
Cloud Forensic Framework For IaaS
With Support for Volatile Memory

Matúš Baňas

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2015

Supervisor Dr. Horacio González-Vélez

Abstract

Cloud computing is attracting large base of users and organisations. However, lack of

trust in public cloud providers, especially their legal responsibility towards the legis-

lation in the countries of their origin sometimes complicates the move to the public

cloud. Organisations, and communities such as research, education, government, and

healthcare incline towards private or community cloud solutions. In those cases organ-

isation, or the members of the community take role of the cloud provider. Similarly

to the traditional IT infrastructure, cloud platforms also suffer from potential security

related incidents. Regardless of the incident being internal, external, malicious, or ac-

cidental, it should be investigated, understood, and prevented from happening again

in the future. However, underlying architecture of cloud introduced new challenges in

digital forensics and made majority of the traditional forensic tools, and techniques

irrelevant. Providers of private and community clouds are often kept in dark, with very

limited ability to collect relevant evidence from their platforms. Cloud users on the

other hand rely fully on the cooperation of the provider to provide the relevant data.

This led to substantial research in the area of cloud forensics over last few years, trying

to identify the efficient ways to successfully perform cloud forensics either as a end user,

or a provider.

Focus of this thesis is to provide Self-service Forensic Framework for IaaS platforms,

and determine the importance of volatile memory forensics in Cloud environment. Our

framework allows cloud users, and cloud providers to extract disk, and memory images

for forensic investigation in efficient, effective, and secure way.

ii

Dedication

Krist́ınke

iii

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Horacio González-

Vélez for his support, and guidance in writing this thesis.

I would like to thank my friend Alex for pointing me in the right direction, and his

feedback.

The biggest “thank you” to my wife Krist́ınka for her patience, and all her moral

support.

... and thanks to everyone whom I have forgotten.

iv

Contents

Abstract ii

Dedication iii

Acknowledgements iv

1 Introduction 1

2 Background 3

2.1 Digital Forensics . 3

2.1.1 Forensic Investigation Process . 3

2.1.2 Data Sources . 4

2.1.3 Memory Forensics . 5

2.2 Cloud Forensics . 6

2.2.1 Cloud Computing . 6

2.2.2 Private and Community Clouds 8

2.2.3 Challenges of Cloud Forensics . 8

2.3 Research Question . 11

3 Design 13

3.1 Proposed Design . 13

3.1.1 Self Service . 14

3.1.2 Memory Extraction . 14

3.1.3 Storage Types . 14

3.1.4 Image Extraction . 15

3.1.5 Validation . 15

3.2 Analysis Methods . 16

4 Implementation 17

4.1 OpenStack Overview . 17

4.2 Forensic Framework Details . 19

v

4.2.1 Memory Extraction Process . 21

4.2.2 Disk Extraction Process . 23

4.2.3 Integrity, Validity, and Encryption 23

4.2.4 API Server Details . 24

4.2.5 API Server Installation and Startup 25

4.2.6 API Server Usage . 25

4.2.7 API Client Usage . 26

5 Evaluation 28

5.1 Test Environment Details . 28

5.1.1 Tools Used . 28

5.2 Efficiency of the Media Collection . 29

5.2.1 Scenario 1: Collection of the Media 29

5.3 Effectiveness of the Data Examination 31

5.3.1 Scenario 2: Stolen Credit Cards 32

5.3.2 Scenario 3: Hidden Service . 36

6 Conclusions 39

6.1 Future work . 40

Bibliography 41

A Appendix 45

A.0.1 User Manual . 45

A.1 Source code . 51

A.1.1 api server.py . 51

A.1.2 extract.sh . 54

A.1.3 api client.py . 58

vi

List of Figures

2.1 Forensic Process . 4

3.1 Forensic Framework Design . 15

3.2 Forensic Process . 16

4.1 Core components of OpenStack . 18

4.2 OpenStack diagram . 19

4.3 Forensic Framework implementation . 20

4.4 Swift Container containing output files 21

4.5 Forensic Framework Extraction Process 22

4.6 Metadata Example . 23

4.7 Usage info displayed by API call . 25

4.8 Cloud Provider’s public GPG key displayed by API call 26

4.9 API Client Example1: No parameters specified 26

5.1 Time to extract the memory/disk image (in minutes) 32

5.2 Total time of extracting, hashing, encrypting, and signing the image (in

minutes) . 33

5.3 Output of the Volatility plug-in linux netstat, TFTP 34

5.4 Output of the Volatility plug-in linux psaux 34

5.5 Output of the Volatility plug-in linux mount: identifying the Ramdisk . 35

5.6 Output of the Volatility plug-in linux mount: identifying the network

storage . 35

5.7 Output of the Volatility plug-in linux arp 36

5.8 Output of the Volatility plug-in linux netstat, Hidden Service 37

5.9 JPEG signature and content of the file found in the memory image . . . 38

vii

Chapter 1

Introduction

Volatile memory plays crucial role in digital forensics, and it can often lead to uncover-

ing evidence hidden by anti-forensic techniques. Sophisticated attackers, or malicious

applications can hide completely in the memory. Live OS environments often run en-

tirely in memory, without touching the disk. In that case the only potential evidence

could be collected from network, or firewall logs, and the volatile memory of that par-

ticular Virtual Machine instance (VM).

Crime happens every day, and while cloud computing offers numerous benefits, it still

is just another platform that can be exploited by malicious users, or a cyber-criminals.

In the recent years cloud computing attracted large base of users. Mainly for the conve-

nience of outsourcing maintenance overhead to the public cloud provider, and the pay-

as-you-go model, which also enables them to convert their capital expenses CAPEX

to operating expenses OPEX(Armbrust, Fox, Griffith, Joseph, Katz, Konwinski, Lee,

Patterson, Rabkin, Stoica et al., 2010). On the contrary, many organisations who

are not willing to give their data to the third-party providers, build their own private

or community clouds. This way they can gain greater control over underlying hard-

ware, software, and security procedures (Subramanian, 2011). Apart from technical

challenges, security is still major concern associated with providing such infrastruc-

ture. Malicious software, malicious users, compromised accounts, accidental damage

are only the tip of the iceberg, as even the most secure systems can be abused by the

insiders who misuse their privileges (Denning, 1987).

Due to decentralised, distributed, and multi-tenant nature of the cloud traditional dig-

ital forensics procedures often cannot be applied (Birk and Wegener, 2011). Unknown

location of the data, and shared resources between multiple clients also often complicate

successful investigation. Many traditional techniques are becoming irrelevant, as the

data is often spread across vast number of servers often located in multiple datacentres

1

across different countries around the world (Zawoad and Hasan, 2013). Regardless of

the particular deployment model used, inability to perform successful digital forensic

investigation often leaves cloud users in the dark, relying on the cloud provider to

present relevant evidence. While in case of private, and community cloud, providers

often lack appropriate tools, and features to perform adequate investigation (Dykstra

and Sherman, 2012).

While cloud forensics is becoming a field of digital forensics, it still presents numerous

challenges. Although many authors offered solutions for enhancing cloud forensics in

their research, there is still a lack of implementation in cloud products.

This thesis aims to expand current solutions and provide efficient, and effective cloud

forensic framework with the support for volatile memory forensics.

2

Chapter 2

Background

2.1 Digital Forensics

Definition of digital forensics vary from author to author. Vacca describes it as a prin-

ciple of reconstructing activities, that identify ‘what was done?’ and ‘how was it done?’

(Vacca, 2002). Zargari and Benford refer to it as a process of analysing digital data,

while preserving its integrity and validity, by gathering, preservation, validation, anal-

ysis, interpretation and documentation of the digital evidence. Authors refer to the

digital evidence as any information transmitted or stored digitally, and this informa-

tion holds probative value (Zargari and Benford, 2012). However, all the definitions

generally conclude digital forensics as a science of recovering and investigating digital

evidence. Increasing number of criminal activities involving computers over last decade

is the main driver for forensic investigations (Fei, 2007). Investigation is typically per-

formed either on digital resource such as computer, or server that was used to commit

the crime, or was a target of crime (Prosise, Mandia and Pepe, 2003). Neverthe-

less, digital forensic is also used to investigate internal organisational policy violations,

troubleshooting various operational issues, recovering from accidental system damage,

reconstructing security and technical incidents, or for verifying regulatory compliance

of the organisation. Therefore, every organisation needs to have capabilities to perform

some sort of digital forensics (Kent, Chevalier, Grance and Dang, 2006).

2.1.1 Forensic Investigation Process

The National Institute of Standards and Technology (NIST) special publication 800-

86, identifies four phases of forensic investigation process as collection, examination,

3

Collection Examination Analysis Reporting

Media Data Information Evidence

Figure 2.1: Forensic Process

analysis and reporting (Kent et al., 2006). Figure 2.1 shows the flow of the process and

the objects associated with each phase. Integrity of the evidence must be preserved

during the entire process of investigation. Purpose of the Collection phase is to identify

the relevant data sources, secure the media, and record data for examination. During

Examination phase relevant information is extracted from collected media, while pre-

serving its integrity. Digital evidence can be very fragile and volatile, therefore it needs

to be handled with care. This is usually done by creating bitwise copy of the original

source or a media (Birk and Wegener, 2011). Examination is typically never performed

on the original media to avoid potential damage during the process. Analysis of the

examination results is done using legally justifiable techniques of extracting relevant

information or the evidence. Purpose of the Reporting phase is to produce a report

containing documentation of evidence and the results of the analysis. This report may

also contain the detailed description of the tools and procedures used for extracting

those results. If the evidence is not sufficient, or gaps in the report are identified, or it

is recommended by the report then the forensic investigation process starts again from

the collection, as shown in figure 2.1 (Kent et al., 2006)

2.1.2 Data Sources

From the technical point of view data can exist in three states: at rest; in motion; and in

execution. Data at rest has allocated space on the storage media, whether as a file in a

specific format, or as a data in the database. If the data is transferred over the network

from one device to other, then it is referred to as a data in motion. Data in execution

is loaded into volatile memory and executed as a process (Birk and Wegener, 2011).

Before the data is collected, the sources of data must be identified. There are many

potential sources that can provide valuable information during forensic investigation.

Current wider use of digital technology for personal and professional purposes have

expanded the number of data sources. Desktop and laptop computers, servers, and

4

network storage as a traditional data source, are now accompanied by other ‘smart’

devices capable of storing and exchanging data. Smartphones, tablets, digital media

players, digital audio and video recorders are only some of them. All of these systems

typically contain some sort of internal storage and support external storage media such

as different types of memory cards, CD/DVD media, or USB thumb drives. Some

also contain volatile memory where data is stored temporarily, and typically lost when

system is rebooted. Therefore, it could be only extracted while system is running.

System and application logs from the systems, but also from various network devices

and monitoring systems are also valuable source of information (Kent et al., 2006).

In 2007, Fei referred to two types of data that can reside on the digital media as the

active data and the residual data. The Active Data that is available and visible to the

operating system and to its users. This includes any documents that users have saved,

application data, operating system files, temporary files, cache files of web browser,

and any other files ready to be accessed. The Residual Data typically exist on the

media after the files were deleted. Deletion process typically removes only information

that points to the data on the physical media, but the data still exist until they are

overwritten. Operating system, applications, or users, are not able to access this data

directly. However, tools and techniques to recover residual data exist and are often

used in forensic investigation (Fei, 2007). Cloud computing complicates the matter of

identifying the media where the data is located, and in many cases obtaining the data

or recovering residual data is almost impossible as the data is by design distributed

randomly across multiple nodes (Birk and Wegener, 2011).

2.1.3 Memory Forensics

Memory became popular data source for forensic investigation. In 2009 Halderman et.

al. published their research, covering their discovery that computer memory holds the

information for couple of minutes after the computer is shut down, before it began to de-

grade. It enabled researchers to obtain the memory image by rebooting running target

machine, and booting their custom software from either USB device, or from network

using PXE boot. They were able to gain access to the encrypted disk drives by extract-

ing the encryption keys from memory images (Halderman, Schoen, Heninger, Clarkson,

Paul, Calandrino, Feldman, Appelbaum and Felten, 2009). Memory holds other valu-

able forensics data that can be extracted by variety of available tools. While memory

structure varies between OS versions, or even kernel versions, it will still contain simi-

lar sources of information. Typically, memory contains list of running processes, open

network connections, arp table containing list of cached IP addresses and associated

MAC addresses of recently connected devices, history of the executed commands, the

5

content of files that was recently loaded by the OS, fragments of recently deleted files,

and much more (The Volatility Foundation, n.d.). Malicious users often deploy various

anti-forensic tools, and techniques in order to hide their activities. Modern malware,

viruses, and rootkits are often hidden in memory without writing anything to the disk.

Jahankhani et. al. covered different anti-forensic tools and techniques such as use of

live CD/DVD environments, or use of a Ramdisk. The whole Live OS resides in the

volatile memory, and the ramdisk is a file system fully located in volatile memory. Both

techniques make disk forensics irrelevant, as no data is written into physical disks, and

will disappear when computer is shut down or restarted (Jahankhani and Beqiri, 2010).

2.2 Cloud Forensics

Cloud computing introduced new challenges in digital investigation. In 2010 Garfinkel

called the years from 1999 to 2007 the “Golden Age” for the digital forensics. During

those years platforms were mostly uniformed and examinations were done on single

devices. Forensic examinations were focusing on a small number file formats such as

Microsoft Office documents, JPEG graphics and AVI video formats. Storage devices

were relatively small size and typically of a standard interface type (IDE/ATA), that

enabled fast bitewise cloning for examination. Nowadays, technology expanded into

scales that complicates the process of forensic investigation (Garfinkel, 2010). Many

authors agree that cloud environment contributed to the complexity of the digital foren-

sic investigation by the distributed nature of the underlying technology, and sharing

resources between multiple users and organisations (Birk and Wegener, 2011)(Zargari

and Benford, 2012)(Ruan, Carthy, Kechadi and Crosbie, 2011)(Dykstra and Sherman,

2012)(Biggs and Vidalis, 2009)(Chen, 2014)(Thethi and Keane, 2014)(Patrascu and

Patriciu, 2013)(Guo, Jin and Shang, 2012). Cloud forensics is forming as a science

field, and while it is still at its early stage, it is increasingly gaining relevancy and

attracting more research (Thorpe, Grandison and Ray, 2012).

2.2.1 Cloud Computing

Numerous different definitions of cloud computing were created over the years (Geelan,

2009). The wider technical community have accepted definition provided by NIST

Special Publication 800-145. According to NIST, cloud computing is a model for

enabling convenient, ubiquitous, on-demand network access to a shared pool of

configurable resources (such as applications, servers, storage, networks, and other

services), that can be rapidly provisioned and used with minimal management effort

6

or service provider interaction. Authors refer to four deployment models as private

cloud, public cloud, hybrid cloud, and community cloud. Each model may have same

characteristics and offer same services, but the organisational ownership is different.

Public cloud is deployed for use by general public, and available to anyone who is

willing to pay for it. It is owned by cloud provider and typically exists on the premises

of the provider. Private cloud is provisioned for exclusive use by single institution

and can be either owned and operated by the organisation, or the cloud provider.

Community cloud is similar to private cloud, but is provisioned for exclusive use of

community with shared interests such as mission, or security concerns. It can be

owned and operated by its member organisations, or a third party, and it can exist

on or off the premise of the provider. Where the Hybrid cloud is a combination of at

least two distinct clouds that are interconnected and synchronised, but remain unique

entities (Mell and Grance, 2009).

Traditionally cloud computing is delivered in three service models, Software as a Service

(Saas), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). Although,

some providers choose to expose their services through more than one model. Each

service model offers different levels of control to the users and to the cloud provider.

IaaS model exposes interface for provisioning virtual servers, networks, storage and

other equipment. Users need to build their infrastructure before they can deploy their

applications. This model offers great control and dynamic on-demand scalability of

deployed infrastructure. However, users also inherit large maintenance overhead, as

the servers need to be patched, configured, monitored and secured. Those mainte-

nance tasks are gradually shifted to the cloud provider in the other two models. PaaS

model exposes high-level environment for building, testing and deploying custom ap-

plications. Generally there are restrictions on what type of software can be deployed

and how the application is written in order to support application scalability. Some of

the operational overhead such as maintenance, management and patching of the oper-

ating system and the middleware is now shifted to the cloud provider. PaaS users can

focus on development and maintenance of the applications. SaaS model removes the

maintenance overhead completely as it delivers special-purpose applications owned and

managed by the provider. This applications are accessed directly through the Internet

and SaaS users have no control over the application itself (Foster, Zhao, Raicu and Lu,

2008).

7

2.2.2 Private and Community Clouds

For the scope of this research we are focusing on IaaS in private and community cloud

scenarios. While challenges of public IaaS deployments would be very similar, there

is very little information about internal practices and implementations of public cloud

providers, mostly guarded by non-disclosure agreements. Many institutions, especially

related to research and education, are choosing open source cloud platforms such as

OpenStack, Eucalyptus, or CloudStack (The OpenStack Foundation, n.d.)(Eucalyptus

Systems, Inc., n.d.)(The Apache Software Foundation, n.d.a). Transparency and abil-

ity to customise the system based on their needs is the main driving factor (Nurmi,

Wolski, Grzegorczyk, Obertelli, Soman, Youseff and Zagorodnov, 2009). Regardless of

the benefits of open source solutions, there are many gaps in those products that re-

quire technical knowledge to overcome. Apart from the technical challenges of building

and managing private or community cloud infrastructure, providers are facing various

security issues. Even they suffer from security threats and attacks such as Denial of

Service (DoS), Distributed Denial of Service (DDoS), IP spoofing, Man in the middle

(MITM), DNS spoofing and other threats. Nicanfar et. al., Rosche et. al., Lo et.

al. are offering solutions to mitigate those threats by implementing intrusion detec-

tion (IDS), and intrusion prevention (IPS) systems (Nicanfar, Liu, Talebifard, Cai and

Leung, 2013)(Roschke, Cheng and Meinel, 2009)(Lo, Huang and Ku, 2010). While,

IDS and IPS may improve the overall security of the infrastructure, we should not fall

under impression that they will solve all our problems. Incidents will happen if hu-

man factor is involved. New attack patterns are invented, and security holes detected

daily. While researchers are trying to solve the issues of forensic investigations in cloud

environments, they are often focusing on the aspect of forensic investigation from the

view of organisations as a cloud users (Dykstra and Sherman, 2012)(Biggs and Vidalis,

2009)(Zargari and Benford, 2012)(Ruan et al., 2011)(Chen, 2014). On the contrary,

cloud providers have better visibility of the underlying infrastructure and access to the

greater areas of the platform. Some challenges discussed by the authors apply also to

the cloud providers, but in many cases they are easier to solve. However, tools and

frameworks are often unavailable (Saibharath and Geethakumari, 2014).

2.2.3 Challenges of Cloud Forensics

Recent research of many authors suggests that main challenge of forensic investiga-

tion in cloud is the process of obtaining data, and preserving the evidence (Chen,

2014)(Saibharath and Geethakumari, 2014)(Shaw, Bordbar, Saxon, Harrison and

Dalton, 2014)(Thethi and Keane, 2014)(Guo et al., 2012)(Dykstra and Sherman,

8

2012)(Zargari and Benford, 2012)(Birk and Wegener, 2011)(Delport, Köhn and

Olivier, 2011)(Ruan et al., 2011)(Biggs and Vidalis, 2009). Investigation in cloud

is particularly difficult. Logs and data of multiple users and organisations may be

co-located on same storage devices, and are spread across multiple hosts and locations

that are constantly changing. While cloud provider has access to most components

of the platform, and can possibly gather more forensic data, it is still complex and

challenging task (Guo et al., 2012).

This thesis focuses on IaaS model, as there are different forensic challenges in PaaS,

and SaaS models. IaaS contains many sources of valuable forensic data. This data

can be captured at any of its three states, such as at rest, in motion, and in execution.

However, due to the virtualisation technology used in IaaS this data is located in

various layers of the platform. Data resides on virtual machines (VMs), virtual

networks, and virtual storage devices owned and controlled by the cloud user, or

physical devices owned, and controlled by cloud provider. In most cases VMs are

sources of the incidents, and therefore often the main source of evidence. VMs contain

stored data, running processes, system and application logs, and much more. Cloud

provider typically have no access to the VM. There is a potential to gain access to the

runtime state of the VM via the hypervisor, and snapshot technology, that enables

freezing the VM in specific state (Birk and Wegener, 2011). Delport, Oliver, and Köhn

discuss the need to isolate a crime scene in a cloud, rather than isolating single VM.

Authors also proposed preservation of confidentiality, integrity, and availability (CIA)

of other VMs, by relocating and isolating the suspicious VM to different hardware

node.(Delport et al., 2011). Snapshot technology is also useful to prevent loss of

evidence, when VM is deleted. On-demand feature of IaaS allows users to create virtual

infrastructure, but also delete them without a trace. Via application programming

interface (API) of most IaaS platforms this process can be easily automated to destroy

the evidence after the malicious activity was completed. In convergence with Intrusion

Detection Systems, snapshots can be created automatically when suspicious activity is

detected (Grobauer and Schreck, 2010). Although, snapshot technology is available in

many hypervisors, it is not available in most of the cloud platforms. Recent research

has been conducted in this area, that mainly suggests development of the tools and

frameworks for particular cloud products (Saibharath and Geethakumari, 2014)(Poisel,

Malzer and Tjoa, 2013)(Delport et al., 2011).

Snapshot technology is not limited only to the VMs and hypervisors. Different

filesystems have this capability built-in for many years. Birk and Wegener suggested

9

use of snapshots to solve the issue of unknown physical location of the data in the

cloud (Birk and Wegener, 2011). Creating regular snapshots would enable forensic

investigators to inspect the snapshot of the filesystem from particular time, without

the need to recover the deleted data from the physical hardware.

In 2012 Dykstra and Sherman analysed the options of acquiring digital evidence from

IaaS using popular forensic tools. Authors have concluded that while the tested tools

were technically capable of the acquisition of the data, it was insufficient to produce

trustworthy evidence. Their research led to the recommendation of implementing

forensic framework into cloud management plane of cloud platform to produce fast

and trustworthy evidence (Dykstra and Sherman, 2012).

Log files are often great source of information for such cases of forensic analysis.

However, analysing logs of cloud platform proves to be a complex task. Logging

is implemented on different layers of the platform and produced on various sources

(physical nodes, network devices, storage nodes and devices, VMs, applications, etc.).

Despite the relevance of log files for technical troubleshooting and monitoring of the

platform and its components, filtering relevant information to a single user or institu-

tion is challenging. Some authors are proposing to simplify the forensic investigation

in the cloud by creating logging framework designed for this purpose (Patrascu and

Patriciu, 2014)(Thorpe, Grandison and Blake, 2014)(Sang, 2013). In 2013 Dykstra and

Sherman continued their prior work, and designed forensic framework on OpenStack

called FROST. This framework was a first attempt to integrate forensics into a cloud

platform, by introducing additional logging facilities of the activities within OpenStack

compute nodes. It enables the user to access the logs of their own cloud environment

via OpenStack dashboard. FROST stores hashed logs in tree structure, enabling user

to access OpenStack’s firewall logs for only this particular user’s infrastructure. In

addition this framework enables user to export and download VM disk images for

forensic investigation. Images are encrypted and signed by cloud providers and users

public keys, so the consistency and validity of the disk image can be verified (Dykstra

and Sherman, 2013). Year later Saibharath and Geethakumari designed their own

forensic framework for OpenStack, while claiming that FROST would not give the

whole picture of cloud activities as it resides on compute nodes OpenStack. Saibharath

and Geethakumari proposed to use controller nodes instead to provide more accurate

data (Saibharath and Geethakumari, 2014). While both frameworks focus on logging

capabilities, and the disk image investigation, they are not taking volatile memory

forensics into count.

10

Virtualization as a core component of cloud computing makes extracting memory from

virtual machines easier comparing to the physical hosts, especially in IaaS. No special

hardware, or software is required, except for appropriate permissions to the hypervisor.

Most of the modern hypervisors such as KVM, VMWare, XEN, and Hyper-V support

memory, and disk extraction. However, currently in IaaS those tools are not available

to the cloud users. What make it impossible to obtain the disk and memory images

without cloud provider’s interaction.

2.3 Research Question

“Is Forensics of Volatile Memory Relevant in Cloud Forensics?”

This thesis will attempt to provide effective, efficient, and secure self serviced forensic

framework, enabling cloud consumers to perform forensic investigation on the compo-

nents of their own cloud infrastructure. As self-service being one of the characteristic

of cloud computing, we believe that cloud users should be able to obtain disk, and

memory images from their own infrastructure without cloud provider interaction.

For the scope of this thesis we focus on Infrastructure as a Service (IaaS) using

OpenStack. We will attempt to extract digital evidence from various components

of our cloud, and analyse importance of memory forensics in obtaining evidence in

different real world scenarios. Main goal of our framework is providing access to the

memory, and the disk images for forensic purposes, while protecting integrity, validity,

and trustworthiness of the obtained evidence. Outcome of our research will provide

self-service cloud forensics framework, that can be potentially extended to platforms

other than OpenStack. Meanwhile, we will highlight the importance, and the value of

the memory investigation in cloud forensics.

In this thesis, we evaluate the efficiency of our framework, and effectiveness of

identifying, and recovering digital evidence of real-world scenarios, from the memory,

and the disk images extracted by our framework.

The major IaaS providers refer to the Virtual Machines as instances, and we will refer

to them as such throughout this thesis. Memory often holds the keys, and passwords

to the encrypted disks, or recently decrypted files, list of open network connections,

list of processes, fragments of open files, and other valuable data. Storing files on the

11

local disk can be avoided even with the use of the ramdisk, or the network storage.

Some Linux distributions deploy ramdisk by default for storing temporary files. Files

and applications stored in ramdisk will not be uncovered by off-line investigation of

local disk images. Uncovering attached network storage in the cloud is also more

difficult than in traditional network, where investigators would be aware of the storage

device or a server. In the cloud, the storage may be located anywhere, even in cloud

infrastructure offered by a different provider. Memory forensics can uncover the IP

addresses of the storage devices, and lead to the further investigation of that network

device.

Storage requirements are constantly growing, and the size or the volatile memory is

typically much smaller than the disk. Investigation on few gigabytes of memory will

take substantially less time than investigation of hundreds, or thousands of gigabytes

of disk space. Meanwhile, detecting mounted network storage, uncovering active net-

work connections is also faster, and easier by the memory forensics than searching

through network logs, or capturing and analysing network packets. One of the issues

our framework is addressing is ability of the user to obtain disk, and memory image of

the instance without cloud providers interaction. We are also simplifying the task for

cloud provider who needs to investigate instances of their customers.

12

Chapter 3

Design

Our design was inspired by work of Dykstra et. al. (Dykstra and Sherman, 2013),

and Saibharath et. al. (Saibharath and Geethakumari, 2014). Both authors have

created forensic frameworks, allowing users to obtain the firewall logs of their virtual

infrastructures, and ability to extract instance disk images for forensic investigation.

Our framework is expanding the functionality by adding memory extraction abilities,

and proposing different approach of verifying integrity, and validity of obtained images.

Similarly to the disk images, extracted memory must be securely delivered to the user,

with the ability to verify the integrity of the file to prevent tempering with the evidence.

Authors are proposing the use of hash values of the extracted images to validate that

the image has not been tampered with. These values are then stored in the database

of Cloud provider. User, and relevant authorities can then validate the hash of the

image against the database. Meanwhile, both frameworks are encrypting and signing

the extracted image, to ensure security of the content.

3.1 Proposed Design

Our approach of validation of the images eliminates the need for storing hash values

of the images by Cloud Provider. We are creating two additional files, metadata file,

and cloud providers signature. Metadata file will contain the hash value, and other

information about the image, such as date, and time of extraction, user name, type of

the image, instance name. Other information can be added in the future, which are out

of scope of this thesis. Instead of encrypting and signing the images, we only encrypt

the image, and sign the metadata file by Cloud Provider’s GPG key. This approach will

ensure that extracted image can be verified any time, and does not rely on availability

13

of the database used in previous approaches. We will also eliminate the need for signing

the image files, which will take substantially longer than signing a simple text files.

3.1.1 Self Service

We believe that user should own their Cloud infrastructure. Therefore, they should

also be able to extract their own disk, and memory images. Regardless, if it is forensic

investigation, or any other reasons, such as backup, migration to their own virtual-

ization platform, or migration to different Cloud Service. Our self-service framework

enables the user to do that.

3.1.2 Memory Extraction

In comparison to the traditional digital forensics of physical machines, hypervisor as

one of the core components of IaaS provides easier way to extract memory of instance

without the need for specialised hardware, or an access to the running OS. We are

proposing adding the ability to extract memory images of the instances. Our framework

will execute memory extraction directly from the hypervisor by executing its native

functions.

3.1.3 Storage Types

Technique of extracting the disk images differs between the types of the storage used.

Different Cloud platforms support different hypervisors, and storage types. Open-

Stack’s default hypervisor is KVM, and its native disk image format is QCOW2. How-

ever, it also supports Hyper-V, XEN, and VMWare hypervisors and their native image

types, such as raw images, VMDK, VDH. In the meantime, instance disk can be theo-

retically provided by any storage system, such as LVM volumes, different SAN targets,

or native block storage. Each storage type has its benefits and flaws. For example

raw image offers slightly better performance, but does not support features such as

snapshots. When designing forensic framework, we need to make sure to be able to

extract each type of the image supported by our cloud platform.

While for extracting images from block storage devices, we rely on bite-wise copy of

the original media, in case of native images such as QCOW2, VMDK, and VDH , we

can improve extraction time by using the native tools provided for those images. Our

framework will detect the image type and use relevant tools for extraction.

14

Figure 3.1: Forensic Framework Design

3.1.4 Image Extraction

The high level design in figure 3.1 shows the user interaction with our framework.

First, the user requests extraction via web dashboard, or API call. The request is then

authenticated against the identity service. If access is granted, the API server will

execute memory, or disk image extraction from the hypervisor. Finally, the output

files are made available to the user on the network storage.

3.1.5 Validation

After the image is extracted, the hash value of the image is written into metadata file.

Our framework signs the metadata file with the Cloud Providers private GPG key.

Validation of the image is done by comparing the hash value from the metadata file

against the calculated hash value of the decrypted image. In order to ensure the validity

of the metadata file, simple gpg signature verification can be done against the cloud

provider’s public GPG key, which can be accessed via API of our forensic framework.

15

Collection Examination Analysis Reporting

Media Data Information Evidence

Figure 3.2: Forensic Process

3.2 Analysis Methods

Although, our framework operates in the collection phase of the forensic process, our

evaluation will target both collection phase, and examination phase, as shown in figure

3.2. Successful collection of the media, in our case disk, and memory images, is crucial

to the whole forensic process. Without the collection, remaining phases would not be

possible.

Analysis of our solution is based on two part evaluation. In the first part of the

evaluation we will compare extraction times of memory, and disk images of different

instance sizes. Our evaluation should highlight efficiency of collection of the memory

images, in comparison to the disk images in Cloud environment. Second part of the

evaluation focuses on effectiveness of the examination of the memory images, in contrast

to the disk images in different real world scenarios. We will attempt to recover evidence

from different types of instances, while data will be located on local disk, network

storage, and ramdisk. Details of each test and tools used are described in the evaluation

chapter.

16

Chapter 4

Implementation

For implementation of our forensic framework, we have chosen OpenStack cloud plat-

form (The OpenStack Foundation, n.d.) for its open source nature, large community

of developers, active development, and constantly growing user base.

OpenStack has a pluggable architecture, and can be build with a combination of

different components, that are providing additional features. Three core components

shown in figure 4.1, are required to provide the core IaaS functionality. Users

interact with OpenStack either using a dashboard called Horizon, or via application

programmable interface (API). While dashboard presents convenient access via web

interface, API offers more flexibility, and allows easier integration with external

applications. Therefore, our main focus will be in delivering our framework via API,

and potentially expanding it into dashboard. The main components of the OpenStack

in production deployment are the compute engine Nova, the block storage Cinder, the

object storage Swift, the network engine Neutron, and authentication engine Keystone.

4.1 OpenStack Overview

Nova is mainly responsible for running and managing instances, but it can also offer

basic networking functionality if no other network engine is used. It supports various

hypervisors such as Kernel-based Virtual Machine (KVM), XEN, VMWare, Hyper-V,

and Linux Containers (LXC). We have chosen KVM, as it is OpenStack’s default

hypervisor.

17

Figure 4.1: Core components of OpenStack

Cinder, and Swift are two storage engines, each responsible for storing different types

of data. Cinder is a block storage, that provides raw disk storage, typically for storing

the disk images of the instances. It uses iSCSI, Fibre Channel, NFS and other protocols

for connection to back-end storage systems. On the contrary Swift is an object storage

that stores data in a form of objects. In OpenStack it is mainly used for storing an

instance deployment images (instance templates). Additionally, Swift provides storage

service similar to Amazon S3 (Amazon S3, n.d.), where users store data as objects via

HTTP protocol using PUT and GET commands. From the forensic perspective each

of the storage systems can store potential forensic data. Swift and Cinder can also be

used by malicious users to store the data, which can be classified as evidence during

the forensic investigation. Without the memory forensics it may be difficult to identify

data stored by instance in Swift object storage instead of local disk image.

Neutron provides network connectivity between virtual and physical interface devices

that are managed by other OpenStack services, especially by Nova compute engine. It

provides scalable, on-demand network abstraction. It supports plugins such as quality

of service (QoS), Layer-2 in Layer-3 tunnelling, VPN as a service, Firewall as a service,

IDS as a service, and many more. Neutron can also be a valuable source of forensic

data. However, analysis of its logs can be complex task, and the events relevant to the

forensic investigation may often not to be recorded.

Keystone is the identity service that manages access to all components of OpenStack. It

provides authentication and authorization of users and services, and supports external

authentication services, and mechanisms such as security assertion markup language

18

Figure 4.2: OpenStack diagram (The OpenStack Foundation, n.d.)

(SAML) (OASIS consortium, n.d.).

Interaction between OpenStack components in figure 4.2, shows the complexity of the

platform (The OpenStack Foundation, n.d.). Investigation in such a complex environ-

ment can be difficult, especially without a forensic framework in place.

4.2 Forensic Framework Details

Our forensic framework consists of two parts, API server, and API client. The

API server is a standalone application designed for OpenStack written in Python

(Python Software Foundation, n.d.), and BASH (Free Software Foundation, Inc.,

n.d.). It interacts with OpenStack’s native API for authentication, authorisation,

and identification of the instances. It uses libvirt API of the KVM hypervisor for

memory extraction, and directly access the filesystem, and the storage devices for the

disk image extraction. The API client was written fully in Python, and uses HTTP,

and JSON to communicate with the API server. Figure 4.3 shows diagram of our

implementation and interaction between API client and server.

19

Figure 4.3: Forensic Framework implementation

When user sends the extraction command using API client, specifying the OpenStack

credentials, the instance ID, tenant, and the name of the Swift container where

the output files will be stored after extraction. Once the extraction is successful,

user is presented with three files located in the desired location on the Swift object

storage. File with the “gpg” extension is the extracted image file encrypted by

user’s OpenStack password. The “metadata” extension represents a metadata file,

containing information about the image in simple text format. Apart from other useful

information, this file contain the calculated hash value of the decrypted image, for

verifying the image integrity and validity. The last file with a “sig” extension is the

signature of the metadata file. It provides ability to verify the signature against the

public GPG key of the Cloud Provider. Example of output files in figure 4.4 shows the

example content of the Swift container, the encrypted image, the metadata file, and

the signature file.

Figure 4.5 shows the process of the image extraction. Using the api client application,

user passes the OpenStack credentials, instance ID, name of the storage container,

name of the OpenStack tenant, and the type of the media to be extracted (either

disk, or memory). API client will then send the authentication request using provided

username and password to the authentication service (Keystone), and retrieve the

authentication token. All the parameters, including the authentication token are then

passed to the API server. Server then uses the username, and the authentication

20

Figure 4.4: Swift Container containing output files

token to verify permissions to access the instance. Once the access is granted, API

server creates the metadata file, containing username, extraction start time, and

instance name. API server then identifies the name of the virtual machine of the KVM

hypervisor corresponding to the OpenStack’s instance ID, and starts the extraction

process using the native tools for either disk, or the memory. Hash value of the

extracted image is then generated. Our proof of concept implementation defaults to

md5 hash, but code supports different hash types such as sha1, sha256, and can be

extended to other algorithms. Hash value is next written into metadata file, and the

disk image is encrypted using symmetric encryption against the user’s OpenStack

password. Final metadata file is signed by Cloud Provider’s GPG key, and all files

are uploaded to the specified container in Swift object storage. Once the transfer is

finished, all files are deleted from the temporary location.

4.2.1 Memory Extraction Process

Memory extraction process slightly differs between hypervisors. We have chosen KVM

because it is the default hypervisor in OpenStack. While OpenStack supports KVM on

x86, ppc64, and ARM architectures, our solution is tested on x86 only, running 32bit

and 64bit instances. However, libvirt API used by KVM supports all its architectures,

therefore our framework should support them too (Libvirt virtualization API, n.d.).

KVM uses modified version of an open source machine emulator and virtualizer QEMU

to provide virtual hardware including volatile memory to the instance (QEMU emulator

21

API Server

Create Metadata File

Sign
Metadata

API Client Hypervisor
(KVM)

Identity Service
(Keystone)

Autherticate (Credentials)

Token

Extract (Credentials,Token, InstanceID, Container)

Compute
(Nova)

Access Granted

Msg: Extraction Started

Generate Hash

Encrypt Image

Completed

Storage
(Swift)

Upload Image, Metadata, and Signature

Completed

Verify Permissons

Extract (Disk or Memory)

Figure 4.5: Forensic Framework Extraction Process

22

Figure 4.6: Metadata Example

and virtualizer, n.d.). Our framework extracts volatile memory of the instance from

KVM hypervisor using libvirt API (Libvirt virtualization API, n.d.).

4.2.2 Disk Extraction Process

Our API server supports QCOW2 image disk types (KVM Community, n.d.), which

is default image type of KVM Hypervisor, used as default hypervisor in OpenStack.

However, we have implemented hooks in our code, that supports adding different image

types in the future. Our extraction process of QCOW2 images is similar to the concept

of live migration. First the snapshot of the image using native QCOW2 tools, and

then converted into raw image. During the conversion, new raw image is created from

the differences of the original image and the snapshot. This will prevent the need

for suspending the instance for the extraction period, and ensure that all data are

extracted. That includes the empty disk space that may contain deleted files, which

can also be a valuable source of evidence.

4.2.3 Integrity, Validity, and Encryption

Resources offered by IaaS are virtual, such as the virtual servers, the virtual desktops,

the virtual networks, and other virtual devices. In comparison to the traditional foren-

sics, where evidence is stored on physical device, that can always be a the “original”

piece of evidence, we don’t have such equivalent in the cloud. Finding the right physical

disk containing the virtual instance in the data center will be difficult, and same disk

may also contain the data of other. Cloud provider simply cannot afford to disrupting

the operation of other cloud users. In order to ensure validity, and integrity of the

extracted media is preserved, we propose to use the metadata file. Figure 4.6 shows

example content of the metadata file. It contain information about the extracted im-

age, such as username of the user who extracted it, date and time of the extraction,

file name, and most importantly hash value of the media. In fact the file name is the

“instance ID” of the VM in OpenStack. To prevent any tempering with the image,

23

metadata file is signed by Cloud Provider’s private GPG key. Signature can be verified

against the Cloud Provider’s public GPG key. Meanwhile, the whole image is encrypted

by user’s password for improved security. This will prevent unauthorized users gaining

access to the content of the image. Involved authorities are able to compare the hash

of the original image against the hash in the metadata file, to ensure that evidence has

not been tampered with.

4.2.4 API Server Details

The server part of the framework uses Flask microframework for Python to expose API

endpoints of our Forensic framework (Flask, n.d.), and a BASH program that accept

set of parameters from the API server and executes the image extraction.

When user request the image extraction, the API server will locate the instance name

in the hypervisor, based on the instance ID from OpenStack provided by the user. The

first instance started in OpenStack would be named in the hypervisor as “instance-

00000001”, and the number in the name is incremented with next instance. However,

the name do not correspondent with the instance ID, which is a long random string

such as “123456789-89d7-4231-abe6-fa5506a080b2”. Our approach to solve this issue

is extracting the location of the instance sorage from Nova’s configuration file. The

location contains folders that are named by instance ID. Each instance folder contains

libvirt.xml file, which is a configuration file for that particular instance in KVM hyper-

visor. From this file we extract instance name, and the location of the associated disk

images. API Server uses the instance name in conjunction with “virsh” command to

extract the memory images. In case of the disk images, API server identifies the disk

image type and apply relevant extraction command for particular disks. In our imple-

mentation only the QCOW2 images are extracted using “qemu-img”. Details of the

virsh and qemu-img commands can be found in the source of the extract.sh program

in Appendix A.1.2. After extracting the images into temporary location, hash value of

the images is calculated and stored in metadata file. Files are then encrypted by the

user’s password. We have chosen symmetric password encryption for the simplicity, but

it can be exchanged for user’s own GPG/PGP key for improved security. Metadata

file is signed with Cloud Provider’s Private GPG key. The last stage of the process,

uploads the metadata file, the encrypted image, and the signature file into the desired

Swift container, and deletes the temporary files from the local storage.

24

Figure 4.7: Usage info displayed by API call

4.2.5 API Server Installation and Startup

The server consists of two files, api server.py and extract.sh. Detailed user manual,

and the source code can be found in Appendix A.0.1, A.1.1 and A.1.2. Both files are

standalone and by design they must be located in the same folder, and both files need

to be made executable. In addition to python interpreter, that is installed by default

on most of the main Linux distribution, we require installation of the Flask module for

Python. Installation of the python modules varies from one distribution to another,

and it won’t be covered here.

The api server.py requires superuser privileges, and should be executed from the root

shell or using sudo command (sudo ./api server.py). However, while it is out of the

scope of this thesis, it is possible to improve security by creating a user account with

privileges limited only to extracting the disk and memory images.

By default the API server is listening on port 9111, but it can be customized in the

last section of the source code by changing the value of “port” variable.

4.2.6 API Server Usage

Once the server has been started, the API exposes three endpoints, and the help

information displayed when the root of the API server is accessed. Example of the

help message is shown in the Figure 4.7. More endpoints can be easily added for

additional functionality.

The endpoints are split into two categories as extract, and verify. Verification is done

by verifying the gpg signature of the metadata. GPG key can be accessed by HTTP

GET methid against the “gpg” endpoint. Example of the GPG key returned by the

API server is shown in Figure 4.8. The extraction is done by using the HTTP\POST

method against either, “disk”, or “memory” endpoint, and passing required parameters

in JSON format (JSON, n.d.). While our API client application will post the data

in proper format, user can use any HTTP client, such as curl (cURL, n.d.) to

communicate with our API server. For the disk and the memory extraction, the server

25

Figure 4.8: Cloud Provider’s public GPG key displayed by API call

Figure 4.9: API Client Example1: No parameters specified

requires username and password for authentication, and the image encrypting; tenant

name, and the instance ID of the extracted VM; and the Swift container name, where

the encrypted image, metadata file, and signature file will be stored after extraction.

4.2.7 API Client Usage

API Client is a single python application called api client.py. Executing the applica-

tion without parameters will display the usage and required parameters, as shown in 4.9.

26

In addition, the API client was designed to take advantage of OpenStack’s default envi-

ronment variables such as OS USERNAME, OS TENANT NAME, OS PASSWORD,

and OS AUTH URL. Our API client will import and use those variables, if they exist

in user’s shell and are not provided in the command line.

For more details refer to the user manual in Appendix A.0.1.

27

Chapter 5

Evaluation

In order to evaluate our approach, we have looked at multiple factors of our forensic

framework. Our evaluation consists of two parts, efficiency, and effectiveness. The

efficiency evaluation of the collection phase of the forensic process using our frame-

work. We will compare the extraction time of the memory images, to the extraction

of the disk images using our forensic framework. In the second part we are evaluat-

ing the effectiveness of memory forensics, in comparison to the disk forensics. In this

stage of evaluation we are evaluating the examination phase of the forensic process, by

attempting to extract evidence of simulated real-world malicious activities, and apply-

ing common anti-forensic techniques. Both evaluations aiming to prove that forensics

investigation of memory is more efficient, and often ore effective than the disk.

5.1 Test Environment Details

Our test environment consists of single node installation of 11th release of the Open-

Stack (codename Kilo). Details of the Hardware and Operating systems used are listed

in Figure 5.1.

5.1.1 Tools Used

There are many available forensic tools. Some of them are open source, some propri-

etary, and other available only to the law enforcing institutions. However, there are

many standard tools used by system administrators for day to day work, that were not

primarily designed as forensic tools, but can be used as such. As the memory image is

28

OpenStack Server:

CPU: 2x AMD Opteron(tm) Processor 6164 HE (12 Cores)
RAM: 256GB
DISK: 2x 160GB (RAID 1)
Network Storage: 5TB iSCSI volume (for storing disks of the instances)
OS: Centos 7 (64bit)

Evaluated Instances:

OS: Ubuntu 14.04 (64Bit)

Table 5.1: Hardware, and Software details

simply a binary file, in our evaluation we will be using tools like “HEX editor” for view-

ing, and searching the content of the raw binary files. The main tool used throughout

this evaluation is an open source “Volatility Framework” (Volatility Foundation, n.d.).

Additionally, we have also used other standard Linux, and BASH tools for searching

strings in files using regular expressions, and we will refer to them through this chapter.

Volatility Framework

The Volatility framework is a set of tools written in Python, for extraction of digital

artefacts from samples of volatile memory. It supports various operating systems,

memory image types, and plug-ins for extending its functionality, such as listing running

processes, listing open network ports, viewing internet browser history, listing of open

files, and much more (Volatility Foundation, n.d.). We will discuss plug-ins used for

this evaluation in the relevant sections.

5.2 Efficiency of the Media Collection

5.2.1 Scenario 1: Collection of the Media

In order to analyse efficiency we have measured the time it took to produce individual

memory images. We have created multiple instances with different memory sizes, based

on the predefined OpenStack instances shown in table 5.2, with exception of the “tiny”

instance, as the size of the disk, and memory are too small to support tested OS, and

to produce relevant results. Similarly, we have extracted the disk images of the same

29

instances in order to contrast the time impact of extracting disk, and memory images

for for forensic investigation. In order to simulate the servers in production use, we

have generated random data to fill up the disks to 90% of their capacity.

Instance Memory (GB) Disk (GB)

small 2 20
medium 4 40
large 8 80
xlarge 16 160

Table 5.2: Predefined OpenStack instance types

Results

The table 5.3, and the the chart in figure 5.1 represent the time of the memory, and

the disk image extraction, before hash value is generated, and image is encrypted.

The results show much faster extraction of the memory comparing to the disk images.

This experiment shows that obtaining memory image is more efficient, especially in

large instances. Those results were expected, as the memory is typically proportionally

smaller than the disk images, and reflects the efficiency of memory forensics of Cloud

instances in comparison to the disk forensics. As the disk space requirement are

constantly growing, disk offered by cloud providers is increasing. Although, the

memory capacity is increasing too, the size is typically substantially smaller. Some

providers are offering terabytes of disk space available to the instances, and extraction

of such disk image may not be always acceptable. Downloading extensively large

images will result also in long download times, and additional storage requirement for

storing them locally. In the meantime, typical offered memory of the cloud instance

would not exceed 256GB, which can be managed more easily.

Results in the table 5.4, and their visualisation in figure 5.2 reflect the total time of

extraction using our forensic framework. This result shows the total time including

the hash value generation, and encryption of the images. While generating hash values

approximately doubles the time of the extraction, encryption of the images in our

environment took about ten times longer than the extraction itself. Potentially we

could improve performance of the framework by disabling encryption, and storing the

images in more secure location than the Swift block storage. However, it would involve

30

applying fine grained access control on the storage, that Swift does not support at the

moment. With, or without encryption enabled, memory images can be extracted in

reasonable time frames. In case of xlarge instance it takes about 10 minutes to extract,

hash, and encrypt the memory image of 16GB using our framework. On the other

hand, the disk image of the size of 160GB took almost 5 hours to do the same.

Instance Memory Disk

small 0.2 3
medium 0.4 7
large 0.8 13
xlarge 1 22

Table 5.3: Time to extract the memory/disk image (in minutes)

Instance Memory Disk

small 1 37
medium 3 71
large 5 145
xlarge 10 284

Table 5.4: Total time of extraction, hashing, encryption, and signing of the image (in minutes)

5.3 Effectiveness of the Data Examination

In order to analyse effectiveness of our framework, we have investigated extracted mem-

ory, and disk images in different simulated real-world scenarios. We have created mul-

tiple instances with Linux operating system. In the first scenario, set of instances runs

the Trivial File Transfer Protocol (TFTP) server, simulating typical scenario where

malicious user uses TFTP server for automatic uploading of stolen information by mal-

ware infected computers. In our test case we have created, and uploaded dummy credit

card information, and attempted to recover them. In the second scenario, investigated

instance host encrypted Tor website (Tor Project Inc., n.d.), simulating website hosting

illegal content in form of JPEG (JPG) images. For each evaluated scenario, we have

configured three instances with the same configuration, except for the application, and

the data location. First we have stored the services and the data on the local disk of

31

small medium large xlarge

0.2 0.4 0.8 1

3

7

13

22

Instance Types

volatile memory disk

Figure 5.1: Time to extract the memory/disk image (in minutes)

the instance, without applying any anti-forensics techniques. Next instance stores the

the service and the data in the network attached storage, and the last instance uses

the ramdisk (tmpfs). Forensic investigation of the memory image was performed by

the Volatility framework (Volatility Foundation, n.d.), and standard linux tools such as

hex editors (for viewing and editing binary files), and pattern searching tools. In each

evaluation we will compare the ability to recover evidence from the memory, and the

disk images. Our test instances are running Ubuntu 14.04 64bit.

5.3.1 Scenario 2: Stolen Credit Cards

This scenario simulates the TFTP server collecting stolen credit card information from

malware infected computers. We have generated two thousand fake credit card num-

bers, and uploaded them to the TFTP server from four client computers. The generated

credit cards are in formats of Master card, and Visa card (16 digit numbers starting

with number 5, and number 4). In the first case the data, and the TFTP server bi-

nary are located on the local disk in plain sight. For the second case we store it in a

network attached storage using Network File System (NFS), and for the last case we

have used the ramdisk. For each storage location we evaluate the ability to recover the

32

small medium large xlarge

1 3 5 10

37

71

145

284

Instance Types

volatile memory disk

Figure 5.2: Total time of extracting, hashing, encrypting, and signing the image (in minutes)

evidence using memory, and disk forensics. Results shown in the table 5.5 indicates,

that by examination of the memory images, we were able to identify the evidence of

TFTP server collecting credit card information regardless of the location of the data.

However, investigation of the disk images was helpful only in the case of data residing

on the local disk.

Data location Memory forensics Disk forensics

Local disk yes yes
Network storage yes no
Ramdisk yes no

Table 5.5: Ability to find evidence of stolen credit cards

Details of the Examination

The examination process of the memory images was identical for all three cases of the

data location, except for the additional step of extracting the ramdisk. Also, the steps

33

Figure 5.3: Output of the Volatility plug-in linux netstat, TFTP

Figure 5.4: Output of the Volatility plug-in linux psaux

for examining the disk image were the same in all cases.

First we will look at the steps we have taken to evaluate the memory image. After

extracting the images, we have used The Volatility Framework (Volatility Foundation,

n.d.). We have used the linux netstat plug-in to view all the ports that server is

listening on, and identified that the TFTP service was running with a process ID

(PID) 2598, and listening on non-standard port 51301, as shown in figure 5.3. Output

of the linux psaux plug-in in figure 5.4 shows the full command that started the TFTP

server, including the location of the binary, output directory, and the PID 2598 that

correspond to the previous output. Once we found the location of TFTP binary,

and the output folder, we have used the linux mount plug-in to verify if the folder is

stored locally, or mounted from the network, or the ramdisk. In case of where local

disk was used, output did not show any additional mount points. However, in case

of the network storage, and the ramdisk, we have successfully identified the location,

as shown in figure 5.5, and figure 5.6. At this stage we could start investigating NFS

server, but this is out of the scope of this evaluation. However, when the ramdisk was

used to store (hide) the data, we were able to extract full content of the ramdisk using

Volatitity’s linux tmpfs command. In addition, using the linux arp plug-in, we were

able to print the ARP table that contains the IP addresses and MAC addresses of the

devices recently connecting to the server, see figure 5.7.

Apart from the Volatility tool, we were able to search pattern of the 16 digit numbers

starting with numbers 4 and 5, using standard linux tool “grep”. We were able to

identify between 1000 and 1600 numbers matching the pattern on each examined

image, with false positives between 50 and 100. Recovered card numbers could be

34

Figure 5.5: Output of the Volatility plug-in linux mount: identifying the Ramdisk

Figure 5.6: Output of the Volatility plug-in linux mount: identifying the network storage

potentially validate against the card provider, and use it as an evidence.

The search pattern may need to be tweaked in real-world forensic examination to

match different formats of card numbers, such as being stored in four groups of four

digits separated by either space, hyphen, or other characters to gain the same results.

Examination of disk images was more time consuming, it can take hours to inspect

Gigabytes of data on the disk. Disk investigation is mostly based on pattern matching,

or manual inspection of the files. It is performed either on the disk content, recovered

deleted data, or both. Our examination was done by searching the log files on the disk,

and searching for the same search pattern of the credit card number as in previous case,

but on the whole disk. However, we were only able to find the uploaded files, when

the output folder it was located on the investigated disk image. As disk contained no

evidence of TFTP server running, there was neither evidence of the TFTP command

that would help identify the output folder. Therefore, we had to search the whole disk

image to locate the uploaded files containing credit card details. When ramdisk, and

network storage was used, we were not able to found any evidence of malicious activity.

Although, in case of network storage, data still resides on the physical storage of the

network device, we were not able to find any pointers leading to the location of the

network storage, or even evidence that network storage has been used.

35

Figure 5.7: Output of the Volatility plug-in linux arp

5.3.2 Scenario 3: Hidden Service

Our next scenario simulates website hidden by Tor (Tor Project Inc., n.d.). In real

world that server would be equivalent of a server hosting illegal pictures. In our case

those pictures are represented by random images of cats. Tor is a software that creates

encrypted network, where each client acts as a node. Encrypted traffic is then routed

through the random nodes, hiding the identity of the users. Tor also supports running

hidden service without revealing its IP address, and the service can be only accessed

via Tor network using the randomly generated hostname with the ”.onion” top level

domain (Tor Project Inc., n.d.). For this experiment we have compiled standalone

Apache HTTP server (Web server) (The Apache Software Foundation, n.d.b), instead

of the default package distributed by Ubuntu, in order to be able to hide it in ramdisk,

and network storage. Web server is serving simple image gallery with 6 sample images

in JPEG format. Once the server was started, we have accessed those images from our

four client computers to simulate the web traffic. We have then extracted disk and

memory images, and install two additional servers with identical configuration, but

mounting a network storage, and a ramdisk, where we stored the web server, and all the

website content. Similarly to the previous experiment, we have evaluated the ability

to identify existence of the hidden web server, and obtain the evidence of illegal content.

Results in table 5.6 are identical to the previous evaluated scenario. Memory forensics

helped to identify, and recover the evidence in all cases. On the contrary disk forensics

was effective only in case of files stored on the investigated disk.

Details of the Examination

As in the previous experiment, we have used Volatility framework to identify the web

server, and Tor service running on the instance. Example of the netstat output is

displayed in figure 5.8. We were able to identify storage mount points, and detect

36

Data location Memory forensics Disk forensics

Local disk yes yes
Network storage yes no
Ramdisk yes no

Table 5.6: Ability to find evidence of illegal web content

Figure 5.8: Output of the Volatility plug-in linux netstat, Hidden Service

location of the data, extract content of the ramdisk, and obtain the location of the

network storage. However, as the instance was configured with Tor hiding traffic

from, and to the Tor encrypted network, we were not able to find IP addresses or

MAC addresses of the clients connecting to the web server. When web server was

running, and storing data from ramdisk, using the linux tmpfs command from Volatil-

ity Framework to extract full ramdisk and obtain all JPEG images served by the server.

The main difference in the examination of this scenario was the type of data we were

looking for. While in the credit card scenario we have been searching for text patterns,

the web server serves more than just text. Typical web site may contain different

types of content, such as simple text, pictures, audio, video, and virtually any type of

files. In this evaluation we are looking for JPEG images, or traces of the JPEG image

files that could be used as an evidence of illegal content.

Content of the JPEG images is binary, and as most of standard file types, they contain

binary signature. The binary signature is stored in the beginning of the file, helping

37

Figure 5.9: JPEG signature and content of the file found in the memory image

applications and operating systems to identify the file type. In case of JPEG images,

the signature in hexadecimal format is “FF D8 FF E0”. Based on this signature we

were able to find images loaded by the web server in all evaluated memory images.

Figure 5.9 shows the JPEG signature, and the content of the file found in the memory

image, with the corresponding image below. Regardless of the data location in our

three cases, using this technique we were able to obtain all images, that were accessed

by our client machines simulating web traffic.

Examination of the disk images led to the results that we were expecting based on

the previous experiment. Searching disk for image files resulted in thousands of false

positives, including pictures, icons, wallpapers, and other artwork used in applications,

and operating system. Locating the evidence required manual examination of every

picture. In cases when ramdisk, or network storage was used, disk examination did not

uncovered any evidence of neither web server, Tor service, or the files served by the

web server (our simulated illegal content).

38

Chapter 6

Conclusions

Amount of information that can be acquired from the memory, makes it an attractive

source of forensic data. Especially in cloud environments such as IaaS, where memory

image can be relatively easily extracted from the running VM. Our evaluation showed

that memory forensics improves the overall process of obtaining forensic evidence

in cloud environment. Although, disk images can be also easily obtained, growing

disk sizes and capacities of offered storage can make disk investigation very time,

and resource consuming task. In cloud environment sizes of disk images can vary

from few of gigabytes (109 bytes) to couple of terabytes (1012 bytes). Regardless of

how long the investigation of large disks will take, downloading such an image from

cloud may take hours, or days, and can generate extra cost. In the meantime, our

evaluation have proven that in cases where anti-forensic techniques are used such

as disk encryption, hiding data in ramdisk, or in network storage, disk forensics is

often useless. We have proven that collection, and examination of the memory images

is more efficient, and effective in the cloud environment than disk images. While

disk may contain larger volumes of the data and potentially also more evidence,

the evidence found in the volatile memory is often sufficient. In rare cases when

memory does not contain the evidence, it generally contains valuable information that

can lead to faster identification of the evidence in other locations, such as local, or

network storage. Memory forensics may not replace other forensic techniques such as

network forensics, log analysis, or even disk investigation, but it improves the overall

forensic process. Memory images can substantially reduce the time of identifying,

and obtaining evidence in cloud environment. Cloud providers, particularly the

ones providing private, or community cloud have to rely on their own expertise

in solving forensic issues. This could be an issue for smaller organisations with

limited resources. Our Framework simplifies the media collection for both the cloud

39

provider, and the cloud user. While forensic frameworks should be developed as a part

of the cloud platforms, ability to do the memory forensics should be definitely part of it.

6.1 Future work

Our API server has been written to be compatible with Horizon’s design, and can

be integrated without any modification into API server itself. However, dashboard

integration is out of the scope of this thesis. We are planing to expand the framework

into the dashboard and propose the whole product to the community for future

integration into OpenStack platform.

We will investigate faster algorithms for hashing and encryption of the images in order

to improve overall performance of the framework. Meanwhile, we plan to expand

the support for different storage types, and hypervisors used in OpenStack. In order

to provide complete solution, we will investigate potential integration of network

forensics, and ability to access relevant OpenStack logs.

During the efficiency evaluation, we have observed negative effect on the extracted

instances. In order to extract memory images, the hypervisor must suspend the

instance for short period of time. In case of certain types of storage, the instance

must be suspended for the whole duration of the extraction. Different memory, and

disk sizes take longer to extract, and this can have negative effect on the instance.

We have observed the issue with system time drifting when instance is suspended.

This may have negative effect on instance, that is using time sensitive services, such

as Kerberos (MIT Kerberos, n.d.), SAML (OASIS consortium, n.d.), and other time

sensitive authentication services that rely on the system time. Time can corrected

automatically if the instance has implemented NTP client (Network Time Protocol).

However, better techniques should be researched, such as synchronising the system

time using the hypervisor.

40

Bibliography

Amazon S3 (n.d.), ‘Amazon S3 Website’, http://aws.amazon.com/s3/. [Online; accessed 2015-03-21].

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D.,

Rabkin, A., Stoica, I. et al. (2010), ‘A view of cloud computing’, Communications of the ACM

53(4), 50–58.

Biggs, S. and Vidalis, S. (2009), Cloud computing: The impact on digital forensic investigations, in

‘Internet Technology and Secured Transactions, 2009. ICITST 2009. International Conference for’,

IEEE, pp. 1–6.

Birk, D. and Wegener, C. (2011), Technical issues of forensic investigations in cloud computing envi-

ronments, in ‘Systematic Approaches to Digital Forensic Engineering (SADFE), 2011 IEEE Sixth

International Workshop on’, IEEE, pp. 1–10.

Chen, H.-Y. (2014), Cloud crime to traditional digital forensic legal and technical challenges and

countermeasures, in ‘Advanced Research and Technology in Industry Applications (WARTIA), 2014

IEEE Workshop on’, pp. 990–994.

cURL (n.d.), ‘cURL official website’, http://curl.haxx.se/. [Online; accessed 2015-08-05].

Delport, W., Köhn, M. and Olivier, M. S. (2011), Isolating a cloud instance for a digital forensic

investigation., in ‘ISSA’.

Denning, D. (1987), ‘An intrusion-detection model’, Software Engineering, IEEE Transactions on SE-

13(2), 222–232.

Dykstra, J. and Sherman, A. T. (2012), ‘Acquiring forensic evidence from infrastructure-as-a-service

cloud computing: Exploring and evaluating tools, trust, and techniques’, Digital Investigation

9, S90–S98.

Dykstra, J. and Sherman, A. T. (2013), ‘Design and implementation of frost: Digital forensic tools for

the openstack cloud computing platform’, Digital Investigation 10, S87–S95.

Eucalyptus Systems, Inc. (n.d.), ‘Eucalyptus official Website’, https://www.eucalyptus.com/. [Online;

accessed 2014-12-16].

Fei, B. K. L. (2007), Data visualisation in digtial forensics, PhD thesis, University of Pretoria.

Flask (n.d.), ‘Flask microframework for Python’, http://flask.pocoo.org/. [Online; accessed 2015-

08-05].

41

http://aws.amazon.com/s3/
http://curl.haxx.se/
https://www.eucalyptus.com/
http://flask.pocoo.org/

Foster, I., Zhao, Y., Raicu, I. and Lu, S. (2008), Cloud computing and grid computing 360-degree

compared, in ‘Grid Computing Environments Workshop, 2008. GCE’08’, Ieee, pp. 1–10.

Free Software Foundation, Inc. (n.d.), ‘Bourne Again SHell’, http://www.gnu.org/software/bash/.

[Online; accessed 2015-08-02].

Garfinkel, S. L. (2010), ‘Digital forensics research: The next 10 years’, Digital Investigation 7, S64–S73.

Geelan, J. (2009), ‘Twenty-one experts define cloud computing’, Cloud Computing Journal 4, 1–5.

Grobauer, B. and Schreck, T. (2010), Towards incident handling in the cloud: challenges and ap-

proaches, in ‘Proceedings of the 2010 ACM workshop on Cloud computing security workshop’,

ACM, pp. 77–86.

Guo, H., Jin, B. and Shang, T. (2012), Forensic investigations in cloud environments, in ‘Computer

Science and Information Processing (CSIP), 2012 International Conference on’, IEEE, pp. 248–251.

Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J. A., Feldman,

A. J., Appelbaum, J. and Felten, E. W. (2009), ‘Lest we remember: cold-boot attacks on encryption

keys’, Communications of the ACM 52(5), 91–98.

Jahankhani, H. and Beqiri, E. (2010), ‘Memory based anti-forensic tools and techniques’, Pervasive

Information Security and Privacy Developments: Trends and Advancements: Trends and Advance-

ments p. 184.

JSON (n.d.), ‘JSON official website’, http://json.org/. [Online; accessed 2015-08-05].

Kent, K., Chevalier, S., Grance, T. and Dang, H. (2006), Sp 800-86. guide to integrating forensic

techniques into incident response, Technical report, Gaithersburg, MD, United States.

KVM Community (n.d.), ‘QCOW2: KVM Hypervizor Official Website’, http://www.linux-kvm.org/

page/Qcow2. [Online; accessed 2015-08-01].

Libvirt virtualization API (n.d.), ‘Livbirt official Website’, http://libvirt.org/. [Online; accessed

2015-03-21].

Lo, C.-C., Huang, C.-C. and Ku, J. (2010), A cooperative intrusion detection system framework for

cloud computing networks, in ‘Parallel Processing Workshops (ICPPW), 2010 39th International

Conference on’, pp. 280–284.

Mell, P. and Grance, T. (2009), ‘The nist definition of cloud computing’, National Institute of Standards

and Technology 53(6), 50.

MIT Kerberos (n.d.), ‘Kerberos: The Network Authentication Protocol’, http://web.mit.edu/

kerberos/. [Online; accessed 2015-03-28].

Nicanfar, H., Liu, Q., Talebifard, P., Cai, W. and Leung, V. (2013), Community cloud: Concept,

model, attacks and solution, in ‘Cloud Computing Technology and Science (CloudCom), 2013 IEEE

5th International Conference on’, Vol. 2, IEEE, pp. 126–131.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L. and Zagorodnov, D.

(2009), The eucalyptus open-source cloud-computing system, in ‘Cluster Computing and the Grid,

2009. CCGRID ’09. 9th IEEE/ACM International Symposium on’, pp. 124–131.

42

http://www.gnu.org/software/bash/
http://json.org/
http://www.linux-kvm.org/page/Qcow2
http://www.linux-kvm.org/page/Qcow2
http://libvirt.org/
http://web.mit.edu/kerberos/
http://web.mit.edu/kerberos/

OASIS consortium (n.d.), ‘Security Assertion Markup Language Specification’, http://saml.xml.org/

saml-specifications. [Online; accessed 2015-03-28].

Patrascu, A. and Patriciu, V.-V. (2013), Beyond digital forensics. a cloud computing perspective over

incident response and reporting, in ‘Applied Computational Intelligence and Informatics (SACI),

2013 IEEE 8th International Symposium on’, pp. 455–460.

Patrascu, A. and Patriciu, V.-V. (2014), Logging framework for cloud computing forensic environments,

in ‘Communications (COMM), 2014 10th International Conference on’, pp. 1–4.

Poisel, R., Malzer, E. and Tjoa, S. (2013), ‘Evidence and cloud computing: The virtual machine intro-

spection approach’, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable

Applications (JoWUA) 4(1), 135–152.

Prosise, C., Mandia, K. and Pepe, M. (2003), Incident response & computer forensics, McGraw-

Hill/Osborne.

Python Software Foundation (n.d.), ‘Python’, https://www.python.org/. [Online; accessed 2015-08-

02].

QEMU emulator and virtualizer (n.d.), ‘QEMU official Website’, http://wiki.qemu.org/Main_Page.

[Online; accessed 2015-03-21].

Roschke, S., Cheng, F. and Meinel, C. (2009), Intrusion detection in the cloud, in ‘Dependable, Auto-

nomic and Secure Computing, 2009. DASC ’09. Eighth IEEE International Conference on’, pp. 729–

734.

Ruan, K., Carthy, J., Kechadi, T. and Crosbie, M. (2011), Cloud forensics, in ‘Advances in digital

forensics VII’, Springer, pp. 35–46.

Saibharath, S. and Geethakumari, G. (2014), Design and implementation of a forensic framework for

cloud in openstack cloud platform, in ‘Advances in Computing, Communications and Informatics

(ICACCI, 2014 International Conference on’, pp. 645–650.

Sang, T. (2013), A log based approach to make digital forensics easier on cloud computing, in ‘Intelligent

System Design and Engineering Applications (ISDEA), 2013 Third International Conference on’,

pp. 91–94.

Shaw, A., Bordbar, B., Saxon, J., Harrison, K. and Dalton, C. (2014), Forensic virtual machines: Dy-

namic defence in the cloud via introspection, in ‘Cloud Engineering (IC2E), 2014 IEEE International

Conference on’, pp. 303–310.

Subramanian, K. (2011), ‘Public clouds’, A whitepaper sponsored by Trend Micro Inc .

The Apache Software Foundation (n.d.a), ‘Apache Cloudstack official Website’, http://cloudstack.

apache.org/. [Online; accessed 2014-12-16].

The Apache Software Foundation (n.d.b), ‘Apache HTTP Server Website’, http://httpd.apache.org/.

[Online; accessed 2014-12-16].

The OpenStack Foundation (n.d.), ‘OpenStack official Website’, http://www.openstack.org. [Online;

accessed 2014-12-16].

43

http://saml.xml.org/saml-specifications
http://saml.xml.org/saml-specifications
https://www.python.org/
http://wiki.qemu.org/Main_Page
http://cloudstack.apache.org/
http://cloudstack.apache.org/
http://httpd.apache.org/
http://www.openstack.org

The Volatility Foundation (n.d.), ‘Volatility Foundation Official Website’, http://www.

volatilityfoundation.org/. [Online; accessed 2015-08-02].

Thethi, N. and Keane, A. (2014), Digital forensics investigations in the cloud, in ‘Advance Computing

Conference (IACC), 2014 IEEE International’, pp. 1475–1480.

Thorpe, S., Grandison, T. and Blake, M. (2014), Cloud computing log forensics-the new frontier, in

‘SOUTHEASTCON 2014, IEEE’, pp. 1–4.

Thorpe, S., Grandison, T. and Ray, I. (2012), Cloud computing log evidence forensic examination

analysis, in ‘Proceedings of the 2nd International Conference on CyberCrime, Security and Digital

Forensics’.

Tor Project Inc. (n.d.), ‘Tor Project Website’, https://www.torproject.org/. [Online; accessed 2015-

03-22].

Vacca, J. R. (2002), Computer forensics: computer crime scene investigation, Charles River Media,

Inc.

Volatility Foundation (n.d.), ‘Volatility Foundation’, https://github.com/volatilityfoundation.

[Online; accessed 2015-03-22].

Zargari, S. and Benford, D. (2012), Cloud forensics: Concepts, issues, and challenges, in ‘Emerging

Intelligent Data and Web Technologies (EIDWT), 2012 Third International Conference on’, IEEE,

pp. 236–243.

Zawoad, S. and Hasan, R. (2013), ‘Cloud forensics: a meta-study of challenges, approaches, and open

problems’, arXiv preprint arXiv:1302.6312 .

44

http://www.volatilityfoundation.org/
http://www.volatilityfoundation.org/
https://www.torproject.org/
https://github.com/volatilityfoundation

Appendix A

Appendix

A.0.1 User Manual

Requirements

• OpenStack (Juno, or Kilo) with KVM hypervisor, and QCOW2 images

• Python version 3x

• BASH dependencies for API Server: gnugpg, xmllint

• Python modules for API Server: flask, request, jsonify, json, requests, subprocess,

sys, os

• Python modules for API Client: requests, json, sys, getopt, os

Installation

Create new folder in desired location (for example /opt/ff), and create gpg folder within:

1 mkdir -p /opt/ff/gpg

Copy the api server.py, and extract.sh into the newly created folder and make them

executable:

1 cp api_server.py extract.sh /opt/ff

2 chmod +x /opt/ff/{api_server.py,extract.sh}

Create cloud providers GPG key pair for signing the metadata:

45

1 gpg --gen-key

Choose type of the key, select 3 or 4 if this key will be used for signing only.

1 gpg (GnuPG) 2.0.22; Copyright (C) 2013 Free Software Foundation, Inc.

2 This is free software: you are free to change and redistribute it.

3 There is NO WARRANTY, to the extent permitted by law.

4

5 Please select what kind of key you want:

6 (1) RSA and RSA (default)

7 (2) DSA and Elgamal

8 (3) DSA (sign only)

9 (4) RSA (sign only)

10 Your selection?

Choose the keysize, larger key will improve security, but increase the signing time.

1 DSA keys may be between 1024 and 3072 bits long.

2 What keysize do you want? (2048)

Specify the validity period for the key (For security reasons key should have expiry):

1 Please specify how long the key should be valid.

2 0 = key does not expire

3 <n> = key expires in n days

4 <n>w = key expires in n weeks

5 <n>m = key expires in n months

6 <n>y = key expires in n years

7 Key is valid for? (0)

Specify the real name (Cloud Provider), the email address, and comments associated

with the key. Review the entry and select “O” to indicate Okay:

1 GnuPG needs to construct a user ID to identify your key.

2

3 Real name: NCI Thesis OpenStack Cloud Provider

4 Email address: cloud@example.org

5 Comment: Key for signing metadata

6

7 You selected this USER-ID:

8 "NCI Thesis OpenStack Cloud Provider (Key for signing metadata) <cloud@example. ←↩
org>"

9

10 Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit?

46

In the next screen choose the password, and confirm.

Once key is generated, verify that the key pair exist in our GPG keyring:

1 gpg --list-keys

2

3 pub 2048D/0B59790D 2015-08-29 [expires: 2015-09-28]

4 uid NCI Thesis OpenStack Cloud Provider (Key for signing metadata) <cloud@example. ←↩
org>

Extract the public, and private keys into ascii text files, specifying the key using the

email address:

1 gpg --armor --export cloud@example.org > /opt/ff/gpg/gpg_key.public

2 gpg --armor --export-secret-key cloud@example.org> /opt/ff/gpg_key.private

Edit the extract.sh and change the GPGPASS variable with the password used for

creating the GPG key pair. Also update the TEMP FOLDER variable, to specify the

temporary folder where the output files will be manipulated before uploading to the

Swift container, the folder should be big enough to store the raw disk and memory

images.

By default API server listen on port 9111. Port can be changed in the bottom of the

api server.py:

1 # listen on http://0.0.0.0:9111

2 if __name__ == ’__main__’:

3 app.debug = True

4 app.run(

5 host=’0.0.0.0’,

6 port=9111

7)

Now we are ready to start the API server.

Starting the server

API server should be started as root user, as it need access to the hypervisor, and the

images stored by libvirt (it may be possible to add user into groups that have read

access to the required files, but we haven’t tested it):

1 cd /opt/ff

2 sudo ./api_server.py

47

API Calls

API Server exposes three API endpoints:

1 /gpg : Public GPG key for signature verification

2 /disk : Extract disk Image

3 /memory : Extract Memory Image

The “gpg” endpoint prints the cloud provider’s GPG key for signature verification.

The “disk” and “memory” endpoints are used to extract disk, and memory images.

Additionally, accessing the ROOT of the API server “” prints the available endpoints.

Images can be extracted without API Client, using any HTTP client capable of

posting JSON formatted data. In this example we use cURL application, which is

very common on most of the Linux distributions.

First we need to obtain the authentication token from Keystone Identity Service running

on server with IP 192.168.122.10:

1 curl -s -X POST http://192.168.122.10:5000/v2.0/tokens -H "Content-Type: application ←↩
/json" -d ’{"auth": {"tenantName": "’"demo"’", "passwordCredentials": {"username ←↩
": "’"admin"’", "password": "’"Secret123"’"}}}’| python -m json.tool

Keystone response will contain token block similar to this:

1 "token": {

2 "audit_ids": [

3 "BmU6dQNMT520b9lJvzMJMg"

4],

5 "expires": "2015-08-23T16:14:46Z",

6 "id": "f19283dd8a254b43af0aacdb431a8147",

7 "issued_at": "2015-08-23T15:14:46.293570",

8 "tenant": {

9 "description": "default tenant",

10 "enabled": true,

11 "id": "a196f9b39bc44c06aaae9e4949e19ecb",

12 "name": "demo"

13 }

14 },

Token itself is a string in the “id” section after the “expires” entry, which indicates

the expiry of the token (typically 1 hour).

48

For extraction of the disk, and memory images we need an instance ID, which is an

identifier of an instance in Openstack. Using the Horizon dashboard or OpenStack API

tools we can list the instances, obtain the instance ID of the instance we are interested

in extracting. From command line execute following command:

1 nova list

We also need to create Swift container where the output files will be stored, either in

Horizon or from command line using the OpenStack API. Example: following command

will create container “forensics” if it doesn’t exist yet:

1 swift post forensics

At this stage we are ready to start the image extraction. Command to extract memory

should look something like this:

1 curl -H "Content-type: application/json" -X POST http://192.168.122.10:9111/memory - ←↩
d ’{"tenant": "demo", "username": "admin", "password": "Secret123", "container": ←↩
"forensics", "instanceid": "f7d6273b-fe0e-42ae-9dd8-c8a539cc1d95"}’

or the disk image:

1 curl -H "Content-type: application/json" -X POST http://192.168.122.10:9111/disk -d ←↩
’{"tenant": "demo", "username": "admin", "password": "Secret123", "container": " ←↩
forensics", "instanceid": "f7d6273b-fe0e-42ae-9dd8-c8a539cc1d95"}’

Command will either return message “Extracting memory/disk image”, or return an

error message.

After extraction is finished, image, metadata file, and signature will be available in the

“forensics” container. Following command display the content of the swift container:

1 swift list forensics

Output of the command should be similar to this:

1 admin/20150604-1646-19/2b9036db-15e9-488b-b0fd-76ffa1c34378/memory-2b9036db-15e9-488 ←↩
b-b0fd-76ffa1c34378.img.gpg

2 admin/20150604-1646-19/2b9036db-15e9-488b-b0fd-76ffa1c34378/memory-2b9036db-15e9-488 ←↩
b-b0fd-76ffa1c34378.metadata

3 admin/20150604-1646-19/2b9036db-15e9-488b-b0fd-76ffa1c34378/memory-2b9036db-15e9-488 ←↩
b-b0fd-76ffa1c34378.sig

Files can be downloaded also via Horizon dashboard or using the following command:

49

1 swift download forensics admin/20150604-1646-19/2b9036db-15e9-488b-b0fd-76ffa1c34378 ←↩
/memory-2b9036db-15e9-488b-b0fd-76ffa1c34378.img.gpg

2 swift download forensics admin/20150604-1646-19/2b9036db-15e9-488b-b0fd-76ffa1c34378 ←↩
/memory-2b9036db-15e9-488b-b0fd-76ffa1c34378.metadata

3 swift download forensics admin/20150604-1646-19/2b9036db-15e9-488b-b0fd-76ffa1c34378 ←↩
/memory-2b9036db-15e9-488b-b0fd-76ffa1c34378.sig

API Client

API Client was designed to simplify the process described in previous section. It

eliminates the need for crafting the JSON message, or obtaining the authentication

token from Keystone. Installation is not required, simply copy the api client.py file

into desired location and make it executable, or execute it with python.

1 chmod +x api_client.py

2 ./api_client.py

Or

1 python ./api_client.py

Command will return an error message and usage instructions:

1 Error: missing required options: host action container instnceID

2

3 Usage: api_client.py [options]

4

5 Options:

6 -H HOST, --host=HOST hostname or IP of forensic API host (required ←↩
)

7 -A AUTH_HOST, --auth-host=AUTH_HOST hostname or IP of Keystone API host (required ←↩
)

8 -a ACTION, --action=ACTION disk or memory (required)

9 -i INSTANCEID, --instance=INSTANCEID Instance ID (required)

10 -t TENANTNAME, --tenant=TENANT Tenant name (required)

11 -c CONTAINER, --container=CONTAINER Name of existing Swift container (required)

12 -u USERNAME, --username=USERNAME Openstack username (required)

13 -p PASSWORD, --password=PASSWORD Openstack password (required)

14 -h, -help Print this help

15

16 Examples:

17 api_client.py -H http://192.168.1.1:9111 -a disk -t demo -i 12345678-9abc-def1 ←↩
-2345-67890abcdef1 -c output -u demo -p demo

18 api_client.py -H http://192.168.1.1:9111 -a memory -t demo -i 12345678-9abc-def1 ←↩
-2345-67890abcdef1 -c output -u demo -p demo

50

Examples in the output of the command are self-explanatory. The API Client also sup-

ports standard OpenStack environment variables in example bellow. If those variables

exist in the system, parameters such username, password, tenant name, and Keystone

API Url can be omitted.

1 export OS_USERNAME=admin

2 export OS_TENANT_NAME=demo

3 export OS_PASSWORD=Secret123

4 export OS_AUTH_URL=http://192.168.122.10:5000/v2.0/

In addition, we support own environment variable for “OS FORENSICS URL”, that

provides the url of the API server.

1 export OS_FORENSICS_URL=http://192.168.122.10:9111

If all environment variables are used, API client command for extracting memory will

look like this:

1 ./api_client -a disk -t demo -i 12345678-9abc-def1-2345-67890abcdef1 -c forensics

A.1 Source code

A.1.1 api server.py

1 #!/usr/bin/env python

2 #

3 # API server for Openstack Forensic framework

4 # extracts disk and memory images of OpenStack instances

5 #

6

7 from flask import Flask, request, jsonify, json

8 import requests, subprocess, sys, os

9

10 # check if user is root

11 if os.geteuid() != 0:

12 exit("You need to have root privileges to run this script.\nPlease try again, ←↩
this time using ’sudo’. Exiting.")

13

14 app = Flask(__name__)

15

16 # check if container exists

17 def check_container(token, accid, container):

18 # hardcoded url, will work only on single node openstack

51

19 url = ’http://127.0.0.1:8080/v1/AUTH_’+ str(accid) +’/’+ str(container) +’? ←↩
format=json’

20 headers = {’X-Auth-Token’: str(token)}

21 r = requests.get(url, headers=headers)

22 return r.status_code

23

24 # check if instance exists

25 def check_instance(token, accid, instanceId):

26 # hardcoded url, will work only on single node openstack

27 url = ’http://127.0.0.1:8774/v2/’+ str(accid) +’/servers/’+ str(instanceId)

28 headers = {’X-Auth-Token’: str(token)}

29 r = requests.get(url, headers=headers)

30 return r.status_code

31

32 # extract disk image - call bash script with parameters:

33 # create metadata file: instance name, md5 hash, creation date, username, ip ←↩
addresses

34 # store it in swift container

35 def extract_img(instanceId, tenant, username, token, accid, container, mediatype, ←↩
password):

36 ret_check_instance = check_instance(token, accid, instanceId)

37 ret_check_container = check_container(token, accid, container)

38 if ret_check_instance == 200:

39 if ret_check_container == 200:

40 # extract image

41 subprocess.Popen(["./extract.sh", mediatype, instanceId, container, ←↩
tenant, username, password])

42 return True

43 else:

44 return ’Container Error, check container Name’

45 else:

46 return ’Instance Error, check instance ID’

47

48 def extract_media(instanceId, tenant, username, token, accid, container, mediatype, ←↩
password):

49 # check if variables are empty

50 if tenant == ’’:

51 return ’tennant not defined \n’

52 if username == ’’:

53 return ’username not defined \n’

54 if token == ’’:

55 return ’token is missing \n’

56 if accid == ’’:

57 return ’account (accid) id is missing \n’

58 if instanceId == ’’:

59 return ’instanceid not defined \n’

60 if container == ’’:

52

61 return ’container not defined \n’

62 if password == ’’:

63 return ’password not defined \n’

64

65 # extract disk immages

66 ret_extract_img = extract_img(instanceId, tenant, username, token, accid, ←↩
container, mediatype, password)

67

68 if ret_extract_img == True:

69 msg = ’Extracting ’+mediatype+’ image’

70 else:

71 msg = ’Extracting ’+mediatype+’ image failed. ’+ret_extract_img

72 return msg

73

74 # print message on root path

75 @app.route(’/’)

76 def api_root():

77 return ’Openstack Forensic Framework API\n\nAvailable API:\n/gpg : Public GPG ←↩
key for signature verification\n/disk : Extract disk Image\n/memory : ←↩
Extract Memory Image\n’

78

79 # return public key used for verifying signed metadata file

80 @app.route(’/gpg’)

81 def api_gpg():

82 gpg_key = open(’gpg/gpg_key.public’, ’r’)

83 return gpg_key.read()

84

85 # api for extracting disk image

86 @app.route(’/disk’, methods = [’POST’])

87 def api_extract_disk():

88 if request.headers[’Content-Type’] == ’application/json’:

89 # set media type for extraction

90 mediatype = ’disk’

91 # Get the parsed contents of the form data

92 username = request.get_json().get(’username’, ’’)

93 tenant = request.get_json().get(’tenant’, ’’)

94 token = request.get_json().get(’token’, ’’)

95 accid = request.get_json().get(’accountid’, ’’)

96 instanceId = request.get_json().get(’instanceid’, ’’)

97 container = request.get_json().get(’container’, ’’)

98 # for this implementation I’m getting openstack password, to encript the ←↩
image,

99 # but it could be additional variable for custom gpg password

100 password = request.get_json().get(’password’, ’’)

101

102 # extract media

53

103 ret_extract = extract_media(instanceId, tenant, username, token, accid, ←↩
container, mediatype, password)

104

105 return ret_extract+’\n’

106 else:

107 return ’415 Unsupported Media Type, expecting JSON\n’

108

109 # api for extracting memory image

110 @app.route(’/memory’, methods = [’POST’])

111 def api_extract_mem():

112 if request.headers[’Content-Type’] == ’application/json’:

113 # set media type for extraction

114 mediatype = ’memory’

115 # Get the parsed contents of the form data

116 username = request.get_json().get(’username’, ’’)

117 tenant = request.get_json().get(’tenant’, ’’)

118 token = request.get_json().get(’token’, ’’)

119 accid = request.get_json().get(’accountid’, ’’)

120 instanceId = request.get_json().get(’instanceid’, ’’)

121 container = request.get_json().get(’container’, ’’)

122 # for this implementation I’m getting openstack password, to encript the ←↩
image,

123 # but it could be additional variable for custom gpg password

124 password = request.get_json().get(’password’, ’’)

125 # extract media

126 ret_extract = extract_media(instanceId, tenant, username, token, accid, ←↩
container, mediatype, password)

127 return ret_extract+’\n’

128 else:

129 return ’415 Unsupported Media Type, expecting JSON\n’

130

131 # listen on http://0.0.0.0:9111

132 if __name__ == ’__main__’:

133 app.debug = True

134 app.run(

135 host=’0.0.0.0’,

136 port=9111

137)

A.1.2 extract.sh

1 #!/bin/bash

2

3 # script for extracting disk and memory images from openstack/libvirt

4 # api_server.py execute it like this:

5 # ./extract_disk.sh disk|memory instanceId container tenant username password

54

6

7 # change temp locations here

8 TEMP_FOLDER="/tmp/forensics"

9

10 # using current date to create output folder and avoid conflicts when extracting ←↩
same image multiple times

11 CURRENTDATE="$(date +%Y%m%d-%H%M-%S)"

12

13 # parameters are supposed to be passed by api_server.py in particular order

14 export PARM1=$1

15 export INSTANCEID=$2

16 export CONTAINER=$3

17 export OS_TENANT_NAME=$4

18 export OS_USERNAME=$5

19 export OS_PASSWORD=$6

20 export GPGPASS="Passw0rd"

21 export AUTH_URL="http://127.0.0.1:5000/v2.0"

22

23 # get location of instance path from nova.conf

24 NOVA_STORE=$(grep instances_path /etc/nova/nova.conf |grep -v ^# |sed ’s/ ←↩
instances_path//g;s/\=//g;s/\ //g’)

25 # extract libvirt name of the instance from xml definition og the VM

26 INSTANCE_NAME=$(grep \<name\> $NOVA_STORE/$INSTANCEID/libvirt.xml |sed ’s/<name>//g; ←↩
s/<\/name>//g;s/\ //g’)

27

28 # get location of the tools

29 VIRSH=$(which virsh)

30 QEMUIMG=$(which qemu-img)

31

32 # hash can be specified here

33 HASHCMD=$(which md5sum)

34 HASHTYPE="md5"

35

36 # set initial location

37 GOHOME=$(pwd)

38

39 # set umask

40 umask 0044

41

42 # check if temp locations exist

43 if [! -d "$TEMP_FOLDER"]; then

44 mkdir $TEMP_FOLDER

45 fi

46

47 # check first parameter, expecting disk|memory

48 if [$PARM1 == "disk"]; then

49 MEDIUM="Disk"

55

50 EXTRACT_CMD="extract_disk"

51 elif [$PARM1 == "memory"]; then

52 MEDIUM="Memory"

53 EXTRACT_CMD="extract_mem"

54 else

55 echo "First parameter should be disk or memory"

56 exit 1

57 fi

58

59 create_folders()

60 {

61 if [! -d "$TEMP_FOLDER/$OS_USERNAME/$CURRENTDATE/$INSTANCEID"]; then

62 mkdir -p $TEMP_FOLDER/$OS_USERNAME/$CURRENTDATE/$INSTANCEID

63 fi

64 OUTPUT=$TEMP_FOLDER/$OS_USERNAME/$CURRENTDATE/$INSTANCEID

65 }

66

67 extract_disk()

68 {

69 # NOTE: this will work only with single qcow2 disk

70

71 # get disk location from virsh xml

72 DISK_LOCATION=$(virsh dumpxml $INSTANCE_NAME |xmllint --xpath ’string(///devices ←↩
/disk[@device="disk"]/source/@file)’ -)

73 # get disk type

74 DISK_TYPE=$(virsh dumpxml $INSTANCE_NAME |xmllint --xpath ’string(///devices/ ←↩
disk[@device="disk"]/driver/@type)’ -)

75

76 # if variables are empty, create error log instead of image in Swift

77 if [-z $DISK_LOCATION]; then

78 echo "create file with error message and store it in swift"

79 exit 1

80 fi

81 if [-z $DISK_TYPE]; then

82 echo "create file with error message and store it in swift"

83 exit 1

84 fi

85

86 # if disk image is qcow2 extract it, otherwise create error log

87 if [$DISK_TYPE == "qcow2"]; then

88 cd $OUTPUT

89 $QEMUIMG create -f qcow2 $PARM1-$INSTANCEID.qcow2 -o backing_file= ←↩
$DISK_LOCATION &> /dev/null

90 $QEMUIMG convert $PARM1-$INSTANCEID.qcow2 -O raw $PARM1-$INSTANCEID.img &> / ←↩
dev/null

91 rm -f $PARM1-$INSTANCEID.qcow2

92 else

56

93 # here wee can decide what to do with different types of images

94 echo "create file with error message and store it in swift"

95 exit 1

96 fi

97 }

98

99 extract_mem()

100 {

101 cd $OUTPUT

102 $VIRSH dump $INSTANCE_NAME $OUTPUT/$PARM1-$INSTANCEID.img --memory-only &> /dev/ ←↩
null

103 }

104

105 create_metadata_file()

106 {

107 cd $OUTPUT

108 echo "Extraction Date: $(date)" > $OUTPUT/$PARM1-$INSTANCEID.metadata

109 echo "Extracted By: $OS_USERNAME" >> $OUTPUT/$PARM1-$INSTANCEID.metadata

110 echo "Image type: $MEDIUM" >> $OUTPUT/$PARM1-$INSTANCEID.metadata

111 #hardcoded cloud provider for now, should be parsed from OpenStack configuration

112 echo "Cloud Provider: Openstack NCI Demo" >> $OUTPUT/$PARM1-$INSTANCEID.metadata

113 }

114

115 create_hash()

116 {

117 cd $OUTPUT

118 HASHRAW=$($HASHCMD $PARM1-$INSTANCEID.img)

119 HASH=$($HASHCMD $PARM1-$INSTANCEID.img|awk ’{print $2}’)

120 FILENAME=$($HASHCMD $PARM1-$INSTANCEID.img|awk ’{print $1}’)

121 echo "File Name: $HASH" >> $OUTPUT/$PARM1-$INSTANCEID.metadata

122 echo "File Hash ($HASHTYPE): $FILENAME" >> $OUTPUT/$PARM1-$INSTANCEID.metadata

123 }

124

125 encrypt_image()

126 {

127 # encrypt image with user’s password (using openstack password, however it ←↩
should be command line parameter)

128 cd $OUTPUT

129 gpg --batch --yes --passphrase "$OS_PASSWORD" --cipher-algo AES256 --symmetric ←↩
$PARM1-$INSTANCEID.img &> /dev/null

130 rm -f $PARM1-$INSTANCEID.img

131 }

132

133 sign_metadata()

134 {

135 cd $OUTPUT

136 TMPGPG=

57

137 trap ’rm -rf "$TMPGPG"’ EXIT INT TERM HUP

138 TMPGPG=$(mktemp -d)

139 export GNUPGHOME="$TMPGPG"

140 gpg --allow-secret-key-import --import $GOHOME/gpg/gpg_key.private &> /dev/null

141 gpg --yes --batch --passphrase="$GPGPASS" --output $PARM1-$INSTANCEID.sig -- ←↩
detach-sig $PARM1-$INSTANCEID.metadata &> /dev/null

142 }

143

144 upload_container()

145 {

146 cd $TEMP_FOLDER

147 swift \

148 --os-auth-url "$AUTH_URL" \

149 --os-tenant-name "$OS_TENANT_NAME" \

150 --os-username "$OS_USERNAME" \

151 --os-password "$OS_PASSWORD" \

152 upload $CONTAINER $OS_USERNAME/$CURRENTDATE/$INSTANCEID &> /dev/null

153 }

154

155 clean_temp()

156 {

157 # this should be more sophisticated, however it will work fine for my POC

158 cd $GOHOME

159 rm -rf $TEMP_FOLDER/$OS_USERNAME/$CURRENTDATE

160 }

161

162 execute()

163 {

164 create_folders

165 create_metadata_file

166 $EXTRACT_CMD

167 create_hash

168 encrypt_image

169 sign_metadata

170 upload_container

171 clean_temp

172 }

173

174 execute

A.1.3 api client.py

1 #!/usr/bin/env python

2

3 # api client for openstack forensic framework

4 #

58

5

6 import requests, json

7 import sys, getopt, os

8

9 # simple check if user has access to the tenant using provided credentials

10 # return code must be 200, but there must be better way of doing this:

11 def verify_permission(instanceid, tenant, username, password):

12 # hardcoded url, will work only on single node openstack

13 url = ’http://127.0.0.1:5000/v2.0/tokens’

14 payload = {’auth’: {’tenantName’: str(tenant), ’passwordCredentials’: {’username ←↩
’: str(username), ’password’: str(password)}}}

15 headers = {’content-type’: ’application/json’}

16 r = requests.post(url, data=json.dumps(payload), headers=headers)

17 return r.status_code

18

19 # print parameters for testing

20 def test_vars(action, ahost, host, tenant, username, password, container, instanceid ←↩
):

21 print ’Action : ’, action

22 print ’Host : ’, host

23 print ’Auth-Host : ’, ahost

24 print ’Tenant : ’, tenant

25 print ’UserName : ’, username

26 print ’Password : ’, password

27 print ’Container : ’, container

28 print ’InstanceID : ’, instanceid

29

30 def usage():

31 script = os.path.basename(__file__)

32 print ’’

33 print ’Usage: ’+ script+’ [options]’

34 print ’’

35 print ’Options:’

36 print ’ -H HOST, --host=HOST hostname or IP of forensic API host ←↩
(required)’

37 print ’ -A AUTH_HOST, --auth-host=AUTH_HOST hostname or IP of Keystone API host ←↩
(required)’

38 print ’ -a ACTION, --action=ACTION disk or memory (required)’

39 print ’ -i INSTANCEID, --instance=INSTANCEID Instance ID (required)’

40 print ’ -t TENANTNAME, --tenant=TENANT Tenant name (required)’

41 print ’ -c CONTAINER, --container=CONTAINER Name of existing Swift container (←↩
required)’

42 print ’ -u USERNAME, --username=USERNAME Openstack username (required)’

43 print ’ -p PASSWORD, --password=PASSWORD Openstack password (required)’

44 print ’ -h, -help Print this help’

45 print ’’

46 print ’Examples:’

59

47 print ’ ’+script+’ -H http://192.168.1.1:9111 -a disk -t demo -i 12345678-9abc- ←↩
def1-2345-67890abcdef1 -c output -u demo -p demo’

48 print ’ ’+script+’ -H http://192.168.1.1:9111 -a memory -t demo -i 12345678-9abc ←↩
-def1-2345-67890abcdef1 -c output -u demo -p demo’

49 print ’’

50

51 # get token and accountid

52 def get_token_accountid(ahost,instanceid, tenant, username, password):

53 url = ahost+’/tokens’

54 payload = {’auth’: {’tenantName’: str(tenant), ’passwordCredentials’: {’username ←↩
’: str(username), ’password’: str(password)}}}

55 headers = {’content-type’: ’application/json’}

56 r = requests.post(url, data=json.dumps(payload), headers=headers)

57 if r.status_code == 200:

58 #get json response

59 json_resp = r.json()

60 #get token

61 token = json_resp[’access’][’token’][’id’]

62 #get accountID

63 accid = json_resp[’access’][’token’][’tenant’][’id’]

64 return (token, accid)

65 else:

66 return False, False

67

68 # extract media

69 def extract(ahost, host, action, tenant, username, password, container, instanceid ←↩
):

70 token, accid = get_token_accountid(ahost, instanceid, tenant, username, ←↩
password);

71

72 if token == False:

73 return ’Authentication failed\n’

74 else:

75 url = host+’/’+action

76 payload = {’tenant’: str(tenant),\

77 ’username’: str(username),\

78 ’password’: str(password),\

79 ’container’: str(container),\

80 ’accountid’: str(accid),\

81 ’token’: str(token),\

82 ’instanceid’: str(instanceid)}

83

84 headers = {’content-type’: ’application/json’}

85 r = requests.post(url, data=json.dumps(payload), headers=headers)

86 return r.text

87

88 def main(argv):

60

89 host = os.environ.get(’OS_FORENSICS_URL’,’’)

90 ahost = os.environ.get(’OS_AUTH_URL’,’’)

91 action = ’’

92 tenant = os.environ.get(’OS_TENANT_NAME’,’’)

93 username = os.environ.get(’OS_USERNAME’,’’)

94 password = os.environ.get(’OS_PASSWORD’,’’)

95 container = ’’

96 instanceid = ’’

97

98 try:

99 opts, args = getopt.getopt(argv,’hH:A:a:t:u:p:c:i:’,[’help’,’host=’,’auth- ←↩
host=’,’action=’,’tenant=’,’username=’,’password=’,’container=’,’ ←↩
instanceid=’])

100 except getopt.GetoptError:

101 usage()

102 sys.exit(2)

103 for opt, arg in opts:

104 if opt in (’-h’, ’--help’):

105 usage()

106 sys.exit()

107 elif opt in (’-a’, ’--action’):

108 action = arg

109 elif opt in (’-A’, ’--auth-host’):

110 ahost = arg

111 elif opt in (’-H’, ’--host’):

112 host = arg

113 elif opt in (’-t’, ’--tenant’):

114 tenant = arg

115 elif opt in (’-u’, ’--username’):

116 username = arg

117 elif opt in (’-p’, ’--password’):

118 password = arg

119 elif opt in (’-c’, ’--container’):

120 container = arg

121 elif opt in (’-i’, ’--instanceid’):

122 instanceid = arg

123

124

125

126 # check if all parameters were passed

127 errmsg = ’’

128 stop = False

129

130 if host == ’’:

131 errmsg+=’ host’

132 stop = True

133

61

134 if ahost == ’’:

135 errmsg+=’ ahost’

136 stop = True

137

138 if action == ’’:

139 errmsg+=’ action’

140 stop = True

141

142 if tenant == ’’:

143 errmsg+=’ tenant’

144 stop = True

145

146 if username == ’’:

147 errmsg+=’ username’

148 stop = True

149

150 if password == ’’:

151 errmsg+=’ password’

152 stop = True

153

154 if container == ’’:

155 errmsg+=’ container’

156 stop = True

157

158 if instanceid == ’’:

159 errmsg+=’ instnceID’

160 stop = True

161

162 if stop == True:

163 print ’Error: missing required options:’+ errmsg

164 usage()

165 sys.exit(2)

166

167 # execute API calls based on action:

168 if action == ’disk’:

169 msg = extract(ahost, host, action, tenant, username, password, container, ←↩
instanceid)

170 print msg

171 sys.exit()

172

173 elif action == ’memory’:

174 msg= extract(ahost, host, action, tenant, username, password, container, ←↩
instanceid)

175 print msg

176 sys.exit()

177

178 elif action == ’test’:

62

179 test_vars(action, ahost, host, tenant, username, password, container, ←↩
instanceid)

180 sys.exit()

181

182 else:

183 print ’Error: -a, --action must be "disk" or "memory"’

184 usage()

185 sys.exit(2)

186

187 if __name__ == ’__main__’:

188 main(sys.argv[1:])

63

	Abstract
	Dedication
	Acknowledgements
	Introduction
	Background
	Digital Forensics
	Forensic Investigation Process
	Data Sources
	Memory Forensics

	Cloud Forensics
	Cloud Computing
	Private and Community Clouds
	Challenges of Cloud Forensics

	Research Question

	Design
	Proposed Design
	Self Service
	Memory Extraction
	Storage Types
	Image Extraction
	Validation

	Analysis Methods

	Implementation
	OpenStack Overview
	Forensic Framework Details
	Memory Extraction Process
	Disk Extraction Process
	Integrity, Validity, and Encryption
	API Server Details
	API Server Installation and Startup
	API Server Usage
	API Client Usage

	Evaluation
	Test Environment Details
	Tools Used

	Efficiency of the Media Collection
	Scenario 1: Collection of the Media

	Effectiveness of the Data Examination
	Scenario 2: Stolen Credit Cards
	Scenario 3: Hidden Service

	Conclusions
	Future work

	Bibliography
	Appendix
	User Manual
	Source code
	api_server.py
	extract.sh
	api_client.py

