Table 104

The Local Mean value is 52.49 and the Remote Mean is 55 as shown in the Descriptive table

on previous page and Histograms below.

95 | P a g e

Normality Tests for Size 400

Table 105

Table 106

96 | P a g e

Table 107

In all Normality Tests for CPU variable, all thee Sig. values were found to be under 0.05 and

all curves from the Histograms are on non-normal. Only a Mann-Whitney Test can be

performed for all sizes in this variable. The Local Mean value is 53.89 and the Remote Mean

is 54.11 as shown in the Descriptive table on previous page and Histograms below.

97 | P a g e

Test results for Exp3 v 5 CPU Variable

Table 108 Table 109

Table 110 Table 111

From the above results, in the size 50 results the Remote Mean is significantly lower than

the Local Mean. In size 100 results, there is no significant difference between the two

groups. In the higher two sizes, the Local CPU Mean is significantly lower than the Remote

Mean.

98 | P a g e

Computation Variable Tests

Normality Tests for size 50

Table 112

Table 113

99 | P a g e

Table 114

Both Sig. values from the two groups are under 0.05 and the curves from both Histograms

are non-normal. This means that a Mann-Whitney Test must be performed for size 50. The

Local Mean value is 12.2 and the Remote Mean is 0.287 as shown in the Descriptive table

on previous page and Histograms below.

100 | P a g e

Normality Tests for size 100

Table 115

Table 116

101 | P a g e

Table 117

As with the previous size, both Sig. values are under 0.05 and the curves from both

Histograms are non-normal. The Mann-Whitney Test must be performed for size 100 as well

as size 50. The Local Mean value is 19.222 and the Remote Mean is 1.867 as shown in the

Descriptive table on previous page and Histograms below.

102 | P a g e

Normality Test for size 200

Table 118

Table 119

103 | P a g e

Table 120

Both Sig. values are under 0.05, the Remote Sig. value is only just under the threshold. The

Remote Histogram also shows it is close to having a normal curve. However neither group

reach the required target, so a Mann-Whitney Test has to be performed. The Local Mean

value is 11.894 and the Remote Mean is 28.609 as shown in the Descriptive table on

previous page and Histograms below.

104 | P a g e

Normality Tests for Size 400

Table 121

Table 122

105 | P a g e

Table 123

Both groups Sig. values are under 0.05 and the curves from both Histograms show non-

normal curves, therefore the Mann-Whitney Test has to be performed. The Local Mean

value is 41.756 and the Remote Mean is 325.955 as shown in the Descriptive table on

previous page and Histograms below.

106 | P a g e

Test Results for Exp3 v 5 Computation Times variable

Table 124 Table 125

Table 126 Table 127

From the results above, size 50 and 100 show the Remote Mean value is significantly lower

than the Local. In the bigger sizes, the trend reverses and the Local Mean shows a significantly

lower time than the Remote Mean value.

107 | P a g e

Total Time Variable Tests

Normality Tests for Size 50

Table 128

Table 129

108 | P a g e

Table 130

From the table above, both Sig. values are under 0.05 and the curves from the Histograms

below are non-normal. This means only a Mann-Whitney Test can be performed. The Local

Mean value is 23.6 and the Remote Mean is 3376 as shown in the Descriptive table on

previous page and Histograms below.

109 | P a g e

Normality Tests for Size 100

Table 131

Table 132

110 | P a g e

Table 133

As in the last size, in the table above both groups have produced Sig. values under 0.05 and

the curves from both Histograms are non-normal. As before, the Mann-Whitney Test has to

be performed. The Local Mean value is 67.71 and the Remote Mean is 3453.84 as shown in

the Descriptive table on previous page and Histograms below.

111 | P a g e

Normality Tests for Size 200

Table 134

Table 135

112 | P a g e

Table 136

As in size 50 and 100, both Sig. value shown in the table above are under 0.05 and both

curves from the Histograms below are non-normal. Only the Mann-Whitney Test can be

performed. The Local Mean value is 577.85 and the Remote Mean is 5332.59 as shown in

the Descriptive table on previous page and Histograms below.

113 | P a g e

Normality Tests for Size 400

Table 137

Table 138

114 | P a g e

Table 139

As found in all sizes so far for this variable, both groups Sig. value in the table above are

under 0.05 and both have non-normal curves in their respective Histograms below. All sizes

in this variable need to use the Mann-Whitney Test. The Local Mean value is 5094.8 and the

Remote Mean is 12617.23as shown in the Descriptive table on previous page and

Histograms below.

115 | P a g e

Test Results for Exp3 v 5 Total Time Variable

Table 140 Table 141

Table 142 Table 143

In all the sizes in this test, the Local Mean value is significantly lower than the Remote Mean

value.

116 | P a g e

Tests for Battery Remaining Variable

Normality Tests for Size 50

Table 144

Table 145

117 | P a g e

Table 146

As shown in the table above, both the Sig. values are under 0.05 and the curves in the

respective Histograms are non-normal. Only the Mann-Whitney Test can be performed for

this size. The Local Mean value is 99.2 and the Remote Mean is 98.89 as shown in the

Descriptive table on previous page and Histograms below.

118 | P a g e

Normality Tests for Size 100

Table 147

Table 148

119 | P a g e

Table 149

As with the following size, both Sig. figures from the table above are under 0.05. Both curves

from the Histograms are also non-normal. This means that the Mann-Whitney test has to be

performed for sizes 50 and 100. The Local Mean value is 98.31 and the Remote Mean is

96.84 as shown in the Descriptive table on previous page and Histograms below.

120 | P a g e

Normality Tests for Size 200

Table 150

Table 151

Table 152

121 | P a g e

As with the two previous sizes, the Sig. figures are under 0.05 and curves from the

Histograms below are non-normal hence the Mann-Whitney Test must be performed for sizes

50, 100, and 200. The Local Mean value is 95.17 and the Remote Mean is 92.17 as shown in

the Descriptive table on previous page and Histograms below.

122 | P a g e

Normality Tests for Size 400

Table 153

Table 154

123 | P a g e

Table 155

Both groups show Sig. values over 0.05 and the curves on the Histograms below are normal.

For size 400, an Independent T-Test needs to be performed. The Local Mean value is 83.84

and the Remote Mean is 77.16 as shown in the Descriptive table on previous page and

Histograms below.

124 | P a g e

Test Results for Exp3 v 5 Battery Remaining Variable

Table 156 Table 157

Table 158

In the Mann-Whiney results, the Local Mean value for Battery Remaining is significantly

higher than the Remote Mean value. The Independent T-Test results are shown on the next

page.

125 | P a g e

Table 159

The results above show that the Local Mean value for Battery Remaining is significantly higher

than the Remote value.

126 | P a g e

6.5 Exp3 v 6 Test Results

Memory Variable Tests

Normality Test for Size 50

Table 160

Table 161

127 | P a g e

Table 162

The Local Mean value is 754238.49 and the Remote Mean is 761651.43 as shown in the

Descriptive table on previous page and Histograms below.

128 | P a g e

Normality Tests for Size 100

Table 163

Table 164

129 | P a g e

Table 165

The Local Mean value is 768288.71 and the Remote Mean is 767018.77 as shown in the

Descriptive table on previous page and Histograms below.

130 | P a g e

Normality Tests for Size 200

Table 166

Table 167

131 | P a g e

Table 168

The Local Mean value is 765475.7 and the Remote Mean is 761389.04 as shown in the

Descriptive table on previous page and Histograms below.

132 | P a g e

Normality Tests for Size 400

Table 169

Table 170

133 | P a g e

Table 171

At least one of the groups in each size had Sig. value under 0.05 which means only a Mann-

Whitney Test could be performed. The Local Mean value is 760267.4 and the Remote Mean

is 750992.66 as shown in the Descriptive table on previous page and Histograms below.

134 | P a g e

Test results for Exp3 v 6 Memory variable

Table 172 Table 173

Table 174 Table 175

From the results above, the Local Mean for Memory is significantly lower than the Remote

Mean at size 50. The result reverses in the next size, where the Remote Mean is significantly

lower. At size 200, there is no significant difference between either groups. When the size

reaches 400, The Remote Mean significantly lowers compared to the Local Mean.

135 | P a g e

CPU Variable Tests

Normality Tests for Size 50

Table 176

Table 177

136 | P a g e

Table 178

The Local Mean value is 37.31 and the Remote Mean is 7.7 as shown in the Descriptive

table on previous page and Histograms below.

137 | P a g e

Normality tests for Size 100

Table 179

Table 180

138 | P a g e

Table 181

The Local Mean value is 52.69 and the Remote Mean is 44.44 as shown in the Descriptive

table on previous page and Histograms below.

139 | P a g e

Normality Tests for Size 200

Table 182

Table 183

140 | P a g e

Table 184

The Local Mean value is 52.49 and the Remote Mean is 55.56 as shown in the Descriptive

table on previous page and Histograms below.

141 | P a g e

Normality Tests for Size 400

Table 185

Table 186

142 | P a g e

Table 187

In all the Normality Tests performed for the different sizes in the CPU variable, all the Sig.

values in Shapiro-Wilk section are under 0.05 and all the curves on the Histograms are non-

normal. The Mann-Whitney Test has to be performed in all sizes for this variable. The Local

Mean value is 53.89 and the Remote Mean is 47.47 as shown in the Descriptive table on

previous page and Histograms below.

143 | P a g e

Test Results for Exp3 v 6 CPU variable

Table 188 Table 189

Table 190 Table 191

From the results shown above, the Remote Mean CPU value is significantly lower ate size 50,

100 and 400. The trend reverses at size 200, the Local Mean CPU value is significantly lower

than the Remote Mean.

144 | P a g e

Computation Timing Variable Tests

Normality Tests for Size 50

Table 192

Table 193

145 | P a g e

Table 194

The Local Mean value is 12.2 and the Remote Mean is 0.261 as shown in the Descriptive

table on previous page and Histograms below.

146 | P a g e

Normality Tests for Size 100

Table 195

Table 196

147 | P a g e

Table 197

The Local Mean value is 19.222 and the Remote Mean is 1.977 as shown in the Descriptive

table on previous page and Histograms below.

Normality Tests for Size 200

148 | P a g e

Table 198

Table 199

Table 200

149 | P a g e

The Local Mean value is 11.894 and the Remote Mean is 24.911 as shown in the Descriptive

table on previous page and Histograms below.

150 | P a g e

Normality Tests for Size 400

Table 201

Table 202

151 | P a g e

Table 203

All the Normality Tests for all sizes for the Computation Timing variable have shown the Sig.

value of the Shapiro-Wilk section to be under 0.05. Also all the curves on each Histogram

has a non-normal curve. This means a Mann-Whitney Test has to be carried out for all sizes

for this variable. The Local Mean value is 41.756 and the Remote Mean is 326.304 as shown

in the Descriptive table on previous page and Histograms below.

152 | P a g e

Test Results for Exp3 v 6 Computation Timing variable

Table 204 Table 205

Table 206 Table 207

From the results shown above, the Remote Mean value is significantly lower than the Local

Mean in sizes 50 and 100. However the trend reverses in sizes 200 and 400, the Local Mean

is significantly lower than the Remote Mean value.

153 | P a g e

Total Timing Variable

Normality Tests for Size 50

Table 208

Table 209

154 | P a g e

Table 210

The Local Mean value is 23.6 and the Remote Mean is 4180.48 as shown in the Descriptive

table on previous page and Histograms below.

155 | P a g e

Normality Tests for Size 100

Table 211

Table 212

156 | P a g e

Table 213

The Local Mean value is 67.71 and the Remote Mean is 4842.12 as shown in the Descriptive

table on previous page and Histograms below.

157 | P a g e

Normality Tests for Size 200

Table 214

Table 215

158 | P a g e

Table 216

The Local Mean value is 577.85 and the Remote Mean is 3876.02 as shown in the

Descriptive table on previous page and Histograms below.

159 | P a g e

Normality Tests for Size 400

Table 217

Table 218

160 | P a g e

Table 219

In all the Normality Tests carried out for the Total Timing Variable, all the Sig. values in the

Shapiro-Wilk section like in the table above are under 0.05. All the curves from each

Histogram in this variable are non-normal. This means a Mann-Whitney Test will be carried

out for all of the sizes in this variable. The Local Mean value is 5094.5 and the Remote Mean

is 51392.96 as shown in the Descriptive table on previous page and Histograms below.

161 | P a g e

Test Results from Exp3 v 6 Total Timing variable

Table 220 Table 221

Table 222 Table 223

From the results above, the Local Mean for Total Timing is significantly lower than the Remote

Mean in all the sizes.

162 | P a g e

Battery Remaining Variable Tests

Normality Tests for Size 50

Table 224

Table 225

163 | P a g e

Table 226

The Local Mean value is 99.2 and the Remote Mean is 99.66 as shown in the Descriptive

table on previous page and Histograms below.

164 | P a g e

Normality Tests for Size 100

Table 227

Table 228

165 | P a g e

Table 229

The Local Mean value is 98.31 and the Remote Mean is 97.33 as shown in the Descriptive

table on previous page and Histograms below.

166 | P a g e

Normality Tests for Size 200

Table 230

Table 231

167 | P a g e

Table 232

The Local Mean value is 95.17 and the Remote Mean is 92.53 as shown in the Descriptive

table on previous page and Histograms below.

168 | P a g e

Normality Tests for Size 400

Table 233

Table 234

Table 235

169 | P a g e

In all the Normality Tests performed in the Battery Remaining variable, The Sig. values in the

Shapiro-Wilk section of Tests of Normality table are all under 0.05. The curves in all the

Histograms are all non-normal. As a result, the Mann-Whitney Test will be performed on all

sizes in the Battery Remaining variable. The Local Mean value is 83.84 and the Remote

Mean is 72.13 as shown in the Descriptive table on previous page and Histograms below.

170 | P a g e

Test Results for Exp3 v 6 Battery Remaining variable

Table 236 Table 237

Table 238 Table 239

From the results above, the Remote Mean value is significantly higher than the Local Mean in

size 50. However the trend reverses in the remaining sizes, the Local Mean is significantly

higher than the Remote Mean.

171 | P a g e

6.6 Findings from Data Analysis

Memory Variable Comparisons

At size 50, the Local group (Exp3) uses significantly less memory than in any of the other

remotely executed experiments (Exp4, Exp5, and Exp6). At the middle range sizes of 100 and

200 it is unclear as to which group definitively consumes the least amount of memory. In Exp3

v 4 (table 13 -16, page 42) and Exp3 v 6 (table 172-175, page 134) comparisons, the Local

group uses more memory at size 100 than in size 200. The expectation would be the bigger

the size of computation the more memory would be used. This actually happens in Exp3 v 5

(table 93 -96, page 87/88), the Local group uses less memory in size 100 than in size 200.

These experiments ran in the same environment as baseline Exp1, where all non-essential

applications were disabled. Applications like the OS (Operating System) and phone

application could not be disabled. There were a series of spikes and drops in the Exp1 v Exp2

Memory chart (page 29) which could only have been caused be these applications still

running. The same applications could have utilising memory at the same time App1 was

running Exp3 at size 100 and would explain the high memory use at this time. Across each

comparison it is clear that when the size is at 400, the Remote groups use significantly less

memory than the local group. As the size increases pass 400, the computations would get

bigger which would mean the device memory consumption would increase. To save on this

memory consumption the computation should run Remote mode when the size is equal or

greater than 400.

CPU Variable Comparisons

In Exp3 v 4 CPU comparison (table 28 – 31, page 51), there is no significant difference between

local or remote CPU loads in all sizes. This is very much like the baseline experiments, Exp1 v

Exp2 CPU chart (page 29). In that experiment there is little between the CPU load averages

yet there was background processes operating in Exp2 as evident from the Exp1 v Exp2

Memory chart (page 29). In Exp3 v 5 (table 108 – 111, page 97), the Remote group used less

CPU load at size 50. However as the size increased, the more CPU load was utilized by the

remote group. In Exp3 v 6 (table 188 – 191, page 143), almost the same trend occurs, low CPU

load at size 50 but increase as the size gets bigger. However at size 400, the Remote CPU load

decreases. The timings results may explain why the CPU load increased on the Remote groups

Computation Times Comparisons

At size 50 and 100, the Remote groups ran the computation significantly quicker than the

Local group in all experiment comparisons. At size 200 and 400, the trend reversed. The Local

group ran the computation quicker than the Remote group. Exp3 v 4 comparisons are on page

172 | P a g e

60, table 44-57, Exp3 v 5 are on page 106, table 124 – 127 and Exp3 v 6 are on page 152, table

204-207. The instance on Azure that is used to complete the Remote computation use 1 small

instance or 1 CPU core. The speed of this instance has not been disclosed by Microsoft. The

device CPU as outline earlier in the dissertation has speed of up to 1.4 GHz and has two cores.

This means the device CPU would be more suitable for bigger computations than the instance

on Azure. The instance can be scaled up to use more cores, which will be discussed in the

conclusion. When the computation are running in the Remote mode, the device CPU is still

running processes to get the result from Azure. The longer the computations take, the longer

these processes take. This would explain the high CPU load in CPU comparisons at size 200

and 400.

Total Timings Comparisons

Exp3v 4 comparisons are on page 69 (table 61 -64), Exp3 v 5 are on page 115 (table 140-143),

and Exp3 v 6 are on page 161 (table 220 -223). In all experiments the overall timings are a lot

higher on the Remote groups compared with the Local group. This is due to a design defect

in App1 that was found after the data analysis tests were performed. The time stamp at the

end of the Intent Service, WebService, was taken after the result was broadcast to the Main

Activity instead of before the result was sent. However the computation times are correct,

they show that at size 200 and 400 the computation took significantly longer in Remote group.

This would mean the Total Timings for these sizes would be significantly higher in the Remote

group than the Local group.

Battery Remaining Comparisons

This variable will show which experiment was the most energy efficient. In Exp3 v 4

comparison (table 7-80, page 78) at size 50, the Remote group has significantly more battery

power remaining than Local group. In all the other sizes, there is no significant difference. In

Exp3v 5 (table 156-159, page 124/125) the local group has significantly more battery than the

remote group. Finally in Exp3v 6 (table 236-237, page 170), in size 50 the Remote group has

significantly more battery power remaining. However in the other sizes, the Local group has

significantly higher battery power remaining. This shows us that both Exp3 and Exp4 are most

energy efficient run experiments.

173 | P a g e

Chapter 7 Conclusions

Following on from the findings in the Evaluation chapter, this dissertation can answer the

question posed in Chapter 2, - Under what resource conditions is it energy efficient to migrate

a partition from an application to remote device or to run the application locally?

7.1 Answer to research question

The findings show that running components of an application remotely can in some cases

optimize the mobile device’s memory. This is particular true when the components in

question have a high memory usage. In all remotely executed experiments, when the

parameter was set at 400, they performed at their best. As discussed in the findings in

memory comparison, as the size of the computation increases so too does the device’s

memory consumption. This could have an impact on the memory resource on the device. The

Azure instance is able to utilize 1.75 GB of memory compared to the device’s 1 GB of memory.

From the findings in this dissertation, it is clear that when the size is 400 or greater the

computation should run remotely.

The experiments showed that the device’s CPU has a better specification than the instance in

Azure. Therefore able to handle bigger computations. As indicated in the computation timings

on previous chapter, the small instance contains a single CPU core. This can be scaled up to

four cores. There is a setting on Azure of what the ideal CPU load of the instance should

operate at, the default setting is set at 60% - 80%. If the load gets to 80% the instance will

automatically scale up to include a second instance. Since the load never got close to 80%,

the instance stayed at one core. In order for the Remote mode to conserve the devices CPU,

the instance has to be set to a higher specification. Technically this can be easily achieved by

setting up Azure to run two or even three cores but this will have an impact on the cost of

hosting the instances. The bill alone, which is located on the disc, for hosting an A1 instance

on a pay as you go subscription was €59.80 for the period of 15/7/15 to the 14/8/15. This

would be a hefty bill on top of the bill from the mobile device’s service provider. From the

findings of this dissertation, it appears the CPU on the mobile device used for the experiments

is better suited for large computations compared to an instance on the Azure. Therefore the

CPU load does not need to be included in the cost efficiency formula.

Exp5 and Exp6 were run on 3G mobile network. The download speed was 2.15 Mbps and

upload speed was 1.45 Mbps for Exp5. The speeds were even slower for Exp6, download

speed 0.49 Mbps and upload 0.13 Mbps. The time to send and receive data would have taken

a lot longer than on Exp4, which was using UPC 50 Mb broadband Wi-Fi. The download speed

174 | P a g e

for this experiment was 19.27 Mbps and upload speed was 6.27 Mbps. Exp4 was just as energy

efficient as Exp3, which was using the devices resources. The slower the network speed, the

longer the HTTP connection was open. In this scenario, the Remote mode is not energy

efficient even if it is saving memory usage while completing a size 400 or higher computation.

In conclusion, for the remote mode to be cost efficiency it must meet two conditions;

1. Download speed > 20 Mbps

2. Size (parameter input) => 400

An If condition statement could be set up as follows:

 var download speed = d;

 var input = size;

 If (d > 20 && size => 400){

 //code for starting Remote mode

 }else{

 //code to run Local mode

 }

7.2 Future Work

This dissertation has come to the conclusion that the main stumbling block with offloading or

partitioning components of a mobile application, like the proposed application App2, to the

cloud is high network latency, low download and upload speeds. They are two areas of

research that could overcome these issues.

1. Data Compression

2. Using 4G Networks

7.2.1 Data Compression

The experiments showed that the remotely run computation with low parameters performed

really well. To solve the problem of receiving bigger data over slow network, it might be

possible to compress data before being sent from servlet to the mobile device. The energy

used to unpack the data might be less than the energy used to keep a connection open.

7.2.2 Using 4G Networks

175 | P a g e

In conjunction with data compression solution, the experiments could be carried out over 4G

networks. Some mobile network providers can provide network speeds up to 20 to 25 Mbps.

This is the bench mark required for a remotely executed computation to compete with a

locally run computation. Unfortunately due to lack of resources, this dissertation could not

utilize a 4G network. It would be interesting to see the results of the same experiments

utilizing these solutions.

7.2.3 Build the proposed Application

Unfortunately due to time restrictions, the proposed application in Chapter4, App2 was not

built. The building blocks are there to create the application. With further research into 4G

networks and data compression, a more energy efficient application could be designed and

built using the proposed architecture for App2.

176 | P a g e

References

Asif, M., and Majumdar, S., (2011) ‘A Runtime Partitioning Technique for Mobile Web

Services’ In: Sheu, J-P., and Wang, C-L. (eds.) 2011 International Conference on Parallel

Processing Workshops, Taipei City, Taiwan, 13-16 September, 2011, pp 81 – 90.

Giurgiu, I., Oriana, R., Dejan, J., Krivulev, I. and Alsono, G. (2009) ‘Calling the cloud: Enabling

mobile phones as interfaces to cloud applications’ In: Bacon, J.M., and Cooper, B.F. (eds.)

Middleware 2009, Urbana Champaign, Illinois, USA, 30 November – 4 December, 2009, pp 83-

102.

Princeton, Dept. of Computer Science, (2011) ‘CloneClould: Elastic Execution between

Mobile Device and Cloud’ [Online]. cs.princeton.edu. Available from:

http://www.cs.princeton.edu/~sihm/papers/clonecloud-eurosys11.pdf [25/3/15].

Usenix, (2010) ‘Energy efficiency of mobile clients in cloud computing’ [Online]. usenix.org.

Available from: www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Miettinen.pdf

[24/3/15].

Norman Neilson Group, (2013) ‘Mobile: Native Apps, Web Apps, and Hybrid Apps’ [Online].

nngroup.com. Available from: http://www.nngroup.com/articles/mobile-native-apps/

[14/5/15].

Mehta, N., (2012) ‘Mobile Client Architecture Web vs. Native vs. Hybrid Apps’ [Online].

tcs.com. Available from:

http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Mobility_Whitepaper_Clie

nt-Architecture_1012-1.pdf [15/5/15].

IBM, (2012) ‘WebSphere Commerce V7 Feature Pack 4 Mobile application architecture’

[Online]. software.ibm.com. Available from:

ftp.software.ibm.com/software/iea/content/com.ibm.iea.wcs/wcs/7.0.0.4/ProgrammingMo

del/MobileAppArchitecture.pdf [17/5/15]

Creswell, J. W., (2003) ‘RESEARCH DESIGN Qualitative, Quantitative, and Mixed Methods

Approaches’ 2nd ed. Thousand Oaks, California, U.S.A: Sage Publications.

IdleWorx, (2011) ‘Creating a simple android app with 2 buttons’ [Online]. IdleWork Blog, 28

June 2011. Available from: http://blog.idleworx.com/2011/06/build-simple-android-app-2-

button.html [27 /6/15].

Programming Simplified, (2015) ‘Java program to multiply two matrices’ [Online].

programmingsimplified.com. Available from:

http://www.cs.princeton.edu/~sihm/papers/clonecloud-eurosys11.pdf
http://www.usenix.org/legacy/event/hotcloud10/tech/full_papers/Miettinen.pdf
http://www.nngroup.com/articles/mobile-native-apps/
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Mobility_Whitepaper_Client-Architecture_1012-1.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Mobility_Whitepaper_Client-Architecture_1012-1.pdf
ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.wcs/wcs/7.0.0.4/ProgrammingModel/MobileAppArchitecture.pdf
ftp://ftp.software.ibm.com/software/iea/content/com.ibm.iea.wcs/wcs/7.0.0.4/ProgrammingModel/MobileAppArchitecture.pdf
http://blog.idleworx.com/2011/06/build-simple-android-app-2-button.html
http://blog.idleworx.com/2011/06/build-simple-android-app-2-button.html

177 | P a g e

http://www.programmingsimplified.com/java/source-code/java-program-multiply-two-

matrices [17/5/15].

Haseman, C. (2011) ‘Creating Android Applications: Develop and Design’ 1st ed. San

Francisco, California, U.S.A: Peachpit Press.

The Open Tutorials (2012) ‘Android: how to send http get request to servlet using

HTTPURLConnection’ [Online]. theopentutorials.com. Available from:

http://theopentutorials.com/post/uncategorized/android-how-to-send-http-get-request-to-

servlet-using-httpurlconnection/ [23/6/15].

Developer.Android (2015) ‘LocalBroadcastManager’ [Online]. developer.android.com.

Available from:

http://developer.android.com/reference/android/support/v4/content/LocalBroadcastMana

ger.html [10/5/15]

Logentries (2015) ‘Log Management & Analysis software made easy’ [Online].

logentries.com. Available from: https://logentries.com/ [16/7/15].

Eclipse Foundation (2015) ‘Eclipse Luna’ [Online] eclipse.org. Available from:

https://eclipse.org/luna/ [20/6/15].

GSMArena (2015) ‘HTC One Mini – Full phone specifications’ [Online]. GSMArena.com.

Available from: http://www.gsmarena.com/htc_one_mini-5505.php [13/7/15].

Microsoft Azure (2015) ‘Sizes for cloud services’ [Online]. azure.microsoft.com. Available

from: https://azure.microsoft.com/en-us/documentation/articles/cloud-services-sizes-

specs/ [17/6/15].

Qualcomm (2015) ‘Trepn power profiler’ [Online]. developer.qualcomm.com. Available

from: https://developer.qualcomm.com/software/trepn-power-profiler [30/6/15].

Speedtest (2015) ‘Speedtest.net by Ookla – The Global Broadband speed test’ [Online].

speedtest.com. Available from: http://www.speedtest.net/ [11/7/15].

Laerd Statistics (2013) ‘Independent T-Test using SPSS’ [Online]. statistics.laerd.com.

Available from: https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-

statistics.php [20/8/15].

Laerd Statistics (2013) ‘Mann-Whitney U Test using SPSS’ [Online]. statistics.laerd.com.

Available from: https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-

statistics.php [20/8/15].

http://www.programmingsimplified.com/java/source-code/java-program-multiply-two-matrices
http://www.programmingsimplified.com/java/source-code/java-program-multiply-two-matrices
http://theopentutorials.com/post/uncategorized/android-how-to-send-http-get-request-to-servlet-using-httpurlconnection/
http://theopentutorials.com/post/uncategorized/android-how-to-send-http-get-request-to-servlet-using-httpurlconnection/
http://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
http://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://logentries.com/
https://eclipse.org/luna/
http://www.gsmarena.com/htc_one_mini-5505.php
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-sizes-specs/
https://azure.microsoft.com/en-us/documentation/articles/cloud-services-sizes-specs/
https://developer.qualcomm.com/software/trepn-power-profiler
http://www.speedtest.net/
https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/independent-t-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/mann-whitney-u-test-using-spss-statistics.php

178 | P a g e

Appendix

Following comparison charts contain the maximum value of each experiment variable.

768760KB 771675KB

730000

735000

740000

745000

750000

755000

760000

765000

770000

775000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

M
em

o
ry

 (
K

b
)

No. of App runs

Exp3 v 4 Memory

Exp_3_Mem Exp_4_Mem

769300KB

772503KB

770573KB

730000

735000

740000

745000

750000

755000

760000

765000

770000

775000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

M
em

o
ry

 [
K

B
]

Number of app runs

Exp3 v 5 & 6 Memory

Exp_3_Mem Exp_5_Mem Exp_6_Mem

179 | P a g e

73%61%

0

10

20

30

40

50

60

70

80

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

N
o

rm
al

iz
ed

 C
P

U
 (

%
)

No. of App runs

Exp3 v 4 CPU

Exp_3_CPU Exp_4_CPU

61%
62%

73%

0

10

20

30

40

50

60

70

80

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

N
o

rm
al

iz
ed

 C
P

U
 (

%
)

No of App runs

Exp3 v 5 & 6 CPU loads

Exp_5_CPU Exp_6_CPU Exp_3_CPU

180 | P a g e

591…

20660 mS

0

5000

10000

15000

20000

25000
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

Ti
m

e
(m

S)

No. of App Run

Exp3 v 4 Total Timing

Exp_3_Time Exp_4_Time

50…
233…

1319…

0

20000

40000

60000

80000

100000

120000

140000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

Ti
m

e
[m

S]

No of App runs

Exp3 v Exp 5 & 6 Total Timings

Exp_3_Timing Exp_5_timing Exp_6_timing

181 | P a g e

57 mS

406 mS
461 mS

404 mS

0

50

100

150

200

250

300

350

400

450

500
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

Ti
m

e
(m

S)

No of App runs

Computation timings

Exp_3_CompTiming Exp_4_CompTiming Exp_5_CompTiming Exp_6_CompTiming

75%

76%

66%

57%

50

60

70

80

90

100

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

B
at

te
ry

 R
em

ai
n

in
g

(%
)

No. of App runs

Battery Remaing all Exp

Exp_3_Batt Exp_4_Batt Exp_5_Batt Exp_6_Batt

182 | P a g e

183 | P a g e

184 | P a g e

