

Parametrization of

Convolutional Neural Network

for Image Classification

Srinivasan Dasarathi

Submitted as part of the requirements for the degree

of MSc in Data Analytics

at the School of Computing,

National College of Ireland,

Dublin, Ireland.

August 2015

Supervisor: Michael Bradford

 Srinivasan Dasarathi

2

Abstract

In Artificial Intelligence, convolutional neural network has been the most widely used

machine learning methodology of recent times for object recognition. The focus of this

research is to identify a combination of key parameters that help improve the accuracy of

image classification on this neural network. The network model used in this study

comprises of an input layer for normalization and extraction of image data, three hidden

layers for convolution, activation and pooling of the feature maps, one fully connected

layer for extraction of consolidated image features, followed by an output layer where the

image is classified. Sample images of size 32x32 pixels from the Kaggle’s CIFAR-10 image

dataset belonging to 10 different classes has been used in this experiment.

The neural net is studied across Prototyping, Training, Validation and Testing phases,

and the concept of Feed Forward and Backward Propagation has been applied in two stages

– first in the hidden and fully connected layers, and later in the output layer – for different

objectives as related to error convergence. The effectiveness of various parameterizations

has been analysed in both these stages, including weights, bias, momentum, learning rate,

regularization strength and iterative epochs. The application of different convolution,

activation and pooling functions, key classifiers and novel concepts such as weight decay,

weight dropouts and cross-entropy loss has been studied as part of this research project.

Keywords: image classification, convolutional neural network, convolution, activation,

pooling, classifier, Softmax, CIFAR-10, error gradient and accuracy.

 Srinivasan Dasarathi

3

Acknowledgement

I would like to take this opportunity to thank the following faculties of the School of

Computing for their timely support in aid of this research study.

 My project Supervisor Mr. Michael Bradford, Lecturer and Director of MSc Data

Analytics Programme, for his continuous guidance and valuable inputs on

Convolutional Neural Network.

 Lecturer Dr. Simon Caton, for his subject matter expert advice and guidance in the

application of appropriate analytical and image data mining tools, techniques and

methodologies.

 Lecturer Dr. Adriana Hava Olariu, for her guidance and valuable inputs on Literature

Review and Research in Computing related work including induction to Harvard

Referencing.

 Lecturer Mr. Vikas Sahni, for his valuable inputs on the overall dissertation as part

of the MSc Surgeries workshop.

 Mr. Keith Brittle, Information Project Officer for the guidance in the use of online

referencing resources at NCI portal, and the excellent knowledge repositories available

at the Norma Smurfit Library.

In addition, thanks to all the domain experts who have been referenced in this literature

and a special thanks to neural net scientists Alex Krizhevsky, Geoffrey Hinton, Yann LeCun

and Andrej Karpathy who have made immense contribution to the world of Convolutional

Neural Network through their research, publication and tutorials.

 Srinivasan Dasarathi

4

Declaration

I wish to hereby declare that the research work documented in this literature and the

supportive application development done as part of this project is entirely my own work

and contribution based on knowledge gained during the three months of independent

study as part of the academic requirements. Authenticated publications of earlier work

done on neural networks as well as the use of CIFAR-10 sample dataset for the training

and validation of my neural network model as reported in here, has been duly referenced

to avoid any scope for plagiarism. All other illustrations and diagrams portrayed in this

report are my own creations and has no copyright violation.

Signed Date

Srinivasan Dasarathi

 Srinivasan Dasarathi

5

Table of Contents

Abstract.. 2

1. Introduction ... 6

1.1. Research Question .. 6

1.2. Problem Definition ... 6

1.3. Challenges ... 6

1.4. Motivation .. 8

2. Background .. 9

2.1 CNN Development Phase .. 9

2.2 CNN Processes .. 10

2.2.1 Feed Forward .. 10

2.2.2 Back Propagation .. 10

2.3 CNN Layers .. 11

2.3.1 Input Layer .. 11

2.3.2 Hidden Layer ... 11

2.3.4 Output Layer ... 12

2.4 CNN Functions .. 12

2.4.1 Convolution and Filters ... 12

2.4.2 Activation Function ... 14

2.4.3 Pooling Function ... 14

3. Related Work ... 15

4. Methodology ... 16

4.1 Design... 16

4.2 Processing .. 17

5. Implementation ... 18

5.1 Dataset ... 18

5.2 Technology ... 18

5.3 Assumption .. 19

5.4 Key Features .. 19

5.5 Process Output .. 19

5.6 Visualization: ... 19

6. Evaluation .. 21

7. Conclusion and Future Work .. 26

References: .. 28

Appendix-A ... 30

 Srinivasan Dasarathi

6

1. Introduction

In Machine Learning, a subset of Artificial Intelligence, object recognition and

classification of digital images has been an important topic of continuous research in recent

times. As pictures speak a thousand words, images are widely used at largescale for

scientific and educational purposes, including discovery of hidden knowledge and

prediction of future outcome, across various social media portals including Flickr and

Google. Image classification is more related to Image Data Mining which can be

considered as an integration of computer vision, image processing, machine learning and

data mining techniques [1], and has been widely in use in the field of biomedical, space

research, meteorology and crime prevention including face recognition and handwriting

detection. Convolutional Neural Network (CNN) is the state-of-the-art methodology

applied in machine learning for image classification.

1.1. Research Question

This research is focused on finding the answer to the question;

 “In Convolutional Neural Network, how can image classification accuracy be improved

through parameter configuration across functions?”

The hypothesis is that, by tweaking and refining the values set for parameters that

are used in different functions of a specified CNN model, the overall accuracy level in the

image classification process can be enhanced.

1.2. Problem Definition

When image datasets are voluminous, manual classification of the images would

have high time and cost implications. This necessitates the need for automated object

recognition with the use of machine learning methodologies. The focus of this research is

to analyse the influence of parameter values in improving the accuracy of image

classification on CNN.

1.3. Challenges

The challenges encountered in this project are many-fold and of various dimensions;

1. Field of Research: Implementation of neural network is by itself a complex field of

study in Machine Learning and CNN in specific is much more challenging to understand

and implement, and can be considered to be a technical blackbox in many respects.

Though there are many literatures and tutorials available for reference related to this,

many knowledge gaps are created at each stage of the neural network. Impacting

factors include the variation in terminologies used by the authors and the need to

understand advanced neural network concepts and mathematical conventions such as

calculus derivatives. For instance, though different models using classifiers such as

Support Vector Machines (SVM) and Radial Basis Functions (RBF) as well as application

of weight dropout mechanism were designed and developed, it could not be

successfully implemented as the desired results were not obtained, and there was

difficulty in causal analysis of the inaccuracy.

2. Performance vs Accuracy: In CNN, the number of hidden layers to be used depends on

the choice of convolution function as well as the combination of different functions to

 Srinivasan Dasarathi

7

be applied. For instance, if convolution is done including the border pixels (‘same’

mode), the size of the output feature map will be the same as the input, and is likely

to have an overall addition of one or two more layers. Likewise if after every

convolution and activation a pooling function is applied for downsizing the feature map,

then as well the number of layers would increase. This leads to decision-making on

prioritization of overall accuracy or performance of the network, as more number of

layers with additional functions would enhance accuracy but at the same time impact

performance as more number of parameters have to be stored and processed. This

trade-off has to be analysed in detail when large datasets are used, where accuracy

increase could be marginal at the cost of performance.

3. Convolution Filters: Decision on the convolution filters to be used across hidden layers

have to be made from different perspectives. The choice of the filter dimension, the

number of filters to be used, the rationale for initialization of the filters and the

combination of manual and random filters, are arbitrary as various combinations has

been experimented earlier and are recommended by neural net experts. To overcome

the curse of dimensionality [24] and to minimize performance impact only 16 filters

have been used across layers. This size has been found to produce better results than

8 or 32 filters as experimented during the design stage of this project.

4. Random Parameters: In CNN, by process, parameters including weights (filters) and

bias are initialized at the start of the training process. Though the rationale for

initialization is under human control, the task of value assignment based on those

rationale, such as random number generation, are machine controlled. As a result

during development, detailed one-to-one feature map comparison is not feasible, as

the output would vary across process runs; only the overall error gradient and

classification accuracy could be measured.

5. Result Verification: Another factor is the non-availability of reference data for

comparative study at each stage of the CNN process to confirm the mode correctness.

Graphical presentation and understanding of the visual representations of the different

convolutional layers is a highly complex task. During training, it is difficult to ensure

that the graphically visualized feature maps and weights are correct, as there is no

similar data for comparison. Likewise, at each stage of development, such as gradient

error and classification loss, though it can be inferred from the displayed progress

metrics that there is a gradual error and loss convergence, it is difficult to determine

if the convergence is good enough, as there is no similar specific output or result from

any previous study that can be used for comparison. Hence on most occasions,

development progress has to be made on trial-and-error basis with assumptions on

the correctness of the algorithm and by referencing several literatures.

6. Defect Analysis: At each stage of development, when desired accuracy or output is not

achieved, it is difficult to determine if the issue is due to any incorrect coding of the

algorithm, or parameter configuration or bug in the development tool used (python).

This scenario is mostly faced during training when the model works fine for few images,

but fails for an increased volume of few hundreds, and has huge impact on the time

factor.

7. Sample Dataset: The CIFAR-10 dataset with image size of 32x32 pixels has been

mainly used as the sample data in this research. There are several images with poor

clarity and inaccurate object focus, which could confuse the network and impact the

classification process, especially if these happen to be chosen as the class

 Srinivasan Dasarathi

8

representative at the Prototyping stage of CNN. In addition, during the process of the

PNG dataset generation, due to huge memory consumption required for processing the

36MB batch files of 10000 images in each, the python program would not exit normally,

in spite of generating the output files correctly.

8. Hardware: This is another major limitation factor. For this research a mid-range laptop

with i7 CPU and 8GB memory has been used. Hence only limited data of few thousand

images has been experimented with for the CNN training and testing. A high-end GPU

based cloud computing environment would be required to process high volume data

without performance degradation.

9. Software: As Python 2.7 on Enthought-Canopy GUI has been used for development,

there are several open-source libraries such as ‘Numpy’ and ‘Scipy’ that are being used

in it for various purposes including manipulation of image files, arrays and graphical

display of the convolutional layers. Backend version updates to these libraries and

tools, at times causes variation in their functional behaviour necessitating relevant

code change.

10. Process Log: When large datasets such as 10000 images were trained, capturing of

the process output on the window or on a file through command shell execution

resulted in incomplete data capture. When displayed on window, the initial messages

are lost due to flushing of the buffers. When redirected to a file from the command

prompt, on completion of the process, the shell command does not exit even long after

the process has completed which can be inferred from the CPU and Memory usage.

When the process is killed, the log file does not capture the last messages as on the

buffer. This necessitates code change to capture and write the process log onto a file.

1.4. Motivation

This project has been undertaken despite the above challenges, in consideration of

the fact that CNN is a novel area in the field of neural network and has a larger scope for

practical application including image detection in video stream use as highlighted later in

this document as part of future work. The classification of images in CNN is more accurate

when the training datasets are larger [2].

In addition, the most awaited research breakthrough in computer vision accuracy is

to resolve the problem of detecting multiple objects in an image and automatic image

annotation with correct and meaningful lexical semantics. There is a good potential to

participate in global competitions such as, the ‘ImageNet Large Scale Visual Recognition

Challenge’ (ILSVRC) and ‘PASCAL Visual Object Classes’ (PASCAL VOC) which promote

research on image classification. These have been the key motivation factors for

considering this subject as the research topic.

This paper is organized as follows in the forthcoming sections. The next section on

‘Background’ details the theoretical foundations that are required to be understood as a

pre-requisite before reading further. The section after this is on ‘Related Work’ which

evaluates related literatures as published by industry experts. This is followed by

‘Methodology and Design’ which how the research question was approached. Next is the

‘Implementation’ part which details the process flow as to how the practical aspects of

this study was carried out. This is followed by ‘Evaluation’. The final section is on

‘Conclusion and Future Work’. This literature ends with a list of ‘References’ used for

study and as referenced in the earlier sections.

 Srinivasan Dasarathi

9

2. Background

The application of CNN also known as Convnets, a branch of Artificial Neural Network

is the emerging trend in the development of computing models for automated image

classification. CNN is very much similar to a linear neural network. The main difference is

that it performs an activity called convolution, which has been described in detail in the

later part of this report. The following sub-sections give an overview of the various key

terminologies and concepts as highlighted in italics, and methodologies that are used in

CNN for supervised machine learning. More details on Machine Learning and Neural

Network concepts and methodologies have been referenced in [28],[29],[30] and [32].

2.1 CNN Development Phase

The task of image classification is executed in four different phases on Convolutional

Neural Network namely – Prototyping, Training, Validation and Testing. In this study the

task of determining the class representative data has been considered as a separate

Prototyping stage, and not included as part of training contrary to convention.

2.1.1 Prototyping

Prototyping is normally done as part of the training phase. But for activity

differentiation, it has been considered as a distinct phase in this project. It involves

defining the expected (desired) results across different classes of data. For each class of

data, a sample image from the training dataset is selected and used as the base for

comparison with other images of the same class in the subsequent phases. The class

(label) to which the image belongs can either be provided in a compressed array file format

or in a viewable format such as JPG or PNG with the label prefixed to the file name. For

instance ‘0-ford.jpg’ denotes the image has label ‘0’ which is the ‘automobile’ class.

Rather than selecting an image at random for each class, to obtain faster

classification during training phase, best practice would be to choose an image from the

training dataset that could be considered as the class representative. One of the ways to

achieve this, as applied in this research is the use of Mean Square Deviation (MSD) method

which computes the Euclidean Distance between images to determine the one that has

the least feature difference across images which would act as the class centroid

representing the desired result of the class. The final output would be a vector of expected

(desired) features of the class to which the image belongs.

2.1.2 Training

For Training the neural net, a new dataset across classes is used. For each input

image the class it belongs to is notified to the neural net. Training involves two main

process stages – Feed Forward and Back Propagation, which are described later in this

document. The output would denote the predicted features of the image that is being

trained. The predicted features for a class would be compared with expected features

determined earlier in the Prototyping phase. The parameters (weights and bias) get

trained till the difference between the predicted and desired gets least significant. At the

end of training all the feature maps as generated across layers and the final predicted

features can be disregarded, and only the trained weights and bias be retained for use in

the subsequent phases of validation and testing.

 Srinivasan Dasarathi

10

2.1.3 Validation

Validation is the stage where the accuracy of the trained network parameters are

verified and pre-tested using a subset of the test data. In this stage as well, the class

value of each image can be made use of to compare and validate the desired results. This

phase was introduced in the recent years as best practice of development to strengthen

the training reliability. This is to ensure there is no ‘overfitting’, which refers to the scenario

of the network model working well on the training data, but failing on the test data. All

the trained parameters and hyper-parameters as applied during the end of training would

be reused in this phase.

Programmatically, the two key differences in the processing logic for validation

compared to the training phase is that, there is no back-propagation performed and the

network is not pre-notified of the class to which the input image belongs. If the desired

classification accuracy is not achieved, then the Training phase is re-executed.

2.1.4 Testing

This is the final stage of development where the trained weights and bias are

validated across classes using untrained image repository. The same code as used for

validation will be applied on a different test dataset.

2.2 CNN Processes

In artificial neural network including CNN, training phase comprises of two key

stages, which are Feed Forward and Back Propagation [16].

2.2.1 Feed Forward

 Feed Forward includes all tasks done from the input layer to the output classifier

layer, starting from image normalization to loss computation. All phases of CNN excluding

Training phase, terminate with the completion of this process.

2.2.2 Back Propagation

In the Training phase, at the end of Feed Forward, once the loss is computed and

determined to be higher than the predefined loss threshold, the weights and bias across

all layers have to be refined to minimize the loss. As a result, the process of back

propagation is initiated. This combination of feed forward and back propagation is executed

several times, to adjust the parameters and to re-compute the feature maps across layers

till the loss converges to within the threshold limit and the desired classification is

obtained.

In order to revise the parameters of weights and bias, CNN makes use of several

additional parameters which are termed as the hyper-parameters. This mainly includes

learning rate and momentum that are used to expedite the error convergence and would

have a value in the range of (0,1). The dataset would be trained for multiple epochs, until

the gradient error is within the predefined threshold. Each epoch refers to one round of

training of the entire dataset. Whereas for verification of data loss and regularization loss,

each image undergoes multiple loops of iterations. The maximum number of epochs and

iterations are configured through parameters. A large learning rate can result in over-

fitting or over-training [10]. The first stage of back propagation is to determine the error

 Srinivasan Dasarathi

11

gradient across layers in the reverse order, starting from the fully connected layer to the

first hidden layer. For the fully connected layer error gradient is computed as the product

of the difference between the expected (desired) output and the predicted (actual) output,

and the derivative of the activation function used in this layer. Then the weighted sum of

the gradient is computed using the product of the weights and the previously computed

gradient error of the fully connected layer. The weights in the fully connected layer are

later adjusted accordingly using the product of the derivative and the error.

This is followed by back propagation for all the hidden layers starting from the last

to the first. As done earlier, based on the activation function used, the corresponding

derivative is applied to the weighted sum of the gradient error in the previous layer. These

values are used along with the earlier computed gradients to determine the delta values

for the weight and bias update in each hidden layer. Care has been taken to ensure that

the manually generated kernels as used for edge detection are not updated while

processing the weights of the first hidden layer.

2.3 CNN Layers

Convolutional neural network comprises of three layers, namely the Input, Hidden

and the Output. Unlike Single Layer Perceptron (SLP), CNNs are similar to Multilayer

Perceptron (MLP) and have more than one set of network connectivity with the layer.

2.3.1 Input Layer

In the input layer raw images are first pre-processed through normalization which

involves data reduction through mean subtraction to reduce the scale of pixel values into

a vector. This is done for eliminating computational errors due to large values especially

during exponential and logarithmic calculations. In addition, conversion of colour images

to grayscale images are done. Colour images have three channels of ‘RGB’ and comprise

of three dimensional (3-D) array data which are complex to process. Hence they are

simplified to grayscale images that have only one channel of two dimensional (2-D) array

of pixels. Grayscale images have the advantage of not having data discrepancies due to

variation in colour contrast. The value of each pixel in a grayscale image ranges from 0

(white) to 255 (black) with a gradation for the in-between shades of grey.

2.3.2 Hidden Layer

The hidden layer is the heart of CNN, and comprise of neurons which perform the

key convolution, activation and pooling functions. For the first hidden layer the normalized

image data would be the input. For the subsequent layers, feature maps generated in the

previous hidden layer would become the input. The number of hidden layers required in a

network model is determined based on the size of the image and filter.

Weights and bias factors, which are described more in detail in later sections, are

the main configurable parameters that are to be tuned in the hidden layer to obtain the

desired image classification output. In each layer, the number of output feature maps

would be equal to the number of filters used in the convolution process. The feature of

weights being shared across feature maps is what makes CNN perform better on vision

problems [35].

 Srinivasan Dasarathi

12

2.3.3 Fully Connected Layer:

Following the last hidden layer is the fully connected layer where the single-node

output feature maps of the previous layer are consolidated into a single vector. The data

is then processed with the weights and bias of this layer, and the resulting output is sent

to the final output layer. There is no need to perform pooling operation as the features are

already in a single vector and there is no scope for further dimension reduction.

During training, the accuracy of the neural net is measured at two stages – in this

layer and in the subsequent output layer. Here the difference between the class features

and predicted feature are verified to be within a predefined error threshold limit which

would normally be close to 0. The error is referred to as the loss or cost of the training.

For instance an error threshold of 0.1% signifies an expected training accuracy of 99.99%.

The overall loss comprises of Data Loss, that quantifies the difference in the predicted

score and actual score of all examples, and the Regularization Penalty which refers to the

correction of large weights. If the total loss is above the defined loss threshold, back-

propagation process is initiated to train the weights and bias across layers.

2.3.4 Output Layer

The output layer performs the classification of the input image based on pre-defined

classes. Some of the popular and widely used classifiers include Softmax, Multiclass

Support Vector Machines (SVM), and Radial Basis Function Network (RBFN) which is

claimed to produce high level of classification accuracy and ease of computation as

compared to its former counterparts [4].

Score, Loss and Thresholds:

Second level of accuracy verification is done at the output layer to confirm the correct

classification by computing the Score to determine the class of the image data, which is

done using the product of the predicted features and the weights and bias of each class.

The image is labelled after the class with the maximum score.

The classifiers make use of different hyper-parameters which are used to control the

speed of convergence. For instance the Softmax Classifier applies the Learning Rate (Step

size) and L2 Regularization Strength parameters for the said purpose as detailed in [26].

In Softmax, Data Loss which quantifies the dissatisfaction with the correctness of score

and class prediction in a dataset, is to be determined for the entire training dataset [26].

The loss function initiates backpropagation in the output layer to update the weights and

bias of the classifier.

2.4 CNN Functions

2.4.1 Convolution and Filters

Convolution is the first process of a hidden layer. In simple terms convolution

involves scanning a data filter over the image data. For ease of understanding, it can be

visualized as a magnifying lens that is used to view the pixels of the image, a small portion

at a time. The filter also referenced as the kernel or weights are a 2-D array of data,

usually of the size 3x3, 5x5 or 7x7 pixels. Filters are scanned over the image from the top

left corner to the bottom right at a specified interval. The centre pixel of the filter will be

made to overlap with the centre of the Receptive Field on the image. The filter will shift

horizontally and vertically at a defined span size, and in each position the product of the

 Srinivasan Dasarathi

13

image pixels and filter pixels will be computed. Swapping and transformation of image

pixels is also done are part of convolution. The size of the Receptive field would be similar

to the filter size. The concept of stride also needs to be understood which refers to the

number of pixels the filter has to shift horizontally and vertically over the receptive field

during convolution.

Figure-1: Convolution on three feature maps. The centre of the receptive field is

highlighted in blue. In every convolution the filter is applied across all feature maps at the

same depth location, as highlighted in red. The sum of convolution at each receptive field

across all feature maps becomes the node value at (0.0) on the output feature map.

During convolution, as shown in figure-1, the filter would be applied to the depth at

each receptive field location, across all input channels of that layer. Each convolution

produces a single pixel value or an output node to which a bias parameter of value 0 or 1

is added. The weights and bias would be used in linear regression equations for computing

the output based on the input across each layer. For ease of computation instead of having

a separate bias, an additional weight (W-0) is added to the weight parameter and a dummy

input with value 1 is included as well to facilitate matrix product computation.

A set of nodes produced as part of a convolution is termed as the feature map. It

has to be ensured that the size of the input feature map of the last hidden layer does not

fall below the size of the filter. The filters are usually odd-sized for the benefit of having a

defined centre which would be used as the focal point during convolution. The size of the

output feature map depends on the type of convolution applied. If it is a ‘valid’ mode, then

additional extended pixels will not be used while convolving the boundary pixels with the

filter centre, and hence the output feature map size will not be the same unlike as obtained

in the ‘same’ mode of convolution method.

Likewise, the size and number of filters used in each hidden layer can be varied

depending on the feature extraction needs at each layer. It should be noted that as the

number and size of filters, and number of layers increase, there would be a proportionate

increase in the total number of parameters to be computed and stored. This could result

 Srinivasan Dasarathi

14

in the need for a high end computing environment with increased memory and processing

capabilities to avoid performance degradation. In the first layer of convolution manual

filters can be applied in combination with randomly generated filters. Manual filters would

involve programmatic hardcoding of array values based on filter dimension to be used for

purposes such as horizontal and vertical edge detection. Random filters would be a set of

random numbers usually in the range of (-1,+1).

2.4.2 Activation Function

The output obtained from convolution is passed through activation function for a linear

and non-linear transformation, such as;

 Logistic Sigmoid function (f(x) = 1/(1 + exp(- x))

 Softmax function (f(x) =max(0,x))

 Hyperbolic Tangent Sigmoid function (f(x) =tanh(x)) and

 Rectified Linear Unit (ReLU) function which is similar to Softmax.

 Different activation functions can be applied across layers, if need be. These linear

functions produce an output in the range of either (0,1) or (-1,+1). Each of these functions

have a derivative as listed below, which is applied during back propagation to correct the

gradient error.

 Logistic Sigmoid function (f(y) = f(x) * (1.0 – f(x), where f(x) is the related logistic sigmoid

activation function)

 Softmax function (f(y) = (1 - x) * x)

 Hyperbolic Tangent Sigmoid function (f(y) =(1 - x) * (1+ x)) and

 Rectified Linear Unit (ReLU) function (f(y) =1, if x>0, and f(y)=0, if otherwise).

2.4.3 Pooling Function

The feature map thus derived after convolution, bias addition and application of

activation function, is then processed through a pooling function. The most frequently

applied pooling operations are the max-pooling and mean-pooling. In this research, max-

pooling approach has been applied. The pooling function helps to down-sample and

downsize the input feature map to half its size.

 Srinivasan Dasarathi

15

3. Related Work

1. Parameters across layers have to be properly trained. Significant performance

enhancement can be achieved with proper weight initialization and use of simple

heuristics [2]. To achieve higher level of classification accuracy it is proposed to linearly

combine multiple neural network classifiers [18].

2. In some of the literatures it is recommended that a very small learning rate such as

0.0005 be used [11]. But in this model, the gradient error fails to converge if such a

low learning rate is given. It has been found that 0.45 is the best Hence such

discrepancies could arise due to variation in the combination of activation functions,

kernel size and setting of hyper-parameters, which needs to be further explored.

3. Padding the filter during convolution has been proved to be ineffective [11]. Hence the

alternate option would be to use the ‘same’ mode, but this would increase the

computational time as more receptive fields need convolution, and the output feature

map would be much higher, leading to the need to have additional hidden layers for

the feature map to get smaller with nodes of size 1x1 or 2x2.

4. Another factor that needs to be experimented is the better stride to be used for

convolution. During a convolution with the use of a 5x5 filter, if the stride is too small

say 2, then for each convolution shift there would be an overlap of 2 pixels, resulting

in higher number of feature map nodes, but at the same time has the advantage of

more feature recognition. Hence a trade-off is required to determine the size of the

stride. A novel concept of tiled CNN has be introduced [13] which claims to reduce the

number of parameters. It has been recommended [14] that the use of smaller window

size and stride in the first convolution layer improves performance.

5. Many of the researches have used the MINST handwritten digit dataset which are in

grayscale. Also the general understanding is that processing grayscale images reduces

the first layer complexity. Whereas in [18] it is mentioned that use of grayscale images

increases error rate, and hence it is recommended to use the colour images.

6. It has been experimented that the trained layers and parameters can be reused for

alternate datasets instead of creating the new network all from scratch [21]. An

alternate and a more effective approach to initialization of weights, is to select random

images from the dataset, and then to extract random patches at random positions on

the images [20].

7. In many literatures subsampling is termed synonymous to max-pooling. But in [22] it

has been considered as a distinct process as it has been stated that max pooling

produces a much lesser error rate compared to subsampling. Also in [22] even

dimension filters of size 6x6 has been used, as opposed to the convention of odd-sized

filters.

8. SVM is stated to have limitations in comparison with other classifiers [7]. Whereas [27]

has researched and highlighted that Deep Learning SVM offer better results in

comparison to Softmax.

 Srinivasan Dasarathi

16

4. Methodology

For image classification and feature detection, CNN model has been applied with the
Feed Forward and Back Propagation mechanism during the training phase. Two different
activation functions have been applied in this model – (a) Hyperbolic Tangent Sigmoid
function in all the hidden layers, as it has been verified to produce higher accuracy by many
researchers; and (b) Softmax function in the fully connected layer as the Softmax Classifier is
used in the output layer. Convolution is done in ‘valid’ mode which results in a slight

dimension reduction after convolution, as the border pixels of the input image or feature

map get ignored.

4.1 Design

The CNN designed for this project as shown in Figure-2 has a total of eight layers

comprising one initial input layer (L-0), five hidden layers (L-1 to L-5) , followed by one

fully connected layer (L-6) and then terminating with the output classifier layer (L-7). The

number of hidden layers is not extended beyond five, as the output feature map of the

last hidden layer converges to one node per map, and there is no further requirement to

convolve or max-pool it. In this model, three hidden layers (L-2. L-3 and L-4). In the

proposed model, pooling is done only after the first two convolution and activations, and

not applicable to the last hidden layer as the output feature map is already of 1x1

dimension which is below the filter size of 5x5 pixels.

The network architecture with reduction in dimensionality of the feature maps across

layers is designed very much similar to [10] and is as follows;

Figure-2: CNN architecture and process flow.

 Srinivasan Dasarathi

17

The details of various layers are as below;

 L-0 Input Layer: the raw input colour image is converted to grayscale, then

normalization and produced as an output of same 32x32 single channel 2-D array of

data.

 L-1 Hidden Layer: the 32x32 normalized input data is convolved on a ‘valid’ mode with

16 5x5 size filters, to obtain 16 feature maps of dimension 28x28 pixels.

 L-2 Hidden Layer: This undergoes activation and then max-pooled to generate 16

feature maps of 14x14 pixel dimension.

 L-3 Hidden Layer: the 16 input feature maps undergo similar process as in L-2. After

convolution and activation the map size is reduced to 10x10.

 L-4 Hidden Layer: After max-pooling the inputs gets downsized to 5x5 pixels.

 L-5 Hidden Layer: this is the last hidden layer where the inputs after convolution and

activation create 16 feature maps of size 1x1, with each feature map containing only

one node.

 L-6 Fully Connected Layer: Here the 16 single-node input feature maps are

consolidated into a single vector output. Instead of convolution, linear regression is

performed with the use of weights and bias, followed by activation function execution.

 L-7 Output Layer: This is the final layer where classification is done using Softmax

classifier which gives probability of scores and has been widely used in many research

developments including [15]. For classification two sets of weight matrices are applied.

4.2 Processing

In the Prototyping phase, the weights and bias parameters across layers are

initialized with normalization to minimize the weights. A set of seven manual filters for

edge detection including horizontal lines, vertical lines (Prewitt edge detector) and

diagonal lines (Sobel edge detector) are used in combination with weights that are

randomly generated using the size of the filter as the base. The weights are initialized in

line with normal Gaussian distribution to be in the range of -1.0 to +1.0, and the bias

parameters of the output nodes are initialized to 0.001, rather than 0 as recommended in

[26] to avoid zero saturation in the computed regression value.

For the initial Training, the weights and bias saved during Prototypying are uploaded

into relevant arrays, and the Feed Forward and Backward Propagation process are

cyclically executed for the hidden layers based on the error gradient of the predicted

features. Subsequently the Softmax Classifier computes the score and cross-entropy loss

before classifying the image. In case batch processing of the training dataset is done to

overcome the hardware limitation, the trainable parameters that had been saved in the

earlier training can be uploaded through a configuration change and used instead of

applying the initial set of parameters as initialized during prototyping. On completion of

training, the parameter data across layers are later saved for use in the validation and

testing phases.

 Srinivasan Dasarathi

18

5. Implementation

The CNN model for image processing as proposed in this research, comprises of eight

different neural net layers as in Figure-2 which are interconnected starting with an input

layer, followed by hidden layers, a fully connected layer, and terminating with the final

output layer.

5.1 Dataset

For this research a subset of about 1200 images from the Kaggle’s CIFAR-10 dataset [3] as

available on https://www.kaggle.com/c/cifar-10/data has been considered, as it comprises large

volume (60,000 images) of smaller uniform dimensional images of 32x32 pixels, which are easy to

compute on mid-range laptops. Moreover, this dataset has 10 different classes (airplane, automobile,

bird, cat, deer, dog, frog, horse, ship and truck). The class labels are specified as part of the data. Also

benchmark results of various testing done earlier by neural network experts using this dataset over a

period is available for comparison.

The CIFAR-10 dataset as downloaded from the internet are in a compressed file

format, and hence have to be converted to ‘PNG’ files using a separate extraction program

developed by me. Though the compressed data can also be directly used in the neural net,

the images are first extracted and then used for classification. This has the benefit of

possibility to view the quality of the images before processing them, and the option to

randomly choose and manipulate the batch contents of image files that are to be used

across phases, by varying the number and type of images in a batch. The extraction code

appends the class label to each image file, which is used as the indicator in the Prototyping

and Training phases to determine the correct class of the image.

 CNN Stage CIFAR-10

Batch

Images

Used

1. Prototyping

and Training

Batch-2 100

2 -same- Batch-2 500

3 -same- Batch-1 1000

4 -same- Batch-3 10000

5 Validation Batch-4 100

6 Testing Batch-4 200

Table-1: CIFAR-10 batch datasets used across CNN phases.

For the different CNN phases, sample datasets of different CIFAR-10 batches were

made use of as in table-1. For Prototyping and Training, the same datasets are used, so

as to extract the mean features across classes.

5.2 Technology

Python 2.7 on the User Interface tool Enthought’s Canopy has been used for

developing this CNN model. Additional python libraries such as numpy, scipy, matplotlib,

cv2, math, and glob had been installed as part of the code. The data was tested on a

standard laptop with Intel Core i7 processor, AMD Radeon graphics card, 8 Gb RAM and

500 Gb disk space and running on Windows 8.1.

https://www.kaggle.com/c/cifar-10/data

 Srinivasan Dasarathi

19

5.3 Assumption

Some of the development assumptions and applicable pre-requisite conditions are;

 Each class should have minimum one and have the same number of records, to have

equality in the determination of the mean image.

 Input Image dimension can be any size but should be symmetric. eg.32 x 32

 Number of filters used across layers is configurable but can be the same.

 Input images can be grayscale (1 channel) or colour (3 channels-RGB).

 The images can be of any file type (PNG, JPG, BMP etc.).

5.4 Key Features

Some of the common features applicable across processes are;

 The raw image files are initially converted to normalized before processing, wherein the

colour intensities are removed and mean subtraction is done.

 In Prototyping and Training, on completion of the process, the parameters (weights and

bias) of the hidden layer and fully connected layers along with the class features are

saved in a numpy file format, for encrypted data security.

 The number of hidden layers required are dynamically determined based on the image

and filter size.

 For convolution, 16 distinct 2-D filters of dimension 5x5 are used in each hidden layer.

5.5 Process Output

During execution of the application scripts across phases, informative details such

as list of images being processed, error gradient and class predictions are displayed.

Statistical summary of the classification to highlight the percentage of accuracy on correct

and incorrect classes is reported at the end of training.

5.6 Visualization:

As part of the training, we can graphically visualize the feature maps and weights across
hidden layers and across all kernels.

Figure-3: Sample 30 filters used as weights in the first convolutional layer

 Srinivasan Dasarathi

20

From Figure-3, we can clearly differentiate the initial manual filters used to identify
horizontal lines, vertical lines and blur, and the random generated filters from filter 07
onwards. These filters are used only in the first convolutional layer. In subsequent layers all
filters are random filters.

Figure-4 is the sample visualization of the feature maps of an image belonging to the
class ‘aeroplane’ as in the file ‘0-fighter_aircraft_s_000655.png’.

0-fighter_aircraft_s_000655.png

Sample CIFAR-10 Image explanation:

The source and the normalized images are shown
at the top for comparison. It can be seen that the
under ‘Normalization’ mode the image is
displayed without colour intensities.

Features of the first three hidden layers (L-1 to L-
3) are shown as column data.

Each row represents the graphical
representation of the first 9 kernels across the
hidden layers L-1 to L-3.

In the first column the initial 7 feature maps as
highlighted have been created after the input
image was convolved with the 7 manual kernels
made up of Prewitt, Sobel and Gaussian filters.

In the subsequent, layers the feature maps look
distorted due to gradual the downsizing of the
image.

The dimension of the image and feature map
shown here are as follows;

1. Source Image : 32x32 pixels

2. Normalized Image : 32x32 pixels

(After first convolution and activation)

3. L-1 Feature Map : 28x28 pixels

(After first max-pooling)

4. L-2 Feature Map : 14x14 pixels

(After second convolution and activation)

5. L-3 Feature Map : 10x10 pixels

L-4 and L-5 are not show as the feature map

dimensions are small – 5x5 and 1x1.

Figure-4: Sample Hidden Layers of a CIFAR-10 image.

L-1 L-2 L-3

 Srinivasan Dasarathi

21

6. Evaluation

CIFAR-10 dataset has been used to evaluate the CNN model developed for this project. This
dataset has been used earlier in many other experiments, one of which is [31] where smaller
size filters of 3x3, and large number of filters in the range of 100 – 400 have been used, and
an error rate of 19.51% has been reported.

Following are the results of the experiment done on training and testing using the model
developed for this project. The main objective was to observe the model behaviour with
variation across a range of parameters including choice of functions across layers.

Activation function of Fully Connected Layer:
Initially Hyperbolic Tangent was used in all layers including fully connected layer. But the best
accuracy obtained was 52% for 100 images. But subsequently it was learnt that while using
Softmax as the Classifier the input should also be a Softmax output; as a result of which
Softmax activation function was applied to the fully connected layer, and an accuracy of 98%
was achieved proving the theory.

Number of Kernels:

Preliminary tests were done on a small dataset of 100 images to determine the number of
kernels to be used across layers as in table-2-b.

 Kernels Classifier
Epochs

Min. Loss Accuracy

1 8 6 2.17 18%

2 32 6 1.80 34%

Table-2: Kernel assessment

When 32 kernels were used, with a momentum of 0.01 the accuracy level was similar to what
was achieved with 16 kernels. Hence 16 kernels has been standardized for this model.

Impact of change in Learning Rate (LR) of Error Gradient:

While testing for 100 images, with 16 filters and momentum of 0.1, the metrics as in table-3
were gathered for different values of the learning rate.

 LR High Gradient Errors Min. Loss Accuracy

1 1e-10 Yes 2.05 27%

2 1e-5 Low 2.03 28%

3 1e-3 Low 2.24 14%

Table-3: Learning Rate assessment

It can be inferred that as the learning rate was increased from 1e-10 to 1e-5, high gradient
errors were not encountered in the hidden layers, and the minimum cross-entropy loss
marginally declined, with a proportionate marginal 1% increase in accuracy. When the
learning rate was increased further, to 1e-3, the loss increased and the accuracy declined
drastically. Thereby it was concluded that a learning rate of 1e-5 was the best for this model.

 Srinivasan Dasarathi

22

Impact of change in Momentum:

Subsequently, a test was done to check the impact of change in momentum by keeping the
Learning Rate as 1e-5 and number of filters constant at 16.

 Momentum High Gradient Errors Min. Loss Accuracy

1 0.01 Low as before Marginally
higher

27%

2 0.5 No change 2.03 28%

Table-4: Momentum assessment

It is worth noting that in one of the subsequent tests an accuracy of 34% was achieved

with momentum at 1.0 and output weights initialized with a normalization factor of 0.0001

as against 0.01 as used in the above two tests. But the accuracy deteriorated when the

dataset was increased from to more than 100 images. Hence it was determined to use a

momentum of 0.5 as the standard for this model.

The following four constants as in table-5 have been used for further analysis as reported in
the subsequent paragraphs.

Momentum 0.5

Error LR 1e-6

Weight Regularization 1e-6

Classifier LR 1.0

Table-5: Constants related to error gradient and loss minimization.

Prototyping using 10000 images took about an hour of processing time, whereas for 100
images the time taken was only 2 seconds.

 Classifier Classifier Epochs Final

Images
Loop
Size 1 2 3 4 Min. Loss Remarks

100 25000 70 90 97 98 0.10

In the final epoch, threshold was
reached below 14000 loops and the
loss Gradient peaked to 2.72 before
falling immediately below 0.1.

100 10000 26 30 34 33 1.94 Using dropout in Output layer

500 10000 31 39 39 40 1.65 Without dropout

Table-6: Epoch-Image Accuracy Matrix

The matrix presented in table-6 specifies the classification accuracy across 4 epochs during
training phase with the use of 100 and 500 images. It can be observed that the accuracy has
fallen drastically when the image count was increased from 100 to 500. Also it can be seen
that the use of dropout algorithm in the output layer is not favourable to the model.

 Srinivasan Dasarathi

23

Hidden
Layer

Classifier
Loss

Accuracy
/
Classifier
Epochs

Run LR MTM LRSS WRS E-0 E-1 E-2 E-3 E-4

0 1e-5 0.5 1.0 1e-10 83 83 87 92 92

1 1e-5 0.5 1.0 1e-10 84 91 92 92 93

2 1e-5 54 72 87 65 85

3 1e-1 10 10 10 10 10

4 0.5 75 92 96 96 97

5 0.1 34 56 72 80 86

6 1.5 34 56 72 80 86

7 1e-10 76 84 77 94 96

8 1e-1 84 93 94 97 NA

9 1.0 75 88 87 94 95

10 0.1 78 88 80 87 92

11 1e-1 0.5 0.5 1e-10 74 93 95 97 NA

Table-7: Combination of parameters changes using 100 images

It can be inferred from the above table-7 that the parameters used in run-11 has the best
results so far for training 100 images.

Chart-1 and Chart-2 below highlight the impact of variation in the hyper-parameters of the
hidden layers on the error gradient.

Chart-1: Accuracy impact due to variation in the Learning Rate. An overlapping of run-8 and
run-11 values can be observed from epoch E-1 onwards.

0

20

40

60

80

100

120

E-0 E-1 E-2 E-3 E-4

A
cc

u
ra

cy

Epochs

Learning Rate Impact

1 7 8 11

 Srinivasan Dasarathi

24

Chart-2: Accuracy impact due to variation in the Momentum

Chart-3 and Chart-4 below are related to variations that impact the classifier output.

Chart-3: Accuracy impact due to variation in the Step Size of the Classifier

 Srinivasan Dasarathi

25

Chart-4: Accuracy impact due to variation in the L2 Regularization Strength of the Classifier

Chart-5: Accuracy comparison across image count and classifier epochs.

From chart-5, it can be inferred that the proposed model is more suitable for classifying small
datasets, where the accuracy level is much higher. Also it can be seen that the accuracy
stabilizes after 3 epochs for 100 image training.

Various sample output as generated during the training of 100 images are in the Appendix-A.

0

10

20

30

40

50

60

70

80

90

100

E-0 E-1 E-2 E-3 E-4

Accuracy / Classifier Epochs

A
cc

u
ra

cy

Epochs

L2 Regularization Strength Variation

1 2 3

0 20 40 60 80 100 120

1

2

3

4

C
la

ss
if

ie
r

Ep
o

ch
s

Accuracy

Classifier Epoch-Image Count Accuracy

500 100

 Srinivasan Dasarathi

26

The summary of findings is that the model performs well and the predefined error threshold
of 0.5 and loss threshold of 0.1 is achievable when the number of images is less – about 100.
But as the input image count is increased, though a low error gradient is maintained, the
desired accuracy in the loss minimization is not achieved in spite of multiple epochs.

7. Conclusion and Future Work

Based on this research it has been found that convolutional neural networks is a

highly challenging subject to understand and implement. It is evident from this study that

the various parameters of the CNN have a great influence on the image classification

accuracy. Hence in addition to the use of right combination of activation functions, choice

of number and size of kernels, the tuning of hyper-parameters such as learning rate and

weight regularization strength are vital for a successful implementation of the model.

The proposed model is able to successfully classify within the expected threshold

limits for small datasets. But with further analysis of the model and its algorithm, and

fine-tuning of the parameters and hyper-parameters, the accuracy of this neural net model

can be further enhanced.

Similar experiments using different datasets had been done for extended duration to
see how the model performance after several 100 epochs. As referred in [34], MINST dataset
had been used for training the CNN model using around 800 epochs with a time factor of 14
hours to achieve accuracy improvement. Likewise this neural net also can be studied for
variation in its classification behaviour when trained for extended hours with large datasets.

Following are some of the key factors that can be considered with variations for

further research as an enhancement to this project;

1. Input: images of higher dimension can be used to see the impact in the creation of

additional hidden layers. Also direct processing of the colour images can be tested to

understand the complexity involved in processing three channel inputs.

2. Kernel: The network can be experimented with the use of different number of filters

along with variation in the size of filters across hidden layers. As the size and shape

of the images progressively decline over the different layers, larger size kernels, for

instance 7x7 pixels, can be used in the initial layers and a smaller size in the latter

layers, such as 5x5 dimension. It has to be noted that more the number of kernels,

better would be the feature detection. But implications would be increased

computational time and memory requirements, as there will proportionate increase in

the parameters being stored and trained. Decision to increase the number of kernels

has to be rationally done based on the size of the image. In addition more manual

filters can be introduced such as Gaussian blur in the first layer.

3. Convolution: Other modes of convolution, such as ‘same’, can be tried out, wherein

the border pixels are also made use of especially in layers L-3 and L-5 where the

number of pixels are less, and the border pixels could be of more value.

4. Activation: The model can be tested using other non-linear activation functions such

as ReLU which are considered to have the feature of non-saturating non-linearity and

have been tested to be several times faster [9] than Hyperbolic Tangent as used in

this project.

 Srinivasan Dasarathi

27

5. Classification: In place of Softmax Classifier, the model can be modified to test

using other proven classifiers mentioned earlier, especially RBF neural network, so as

to improve the classification accuracy.

6. Dataset: To refine and test the model using large volume of CIFAR-10 dataset which

would require a high-end computing GPU environment [9] to process such as the

Amazon or Google cloud services. To make use of different image repositories such

as ILSVRC and MNIST dataset.

7. Application: The neural net can be applied to classify snapshot of video images [12]

and for identifying multiple objects within a single image. [5] have presented an

approach for automatically annotating objects within images [17], using bag-of-

visual-words concept. An advanced version of CNN could be applied to detect multiple

objects in a single image.

8. Overfitting: The reason for the model proposed in this project not obtaining good

level of accuracy, is very likely to be due to overfitting. Hence attempts could be

made to refine it by adapting effective regularization method called ‘dropout’ [9],

[23] has been suggested as a solution to the problem of overfitting. In dropout

algorithm, during training neurons in each layer are randomly disabled using a drop-

out map. These neurons are later activated during testing [36]. Another approach to

minimize overfitting is the use of Rectified Linear Units (ReLU) as activation functions

[24]. In addition, in every epoch of training, the dataset can be randomized before

processing every image, to avoid overfitting of the training parameters.

9. Parameter Tuning: Performance of the model can be tested by further varying the

values of the hyper-parameters such as momentum, learning rate etc. and also can

see if any of those could be avoided as done by [11]. It has been mentioned in [33]

that aspects such as decision on how weights and these parameters should be

initialized has great impact on model performance and complexity. For instance,

learning rate has been kept fixed in this experiment. But in [31] it has been tested by initializing

to 0.001 and subsequently multiplied it by a factor of 0.993 after each epoch.

10. Pyramid Reduction: Experiments can also be done to see how the filters behave in

tandem with pyramid reduction feature wherein large objects in an image are

downsized so as to make it detectable as per the filter size [35].

11. Process Output: In addition to the on-window display, the process out can be

written onto a file as part of the code. This will overcome the related challenges

highlighted earlier.

 Srinivasan Dasarathi

28

References:

1. Sudhir, R. (2011) “A Survey on Image Mining Techniques: Theory and Applications”.

Computer Engineering and Intelligent Systems, 2(6): pp. 44-52.

2. Wagner, R., Thom, M., Schweiger, R., Palm, G. and Rothermel, A. (2013) "Learning

convolutional neural networks from few samples", In: IEEE, The 2013 International

Joint Conference on Neural Networks (IJCNN), 2013, pp. 1-7.

3. Krizhevsky A., (2009), “Learning Multiple Layers of Features from Tiny Images”

4. Zhang, Y., Lu, Z. & Li, J. 2010, "Fabric defect classification using radial basis function network",

Pattern Recognition Letters, vol. 31, no. 13, pp. 2033-2042.

5. Ries, C., Richter, F. and Lienhart, R. (2013) "Towards automatic object annotations

from global image labels", In: ACM, Proceedings of the 3rd ACM conference on

international conference on multimedia retrieval, April 2013, pp. 207-214.

6. Zhang, Y., Lu, Z. & Li, J. (2010), "Fabric defect classification using radial basis function

network", Pattern Recognition Letters, vol. 31, no. 13, pp. 2033-2042.

7. Renjifo, C., Barsic, D., Carmen, C., Norman, K. & Peacock, G.S. (2008), "Improving

radial basis function kernel classification through incremental learning and automatic

parameter selection", Neurocomputing, vol. 72, no. 1, pp. 3-14.

8. Nando de Freitas (2015). “Deep Learning Lecture(10) – Convolutional Neural

Networks”, Video file [Online]. Available from:

https://www.youtube.com/watch?v=bEUX_56Lojc [Accessed 23rd August 2015].

9. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012) “Imagenet classification with

deep convolutional neural networks”. Unpublished paper, Canada: University of

Toronto.

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., (1998), ‘Gradient Based Learning Applied

to Document Recognition’, Proc. Of the IEEE, November 1998.

11. Simard, P.Y., Steinkraus, D. & Platt, J.C. (2003), "Best practices for convolutional

neural networks applied to visual document analysis", pp. 958.

12. Ji, S., Xu, W., Yang, M. & Yu, K. (2013), "3D Convolutional Neural Networks for

Human Action Recognition", IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 34, no. 1, pp. 221-231

13. Le, Q.,V., Ngiam,J., Chen,Z., Chia,D., Koh,P.w., Ng,A.,Y., ‘Tiled convolutional neural

networks’, Stanford University, [Online]. Available from:

http://ai.stanford.edu/~ang/papers/nips10-TiledConvolutionalNeuralNetworks.pdf

[Accessed 23rd August 2015].

14. Simonyan, K., Zisserman, A., (2015), ‘Very Deep Comvolutional Networks for Large-

scale Image Recognition’, Published as a conference paper at ICLR 2015. [Online].

Available from: http://arxiv.org/abs/1409.1556v6 [Accessed 23rd August 2015].

15. Zeiler, M.D. and Fergus, R. (2013) “Visualizing and Understanding Convolutional

Networks”, Cornell University Library, arXiv:1311.2901v3. [Online]. Available from

http://arxiv.org/abs/1311.2901 [Accessed 23rd August 2015].

16. Bouvrie, J., (2006), “Notes on Convolutional Neural Networks”, MIT, Cambridge,

November 22, 2006.

https://www.youtube.com/watch?v=bEUX_56Lojc
http://ai.stanford.edu/~ang/papers/nips10-TiledConvolutionalNeuralNetworks.pdf
http://arxiv.org/abs/1409.1556v6
http://arxiv.org/find/cs/1/au:+Zeiler_M/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Fergus_R/0/1/0/all/0/1
http://arxiv.org/abs/1311.2901v3
http://arxiv.org/abs/1311.2901

 Srinivasan Dasarathi

29

17. Vinyals, O., Toshev, A., Bengio and S., Erhan, D. (2014) “Show and Tell: A Neural

Image Caption Generator”, Cornell University Library, arXiv:1411.4555v1. [Online].

Available from http://arxiv.org/abs/1411.4555 [Accessed 23rd August 2015].

18. Ciresan, D., Meier, U. & Schmidhuber, J. (2012), "Multi-column deep neural networks

for image classification", IEEE, pp. 3642.

19. Ueda, N. (2000), "Optimal linear combination of neural networks for improving

classification performance", IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 22, no. 2, pp. 207-215.

20. Wagner, R., Thom, M., Schweiger, R., Palm, G. & Rothermel, A. (2013), "Learning

convolutional neural networks from few samples", IEEE, pp. 1.

21. Oquab, M., Bottou, L., Laptev, I. and Sivic, J. (2014) "Learning and Transferring Mid-

level Image Representations Using Convolutional Neural Networks", IEEE, 2014 IEEE

Conference on Computer Vision and Pattern Recognition, 2014, pp. 1717-1724.

22. Scherer, D., Müller, A. & Behnke, S. 2010, "Evaluation of Pooling Operations in

Convolutional Architectures for Object Recognition" in Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 92-101.

23. Srivastava,N., Hinton,G., Krizhevsky,A., Sutskever,I., Salakhutdinov,R., (2014),

“Dropout: A Simple Way to Prevent Neural Networks from Overftting”, The Journal of

Machine Learning Research, vol. 15, no. 1, January 2014, pp. 1929-1958.

24. Egmont-Petersen, M., de Ridder, D. & Handels, H. 2002, "Image processing with neural

networks—a review", Pattern Recognition, vol. 35, no. 10, pp. 2279-2301.

25. He,K., Zhang,X., Ren,S., Sun,J., (2015), “Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification”, Microsoft Research, [Online].

Available from http://arxiv.org/pdf/1502.01852.pdf [Accessed 24th August 2015].

26. Karpathy, A., “CS231n Convolutional Neural Networks for Visual Recognition”,

[Online]. Available from http://cs231n.github.io/ [Accessed 24th August 2015].

27. Tang, Y., “Deep Learning using Linear Support Vector Machines”, [Online]. Available

from http://arxiv.org/pdf/1306.0239.pdf [Accessed 24th August 2015].

28. Bishop, C.M., (2004), Neural Networks for Pattern Recognition, New York: Oxford

University Press.

29. Mitchell, T.M., (1997), Machine Learning, Singapore: McGraw-Hill.

30. Barber, D., (2014), Bayesian Reasoning and Machine Learning, 5th edition, United

Kingdom: Cambridge University Press.

31. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M Schmidhuber,J., “Flexible, High

Performance Convolutional Neural Networks for Image Classification”, Proceedings of

the Twenty-Second International Joint Conference on Artificial Intelligence [Online].

Available from http://people.idsia.ch/~juergen/ijcai2011.pdf [Accessed 24th August

2015].

32. Boden, M.A, (1996), Artificial Intelligence - Connectionism and Neural Networks,

London: Academic Press.

33. Bruckner, D., Rosen, J., Sparks, E.R., “deepViz: Visualizing Convolutional Neural

Networks for Image Classification”, UC Berkeley, [Online]. Available from

http://arxiv.org/find/cs/1/au:+Vinyals_O/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Toshev_A/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Bengio_S/0/1/0/all/0/1
http://arxiv.org/find/cs/1/au:+Erhan_D/0/1/0/all/0/1
http://arxiv.org/abs/1411.4555v1
http://arxiv.org/abs/1411.4555
http://arxiv.org/pdf/1502.01852.pdf
http://people.idsia.ch/~juergen/ijcai2011.pdf

 Srinivasan Dasarathi

30

http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.pdfA

[Accessed 24th August 2015].

34. Ciresan, D.C., Meier, U., Gambardella, L.M. & Schmidhuber, J. (2011), "Convolutional

Neural Network Committees for Handwritten Character Classification", IEEE, pp. 1135.

35. Jaswal, D., Sowmya, V., Soman, K.P., (2014), “Image Classification using

Convolutional Neural Networks”, International Journal of Advancements in Research &

Technology, Volume 3, Issue 6, June-2014, [Online]. Available from

http://www.ijser.org/researchpaper/Image-Classification-Using-Convolutional-

Neural-Networks.pdf.

36. Li, Q., Cai, W., Wang, X., Zhou, Y., Feng, D.D. & Chen, M. 2014, "Medical image classification with

convolutional neural network", IEEE, =, pp. 844.

Appendix-A

Constants and Standard Settings:

Images = 100

Filters = 16

HL Error Gradient related :

Error Convergence Loop = 10

Error Epochs = 2
Error Threshold (ET) = 0.5

Initial Settings:

Learning Rate (LR) = 1e-5

Momentum (MTM) = 0.5

Classifier Loss related

Loss Convergence Loop = 50000

Epochs = 5
Loss Threshold = 0.1 # denotes 99 % accuracy

Initial Settings:

LR Step Size (LRSS) = 1.0 # Learning Rate
Weight Regularization Strength (WRS) = 1e-10 # L2
Regularization

Table-8: Initial Parameter settings

99 : 9-car_transporter_s_000146.png

1 High Gradient Error 0.103181320938

2 High Gradient Error 0.103179733317

3 High Gradient Error 0.103178146519

4 High Gradient Error 0.103176560542

5 High Gradient Error 0.103174975387

http://vis.berkeley.edu/courses/cs294-10-fa13/wiki/images/f/fd/DeepVizPaper.pdfA

 Srinivasan Dasarathi

31

6 High Gradient Error 0.103173391052

7 High Gradient Error 0.103171807538

8 High Gradient Error 0.103170224844

9 High Gradient Error 0.103168642969

10 High Gradient Error 0.103167061912
Table-9: Sample output of convergence with high gradient error

95 : 9-camion_s_000388.png

1 Low Output Error 0.0715191300508

96 : 9-camion_s_000397.png

1 Low Output Error 0.133343497208

97 : 9-camion_s_001322.png

1 Low Output Error 0.0118169552257

Table-10: Sample output of convergence with low gradient error

TRAIN A LINEAR CLASSIFIER - Output Score and Loss Verification

iteration 0: loss 0.154869

iteration 2000: loss 1.511902

iteration 4000: loss 0.133649

iteration 6000: loss 0.126749

iteration 8000: loss 0.135375

iteration 10000: loss 0.129675

iteration 12000: loss 2.728299

Exiting Convergence Loop - Loss Threshold achieved

Table-11: Cross-Entropy loss convergence

 STATISTICS:

(0, 'airplane') Images Correct: 9/10 Accuracy: 90.00 %

(1, 'automobile') Images Correct: 10/10 Accuracy: 100.00 %

(2, 'bird') Images Correct: 10/10 Accuracy: 100.00 %

(3, 'cat') Images Correct: 10/10 Accuracy: 100.00 %

(4, 'deer') Images Correct: 10/10 Accuracy: 100.00 %

(5, 'dog') Images Correct: 10/10 Accuracy: 100.00 %

(6, 'frog') Images Correct: 10/10 Accuracy: 100.00 %

(7, 'horse') Images Correct: 9/10 Accuracy: 90.00 %

(8, 'ship') Images Correct: 10/10 Accuracy: 100.00 %

(9, 'truck') Images Correct: 10/10 Accuracy: 100.00 %

Total Images: 100 Overall Accuracy: 98.00 %

Saving Trained Kernels and Predicted Features

Processing Time excluding Statistics and File Saving time

Started at : 2015-08-29 07:29:58

Finished at: 2015-08-29 07:30:05

Table-12: Final Classification Summary

