
An adaptive algorithm for dynamic
resource allocation in large

heterogeneous Cloud environments

Ryan Lacerna

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2015

Supervisor Dr. Adriana Chis

Abstract

Today, nearly everybody is connected to the Internet and consumes cloud services

whether to store, process and deliver data. Cloud consists of large networks of vir-

tualized solutions via data centres. In this new era where cloud is at the forefront, a

multitude of domains such as healthcare, education, finance, science etc. have estab-

lished the need for new content-driven applications. These content-driven applications

require massive data gathering, generation, processing and then have them all in a large

heterogeneous system that consist of a variety of private/public cloud systems that are

geographically dispersed. In this context, resource provisioning and allocation becomes

a big challenge in modern distributed systems due to the unpredictable fluctuation

of service requests and heterogeneity of system types within the cloud environment.

In consideration, an intelligent load balancer becomes an indispensable part of cloud

computing. In this research paper we propose a novel algorithm to tackle such het-

erogeneity. This new algorithm takes advantage of the social communication and self-

organisation of the intelligent foraging behaviour of Honeybees. Creating a distributed,

self-organising, multi-agent system that takes advantage of the Self-aggregation tech-

nique. Self-Aggregation attempts to group services together to structure the clouds het-

erogeneity. In this dissertation, we empirically evaluate this new algorithms UserBase

response time and data center processing performance via CloudSim against various

state-of-the-industry algorithms that are currently being used in large and heteroge-

neous distributed systems.

ii

Acknowledgements

I would like to give my special thanks to Dr. Adriana Chis of the School of Computing,

National College of Ireland for her invaluable support, technical advice and staying up

4am in the morning to proof-read and provide me feedback before submission. I have

never met a lecturer with such work ethic and care for students to do well.

I would also like to give my sincere thanks to Clara Aggasid for proof reading this

dissertation. Her kindness and help in analysing the research paper has given me

confidence that the grammar and spelling are up to standard.

I could not have completed this research paper without the unwaivering love and sup-

port from my family and friends who supported and encouraged me throughout the

process.

The literature review and quality of critial thinking would not have been up to standard

without the careful analysis and feedback from Keith Brittle.

Lastly, I want to thank my team and colleagues at H&R Block GTC for their kindness

and encouragement at work during the process of my dissertation.

iii

Submission of Thesis and Dissertation

National College of Ireland

Research Students Declaration Form

(Thesis/Author Declaration Form)

Name: __

Student Number: ___

Degree for which thesis is submitted: ________________________________

Material submitted for award

(a) I declare that the work has been composed by myself.

(b) I declare that all verbatim extracts contained in the thesis have been

distinguished by quotation marks and the sources of information

specifically acknowledged.

(c) My thesis will be included in electronic format in the College

Institutional Repository TRAP (thesis reports and projects)

(d) Either *I declare that no material contained in the thesis has been

used in any other submission for an academic award.

Or *I declare that the following material contained in the thesis formed

part of a submission for the award of

__

(State the award and the awarding body and list the material below)

Signature of research student: _____________________________________

Date: _____________________

Submission of Thesis to Norma Smurfit Library, National College of Ireland

Student name: ______________________________ Student number: __________________

School: ___________________________________ Course: __________________________

Degree to be awarded: ___

Title of Thesis: __

One hard bound copy of your thesis will be lodged in the Norma Smurfit Library and will be available for consultation. The electronic
copy will be accessible in TRAP (http://trap.ncirl.ie/), the National College of Ireland’s Institutional Repository. In accordance with
normal academic library practice all theses lodged in the National College of Ireland Institutional Repository (TRAP) are made
available on open access.

I agree to a hard bound copy of my thesis being available for consultation in the library. I also agree to an electronic copy of my thesis
being made publicly available on the National College of Ireland’s Institutional Repository TRAP.

Signature of Candidate: __

For completion by the School:
The aforementioned thesis was received by__________________________ Date:_______________

This signed form must be appended to all hard bound and electronic copies of your thesis submitted to your school

Contents

Abstract ii

Acknowledgements iii

1 Introduction 1

1.1 Contribution . 3

2 Background 4

2.1 Load Balancing . 4

2.2 Honey Bee Foraging Behaviour algorithm 6

2.3 Self-Aggregation . 8

3 Design 11

3.1 CloudSim: Simulation Framework . 11

3.2 Design Challenges . 13

3.3 Self-aggregation . 13

3.4 Honey Bee . 14

3.4.1 Load balancing . 15

4 Implementation 17

4.1 CloudSim components and extension . 17

4.2 Self-Aggregation . 19

4.3 Honey Bee . 22

4.3.1 VM Grouping . 22

4.3.2 Task transfer . 23

5 Evaluation 24

5.1 Setup and analysis . 24

5.2 Results . 26

6 Conclusion 30

vi

List of Figures

3.1 Layered CloudSim Architecture [Calheiros et al., 2011] 12

3.2 Flow Diagram of Self-Aggregation . 14

3.3 Illustrates the flow diagram of the honey bee algorithm for VM load

balancing. 16

4.1 Flow Diagram of the system architecture 20

5.1 UserBase data based on social network behaviour [Wickremasinghe et al.,

2010] . 25

5.2 Graph illustrating DC Processing time 27

5.3 Overall response times . 28

5.4 Graph illustrating the number of task allocated to a VM for each algo-

rithm. The x-Axis represent virtual machines while the y-Axis represent

the number of allocated task. 29

vii

List of Tables

5.1 Application Deployment Configurations 25

5.2 Physical Hardware details of a Data Center 25

5.3 Honey Bee Results . 26

5.4 Active Load Balancer Results . 26

5.5 Round Robin Results . 27

5.6 Throlled Results . 27

viii

Listings

4.1 Adding our policy to the GUI . 18

4.2 Integrating the algorithm to the simulation 18

4.3 Get the next available VM . 18

4.4 Extending the ServiceProximityServiceBroker 19

4.5 List of Data centers and List of Best Response time recorded 20

4.6 Get destination for the user request . 20

4.7 Querying for the next destination the user request 21

4.8 Updating response time record of data centers 21

4.9 Grouping UVM and OVM . 22

4.10 Allocating tasks to a VM . 23

ix

Chapter 1

Introduction

Cloud computing is a completely internet-based computing model where all the ser-

vices delivered are hosted within the cloud. Cloud is a collection of thousands of

computers interlinked together in a complex manner L.D. and Krishna [2013]. This

computing model integrates the summation of parallel and distributed computing to

deliver on-demand access to shared resources. These shared resources consist of soft-

ware, hardware or information of devices and computers that use the resource. This

model is one of the emerging topics in the IT industry and provides computing as a

utility service where consumers can pay as you use.

The shared use of these cloud resources by the consumers does lead to a range of issues

in the system. Challenges such as; scalability, fault tolerance, system reliability, high

availability and energy efficiency. These challenges occur when multiple concurrent

requests to a single server lead to the server malfunctioning due to overload, while

other servers are underutilised (idle) Yao and Ju-Hou [2012]. This type of failure is led

by an imbalance of load in the system.

Large Data centres are where cloud hosts its services. Large-scale data centres are

mainly heterogeneous systems, which means that cloud users are geographically dis-

persed and use a diverse range of services. This is a big challenge for data centres

to deliver and handle these services efficiently where millions of requests can fluctuate

frequently. This issue can be tackled by the implementation of a load balancer. A load

balancers responsibility is to balance the load effectively across the machines. A survey

by Valentini et al. [2013] on energy efficient techniques describes that the main aim for

a load balancer is to achieve optimal resource utilization, avoid overloading the system

and minimize the response time. However, effective resource allocation in such a large,

dynamic and diverse system such as the cloud is a big challenge. An evaluation of

1

efficient resource allocation techniques by Hameed et al. [2014] highlight that various

applications may not be related to each other via workload. Therefore, one of the main

research challenges is to discover which applications could be effectively consolidated

into one server.

The Honey Bee behavioural algorithm is categorised as a meta-heuristic type of arti-

ficial intelligence and has been proven to be a very effective algorithm for load bal-

ancing. Depictions of meta-heuristic algorithms by A Sesum-Cavic and Kuhn [2011]

demonstrate that it’s exploration techniques explore unchartered areas in the search

space, while its knowledge accumulation is used and exploited. This is a good balance

between contradictory requirements, which eventually leads to finding the optimum so-

lution (global maxima). An overview of the Honey bee algorithm and its applications

by Abu-Mouti and El-Hawary [2012] shows that Honey Bee algorithm have been used

in various applications such as comparative analysis, electric power systems, parallel

and grid computing, data clustering and image analysis, computer science applications

and many more. The overview of this aforementioned research on the Honey Bee al-

gorithm highlights that has matched or outperformed some of the other meta-heuristic

algorithms. In resource allocation, Honeybee takes into account task prioritizations

that have been migrated from an over-utilized virtual machine (VM). It also enhance

overall performance of processing and load balancing that aims to reduce the amount

of time a task needs to wait on queue of a VM. Thus, decreased latency. However,

it has been proven that this improvement in performance works well as the variety of

services increased, but its performance seize to increase as the size of the system grows.

It was discovered that the implementation of the Honey Bee on the application layer had

led to a certain change in topology at the resource layer. Resulting in the minority of

services having disproportionate amount of connectivity, while the majority of services

only had a small number of links. Self-Aggregation (Active clustering) technique groups

vital, similar or vital services to deal with load balancing. In the normal environment of

Self-aggregation as described by Di Nitto et al. [2007] is a network with interconnected

nodes characterized by their types and a list of its neighbour nodes. In this situation the

Self-aggregation algorithm attempts to evolve the connectivity with its neighbouring

nodes in order to reach an optimum configuration. These nodes are characterized by

this algorithms technique that is used to rewire the network.

The research question to be answered: will the performance of Honey bee foraging

algorithm used in load balancing be improved with the adoption of Self-aggregation in

large heterogeneous cloud systems? This question is asked with a view of improving

load balancing to tackle such a challenge. To reveal the need for further research on

this area, this study reviews the research conducted previously and critically analysed

2

their discovery and findings. These reviews are included in the main body of the next

chapter.

1.1 Contribution

Our research aims to improve resource allocation via a combination of algorithms for

load balancing that is targeted specifically for large and heterogeneous distributed

systems. The contributions of this dissertation are the following:

• A novel hybrid-scheduling algorithm, and a prototype implementation, that aims

to improve resource allocation. The aforementioned algorithm is an intelligent

self-organising solution that utilizes resources effectively in the heterogeneous

nature of Cloud.

• An empirical evaluation of this novel solution is carried-out/performed against

existing state-of-the-industry algorithms, considering various performance metrics

such as reponse time, VM utilization and processing times of data centers.

• The empirical performance evaluations of our proposed algorithm will be con-

ducted through a simulation using and extending the CloudSim [Calheiros et al.,

2011] simulation framework.

3

Chapter 2

Background

The main focus of discussion within this main body is the critical analysis of load

balancing and the techniques used which answer some of the challenges faced to deliver

a smooth and efficient resource allocation in heterogeneous cloud systems. Here, the

algorithms that will be used to answer the research question are also introduced.

This chapter presents relevant related work organized as follows:

• Section 2.1 Load Balancing: discusses why load balancers play a critical role in

cloud computing and the challenges that confronts load balancers in heteroge-

neous cloud systems.

• Section 2.2 Honey Bee Behaviour algorithm: analyses the Honey Bee algorithm

and its effectiveness and weaknesses in balancing loads.

• Section 2.3 Self-Aggregation: this section justifies the Self-aggregations effective-

ness used in the Active clustering algorithm in balancing loads and points out its

weaknesses. In this section it is also detailed why a combination of algorithms is

required to enable an effective load balancing technique.

2.1 Load Balancing

This section reviews the previous research on load balancing and the challenges faced

by the algorithms in the different system environments. This is a critical section in

which we reveal the motivation why the research question chooses to explore dynamic

algorithms.

Load balancing is one of the indispensable feature of cloud computing. According to

4

the definition by Soni and Kalra [2014], load balancers are essential for cloud systems

to achieve high throughput and shorten the response time. High throughput is one of

the fundamental goals for load balancing. Throughput is the measure of the amount

of work that the system can process in a given amount of time. A similar view by L.D.

and Krishna [2013] describe the main objectives of load balancing to improve the speed

of execution time of applications that uses a cloud resource. The workload of these

applications behave in an unpredictable manner during run time. An investigation

by Devine et al. [2005] follows the view that applications behave unpredictably or

change during computation. These studies make a strong argument for measuring the

performance load balancing on heterogeneous cloud systems.

Heterogeneous cloud systems as described by Topcuoglu et al. [2002], are a diverse

and geographically dispersed collection of computing resources interconnected through

a high speed network. A study conducted by Yao and Ju-Hou [2012] express that

in a cloud computing environment, homogenous servers in the cloud system are less.

Homogenous servers (nodes) refer to systems that have a uniform set of hardware and

software working in parallel to achieve a specific goal. A great deal of research has been

established in load balancing on homogeneous nodes. However, the major drawback,

Randles et al. [2009b] argue from this approach is that, it is unrealistic for most cloud

computing instances. For most cloud computing instances are defined as diverse, and

it is paramount that a heterogeneous and dynamic system is needed to provide optimal

delivery of service. The study by Devine et al. [2005] shares this concern and high-

lights that it is important that algorithms need to be adaptive and state-of-the-art,

heterogeneous, tailoring work assignments proportionate to communication, memory

and processing resources. This vision is strengthened by another investigation on load

balancing by Yao and Ju-Hou [2012]. If the system collapses due to the maintenance

of the servers, it could bring great losses to the cloud users; the research emphasises

that dealing with such requests in a heterogeneous system environment is an important

challenge. To accommodate the needs for a heterogeneous system Devine et al. [2005]

suggest that it requires a dynamic load balancer which can adapt to such unpredictable

workloads.

Load balancing techniques are extensively examined for both homogenous and hetero-

geneous environments. L.D. and Krishna [2013] illustrate two types of load balancing

techniques. They are called static and dynamic.

• Static load balancing algorithms as described by L.D. and Krishna [2013], perform

well when servers have low variations in the applications workload. This type of

load balancing thrives on homogenous systems. However, approaches of this kind

carry with them various well known limitations. From existing reviews from the

5

previous paragraph, we find that these type of algorithms will not work well in

heterogeneous cloud systems where the workloads vary frequently. This concern

is shared by Yao and Ju-Hou [2012] where a description of the three conditions

in which load balancing algorithms need to follow; (1) When the workloads are

not too demanding, the algorithms should be able to self-organise to scale down

the exchange of information, (2) Load balancing mechanisms should be able to

thrive on heterogeneous cloud environments, and (3) The system throughput

should not be affected, therefore the load balancing mechanisms should enhance

the system throughput high as possible. Yao and Ju-Hou [2012] emphasise that

high throughput is the most essential requirement in load balancing.

• Dynamic load balancing algorithms are techniques which can autonomously adapt

to varying workloads at run time. The study by L.D. and Krishna [2013] states

that dynamic load balancing algorithms have dominance over static load bal-

ancing algorithms. But in order to achieve such advantage, it requires the addi-

tional cost of collecting and maintaining load information.L.D. and Krishna [2013]

highlights that there type of load balancing techniques are exceedingly good in

load balancing for heterogeneous environments. Likewise,Sesum-Cavic and Kuhn

[2010] share this view that self-organisation solutions are proven to be a useful

approach when handling complexity. And that dynamic load balancing allows

the highest level of productivity and leads to a dramatic increase in the overall

distributed system performance. Our proposed load balancing algorithm called

the Honey Bee is also a dynamic technique. Based on the three essential condi-

tions followed by effective load balancing techniques, described from the previous

paragraph. We can interpret that the heterogeneous cloud computing system

and load balancing has a certain resemblance with a colony of Honey bees and

harvesting for food Yao and Ju-Hou [2012].

This section has reviewed load balancing and its system environments. We have dis-

covered that there are two types of load balancing algorithms for different system

environments in cloud computing and found dynamic algorithms to be the most ef-

fective in heterogeneous systems. Building from this section, the next section shall

further elaborate a dynamic load balancing algorithm called the Honey bee. Detailing

its technique, and examining its strengths and weaknesses in terms of load balancing.

2.2 Honey Bee Foraging Behaviour algorithm

This section elaborates on the review of the Honey Bee algorithm from past studies in

the area. This section also highlights the strengths and weaknesses of the algorithm

6

which points to the need of improving the algorithm based on the research question for

this review.

The honey bee colony and how it forages for food is described in research by Randles

et al. [2010]; the forager bees are sent for sufficient food sources; the forager returns to

the hive and advertises the find to the hive using a method called a waggle dance. The

suitability of the food source is measured by its quantity, the quality of the nectar that

has been harvested or its distance away from the hive. Once the food source has been

communicated through the waggle dance, the other honey bees follow the forager back

to the discovered food source and begin harvesting. When the bees return to the hive,

the remaining quantity of the food source is advertised by each honey bee through the

waggle dance. This enables the bees to be sent out to a more plentiful food source and

abandon less plentiful food sources. This method is well perceived in other research

into honey bee inspired load balancing techniques including Sahu et al. [2013], L.D. and

Krishna [2013],Yao and Ju-Hou [2012] Ghafari et al. [2013]. In the previous section it is

mentioned that we can interpret that heterogeneous cloud systems and load balancing

have a striking resemblance to the behaviour of honey bees foraging for food.

The Honey Bee Foraging Behaviour algorithm is an optimization algorithm that im-

itates the intelligent behaviour of a swarm of honey bees foraging for food L.D. and

Krishna [2013]. The principles in which the use of this intelligent algorithm for Load

balancing are proposed. Sesum-Cavic and Kuhn [2010]represents the honey bees as

software agents at each individual servers. A server contains exactly a single hive and

one flower which has several units of nectar. A task is represented as unit of a single

nectar. Individual hives consists of a limited number of forager (outgoing) and follower

(receiver) bees. In the initial stages, all outgoing bees are foragers. These foragers

scout for the location policy partner server of their server to decide whether to take/-

give nectar to/from the server, and call followers. The goal is to locate the optimum

location policy partner server by following the optimum path that is advertised to be

the shortest path. Randles et al. [2010] express that given this robust profit calculation

method, the pattern of this intelligent behaviour offers a distributed and global mech-

anism of communication; making sure that profitable virtual machines seem to be an

attractive candidate and are allocated to underutilized servers. On a performance eval-

uation by Karaboga and Basturk [2008] compared Honeybee algorithm against other

evolutionary algorithms. Empirical results show that under various control param-

eters, the algorithm outperforms the algorithms and emphasizes that this technique

can be implemented to tackle multimodal engineering problems with dimensionality.

The promise of this robust and dynamic algorithm strengthens the reason for further

research on its load balancing capabilities.

7

The throughput performance of the Honey Bee algorithm is examined by a series of

empirical tests by Randles et al. [2009b]. The algorithm is evaluated against 2 other ef-

fective dynamic algorithms called Biased random sampling (BRS) and Self-aggregation

(Active Clustering). The empirical results show that, for the Honey bee algorithm,

increasing the server resources does not improve its equivalent throughput, its perfor-

mance remains consistent. Conversely, the honey bee algorithm performs progressively

well showing an increase in performance when the diversity of the workloads increase in-

line with the servers workload increase. A more recent study by Randles et al. [2010],

demonstrates empirical results which shows similar results to that of the previously

mentioned experiment. The result demonstrates that the honey bee algorithm per-

forms in a consistent manner. Although it does not increase throughput performance

in-line with the increase in system size. A third experiment conducted by Yao and Ju-

Hou [2012] aimed to improve the current honey bee algorithm and the empirical results

that emerged from the experiments strengthens the argument presented in Randles

et al. [2009b] and Randles et al. [2010]. Yao and Ju-Hou [2012] agree that increasing

the system size has deteriorated the performance of honey bee load balancing. An ob-

servation by Randles et al. [2009a] show that the self-arrangement at one layer causes an

effect on other layers which was not predictable from the implementation. The findings

present some weaknesses of the honey bee algorithm. Where the algorithm arranges

only an insufficient link between requests in the same server node queue, therefore, the

improvement of the throughput in the system is sub-optimal. These results are critical

and builds upon the purpose of the research question mentioned in this review. To

improve this sub-optimal throughput performance in the honey-bee algorithm.

In this section we have given a brief overview of how the colony of foraging honey

bees behave and have described how this intelligent behaviour is adopted for load

balancing in heterogeneous cloud systems. We have also discovered that although the

throughput for honey bee performs very well when the service types are diverse, its

throughput performance is sub-optimal when system size increases. In the next section

we shall further elaborate another algorithm mentioned in the last paragraph called

Self-aggregation (Active-clustering). Defining its strengths and weaknesses with the

view of combining honey bee and self-aggregation to improve system throughput.

2.3 Self-Aggregation

This section describes the technique of Self-aggregation, revealing its strengths and

weaknesses based from the experiments in which the algorithm was tested. This chapter

also reveals the need for a combination of algorithms to improve load balancing

8

Self-aggregation is a dynamic load balancing technique that rewires the network Ran-

dles et al. [2009b]. This algorithm aims to group similar services together. Whereas

many load balancers only work well in situations where the nodes are aware of similar

(like) nodes and delegate workloads to them. This algorithm is particularly important

to this review as Randles et al. [2010] demonstrate the concern where an implementa-

tion of the honey bee algorithm in the application layer induced a particular topology to

arise in the resource layer. This led to a number of services having an unequal amount

of network connectivity from its collaborating services, at the same time most services

have only received a low number of links. Saffre et al. [2009] demonstrated a series

of experiments that proves regular rewiring process in this situation could implicitly

fix the problem, resulting in an established optimum cooperation in the long term for

similar processes. An experiment by di Nitto et al. [2008] demonstrate that a number

of jobs processed using self-aggregation have shown an improvement as a result of the

Load balancing algorithms being able to work on a large homogeneous environment.

Empirical results from the experiment by Randles et al. [2009b], detail self-aggregation

as having a contrasting result from the Honey bee algorithm. It shows that the per-

formance of self-aggregation increases as the number of processing nodes increase.

Whereas self-aggregations performance decreases when the types (diversity) of nodes

increase. This is where the Honey bee algorithm performs well. A more recent study

by Randles et al. [2010] illustrates similar results where the self-aggregation algorithms

performance is decreased as the diversity of the nodes increase. One question that

needs to be asked, however, is why Randles et al. [2009b] and Randles et al. [2010]

did not try to combine some of these algorithms in order to root out some of their

weaknesses. Another drawback with the research by Yao and Ju-Hou [2012] is that it

relies too heavily on changing the parameters of the different Honey bee algorithms. All

these studies reviewed so far, however, did not combine the algorithms but did suggest

combining them and improving the algorithm based on their weaknesses.

A combination of a variety of load balancing algorithms is proposed by Randles et al.

[2009b], when using a selection of the types of algorithms; either combined to provide

an optimal solution or utilised independently when different scenarios arise. Yao and

Ju-Hou [2012] share this view stating, within a certain number of server nodes, the

increased size of the system does not lead to an increase in throughput performance,

therefore, an improved Honey bee algorithm is suggested to solve this issue. This

review follows the research question where we adopt self-aggregation to improve the

honey bee algorithm. Vasile et al. [2014] have developed a similar idea to this research

where self-aggregation and a combination of algorithms have been implemented. The

conclusion coming from the novel algorithm implemented from their research shows that

9

clustering had an overhead effect, however, using a specialized algorithm combined with

the self-aggregation have resulted in a good improvement in results.

In this section we have demonstrated how the self-aggregation algorithm works, pointing

out its strengths and revealing its weakness. Here we have discovered that a combina-

tion or a variety of algorithms working together is needed to solve the underlying issues

of some load balancing algorithms.

10

Chapter 3

Design

This chapter explores in detail the design of the proposed algorithm for this research.

First we will explain the architecture of CloudSim and explain how we integrate our

algorithm to this well used simulator. Thereafter, we explain the self-aggregation phase

of our solution, identifying its parameters and explaining the algorithm. Finally we

examine the scheduling algorithm to be utilized in order to allocate task to resources

and also responsible for maintaining resource utilization of VMs.

3.1 CloudSim: Simulation Framework

Although there are a variety of commercial cloud computing infrastructures, such as,

Azure, Aneka, Google App Engine and EC2, building a cloud testbed on a real infras-

tructure is time consuming and expensive. It is almost impossible to test performances

of different scenarios of the application in a controllable and repeatable manner. For

the purpose of this research, we therefore implement simulation methods to evaluate

performance of our algorithms.

CloudSim is a framework designed by Calheiros et al. [2011], it is used to emulate appli-

cation services and cloud-based infrastructures and can also be used on economy-driven

resource management policies on large cloud computing systems. With the use of this

toolkit we can focus on resource allocation problems rather than the implementation

of the low level details of the cloud-based infrastructures and services Calheiros et al.

[2011].

CloudSim supports both system and behaviour modeling of Cloud system components

such as data centers, VMs, and resource provisioning policies. Several researchers and

11

organisations, such as HP Labs are using CloudSim for their investigation of resource

provisioning and energy-efficient management of data center resources. CloudSim also

supports the modeling and simulation of Cloud computing environments consisting

of both single and federated Clouds [Calheiros et al., 2011]. There are a number of

simulators(Grenchmark, GreenCloud, NS3, REPAST, iCanCloud) that can be used for

simulating a Cloud enviroment, but these simulators do not fully support a realistic

modeling of systems and behaviour of Cloud environments as well as CloudSim.

We use and extend CloudSim to provide a prototype implementation of our novel

algorithm. The framework is written in the Java programming language, therefore, our

system will be implemented in Java.

Figure 3.1: Layered CloudSim Architecture [Calheiros et al., 2011]

Figure 3.1 shows the layered architecture of the CloudSim toolkit and its architectural

components. By extending the basic functionalities already available in CloudSim, we

will be able to perform test beds on specific configurations and scenarios, therefore

leading to the development of best practices in all of the critical aspects in cloud

computing.

For this research, we implement the Self-aggregation phase on the Service Broker which

dynamically allocates the load to a data centre based on best response time and user

proximity to the Data Centers. The Honey Bee algorithm is then implemented in

12

the data center where the Data Centre Controller consults the load balancer for the

next VM to allocate the cloudlet(task). The following sections will further detail these

architectures.

3.2 Design Challenges

The original design for the self-aggregation phase was to implement a clustering algo-

rithm called K-means by MacQueen [1967]. This algorithm is one of the simplest and

most popular unsupervised learning algorithms that solve well-known clustering prob-

lems. For this research, the purpose of using K-means was to cluster characteristics of

resources and feed this information to the VM load balancer.

The algorithm works by:

• Placing k points into the space represented by the objects being clustered. These

points represent initial group centroids.

• Assign each object to the group which has the nearest centroid.

• Once all the objects have been assigned, re-calculate the positions of k centroids.

• Repeat step 2 and step 3 until the centroids no longer move. This creates a

separation of the objects into groups.

Although the K-means algorithm is considered to be one of the simplest and popular

unsupervised learning algorithms, one of its disadvantages is that it can be compu-

tationally expensive. First, the number of clusters(k) needs to be pre-defined. This

pre-definition of k could mean that it can affect the dynamic nature of what we are try-

ing to achieve. To extend K-means to accommodate the adaptiveness of finding k will

lead to increase in complexity. This increase complexity can affect the execution time

of our proposed solution that can then lead to reduced response time and performance.

The next section explains the design of the implemented alternative to K-means.

3.3 Self-aggregation

Self-aggregation technique is a load-balancing technique that groups services together

depending on certain characteristics. In our proposed solution, we will re-configure this

technique to accommodate our novel algorithm.

13

Our Self-aggregation algorithm phase is implemented on the Service Broker component

of CloudAnalyst. At this level we can dynamically re-configure the load based on the

best response time achieved for the user, the proximity of that user base and current

load of the data center. The main purpose of implementing this algorithm in the

service broker is to have a level of control over user request routing to a data center.

This is to address the problem raised in the background section where the Honey Bee’s

performance degrades as the number of user requests and system increase.

Figure 3.2: Flow Diagram of Self-Aggregation

3.4 Honey Bee

The system performs load balancing by pre-emptive scheduling. Load balancing is

used to distribute the load evenly across machines to avoid overloaded, under-loaded

or idle machines. For our proposed system we use the Honey bee algorithm for VM

load balancing.

The task removed from the overloaded VMs becomes the Honey bees. Consequence

of a submission to an under-loaded VM, a number of various tasks and load of tasks

14

assigned to that VM will be updated. This will be advantageous for other tasks since

whenever a high task need to be assigned to a VM, it should address the VM which

has a minimum number tasks so that the particular task will be executed quicker.

Considering that all the VMs are sorted in an ascending order, the removed task will

be assigned to under-loaded VMs.

3.4.1 Load balancing

We follow the Honey Bee formula used by L.D. and Krishna [2013]

Let VM = VM1, V M2, V M3, ..., V Mm be the set of n virtual machines which should

process the tasks outlined in the set T = T1, T2, T3, ..., Tn.

Overall capacity of all VMs is given in (1)

(1) C =
m∑
i=1

Ci

The total length of the task that are assigned to a VM is to be considered as the load

on a single VM. Formula given in (2)

(2) LVMi,t =
N(T, t)

S(VMi, t)

Where the N(T, t) is the number of tasks at the time t on the service queue of VMi,

while S(VMi, t) is the Service rate of the VMi at time t.

Load of all the VMs is given in (3)

(3) L =

m∑
i=1

LVMi

Processing time of a VM is calculated by (4)

(4) PTi =
LVMi

ci

Processing time of all VM are calculated by (5)

(5) PT =
L

C

All of the VMs load are divided by the capacity of all VMs Following on the values

presented from the above parameters, the scout bee checks weather the host is in a

balanced or unbalanced state. This is calculated used standard deviation of the load

given in (6)

15

(6) σ =

√√√√ 1

m

m∑
i=1

(PTi − PT)2

If the σ value falls within the condition of the threshold set (T s) ∈ [0, 1], then the

system is balanced, otherwise it is in an unbalanced state.

Figure 3.3: Illustrates the flow diagram of the honey bee algorithm for VM load bal-
ancing.

In this chapter we examined the design of the proposed solution for this research, and

reviewed the Self-Aggregation phase and VM load balancing phase of our proposed

novel algorithm. In the next chapter we delve into the actual implementation.

16

Chapter 4

Implementation

The implementation chapter details all the components of our proposed novel algorithm.

Firstly, the CloudSim simulator was extended to work with the implementation of

our solutions. In the beginning of this chapter, the CloudSim architecture and its

components are explained, this is important as the proposed algorithms are built to

work with these components. Thereafter, the implementation of the Self-Aggregation

technique on the Service Broker is explained. Lastly, The Honey Bee VM load balancer

implementation and integration are demonstrated.

To achieve our proposed implementation we have used the IntelliJ IDEA as our In-

tegrated Development Environment(IDE) using Java version 1.8.0 for creating and

executing our code. We imported the CloudAnalyst package components that are im-

plemented in Java into our IDE.

4.1 CloudSim components and extension

This section briefly describes the main components of the CloudSim simulator and

the flow of these components to fully understand the integration of our algorithm.

CloudAnalyst is an extension of CloudSim that provides a graphical user interface(GUI)

package to assist the ease of experimental modification and configurations.

The main components and its responsibilities are:

• GUI: As discussed in the previous paragraph, this package is responsible for the

UI, and manages the controls of front end for the application. It manages the

screen transitions and all other user interface activities. For us to be able to

17

use our implemented algorithm we have included BROKER POLICY SELF AG-

GREGATION to the ConfigureSimulationPanel class so that we can select the

algorithm in the GUI.

1

2 cmbServiceBroker = new JComboBox(new ←↩
String[]{Constants.BROKER_POLICY_PROXIMITY,

3 Constants.BROKER_POLICY_OPTIMAL_RESPONSE,

4 Constants.BROKER_POLICY_SELF_AGGREGATION});

5 cmbServiceBroker.setSelectedItem(simulation.getServiceBrokerPolicy());

6 cmbServiceBroker.setBounds(x, y, compW, compH);

7 mainTab.add(cmbServiceBroker);

Listing 4.1: Adding our policy to the GUI

• UserBase: This component is responsible for modelling groups of users and gen-

erates the traffic that represents the users.

• Simulation: This component is in charge of the simulation parameters, generating

and executing the simulations. In the Simulation component we have extended

the code to integrate the algorithm within the simulation.

1 CloudAppServiceBroker serviceBroker;

2 if (serviceBrokerPolicy.equals(Constants.BROKER_POLICY_PROXIMITY)){

3 serviceBroker = new ServiceProximityServiceBroker();

4 } else if ←↩
(serviceBrokerPolicy.equals(Constants.BROKER_POLICY_SELF_AGGREGATION)){

5 serviceBroker = new SelfAggregationBroker(dcbs);

6 }else {

7 serviceBroker = new BestResponseTimeServiceBroker();

8 }

9 internet.addServiceBroker(DEFAULT_APP_ID, serviceBroker);

Listing 4.2: Integrating the algorithm to the simulation

• Internet: This component is responsible for modelling the internet and the im-

plementation of routing behaviours.

• DataCenterController: This component is responsible for the data center activi-

ties. The Data Center controller queries the Load balancer for the next available

VM to allocated a cloudlet(task) to, if the VM is busy(−1) it queues the cloudlet

for that VM.

1 int nextAvailVM = loadBalancer.getNextAvailableVm();

2

3 if (nextAvailVM == -1){

18

4 //All VM’s are busy. Put it in queue

5 //System.out.println("VM’s busy, queueing " + cl);

6 waitingQueue.add(cl);

7

8 queuedCount++;

9 } else {

10 submitCloudlet(cl, nextAvailVM);

11 }

Listing 4.3: Get the next available VM

• VmLoadBalancer: This component is responsible for modelling the load balanc-

ing policy used by the data centers when allocating requests. We entend this

component in our BeeV mLoadBalancer class.

• InternetCharacteristics: This component is reponsible for defining the internet

characteristics applied during the simulation, such as available bandwidths be-

tween regions, latency, the current traffic levels and the current level of perfor-

mance information for each of the data centers.

• CloudAppServiceBroker: This component is responsible for modelling the service

brokers which manages traffic routing between the user bases. We implement this

interface in our SelfAggregationBroker class that uses getDestination method

and takes in a GeoLocatable as input which then returns a name of the datacenter,

based on our Self-Aggregation policy.

1 public class SelfAggregationBroker extends ServiceProximityServiceBroker

2 implements CloudAppServiceBroker

Listing 4.4: Extending the ServiceProximityServiceBroker

A high level illustration of the system flow for these components are shown in Figure

4.1:

4.2 Self-Aggregation

This section provides the description of the final state of implementation of the Self

Aggregation policy. As mentioned from section 3.1 we have implemented this phase in

the Service Broker to give us the level of control over user requests routing to a data

center. At this level, we can also monitor all the data centers, the proximity of the

UserBases to the data center and latency.

19

Figure 4.1: Flow Diagram of the system architecture

To achieve the implementation of the Self -Aggregation component, the

SelfAggregationBroker is implemented within the cloudsim.ext.servicebroker pack-

age of CloudAnalyst.

The algorithm works by:

• Maintaining a list of all the data centers and also a list of all the best response

time currently recently recorded for each of the data centers.

1 private Map<String, Double> bestResponseTimesRecord;

2 private Map<String, DatacenterController> DataCenterList;

Listing 4.5: List of Data centers and List of Best Response time recorded

• Once the internet receives a message from the user base it consults the Self-

Aggregation algorithm to determine a data center for the request.

1 int appId = cloudlet.getAppId();

2 CloudAppServiceBroker serviceBroker = serviceBrokers.get(appId);

3 destName = serviceBroker.getDestination(originator);

20

Listing 4.6: Get destination for the user request

• Our Self-Aggregation algorithm then queries the ServiceProximity broker for the

destination

1 public String getDestination(GeoLocatable inquirer) {

2 List<Integer> proximityList = ←↩
InternetCharacteristics.getInstance().getProximityList(inquirer.getRegion());

3

4 int region;

5 String dcName;

6 for (int i = 0; i < proximityList.size(); i++) {

7 region = proximityList.get(i);

8 dcName = getAnyDataCenter(region);

9 if (dcName != null) {

10 return dcName;

11 }

12 }

Listing 4.7: Querying for the next destination the user request

• The Self-aggregation algorithm then updates its best response time records if the

new response time has performed better than the previous.

1 for (String dc : serviceLatencies.keySet()){

2 currLatency = serviceLatencies.get(dc)[0];

3 bestSoFar = bestResponseTimesRecord.get(dc);

4 if (currLatency != null){

5 if (bestSoFar != null){

6 if (currLatency <= bestSoFar){

7 bestResponseTimesRecord.put(dc, currLatency);

8 } else {

9 DatacenterController dcb = DataCenterList.get(dc);

10 if (dcb.getVmStatesList().size() <= maxVms){

11 dcb.createNewVm();

12 }

13 }

14 } else {

15 bestResponseTimesRecord.put(dc, currLatency);

16 }

Listing 4.8: Updating response time record of data centers

21

4.3 Honey Bee

This section details the implementation of the Honey Bee algorithm for VM

Load balancing. The BeeVMLoadBalancer class is implemented within the

cloudsim.ext.datacenter package of CloudAnalyst.

4.3.1 VM Grouping

In addition to the Self-Aggregation component mentioned previously where we have

grouped the resources and tasks according to their characteristics, this particular phase

aggregates the virtual machines based on their load. These groups are Overloaded

VMs and Under-loaded VMs. Each group contains a number of VMs. New tasks are

allocated to the under-loaded VM. The task removed from an overloaded VM has to

make a decision to be moved to an under-loaded VM based on the load and tasks

available in that under-loaded VM. In this algorithm, this is referred to as the Honey

Bee and the under-loaded VM is refered to as the food source (destination) of the honey

bees. The information that the bees (tasks) updates are the number of VMs on each

group (OVM, UVM) and number of tasks of each VMs.

1 List<Map.Entry<Integer, Integer>> list =

2 new LinkedList<Map.Entry<Integer, Integer>>(suitableNectarSource.entrySet());

3

4 //compare OVM and UVM

5 Collections.sort(list, new Comparator<Map.Entry<Integer, Integer>>() {

6 public int compare(Map.Entry<Integer, Integer> o1,

7 Map.Entry<Integer, Integer> o2) {

8 return (o1.getValue()).compareTo(o2.getValue());

9 }

10 });

11

12 Map<Integer, Integer> sortedMap = new LinkedHashMap<Integer, Integer>();

13 for (Iterator<Map.Entry<Integer, Integer>> it = list.iterator(); ←↩
it.hasNext();) {

14 Map.Entry<Integer, Integer> entry = it.next();

15 sortedMap.put(entry.getKey(), entry.getValue());

16 suitableNectarSource.put(entry.getKey(), entry.getValue());

17 }

Listing 4.9: Grouping UVM and OVM

22

4.3.2 Task transfer

If the decision is to balance the load, the scheduler will prompt the load balancing

function. For the load balancer to perform, the overloaded VMs need to be found,

under-loaded VMs and supply (the available load). Following this, remove the tasks

from the overloaded VMs. Tasks that have been removed previously (scout bee) from

the overloaded VM are essential in finding the appropriate under-loaded VM for the

current tasks (forager bee). This forager bee then becomes the scout bee for the fol-

lowing task. This process is repeated until load balancing is successful.

1 if (e.getId() == CloudSimEvents.EVENT_CLOUDLET_ALLOCATED_TO_VM){

2 int vmId = (Integer) e.getParameter(Constants.PARAM_VM_ID);

3 Integer currCount = suitableNectarSource.remove(vmId);

4 if (currCount == null){

5 currCount = 1;

6 } else {

7 currCount++;

8 }

9 suitableNectarSource.put(vmId, currCount);

10

11 } else if (e.getId() == CloudSimEvents.EVENT_VM_FINISHED_CLOUDLET){

12 int vmId = (Integer) e.getParameter(Constants.PARAM_VM_ID);

13 Integer currCount = suitableNectarSource.remove(vmId);

14 if (currCount != null){

15 currCount--;

16 suitableNectarSource.put(vmId, currCount);

17 }

18 }

Listing 4.10: Allocating tasks to a VM

To conclude this chapter, we have demonstrated the implementation of the proposed

algorithms on CloudAnalyst by extending the simulator to integrate our code. The vital

components of CloudAnalyst have been explained, detailing its system flow and how

each components interact, followed by the explanation of the Self-aggregation algorithm

implementation. Lastly, we have demonstrated the implementation of the Honey bee

to work as a VM load balancer. In the next section we delve into the evaluation of

data and analysis. Proving the feasibility of our proposal by examining the results from

the analysis of tools and techniques that will be used for the purpose of answering this

research question.

23

Chapter 5

Evaluation

This chapter deeply examines the analysis methodologies and tools that will be used to

gather and analyse data generated by our proposed solution. The first section dicusses

the setup and analysis for the empirical experiment. The second section evaluates

results of response times of various scenarios. The third section evaluates the results

for processing times, and lastly, we examine the VM utilization results gathered from

our empirical evaluations.

5.1 Setup and analysis

A typical large scale application on the internet that benefits from Cloud technologies

are social network applications. These type of applications presents various and un-

uniform usage patterns. Access to such application varies throughout the day which

the geographical locations of the users also varies. In addition, a feature in the social

application may cause a sudden fluctuation in the service leading to the number of

requests arriving unpredictably to servers which may only be temporary.

One popular social networking site is Facebook1 that boast over 1 billion registered

users. According to Wickremasinghe et al. [2010], in 2009, the distribution of facebook

users base throughout the globe was:

• North America: 80 million

• South America: 20 million

• Europe: 60 million

1www.facebook.com

24

www.facebook.com

• Asia: 27 million

• Africa: 5 million users

• Oceana: 8 million users

In this evaluation we shall model the behaviour of social networks such as Facebook and

configure the CloudAnalyst simulator parameters to mirror this behaviour to analyse

the performance of our adaptive algorithm. We configure the simulation parameters

according to the data used by Wickremasinghe et al. [2010]

Figure 5.1: UserBase data based on social network behaviour [Wickremasinghe et al.,
2010]

For our empirical evaluations, we define three UserBases that mirrors the three regions

around the world(N. America, S. America, Europe) including their parameters as illus-

trated in Figure 5.1. For our experiment we conduct the experiment at 1/10th of the

size of Facebook.

Data Center Num of VMs Image Size(Mb) Memory(Mb) BW(bits/s)

DC1 25 10000 2048 10000
DC2 50 1000000 512 1000000
DC3 100 10000 4046 10000

Table 5.1: Application Deployment Configurations

ID Memory(Mb) Storage(Mb) Available BW(Mb) Num of Cores MIPS

0 2048 1000000 100000 4 10000
1 2048 100000000 1000000 4 10000
2 2048 100000000 1000000 4 10000

Table 5.2: Physical Hardware details of a Data Center

In terms of Cloud service costs we will assume that it follows the pricing plan of Amazon

AWS EC2. The price plan is as follows:

25

• Cost per VM per hour(1024Mb, 100 MIPS): 0.10c

• Cost per 1 Gb of data transfer(request/receive): 0.10c

In terms of the configurations of Data Centers:

• Number of Data centers: 3 (Region 0,1,2)

• Data Center configurations:

– Architecture: x86

– OS: Linux

– VMM: Xen

5.2 Results

After running the simulator with the above parameters we have achieved the following

results for Throlled, Active VM, Round Robin and Honey Bee in terms of overall

response time and data center processing times.

The data gathered and shown in Table 5.3, 5.4, 5.5 and 5.6, shows that there are

improvements in performance by the Honey Bee over all the other algorithms tested in

this experiment in terms of Overall response time and Data Center processing time.

Honey Bee Results

Avr (ms) Min (ms) Max (ms)

Overall Response
time:

54.54 37.44 75.20

Data Center pro-
cessing time

3.54 0.00 15.39

Table 5.3: Honey Bee Results

Active Load Balancer Results

Avr (ms) Min (ms) Max (ms)

Overall Response
time:

54.70 37.44 76.52

Data Center pro-
cessing time

3.70 0.00 15.75

Table 5.4: Active Load Balancer Results

Bar charts are illustrated in Figure 5.2 and 5.3 to further visualize the data center

processing times and overall response time of each algorithm.

26

Round Robin Results

Avr (ms) Min (ms) Max (ms)

Overall Response
time:

55.07 37.44 79.74

Data Center pro-
cessing time

4.08 0.00 22.30

Table 5.5: Round Robin Results

Throlled Results

Avr (ms) Min (ms) Max (ms)

Overall Response
time:

54.90 37.44 75.44

Data Center pro-
cessing time

3.88 0.00 12.98

Table 5.6: Throlled Results

Figure 5.2: Graph illustrating DC Processing time

Figure 5.4 illustrates a graph of VM utilization for each algorithm. In this bar chart

we can visualize the resources utilization by the number of task allocated to a VM. By

analysing the results, we can tell that Bee have balanced the load between the virtual

machines better compared to the competition. Throlled load balancer has allocated a

significant amount of task to one VM but balanced the load to all other VMs. Round

Robin results shows that it allocates tasks to the first VMs it finds, thus resulting to

the first VMs found having more allocated tasks than the VMs found in a later stage

27

Figure 5.3: Overall response times

resulting in an unbalanced system. Active Load balancers’ results illustrates that it

has not performed as well as the other algorithms.

These results gives us knowledge that the prototype algorithm that we have developed

for this dissertation has improved the performance Honey Bee in terms of overall re-

sponse time, data center processing time and has performed significatly better in terms

of balancing the load between VMs.

This chapter have demonstrated the analysis techniques and tools used to generate

data to measure the performance and prove the claim of this research paper. Results

show that the Bee algorithm performed better than the competing state-of-the-industry

algorithms tested in terms of Response times and data center processing times and re-

source utilization. The next chapter will conclude the findings of this research, followed

by future opportunities for further continuing the work conducted.

28

Figure 5.4: Graph illustrating the number of task allocated to a VM for each algo-
rithm. The x-Axis represent virtual machines while the y-Axis represent the number
of allocated task.

29

Chapter 6

Conclusion

This research paper proposed a solution to improve the performance of the Honey

Bee Foraging algorithm used in load balancing by integrating algorithm called Self-

Aggregation to assist Honey Bee perform well in large heterogeneous Cloud computing

environments. The traditional Honey Bee algorithm performed well in diverse envi-

ronments but its performance degraded as the system size increased. The proposed

algorithm includes a Honey bee VM load balancer within the Data Center and a Self-

Aggregation service broker. The Self-Aggregation broker receives the requests from

Userbases and monitors the best reponse times of each data centre, UserBase vs Data

Center proximity and current load of the Data Center to generate allocation decisions

to a data center. Thereafter, the Honey Bee VM load balancer groups VMs according

to their load, wether it is Overloaded(OVM) or Underloaded(UVM) and allocates new

requests to the UVM, while de-allocating tasks from the OVM.

To verify that our hyphothesis is effective, we have integrated these algorithms in Cloud-

Analyst that uses CloudSim as its core simulation engine. This is popular simulator

that is widely used in scientific and industrial research in scheduling and resource allo-

cation. This simulator allows us to configure user and vendor side parameters to mirror

certain scenarios. For the purpose of this experiment, we have chosen to mirror the be-

haviour of social media applications as it provides an un-uniformed and unpredictable

user behaviour.

After running the simulator using the parameters for the social network scenario we

have achieved the following results for Throlled, Active VM, Round Robin and Honey

Bee. The data gathered from the simulation shows that there are no significant im-

provements in results. However, it terms of the data center processing times we can

see that Bee performed slightly better average(ms) response time than the other three

30

algorithms. In addition, it has also shown slight improvements in terms of overall re-

sponse time compared to all the other algorithms. For resource utilization, Honey Bee

have significatly performed better than the competition, balancing the load effectively

across available virtual machines.

Although there are minor improvements found with the performance of the Honey Bee

when compared to the other state-of-the-industry algorithms, it is not significant. How-

ever, this behaviour will be further investigated as part of future work. In addition, a

selection of CloudSim extensions can be experimented with to find a more heteroge-

neous behaviour in the simulation, that may result in a more significant output for our

prototype algorithm. Another limitation faced was that the CloudAnalyst extension of

CloudSim does not contain an interface or an easier way to extend our algorithm further

to distinguish which cloudlets(task) have a higher priority. Again, experimenting with

other extensions of CloudSim may allow us to further characterize Tasks and Resources

to develop a more intelligent Honey Bee that may provide significantly better results.

31

Bibliography

Vesna A Sesum-Cavic and Eva Kuhn. Chapter 8 self-organized load balancing through swarm intel-

ligence. In Nik Bessis and Fatos Xhafa, editors, Next Generation Data Technologies for Collective

Computational Intelligence, volume 352 of Studies in Computational Intelligence, pages 195–224.

Springer Berlin Heidelberg, 2011. ISBN 978-3-642-20343-5. doi: 10.1007/978-3-642-20344-2 8. URL

http://dx.doi.org/10.1007/978-3-642-20344-2_8.

F.S. Abu-Mouti and M.E. El-Hawary. Overview of artificial bee colony (abc) algorithm and its appli-

cations. In Systems Conference (SysCon), 2012 IEEE International, pages 1–6, March 2012. doi:

10.1109/SysCon.2012.6189539.

Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Csar AF De Rose De Rose, and Rajkumar

Buyya. Cloudsim: A toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Softw. Pract. Exper., 41(1):23–50, January 2011.

ISSN 0038-0644. doi: 10.1002/spe.995. URL http://dx.doi.org/10.1002/spe.995.

Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Bruce A. Hendrickson, James D. Teresco, Ja-

mal Faik, Joseph E. Flaherty, and Luis G. Gervasio. New challenges in dynamic load balancing.

Applied Numerical Mathematics, 52(23):133 – 152, 2005. ISSN 0168-9274. doi: http://dx.doi.

org/10.1016/j.apnum.2004.08.028. URL http://www.sciencedirect.com/science/article/pii/

S0168927404001631. {ADAPT} ’03: Conference on Adaptive Methods for Partial Differential Equa-

tions and Large-Scale Computation.

E. di Nitto, D. Dubois, R. Mirandola, F. Saffre, and R. Tateson. Self-aggregation techniques for load

balancing in distributed systems. In Self-Adaptive and Self-Organizing Systems, 2008. SASO ’08.

Second IEEE International Conference on, pages 489–490, Oct 2008. doi: 10.1109/SASO.2008.38.

Elisabetta Di Nitto, D.J. Dubois, and R. Mirandola. Self-aggregation algorithms for autonomic systems.

In Bio-Inspired Models of Network, Information and Computing Systems, 2007. Bionetics 2007. 2nd,

pages 120–128, Dec 2007. doi: 10.1109/BIMNICS.2007.4610096.

S.M. Ghafari, M. Fazeli, A. Patooghy, and L. Rikhtechi. Bee-mmt: A load balancing method for

power consumption management in cloud computing. In Contemporary Computing (IC3), 2013

Sixth International Conference on, pages 76–80, Aug 2013. doi: 10.1109/IC3.2013.6612165.

Abdul Hameed, Alireza Khoshkbarforoushha, Rajiv Ranjan, PremPrakash Jayaraman, Joanna

Kolodziej, Pavan Balaji, Sherali Zeadally, QutaibahMarwan Malluhi, Nikos Tziritas, Abhinav

Vishnu, SameeU. Khan, and Albert Zomaya. A survey and taxonomy on energy efficient resource

allocation techniques for cloud computing systems. Computing, pages 1–24, 2014. ISSN 0010-485X.

doi: 10.1007/s00607-014-0407-8. URL http://dx.doi.org/10.1007/s00607-014-0407-8.

32

http://dx.doi.org/10.1007/978-3-642-20344-2_8
http://dx.doi.org/10.1002/spe.995
http://www.sciencedirect.com/science/article/pii/S0168927404001631
http://www.sciencedirect.com/science/article/pii/S0168927404001631
http://dx.doi.org/10.1007/s00607-014-0407-8

D. Karaboga and B. Basturk. On the performance of artificial bee colony (abc) algorithm. Applied

Soft Computing, 8(1):687 – 697, 2008. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/j.asoc.2007.

05.007. URL http://www.sciencedirect.com/science/article/pii/S1568494607000531.

Dhinesh Babu L.D. and P. Venkata Krishna. Honey bee behavior inspired load balancing of tasks in

cloud computing environments. Applied Soft Computing, 13(5):2292 – 2303, 2013. ISSN 1568-4946.

doi: http://dx.doi.org/10.1016/j.asoc.2013.01.025. URL http://www.sciencedirect.com/science/

article/pii/S1568494613000446.

J. MacQueen. Some methods for classification and analysis of multivariate observations, 1967. URL

http://projecteuclid.org/euclid.bsmsp/1200512992.

M. Randles, D. Lamb, and A. Taleb-Bendiab. Experiments with honeybee foraging inspired load

balancing. In Developments in eSystems Engineering (DESE), 2009 Second International Conference

on, pages 240–247, Dec 2009a. doi: 10.1109/DeSE.2009.19.

M. Randles, E. Odat, D. Lamb, O. Abu-Rahmeh, and A. Taleb-Bendiab. A comparative experiment

in distributed load balancing. In Developments in eSystems Engineering (DESE), 2009 Second

International Conference on, pages 258–265, Dec 2009b. doi: 10.1109/DeSE.2009.20.

M. Randles, D. Lamb, and A. Taleb-Bendiab. A comparative study into distributed load balancing

algorithms for cloud computing. In Advanced Information Networking and Applications Workshops

(WAINA), 2010 IEEE 24th International Conference on, pages 551–556, April 2010. doi: 10.1109/

WAINA.2010.85.

Fabrice Saffre, Richard Tateson, José Halloy, Mark Shackleton, and Jean Louis Deneubourg. Aggre-

gation dynamics in overlay networks and their implications for self-organized distributed applica-

tions. Comput. J., 52(4):397–412, July 2009. ISSN 0010-4620. doi: 10.1093/comjnl/bxn017. URL

http://dx.doi.org/10.1093/comjnl/bxn017.

Y. Sahu, R.K. Pateriya, and R.K. Gupta. Cloud server optimization with load balancing and green

computing techniques using dynamic compare and balance algorithm. In Computational Intelligence

and Communication Networks (CICN), 2013 5th International Conference on, pages 527–531, Sept

2013. doi: 10.1109/CICN.2013.114.

V. Sesum-Cavic and E. Kuhn. Comparing configurable parameters of swarm intelligence algorithms for

dynamic load balancing. In Self-Adaptive and Self-Organizing Systems Workshop (SASOW), 2010

Fourth IEEE International Conference on, pages 42–49, Sept 2010. doi: 10.1109/SASOW.2010.12.

G. Soni and M. Kalra. A novel approach for load balancing in cloud data center. In Advance Computing

Conference (IACC), 2014 IEEE International, pages 807–812, Feb 2014. doi: 10.1109/IAdCC.2014.

6779427.

H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity task scheduling

for heterogeneous computing. Parallel and Distributed Systems, IEEE Transactions on, 13(3):260–

274, Mar 2002. ISSN 1045-9219. doi: 10.1109/71.993206.

GiorgioLuigi Valentini, Walter Lassonde, SameeUllah Khan, Nasro Min-Allah, SajjadA. Madani, Juan

Li, Limin Zhang, Lizhe Wang, Nasir Ghani, Joanna Kolodziej, Hongxiang Li, AlbertY. Zomaya,

Cheng-Zhong Xu, Pavan Balaji, Abhinav Vishnu, Fredric Pinel, JohnatanE. Pecero, Dzmitry Kli-

azovich, and Pascal Bouvry. An overview of energy efficiency techniques in cluster computing sys-

tems. Cluster Computing, 16(1):3–15, 2013. ISSN 1386-7857. doi: 10.1007/s10586-011-0171-x. URL

http://dx.doi.org/10.1007/s10586-011-0171-x.

33

http://www.sciencedirect.com/science/article/pii/S1568494607000531
http://www.sciencedirect.com/science/article/pii/S1568494613000446
http://www.sciencedirect.com/science/article/pii/S1568494613000446
http://projecteuclid.org/euclid.bsmsp/1200512992
http://dx.doi.org/10.1093/comjnl/bxn017
http://dx.doi.org/10.1007/s10586-011-0171-x

Mihaela-Andreea Vasile, Florin Pop, Radu-Ioan Tutueanu, Valentin Cristea, and Joanna Koodziej.

Resource-aware hybrid scheduling algorithm in heterogeneous distributed computing. Future Gen-

eration Computer Systems, (0):–, 2014. ISSN 0167-739X. doi: http://dx.doi.org/10.1016/j.future.

2014.11.019. URL http://www.sciencedirect.com/science/article/pii/S0167739X14002532.

B. Wickremasinghe, R.N. Calheiros, and R. Buyya. Cloudanalyst: A cloudsim-based visual modeller

for analysing cloud computing environments and applications. In Advanced Information Networking

and Applications (AINA), 2010 24th IEEE International Conference on, pages 446–452, April 2010.

doi: 10.1109/AINA.2010.32.

Jing Yao and He Ju-Hou. Load balancing strategy of cloud computing based on artificial bee algorithm.

In Computing Technology and Information Management (ICCM), 2012 8th International Conference

on, volume 1, pages 185–189, April 2012.

34

http://www.sciencedirect.com/science/article/pii/S0167739X14002532

	Abstract
	Acknowledgements
	Introduction
	Contribution

	Background
	Load Balancing
	Honey Bee Foraging Behaviour algorithm
	Self-Aggregation

	Design
	CloudSim: Simulation Framework
	Design Challenges
	Self-aggregation
	Honey Bee
	Load balancing

	Implementation
	CloudSim components and extension
	Self-Aggregation
	Honey Bee
	VM Grouping
	Task transfer

	Evaluation
	Setup and analysis
	Results

	Conclusion

