
Migration of batch log-processing
job from apache hadoop map-reduce
to apache spark in the public cloud

Leonid Vasilyev

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2015

Supervisor Michael Bradford

Submission of Thesis and Dissertation

National College of Ireland

Research Students Declaration Form

(Thesis/Author Declaration Form)

Name: __

Student Number: ___

Degree for which thesis is submitted: ________________________________

Material submitted for award

(a) I declare that the work has been composed by myself.

(b) I declare that all verbatim extracts contained in the thesis have been

distinguished by quotation marks and the sources of information

specifically acknowledged.

(c) My thesis will be included in electronic format in the College

Institutional Repository TRAP (thesis reports and projects)

(d) Either *I declare that no material contained in the thesis has been

used in any other submission for an academic award.

Or *I declare that the following material contained in the thesis formed

part of a submission for the award of

__

(State the award and the awarding body and list the material below)

Signature of research student: _____________________________________

Date: _____________________

Submission of Thesis to Norma Smurfit Library, National College of Ireland

Student name: ______________________________ Student number: __________________

School: ___________________________________ Course: __________________________

Degree to be awarded: ___

Title of Thesis: __

One hard bound copy of your thesis will be lodged in the Norma Smurfit Library and will be available for consultation. The electronic

copy will be accessible in TRAP (http://trap.ncirl.ie/), the National College of Ireland’s Institutional Repository. In accordance with

normal academic library practice all theses lodged in the National College of Ireland Institutional Repository (TRAP) are made

available on open access.

I agree to a hard bound copy of my thesis being available for consultation in the library. I also agree to an electronic copy of my thesis
being made publicly available on the National College of Ireland’s Institutional Repository TRAP.

Signature of Candidate: __

For completion by the School:
The aforementioned thesis was received by__________________________ Date:_______________

This signed form must be appended to all hard bound and electronic copies of your thesis submitted to your school

Abstract

With the increasing adoption of cloud-based infrastructure the problem of efficient

utilization of provisioned resources becomes more important, since even in a pay-as-

you-go model computing resources are allocated and charged in a coarse grained way

(e.g. the whole virtual machine per hour). This problem becomes major in the batch

processing systems, where computational resources are organized into a cluster. Even

small optimization of applications running on such systems can result in significant cost

savings.

In this thesis we evaluate one such application — JournalProcessor, which is a batch

log-processing job that aggregates and indexes logs containing metrics data. Journal-

Processor application itself built using Apache Hadoop MapReduce engine that runs on

top of Apache Hadoop YARN cluster resource manager, which is deployed onto Amazon

EC2 public cloud using Amazon Elastic Map Reduce (EMR).

The research question of this thesis is the following — is it possible to migrate Jour-

nalProcessor from Apache Hadoop MapReduce data processing engine to more general

data-stream oriented system – Apache Spark? Our hypothesis is that by migrating the

application to Spark, the utilization of provisioned cluster resources will increase, and

the running time of the job will decrease.

Our contributions include: description of the application to generate the workload

(JournalProcessor), generic methodology for migrating MapReduce applications to

Spark and the detailed evaluation of metrics produced by a cluster.

iv

Dedicated to my wife Maria. For all her help and support.

v

Contents

Abstract iv

1 Introduction 1

1.0.1 Summary . 2

1.0.2 Outline . 2

2 Literature Review 3

2.1 Survey of Big-Data Processing Systems 3

2.1.1 Processing Models . 3

2.1.2 MapReduce Performance . 4

2.1.3 Spark Performance . 4

2.1.4 Choosing Hardware Resources 5

2.2 Survey of Key Components of Cluster Management Systems 6

2.2.1 Distributed Scheduling . 6

2.2.2 Resource Allocation . 7

2.2.3 Resource Isolation . 8

2.2.4 Data Locality . 9

2.2.5 Fault Tolerance . 9

3 Design 10

3.1 Workload Description . 10

3.1.1 Terminology . 11

3.1.2 Time-based Aggregation and Deduplication 12

3.1.3 Index and Chunk Generation . 12

3.1.4 Format of Input and Output Data 13

3.2 Migration Methodology . 13

3.3 Experiment Design . 14

3.3.1 Compute and Storage Resources 14

3.3.2 Sampling the Input Dataset . 15

3.3.3 Validation of Output Dataset . 15

vi

3.3.4 Metrics Collection . 15

3.4 Cost Estimation . 16

4 Implementation 17

4.1 Implementation of Input Sampling . 17

4.2 MapReduce Implementation . 19

4.2.1 Tuninig MapReduce Solution . 19

4.3 Spark Implementation . 20

4.3.1 Secondary Sort . 21

5 Evaluation 22

5.1 Observations . 22

5.1.1 Ganglia Metrics . 22

5.1.2 CloudWatch Metrics . 24

5.1.3 I/O Performance . 25

5.1.4 Spark Executor Metrics . 27

5.2 Analysis . 27

5.2.1 MapReduce I/O Performance . 27

5.2.2 Spark I/O Performance . 28

5.2.3 On Non Uniform Distribution of Load 28

5.2.4 Resource Allocation Using YARN 28

5.3 MapReduce and Spark API . 29

6 Conclusion 30

6.0.1 Monitoring of the Cluster . 30

6.0.2 Debugging Application . 31

6.0.3 Migration Best Practices . 31

6.0.4 Observed Patterns . 32

6.1 Future Work . 32

6.1.1 Fix Spark disk configuration . 32

6.1.2 Evaluate Different Instance Types 33

6.1.3 Execution Unmodified MapReduce on Spark 33

A 38

A.1 Script to Sample the Input Dataset . 38

A.2 Script to Run Spark on Amazon Elastic Map Reduce (EMR) 40

B 42

B.1 CloudWatch EC2 Instance Metrics . 42

B.2 Spark Executor Metrics . 45

vii

C 49

C.1 Spark JournalProcessor Code . 49

viii

List of Figures

3.1 Overview of the JournalProcessor application 11

3.2 The steps of experiment . 14

4.1 Distribution of a full input dataset (Log scale) 18

4.2 Distribution of a sampled input dataset overlaid on top of full dataset

distribution (Log scale) . 18

5.1 Overview of Ganglia metrics for MapReduce and Spark 23

5.2 EC2 Instance CPUUtilization,% . 24

B.1 EC2 Instance DiskReadBytes, Bytes . 42

B.2 EC2 Instance DiskReadOps, Number of IOPS 43

B.3 EC2 Instance DiskWriteBytes, Bytes . 43

B.4 EC2 Instance DiskWriteOps, Number of IOPS 44

B.5 EC2 Instance NetworkIn, Bytes . 44

B.6 EC2 Instance NetworkOut, Bytes . 45

B.7 Spark Stage 0 Metrics . 46

B.8 Spark Stage 1 Metrics . 47

B.9 Spark Stage 1 Metrics . 48

ix

Listings

3.1 Avro Schema of a journal record . 13

3.2 Format of a chunk record . 13

3.3 Format of a chunk record . 13

4.1 Components of a MapReduce job written in Java 19

4.2 Components of a Spark job written in Scala 20

4.3 Structured of RDD generated by Spark 20

5.1 MapReduce Disk I/O Utilization during the reduce phase (iostat tool) . 26

5.2 Spark Disk I/O Utilization during the shuffle (iostat tool) 26

A.1 Sample of a Manifest file . 38

A.2 Script to copy s3 objectsd between bucket in bulk 38

A.3 Python script for sampling input data 39

A.4 Script to run a Spark Job in EMR cluster 40

C.1 Main Application Class . 49

C.2 Various utility code . 52

x

List of Tables

5.1 Summary of Ganglia cluster utilization metrics 23

5.2 Summary of CloudWatch metrics . 24

xi

Chapter 1

Introduction

MapReduce (Dean & Ghemawat 2004) dominates in the industry as an approach for

solving Big Data (Laney 2001) problems. Yet in the recent years, industry realized that

not all Big Data problems can be solved efficiently with MapReduce — for example

algorithms that require multiple iterations over the same dataset, such as Machine-

Learning (Zaharia et al. 2010). As a result, several successor systems were proposed,

such as Apache Spark (Zaharia et al. 2010) and Pregel (Malewicz et al. 2010). These

systems offer a superset of MapReduce functionality: a Direct Acyclic Graph (DAG)

of transformations over the input data set (Isard et al. 2007). Spark extends it even

further by allowing cycles in the graph.

A problem does arise, however. How one approaches a migration of existing applica-

tions from MapReduce engine into Spark engine without violating the correctness and

performance?

The research question of this thesis is the following — is it possible to migrate Jour-

nalProcessor from Apache Hadoop MapReduce data processing engine to more general

data-stream oriented system – Apache Spark? Our hypothesis is that by migrating the

application to Spark, the utilization of provisioned cluster resources will increase, and

the running time of the job will decrease.

The solution we propose is to build a methodology which provides a process for mapping

between functionality of MapReduce and Spark. This methodology should not be a

simple one to one transition, but instead utilized the provided API efficiently.

The scope of the thesis is evaluation of two systems: Apache Hadoop which is the most

used implementation of MapReduce (Dean & Ghemawat 2004) engine and Apache Spark

(Zaharia et al. 2010) which is developed as a successor of Hadoop’s MapReduce.

1

We have picked a typical MapReduce job — JournalProcessor, that is used for a few

years in large enterprise environment. We then migrate the job to Spark engine, and

validate that both jobs produce the same results.

Both systems are deployed on top of Amazon EC2 public cloud, and managed by Ama-

zon Elastic MapReduce(EMR). Cluster resources are allocated via cluster management

system Hadoop YARN (Vavilapalli et al. 2013). Input and output data is stored in

Amazon S3.

During the evaluation we collected performance metrics using Ganglia Monitoring Sys-

tem (Massie et al. 2004) and AWS EC2 instance metrics provided by AWS CloudWatch.

Out of Scope

Both jobs were evaluated using the same hardware configuration. Evaluation various

types of hardware is out of scope for this work, but could be addressed as a future

work. Although, the configuration of both MapReduce and Spark jobs was changed to

archive maximum performance, we do not conduct exhaustive evaluation of available

configuration options.

1.0.1 Summary

We were not able fully confirm out hypothesis during the experiment. Despite the

we were able to archive significant improvement in cluster utilization with Spark, the

running time of a MapReduce solution was 65% less even with less efficient utilization of

cluster resources. We found that the performance bottleneck is SSD I/O throughput.

1.0.2 Outline

The rest of the thesis is organized as follows. Chapter 2 presents the survey of existing

work in the area of alternatives to Hadoop MapReduce, as well as different approaches

to optimization of existing applications. We also survey alternatives to Apache YARN

since we believe that cluster management system is crucial for performance. Chapter 3

presents the design of our approach to migration and evaluation of results. It also

presents the methodology for migration. In Chapter 4 we describe the implementa-

tion of our solution. Chapter 5 presents the evaluation of our results using various

metrics. Chapter 6 summarizes our findings and present pattern we observed during

implementation. The full source code of a Spark solution can be found in Appendix C.

2

Chapter 2

Literature Review

In this chapter we look at related work that has been described in the literature. Section

2.1 presents the survey of Big-Data processing systems. In section 2.2 we survey key

components of Cluster Management Systems. We discuss the performance of Spark and

cluster configuration in subsection 2.1.3 and 2.1.4 respectively.

2.1 Survey of Big-Data Processing Systems

2.1.1 Processing Models

In the original MapReduce paper Dean & Ghemawat (2004) established the inter-

face for parallelization: map(k1, v1) 7→ list(k2, v2) and reduce(k2, list(v2))

7→ list(v2). This interface saw wide adoption by the industry as a de-facto approach

for solving Big-Data (Laney 2001) problems. Dean & Ghemawat (2004) developed few

optimizations to the MapReduce model: custom partitioning logic, ordering guarantee

in the reducer, combiner function and backup tasks. As a limitations of MapReduce

Dean & Ghemawat (2004) stated that MapReduce only supports acyclic data flows,

and lack of atomic operations.

Isard et al. (2007) generalized the MapReduce interface proposed by Dean & Ghe-

mawat (2004) into distributed data-parallel application. He claimed that most general

abstraction for these applications in Direct Acyclic Graph (DAG). Another improve-

ment introduced by Dryad (Isard et al. 2007) was separation of operations on data

from middleware that provides parallelization. Dryad also introduces declarative query

language which abstracts the construction of transformations.

3

The DAG model was extended even further by Spark (Zaharia et al. 2010) and later

by Naiad (Murray et al. 2013). Both Spark and Naiad support cyclic computations

and, unlike MapReduce (Dean & Ghemawat 2004) and Dryad (Isard et al. 2007), low

latency queries by relying primarily on main memory(DRAM) as a main storage media.

The key component of Spark (Zaharia et al. 2010) is an abstraction over distributed

shared memory: RDD (Zaharia et al. 2012). It allows to archive scalability and fault

tolerance of MapReduce. Important characteristic introduced by Zaharia et al. (2012)

is the lineage which is used instead of replication to recover from a partial data-loss

in the system. Different approach was taken by Pregel (Malewicz et al. 2010), which

is not data-flow system, instead it is a message passing system that keeps local state

in memory, and applies modification to its local state instead of passing data over the

network.

2.1.2 MapReduce Performance

Blanas et al. (2010) stated that major issue with MapReduce model is lack of support

for join-like operations, i.e. MapReduce is not designed to combine data efficiently

from multiple sources. Spark (Zaharia et al. 2010) addresses this with broadcast-based

joins. Another approach was seen in Logothetis et al. (2011) in order to optimize

the problem of distributed aggregation. Logothetis et al. (2011) proposed to perform

the map phase on the nodes where data has been generated and dedicated nodes are

running the reducers. Another novel approach that Logothetis et al. (2011) proposed

is to let the user control the fidelity of the data.

2.1.3 Spark Performance

Davidson & Or (2013) observed that shuffle between two stages is the major source of

performance issues in Spark. They found that Spark utilizes underlying file system in

sub-optimal way: Spark produces a lot of small files which cause random I/O versus

sequential. Also, authors propose to use Ext4 file system instead of Ext3 to allow better

write performance.

Another area of improvement found by Li et al. (2014) is a HDFS (Borthakur 2007)

performance. Their proposed system Tachyon uses memory as a primary storage.

Experiments report 110-x improvement over HDFS on write operations. Li et al.

(2014) also observed that there is a hierarchy of storage: main memory has 10-100

GB/sec bandwidth, datacenter network has 1.25 GB/sec and SSD disks has 1-4 GB/sec.

4

Tachyon does not take advantage of this hierarchy yet. Another difference from HDFS

is the use of lineage instead of a replication to provide fault tolerance.

In order to benchmark Spark performance Li et al. (2015) proposed a set of jobs. These

jobs cover various APIs of Spark but lack data-processing application like the one we

evaluation in the work. Li et al. (2015) also report that over-provisioning CPU capacity

does not help, but we found that this is only true if job is CPU-bound.

A survey by Armbrust et al. (2015) reported improvements that were made to Spark

performance over time. One area of performance issues is due to rich API, users are

confused between performance of different transformations. A lot of improvements in

memory management and networking layers were made: switching to Netty framework

for high-performance networking, Zero-copy I/O, Off-heap network buffers, parallel

data fetch. As a result Spark outperforms Hadoop on Daytone GraySort (Xin et al.

2014) by a factor if 2.5 using 10-x fewer nodes.

2.1.4 Choosing Hardware Resources

Jim Gray predicted in Gray & Graefe (1997) and Gray (2007) popularity of memory-

based databases, so Spark’s RDD (Zaharia et al. 2012) and Tachyon (Li et al. 2014)

are examples of such systems. Hence the particular attention should be on the DRAM

capacity when choosing resources.

Appuswamy et al. (2013) claimed that scaling up rather than out helps performance

since high-end servers are getting cheaper. But authors observed that Hadoop does

scale-up poorly. Authors noticed that few problems stems from the platform that

Hadoop is built on Java (JVM), for example the high overhead of starting up the

new JVM and huge garbage collection overhead on large heaps. Appuswamy et al.

(2013) proposed to use extra memory as a RAM-disk in order to speed up the shuffle

operation. Authors also showed that SSD disks improve performance per $ by 60% for

16-node cluster. These observations reinforce points made by Gray (2007) that storage

is moving into main memory.

5

2.2 Survey of Key Components of Cluster Management

Systems

2.2.1 Distributed Scheduling

The key component to efficient resource utilization is a Distributed Scheduler. These

schedulers are responsible for allocating particular tasks to nodes (usually a single server

or VM). An early work by Zhou (1992) highlighted few benefits that are applicable to

the cloud infrastructure today, such as supporting single-system view (i.e. few hosts

are operated as one computer). This core principle is valid for most well known systems:

Apache Mesos (Hindman et al. 2011) and Google Omega (Schwarzkopf et al. 2013).

Another key principle is realization that clusters consists for heterogeneous systems,

unlike High Performance Computing (HPC) clusters.

One more early work by Waldspurger & Weihl (1994) attempted to use probabilistic

randomized scheduling for single operating system. Authors proposed to use the same

scheduler for I/O, Network and CPU scheduling. Similar scheduler design is currently

used in a few modern systems like Quasar (Delimitrou & Kozyrakis 2014).

Quasar improves scheduling by removing resource reservation from users. That way,

users only specify requirements in terms of performance metrics, instead of shares of

physical resources. Authors reported an improvement of 47% in utilization running on

Public Cloud.

One of the first systems that was designed to run in a data-center - Dryad (Isard et al.

2007) made few important discoveries. Authors made an assumption, that system has

high performance networking and is under one administrative domain, this is typical

for modern data centers. Few aspects of scheduling can be relaxed, compared to LSF

system Zhou (1992). Authors of Dryad system used centralized job scheduler, which a

scalability bottleneck as recognized by Schwarzkopf et al. (2013).

Schwarzkopf et al. (2013) distinguished 3 kinds of schedulers: monolithic, tow-level and

shared-state. Authors also claimed that shared-state scheduler is the most scalable and

efficient. Yet Hindman et al. (2011) relied on two-level scheduler for its predictable

behavior. Earlier approaches were based on network flow algorithms, such as Isard

et al. (2009). The schedulers were not scalable enough for large clusters. Delimitrou

et al. (2014) is an improved version of scheduler presented by Isard et al. (2009).

Ananthanarayanan et al. (2012) found that elasticity can increase utilization of infras-

tructure by splitting tasks into sub-tasks dynamically batch jobs can be assigned to

6

various types of hardware. Unfortunately it does not apply to service-like types of

workloads.

2.2.2 Resource Allocation

In classic Infrastructure as a Service (IaaS) environments a unit of allocation is a

Virtual Machine (VM). Hindman et al. (2011) demonstrated that such allocation is

too coarsely grained and lead to under-utilised capacity. Nguyen et al. (2013) proposed

to use wavelet analysis and dynamic VM cloning to reduce the ratio of over provisioning

capacity by 3.42 times.

Raman et al. (1999) claimed that problem with allocation algorithms is a centralized

allocator, which does not have all information available on every node. Instead, they

propose to use distributed resource allocation. Their system was designed to work atop

of set of workstations, rather than in a data-center. What they also found, is that

providing extensive language to end users may cause conditions under which none of

the tasks can execute. This issue was already reported in Schwarzkopf et al. (2013),

where user can specify constraints in terms of latency and time, rather than bytes and

cpu-cycles.

Ghodsi et al. (2011) improved allocation in Mesos (Hindman et al. 2011) by introducing

statistical strong metric, which combined not one type of resource (e.g. CPU) but all

resources available for allocation. This approach is also an improvement over allocation

used in Dryad (Isard et al. 2007). The disadvantage of presented metric that it does

not take into account resource fragmentation, unlike Verma et al. (2014). Also, Verma

et al. (2014) called out the fact that every allocation algorithm depends on underlying

environment, because cluster, grids and data-centers have different requirements.

The key observation made by Mishra et al. (2010) is that there are two kinds of work-

loads in data-center: that most of resources are consumed by few long-running tasks.

Another technique they used is to normalize resource usage for different types of re-

sources, such as disk or cpu to the same numerical domain.

Another point of view on constraints is Sharma et al. (2011) work, where authors

claimed that placement of tasks plays important role in performance, this point of

view is shared by Mishra et al. (2010). Author composed a metric that represents how

utilization is affected for every host in the cluster.

Zhang et al. (2011) work suggested to use simple metric to predict utilization of cluster,

but this does not take into account that size of cloud infrastructure is itself elastic and

7

can be increased on demand. This makes it challenging to predict future utilization

based on previous workload traces.

The need for dynamic resource allocation is clearly illustrated in Apache Hadoop YARN

resource allocation manager (Vavilapalli et al. 2013). This approach is adopted by the

majority of recent researches. Quasar improved this by introducing machine-learning

into the allocation process (Delimitrou & Kozyrakis 2014).

2.2.3 Resource Isolation

Modern infrastructure relies on hardware and system Virtualisation to provide efficient

mechanism to constraint resources. When co-locations happens inside one Virtual

Machine (VM) it is essential to efficiently isolate different types of tasks: batch jobs

and user-facing services.

CPU, memory, disk and network are essential resources and must be partitioned. An

early study by Engler et al. (1995) proposed to delegate resource management and

protection from operating system level to application layer. This way, each application

can work with abstraction of a particular hardware component. This is similar to

full virtualization approach for both at a fine-grained level. The problem with this

approach is performance. Because of the performance, most of these functions should

be performed in hardware. Only recently CPU vendors added basic virtualization

support.

To deal with the imperfect isolation, Zhang et al. (2013) claimed that the key task of

such isolation is to maintain low-latency of time sensitive customer facing tasks. Their

metric Cycles Per Instruction (CPI) is used to describe latency of CPU. They also

proposed to use throttling an artificial slowdown to resolve isolation problems. System

proposed by Zhang et al. (2013) can also detect anomalies via collection of metrics and

machine learning.

The key observation is that, when one program runs many times it is possible, using

statistical methods, to obtain its execution profile. This execution profile can be used

to detect anomalies in program’s performance. Unfortunately this approach does not

take into account that program code will evolve over time, and its profile will change

with every new major version.

8

2.2.4 Data Locality

Data center networking has changed dramatically to support demand of cloud cus-

tomers (Barroso et al. 2013). One of the core requirements is data-locality. As observed

by Gray & Graefe (1997), the data that has to be delivered to the CPU creates the bot-

tleneck for the computation. Hence this assumption has to be built into the scheduling

algorithm of cluster management framework. Apache Mesos (Hindman et al. 2011) ad-

dresses this issue with delayed scheduling and reports 95% data-locality with 5 second

delays in scheduling.

In contrast to this Google Omega (Schwarzkopf et al. 2013) does not report any op-

timizations related to data-locality. More recent systems like Quasar uses machine

learning to train scheduler based on collected performance metrics from running jobs

(Delimitrou & Kozyrakis 2014). This is clearly the most advanced approach currently

in use.

Earlier systems like Autopilot (Isard 2007) do not focus on data locality at all, moreover

they require an application running in Autopilot to be aware of it and replicate its

state explicitly. Some systems like Tarcil (Delimitrou et al. 2014) ignore data locality

completely, as a result tremendous improvement is seen in cluster utilization, because

a significant proportion of time is spend on pulling data required for computation.

Detecting this kind of “false” utilization is essential to identify inefficiencies.

2.2.5 Fault Tolerance

Cluster management system is a critical part of infrastructure, that must be available

and should not have single point of failure (SPoF). Early systems like Autopilot(Isard

2007) indeed had a single point of failure. Autopilot rely on heart-beats that are ag-

gregated on a DeviceManager which is a potential SPoF. Recent systems like Mesos

(Hindman et al. 2011) and Omega (Schwarzkopf et al. 2013) employ distributed con-

sensus algorithms, like Paxos to provide automatic fail-over. Quasar (Delimitrou &

Kozyrakis 2014) in addition to using Paxos also uses master-slave replication as well.

With automatic fail-over it is important to point that the state of the system is even-

tually consistent (Schwarzkopf et al. 2013).

9

Chapter 3

Design

This chapter describes our approach for migrating the application. Section 3.1 intro-

duces the JournalProcessor application. In Section 3.2 we propose our methodology

for migration. Section 3.3 presents the design of the experiment to evaluate correctness

and performance for Spark version of JournalProcessor. Finally, in Section 3.4 we see

how costs for consumed compute resources can be estimated.

3.1 Workload Description

The JournalProcessor MapReduce application is a batch log processing job that per-

forms the following major steps (see subsection 3.1.1 for definitions):

1. Time-based aggregation

2. De-duplication

3. Index generation

4. Chunk generation

Figure 3.1 illustrates the flow of data in the JournalProcessor.

10

Figure 3.1: Overview of the JournalProcessor application

3.1.1 Terminology

To better describe the dataset we need to define the some terminology.

• MetricID – 16-bytes SHA-1 hash-code of a published metric.

• Timestamp – 4-bytes POSIX time format, represents a moment in time.

• Histogram – Data structure that allows space-efficient representation of multiple

measurement over time Datar et al. (2002), Kopp et al. (2013).

• Measurement – 8-bytes double in IEEE-754 format or a histogram.

• Observation – represents a measurement of a metricID at a moment in time

(timestamp).

• Statistic – a statistic derived from one or more measurement.

• Aggregated Observation – a combination of multiple measurements for the same

metricID combined into a set of statistics or a histogram.

• Journal – file in an Apache Avro format with a sequence of observations.

• Time Series – a sequence of measurements ordered by their timestamps in an

ascending order.

• Chunk – a binary file that contains a sequence of aggregated observations.

11

• Index – a binary B-Tree based mapping between metricID and sequence of ag-

gregated observation that for this metricID.

• Deduplication Token – unique number in a long used to deduplicate observations,

during aggregation.

• Unit Type – unit type of a single observation represented as a string (e.g.

“Bytes”).

3.1.2 Time-based Aggregation and Deduplication

Aggregation is performed based on the observation’s timestamp. All aggregation occurs

within a one-minute bucket with the timestamp of aggregated observation set to the

start of minute of the first observation. Only observations with the same metricId and

unit type are aggregated together. Every observation in a signle aggregation bucket

must have unique deduplication token, othewise it gets discarded as a duplicate.

The aggregation process produces basic set of descriptive statistics. These statistics

are: sampleCount – number of observations that were aggregated; max – maximum

of all measurement of aggregated observations; min – minimum of all measurement of

aggregated observations; sum – sum of all measurements of aggregated observations;

avg – arithmetic average measurement of all aggregated observations.

The important mathematical property of above statistics is that they all can be per-

formed by a symmetric function, which can be defined as: A symmetric function of n

variables is a function that value is unchanged by any permutation of its arguments.

The requirement for a statistic to be computed by a symmetric function is strict and

reduces the number of available statistics the algorithm can produce. One requirements

that system has – is to support percentiles. This implemented via maintaining an

exponential histogram Datar et al. (2002) for every aggregated observation.

3.1.3 Index and Chunk Generation

After aggregation and deduplication is performed this data is stored in the AWS S3.

Output data split into two sets of objects in AWS S3: indexes and chunks. The output

data is optimized to respond to the following query: for a given metricID, unit type,

and a period of time return all aggregated observations. It order to be able to provide

this data efficiently, size of a single index file is essential. How the size of index is picked

is out of scope of this work.

12

3.1.4 Format of Input and Output Data

Input data represented as a sequence of journals in a single AWS S3 bucket. Journal

is a binary file that contains records in the following format:

{"namespace": "job.metrics",
"name": "AvroDatapoint",
"type": "record",
"fields": [
{"name": "metricId", "type": "string"},
{"name": "aggregationId", "type": "int"},
{"name": "unit", "type": "string"},
{"name": "timestamp", "type": "long"},
{"name": "count", "type": "double"},
{"name": "min", "type": "double"},
{"name": "max", "type": "double"},
{"name": "sum", "type": "double"},
{"name": "distribution", "type": ["bytes", "null"] }]

}

Listing 3.1: Avro Schema of a journal record

Each record is compressed using GZIP. Set of records represented as a TAR archive.

Output data represented as a set of chunk files in AWS S3. Each chunk in the sequence

of records in the following format:

{
"timestamp": "long",
"count": "double",
"min": "double",
"max": "double",
"sum": "double",
"unit": "string"

}

Listing 3.2: Format of a chunk record

Along with chunks, job generates a set of index files with the following format:

{ metricID: [
{
"startTime": "timestamp",
"endTime": "timestamp",
"s3ObjectName": "string",
"s3ObjectOffset": "long",
"s3ObjectLength": "long"

}
]

}

Listing 3.3: Format of a chunk record

The index stored as B-Tree data structure where key is metricID.

3.2 Migration Methodology

We propose the following methodology:

13

• Represent MapReduce job as a Direct Acyclic Graph (DAG) in such way that

every transformation to the data is a vertex in the graph.

• For every transformation, record the input and output data-types.

• Replace the MapReduce transformations with one or more Spark transformation

that matches the input/output data-types.

3.3 Experiment Design

The setup of an experiment is illustrated in Figure 3.2. We begin with constructing

the input dataset by sampling the full dataset they MapReduce job process. To do

that we use random sampling, to ensure that journals of all sizes are represented in the

input. Then we execute MapReduce and Spark solutions using the same AWS EMR

cluster configurations. After both job completed we validate the output data for its

correctness. Then compare collected cluster utilization metrics metrics.

Figure 3.2: The steps of experiment

3.3.1 Compute and Storage Resources

To run both jobs we use 20 EC2 instances of c3.8xlarge type. Each instance has 32

cores, 60 GiB of RAM and 2 x 320 SSD drives. The cost per hour varies over time

and AWS region, current price can be obtained at https://aws.amazon.com/ec2/

instance-types/.

14

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/

All computing resources utilize public AWS services. AWS EC2 On-Demand instances

are managed by AWS EMR service.

3.3.2 Sampling the Input Dataset

In order for evaluation to be realistic, the sample data-set must be representative. We

have picked a single run of an existing MapReduce job. From that run we collected

the set of journals job has processed. Then, we sampled this data set to get 10% of all

journals for evaluation.

As we can see from Figure 4.1 the majority of journals have size of 60, 135 or 210240

megabytes. Since for our experiment we want to pick 10% of journals, some random

sampling technique must be applied.

One approach to get 10% of journals is to randomly pick N times number in the

interval between 0 and 38,423 (i.e. total number of journals) and include journal with

that index into sample. The problem with this approach is that given that sizes are

distribute not evenly with three peaks around 60, 135 and 225 megabytes, most of the

sampled journals will have these sizes.

In order to avoid this we partitioned list of journals into set of 31 buckets, with every

bucket 15 megabytes in size. Then, we iterated over the set of buckets few times,

randomly picking on every iteration journal from each bucket, until we have reached

the 10% (see Listing A.3 for a code listing).

3.3.3 Validation of Output Dataset

In order to validate the correctness of the Spark solution we verify that set if metricIDs

in the index files are the same for both solutions. Then we random sample 10% of

metricIDs from the index. For that 10% of metrics we fetched its aggregated observa-

tions from the chunks and compare. Since input data is the same for both solutions we

expect that this verification approach would yield equal results.

3.3.4 Metrics Collection

To compare usage of cluster resources we use feature of AWS EMR that allows to

enable Ganglia monitoring system Massie et al. (2004) for the cluster. Ganglia provides

aggregated metrics for total cluster CPU, Memory and Network utilization. For CPU

15

and Memory Ganglia also shows the maximum available capacity. We use these high-

level metrics to compare cluster’s resource utilization between MapReduce and Spark.

The granularity of metrics varies in Ganglia depending on the age of metrics. For

last hour it prduces 1-minute metrics, after 1-hour all metrics available at 3-minute

resolution.

Since both system run on top of Hadoop YARN Vavilapalli et al. (2013), we compare

the following YARN metrics which are exposed via AWS CloudWatch and emitted by

AWS EMR: containers allocated, containers reserved, containers pending.

3.4 Cost Estimation

There two main types of resources compute allocated via AWS EC2 instances and

storage allocated via AWS S3. The cost on network transfer is not significant, since

all data transfer happens inside AWS network. AWS does not charge for this type of

traffic. Both solution consume the same amount of storage in S3. That means AWS

EC2 – dominates the overall costs. AWS change compute resources of a per hour basis.

Hence the cost of a single run can be calcualted using Equation 3.1.

Cost = PricePerHour ×NumberOfInstances× dJobRunimeInHourse (3.1)

To reduce the AWS S3 storage costs we use AWS S3 Lifecycle Management Policies.

This allow us to delegate reclaim of storage to S3 itself.

AWS EMR terminates AWS EC2 instances it has provisioned when cluster finishes

its work. AWS EC2 instances are charged by an hour boundary, this leads to some

inefficiencies in compute resources in case cluster terminates not at the end of an hour.

The data does not leave the AWS network, hence there are no additional costs for data

transfer.

16

Chapter 4

Implementation

An important part of this work is the implementation of the Spark version of the Jour-

nalProcessor job, described generally in the previous chapter. In this chapter we present

details of the implementation. Section 4.1 provides details of the input sampling. In

Section 4.2 we discuss MapReduce-based implementation of JournalProcessor. Finally,

we looks into Spark version of the application in Section 4.3.

Before we begin, we must note that MapReduce version of JournalProcessor is a propri-

etary system, therefore we are not able to present its full source code. The full source

code of the Spark -based application is available in Appendix C.

Versions of Software Used

For running MapReduce solution we used Apache Hadoop 2.4 stack, the application

itself was written using Java7 SDK. Spark solution uses Apache Spark 1.3.1 and uses the

same version of Hadoop to execute in a cluster mode on top of YARN. The application

itself written using Scala 2.10.5.

4.1 Implementation of Input Sampling

In the MapReduce solution, single iteration processed 38,423 journals. Size of Journal

varies from 46 bytes to 460 MiB. The total volume of journals is 4.253 TiB.

Figure 4.1 is the diagram with distribution of journal sizes grouped into 15 MiB buckets.

Note the logarithmic scale of Y-axis.

17

Figure 4.1: Distribution of a full input dataset (Log scale)

The resulted sample has the following distribution displayed in Figure 4.2. The sample

contains 3,840 journals, with total size of 537.4 GiB. From Figure 4.2 we can conclude

that sample includes journals of all sizes from the full dataset, hence the sample is

representative.

Figure 4.2: Distribution of a sampled input dataset overlaid on top of full dataset distribution
(Log scale)

18

4.2 MapReduce Implementation

Listing Listing 4.1 represents the main components of a MapReduce job. The Hadoop

MapReduce job is confugured by providing a set of hooks to the developer to include

custom business logic.

The application’s business logic concentrated in two Java classes: Mapper and Reducer

which set via job.setMapperClass() and job.setReducerClass().

The secondary sort pattern is implemented via three stages: setPartitionerClass(),

setSortComparatorClass() and setGroupingComparatorClass(). The first stage is

executed after mapper’s output is written to disk, second stage executed by MapReduce

internal shuffle process and the last stage is executed by reducer during construction

of an input iterator.

Job job = new Job(conf, getJobName());
job.setJarByClass(...);

job.setInputFormatClass(...);

job.setMapperClass(...); // parsing input records

job.setMapOutputKeyClass(...);
job.setMapOutputValueClass(...);

job.setReduceClass(...); // business logic

job.setPartitionerClass(...); // secondary sort, mapper side
job.setSortComparatorClass(...); // secondary sort, shuffle side
job.setGroupingComparatorClass(...); // secondary sort, reducer side

job.setOutputKeyClass(...);
job.setOutputValueClass(...);
job.setOutputFormatClass(...);

result = job.waitForCompletion(true);

Listing 4.1: Components of a MapReduce job written in Java

4.2.1 Tuninig MapReduce Solution

The first issues that began clear during the implementation is a lack of sufficient par-

allelism. Only small portion of the cluster was utilized during the map phase of the

job. The root cause of this issue was a HDFS data-locality property, YARN only sched-

uled map tasks on nodes where part of input split was present, but since the size of

input splits was small - just a name of the journal to fetch the whole input was in

a few HDFS blocks. In order to correct that, differemt splitting algorithm was used:

NLineInputFormat. Also, the replication factor was set to maximum value. That gave

a desired parallelism during the map phase.

19

Another problem was the deadlock of a Hadoop cluster. That was triggered by reducers

slow start feature which starts reducers while mappers are still running. The deadlock

condition happened when all containers allocated by YARN were running reducers

and all these reducers were waiting an output of s single map task, which failed but

could not re-run since there were no available containers. The solution was to increase

mapreduce.job.reduce.slowstart.completedmaps to 1.0.

4.3 Spark Implementation

Apache Spark application, presented in listing Listing 4.2 written in Scala and has dif-

ferent structure than a MapReduce job. Instead of plugging custom classes, functional

programming style is used to construct a dataflow which consists of a set of Transfor-

mations and ends with an Action. The size of code for Spark solution is an order of

magnitude less that a MapReduce Java solution.

val sc = new SparkContext(conf)

val result = sc.parallelize(journalS3Locations)
.flatMap(downloadAndParseJournals)
.groupSort(Ordering) // secondary sort, map side
.mapStreamByKey(performTemporalAggregation) // secondary sort, reduce side
.mapPartitionsWithIndex(storeIndexAndChunksToS3)
.collect

Listing 4.2: Components of a Spark job written in Scala

Listing 4.3 shows the structure of RDD, generated for a sequence of transformations

in Listing 4.2. ParallelCollectionRDD[0] is the first RDD generated by splitting

list of journal names from S3 into one file per partition to maximize the amount

of MapPartitionsRDD[2] tasks which pull journals from AWS S3. Next there is a

ShuffledRDD[3] which performs grouping observations per metricID and sorting ob-

servations by timestamp. We set number of partitions produced by shuffle to be 2432

in MapPartitionsRDD[7]. This was done to optimize the amount of memory used by

tasks executing mapPartitionsWithIndex transformation.

(2432) MapPartitionsRDD[7] at mapPartitionsWithIndex at App.scala:143 []
| MapPartitionsRDD[6] at mapPartitions at GroupSorted.scala:20 []
| anon$1[5] at RDD at GroupSorted.scala:80 []
| MapPartitionsRDD[4] at mapPartitions at PairRDDFunctions.scala:31 []
| ShuffledRDD[3] at ShuffledRDD at PairRDDFunctions.scala:29 []
+-(3840) MapPartitionsRDD[2] at map at PairRDDFunctions.scala:29 []

| MapPartitionsRDD[1] at flatMap at App.scala:114 []
| ParallelCollectionRDD[0] at parallelize at App.scala:114 []

Listing 4.3: Structured of RDD generated by Spark

20

4.3.1 Secondary Sort

MapReduce solutions uses secondary sory feature of Hadoop to guarantee that re-

ducers receive observation sorted by their timestamp. Unlike MapReduce, Spark has

limited support for secondary sort, its implementation is still in progress as of Thurs-

day 17th September, 2015: https://issues.apache.org/jira/browse/SPARK-3655.

We implement the secondary sort, we used thrid-party library: https://github.com/

tresata/spark-sorted.

21

https://issues.apache.org/jira/browse/SPARK-3655
https://github.com/tresata/spark-sorted
https://github.com/tresata/spark-sorted

Chapter 5

Evaluation

In this chapter we validate the Spark -based version of JournalProcessor application.

Section 5.1 reports our observations of cluster utilization metrics collected by Ganglia,

CloudWatch, Spark and AWS EMR. In Section 5.2 we present our analysis of observed

metrics. Finally, we evaluate our experience developing application with MapReduce

and Spark APIs in Section 5.3.

The reader may refer to Appendix B for additional data on cluster performance.

5.1 Observations

The execution time of the Spark job was 2 hours, 12 minutes and execution time of

the MapReduce job was 1 hour, 24 minutes. Spark job took 63,63% more time

than a MapReduce.

5.1.1 Ganglia Metrics

In Table 5.1 overall cluster utilization metrics are summarized. The normalized CPU

Utilization is computed using the following formula: (1 min load) / (number of CPUs).

Figure 5.1 illustrates change of metrics over time.

22

MapReduce Spark

statistic Avg Max Avg Max

1-min load avg 215 471 880 1010

cpu utilization, % 28.1% 65.4% 72.0% 93.0%

memory utilization, GiB 282.6 1024 849.1 1126.4

network, bytes in, GiB 0.58 5.20 0.24 0.83

network, bytes out, GiB 0.50 5.30 0.19 0.97

Table 5.1: Summary of Ganglia cluster utilization metrics

Figure 5.1: Overview of Ganglia metrics for MapReduce and Spark

23

5.1.2 CloudWatch Metrics

AWS EC2 collects basic metrics with 5-minute granularity for every running EC2

instance. Table 5.2 compares these metrics. The most notable difference can be seen

in the CPU Utilization as shown on Figure 5.2. Rest of the CloudWatch metrics can

be found in Appendix B.1. Unfortunately EC2 does not record metrics on memory

utilization, but these metrics available in the previous section via Ganglia.

MapReduce Spark

statistic Max Max

CPU Utilization, % 88% 100%

Disk Read, Bytes 8,8 GiB 10 GiB

Disk Read Ops, count 135,000 240,000

Disk Write, Bytes 18 GiB 8,1 GiB

Disk Write Ops, count 280,000 126,000

Network In, Bytes 23.2 GiB 6.2 GiB

Network Out, Bytes 17 GiB 6.5 GiB

Table 5.2: Summary of CloudWatch metrics

Figure 5.2: EC2 Instance CPUUtilization,%

24

5.1.3 I/O Performance

AWS EMR executes every 15 minutes various system monitoring commands like top,

vmstat, netstat and iostat. Listing 5.1 shows the output of iostat command during the

reducing part of the job.

25

.
.
.

a
v
g
-
c
p
u
:
%
u
s
e
r

%
n
i
c
e
%
s
y
s
t
e
m
%
i
o
w
a
i
t
%
s
t
e
a
l
%
i
d
l
e

9
2
.
3
3

0
.
0
0

4
.
9
1

1
.
7
5

0
.
0
0

1
.
0
0

D
e
v
i
c
e
:

r
r
q
m
/
s

w
r
q
m
/
s

r
/
s

w
/
s

r
s
e
c
/
s

w
s
e
c
/
s
a
v
g
r
q
-
s
z
a
v
g
q
u
-
s
z
a
w
a
i
t
s
v
c
t
m
%
u
t
i
l

x
v
d
a
p
1

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

x
v
d
b

0
.
0
0

0
.
0
0

0
.
0
0
2
8
5
3
.
0
0

0
.
0
0
7
2
8
1
8
4
.
0
0

2
5
5
.
2
3

1
3
6
.
2
5

4
6
.
3
6

0
.
3
5
1
0
0
.
0
0

x
v
d
c

0
.
0
0

0
.
0
0

0
.
0
0
1
3
4
2
.
0
0

0
.
0
0
3
4
2
9
7
6
.
0
0

2
5
5
.
5
7

1
3
7
.
3
2

1
0
2
.
8
5

0
.
7
5
1
0
0
.
0
0

a
v
g
-
c
p
u
:
%
u
s
e
r

%
n
i
c
e
%
s
y
s
t
e
m
%
i
o
w
a
i
t
%
s
t
e
a
l
%
i
d
l
e

8
8
.
5
9

0
.
0
0

3
.
4
6

2
.
8
9

0
.
0
3

5
.
0
3

D
e
v
i
c
e
:

r
r
q
m
/
s

w
r
q
m
/
s

r
/
s

w
/
s

r
s
e
c
/
s

w
s
e
c
/
s
a
v
g
r
q
-
s
z
a
v
g
q
u
-
s
z
a
w
a
i
t
s
v
c
t
m
%
u
t
i
l

x
v
d
a
p
1

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

x
v
d
b

0
.
0
0

0
.
0
0

0
.
0
0
1
5
4
4
.
0
0

0
.
0
0
3
9
4
5
4
4
.
0
0

2
5
5
.
5
3

1
4
4
.
3
7

9
5
.
4
2

0
.
6
5
1
0
0
.
0
0

x
v
d
c

0
.
0
0

0
.
0
0

0
.
0
0
1
3
8
4
.
0
0

0
.
0
0
3
5
3
8
8
8
.
0
0

2
5
5
.
7
0

1
5
1
.
8
9

1
0
9
.
5
7

0
.
7
2
1
0
0
.
0
0

.
.
.

L
is

ti
n

g
5
.1

:
M

ap
R

ed
u

ce
D

is
k

I/
O

U
ti

li
za

ti
o
n

d
u

ri
n

g
th

e
re

d
u

ce
p

h
a
se

(i
o
st

a
t

to
o
l)

.
.
.

a
v
g
-
c
p
u
:
%
u
s
e
r

%
n
i
c
e
%
s
y
s
t
e
m
%
i
o
w
a
i
t
%
s
t
e
a
l
%
i
d
l
e

5
2
.
0
8

0
.
0
0

7
.
8
9

2
.
5
7

0
.
0
0

3
7
.
4
6

D
e
v
i
c
e
:

r
r
q
m
/
s

w
r
q
m
/
s

r
/
s

w
/
s

r
s
e
c
/
s

w
s
e
c
/
s
a
v
g
r
q
-
s
z
a
v
g
q
u
-
s
z
a
w
a
i
t
s
v
c
t
m
%
u
t
i
l

x
v
d
a
p
1

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

x
v
d
b

0
.
0
0

0
.
0
0

0
.
0
0

1
.
0
0

0
.
0
0

8
.
0
0

8
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

x
v
d
c

0
.
0
0

1
.
0
0

0
.
0
0

4
2
0
.
0
0

0
.
0
0
1
0
6
7
6
8
.
0
0

2
5
4
.
2
1

1
4
1
.
7
4

3
6
1
.
5
6

2
.
3
8
1
0
0
.
0
0

a
v
g
-
c
p
u
:
%
u
s
e
r

%
n
i
c
e
%
s
y
s
t
e
m
%
i
o
w
a
i
t
%
s
t
e
a
l
%
i
d
l
e

5
2
.
9
6

0
.
0
0

4
.
2
5

1
.
4
4

0
.
0
0

4
1
.
3
5

D
e
v
i
c
e
:

r
r
q
m
/
s

w
r
q
m
/
s

r
/
s

w
/
s

r
s
e
c
/
s

w
s
e
c
/
s
a
v
g
r
q
-
s
z
a
v
g
q
u
-
s
z
a
w
a
i
t
s
v
c
t
m
%
u
t
i
l

x
v
d
a
p
1

0
.
0
0

0
.
0
0

0
.
0
0

9
.
0
0

0
.
0
0

1
6
8
.
0
0

1
8
.
6
7

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

x
v
d
b

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

0
.
0
0

x
v
d
c

0
.
0
0

1
.
0
0

0
.
0
0

2
8
1
.
0
0

0
.
0
0
7
1
6
6
4
.
0
0

2
5
5
.
0
3

1
2
8
.
6
5

4
3
4
.
0
6

3
.
5
6
1
0
0
.
0
0

.
.
.

L
is

ti
n

g
5
.2

:
S

p
ar

k
D

is
k

I/
O

U
ti

li
za

ti
o
n

d
u

ri
n

g
th

e
sh

u
ffl

e
(i

o
st

a
t

to
o
l)

26

5.1.4 Spark Executor Metrics

Additionally we were able to collect details metrics for Spark executors: Figure B.7

and Figure B.8. We also provide a snapshot of CPU Utilization, during the execution

of a Stage 0 (i.e. the map phase) of a Spark solution in Figure B.9.

5.2 Analysis

As we can see from this graph Spark was able to utilize all provisioned CPU and

memory.

It is clearly visible on the Figure 5.1 two stages on a job: before shuffle and after. In

both MapReduce and Spark CPU was better utilized during the mapping phase, when

journals are fetched and parsed from AWS S3. Yet, both jobs left over half of the CPU

resources not used.

Looking at memory utilization, Spark was able to use more memory than MapRe-

duce and memory utilization pattern is different compared to MapReduce. We believe

that this is caused by the approach Spark request containers from YARN, i.e. single

container per node, which persists during the execution of a whole job.

5.2.1 MapReduce I/O Performance

To improve utilization of CPU and memory we reduced memory allocated by YARN

to mapper and reducers, by changing mapreduce.map.memory.mb from 3 GiB to 2 GiB

and lowering mapreduce.reduce.memory.mb from 6.6 GiB ti 4.6 GiB. As a result we

got close to 100Memory utilization went up by only 10But during the reduce phase

CPU utilization went down to 20

The root cause of this was the bottleneck of disk I/O on the reducers. Listing 5.1 is a

snippet from instance-state log file that AWS EMR collects every 15 minutes for every

node of a cluster. As we observed from Listing 5.1 SSD disk on the instances experience

a significant write load of over 3000 IOPS.

Tan, Fong & Liu (2014) showed that using SSD disks significantly improves perfor-

mance, moreover we share the load between two distinct SSD drives xvdb and xvdc.

Even with these improvements SSD disks do not provide enough capacity to serve data

fast enough to the CPU for processing.

27

5.2.2 Spark I/O Performance

Similar disk I/O bottleneck was observed in Spark as well. Except as seen from List-

ing 5.2 only one disk was utilized instead of two. We belive that this is due to miscon-

figuration of OS. Our observations contradict claim that Spark is an in-memory system,

since we found that as in MapReduce disk I/O throughput is a bottleneck.

5.2.3 On Non Uniform Distribution of Load

Since journal represented as a TAR archive, of one or more ZIP files with custom

headers between which prefix each file in a TAR archive. It is not possible for Hadoop

I/O to split the file into equal set of blocks, i.e. mapper cannot process just a portion

of a journal file, only the whole file. Given that distribution of journals varies from

few magabytes up to 460 MiB, load on some nodes that fetch journals from S3 and

parse them (mappers in case of MapReduce), is significantly higher. This limits the

parallelism of the cluster. Since all data for single metricID must be processed by

exactly one reducer or in case of Spark by the node that run first transformation in

every stage.

5.2.4 Resource Allocation Using YARN

Both Spark and MapReduce run on top of Hadoop YARN resource manager Vavilapalli

et al. (2013). YARN can manage two types of resources: vCores total number of CPU-

cores in the cluster, and memory total volume of RAM in the cluster. YARN only

enforces memory usage, i.e. the container will be terminated by a NodeManager if it

attempts allocate more memory than allowed.

This complicates the configuration process of Spark running on YARN, since memory

limits must be set separately in Spark configuration via spark.executor.memory and

in YARN’s configuration via yarn.nodemanager.resource.memory-mb. Another type

constraint YARN enforces is locality, but in the AWS EC2 there is no notion of locality,

for example there is no way to guarantee that two EC2 instances will be provisioned

in the same physical rack. The only placement constrain that exists is that all EC2

instances of the AWS EMR cluster must be in the same Availability Zone and within

the same Virtual Subnet.

We found it difficult to compare YARN metrics between MapReduce and Spark since

allocation algorithms are different for MapReduce and Spark. MapReduce allocates

resources in two phases: Containers for map tasks requested upfront, but containers

28

for reduce tasks are not started until some portion of map tasks are finished. On the

other hand, Spark request all containers for executors upfront. In our experiment we

configured Spark to request one container per node. This allows Spark to run multiple

tasks in the single container and JVM, thus reducing the startup overhead.

One more disadvantage of Spark we observed is that support only homogeneous clusters.

Every executor get’s the same amount of cores and memory. For out workload this

reduced efficiency since tasks that fetch journals require less memory that tasks that

aggregate observations.

5.3 MapReduce and Spark API

Both Apache Hadoop MapReduce and Apache Spark engines built on top of JVM vir-

tual machine. The main different is that MapReduce developed in JVM native language

Java, but Spark developed using Scala language, which is a functional programming

language unlike object oriented Java. This makes APIs for both systems very different.

In MapReduce developer provide classes to job configuration. In Spark developer uses

higher-order functions (i.e. functions that accept another functions as agruments) and

lazy computation.

In our solutions the size of code for Spark application is an smaller than the size of

MapReduce solution by a factor of 10.

29

Chapter 6

Conclusion

In this thesis we have shown that migrating existing application from MapReduce to

Spark is indeed possible, but doing so did not improved performance for the Journal-

Processor application. Despite that we were able to configure Spark in such a way that

it provided better cluster utilization compared to MapReduce solution.

We have found that Apache Spark is a work-in-progress system under heavy develop-

ment. Moreover, we found that I/O subsystem was misconfigured in Spark. Due to

that error the disk throughput was only 50% of MapReduce.

Two essential features that we were missing during the implementation are:

• The ability to efficiently read binary data from Amazon S3 : https://issues.

apache.org/jira/browse/SPARK-6527. This issue is open at the moment of

writing.

• The lack of efficient Secondary Sort implementation: https://issues.apache.

org/jira/browse/SPARK-3655. This issue is in progress at the moment of writ-

ing.

Implementing work-around solutions with sub-optimal performance resulted in signifi-

cant increase of Spark application running time.

6.0.1 Monitoring of the Cluster

We have found that Spark provides great web-based user interface (UI) for debugging

and monitoring cluster (for example Figure B.7 and Figure B.8). The important advan-

tage over MapReduce is that Spark UI is available after job completes for post-analysis,

30

https://issues.apache.org/jira/browse/SPARK-6527
https://issues.apache.org/jira/browse/SPARK-6527
https://issues.apache.org/jira/browse/SPARK-3655
https://issues.apache.org/jira/browse/SPARK-3655

unlike MapReduce where ApplicationMaster UI is shut down as soon as a job completes.

During our experiment we found it difficult to collect metrics related to cluster utiliza-

tion. We evaluated the following sources:

• Ganglia Monitoring system – detailed metrics with 1-minute granularity but only

for the last hour. All metrics after 1 hour have 5-minute granularity. Ganglia

scales poorly with the size of cluster. For example with the cluster size of 200

nodes, it takes few minutes to display aggregated metrics for the cluster.

• EMR Instance stage log – detailed log over node resource usage by executing OS

commands like top or iostat. Commands are executed with a 15-minute interval

which makes it hard to use this data for troubleshooting.

• EMR CloudWatch metrics – basic aggregated metrics for cluster utilization with

5-minute granularity.

• EC2 instance metrics – basic instance usage metrics, but lack memory utilization.

6.0.2 Debugging Application

In our experience developing and tuning Spark application was much easier than

Hadoop Map-Reduce application. In Spark we were able to apply one transforma-

tion at a time and to test every function. In MapReduce we switched between map

and reduce code few times to debug errors, when input data format changed during

the implementation. We believe that Spark application has better architecture and

modularity of the codebase.

6.0.3 Migration Best Practices

During the implementation we established the following best practices for migration

batch log-processing application, that we believe are general and applicable to a broad

range of MapReduce workloads.

Decompose MapReduce application into a Graph

We have found that it is useful to decompose the MapReduce application into a Directed

Acyclic Graph (DAG). This allows to evaluate the migration plan in details before

developing Spark application.

31

Identifying Shuffle Operation

Since shuffle transformation is the most expensive operation in terms of CPU and I/O

load it is important to identify it early. One should consider migrating application in

such a way that shuffle operation can be eliminated.

Choosing the Right Instance

We found that EC2 instance type we were using (c3.8xlarge) has poor balance between

CPU processing and I/O throughput. We believe that identifying the expected CPU,

memory, network and I/O load is essential before starting the migration work.

6.0.4 Observed Patterns

We identified the following generic patterns in both systems.

• Shuffle – During this transformation cluster is divided into two partitions, every

node in one partition communicates with every node in another partition.

• Secondary Sort – Allows to impose an ordering over the sequence of records that

is processed in every transformation (for example ordering records by timestamp

field).

• Splittable Input – In order for every task to have input of the equal size (to

maximize performance), the input data must be dividable into chunks of equal

size. We believe that this will result in uniform load of the cluster and overall

better utilization.

6.1 Future Work

We believe that Spark engine will mature and the functionality will stabilize over time.

We see few areas where our research can be extended.

6.1.1 Fix Spark disk configuration

In our experiments Spark was using only one disk out of two. We believe this is an

error, the disks must be grouped into RAID0 or RAID10 to maximize throughput.

32

6.1.2 Evaluate Different Instance Types

In our evaluation we look only on single type of EC2 instance. It it interesting to

evaluate various options, particularly with high provisioned I/O setting in AWS EC2.

6.1.3 Execution Unmodified MapReduce on Spark

We believe that it is possible to introduce a middleware that is capable of executing un-

modified MapReduce job with Spark engine by intercepting API calls from MapReduce

and converting them into Spark API.

33

Bibliography

Ananthanarayanan, G., Douglas, C., Ramakrishnan, R., Rao, S. & Stoica, I. (2012), True elasticity

in multi-tenant data-intensive compute clusters, in ‘Proceedings of the Third ACM Symposium on

Cloud Computing’, SoCC ’12, ACM, New York, NY, USA, pp. 24:1–24:7.

URL: http://doi.acm.org/10.1145/2391229.2391253

Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson, O. & Rowstron, A. (2013), Scale-up vs

scale-out for hadoop: Time to rethink?, in ‘Proceedings of the 4th annual Symposium on Cloud

Computing’, ACM, p. 20.

Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A., Rosen, J., Stoica, I., Wendell, P., Xin, R. &

Zaharia, M. (2015), ‘Scaling spark in the real world: Performance and usability’, Proceedings of the

VLDB Endowment 8(12).

Barroso, L. A., Clidaras, J. & Hölzle, U. (2013), ‘The datacenter as a computer: an introduction to

the design of warehouse-scale machines’, Synthesis Lectures on Computer Architecture 8(3), 1–154.

Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J. & Tian, Y. (2010), A comparison of join

algorithms for log processing in mapreduce, in ‘Proceedings of the 2010 ACM SIGMOD International

Conference on Management of Data’, SIGMOD ’10, ACM, New York, NY, USA, pp. 975–986.

URL: http://doi.acm.org/10.1145/1807167.1807273

Borthakur, D. (2007), ‘The hadoop distributed file system: Architecture and design’, Hadoop Project

Website 11(2007), 21.

Datar, M., Gionis, A., Indyk, P. & Motwani, R. (2002), ‘Maintaining stream statistics over sliding

windows’, SIAM Journal on Computing 31(6), 1794–1813.

Davidson, A. & Or, A. (2013), ‘Optimizing shuffle performance in spark’, University of California,

Berkeley-Department of Electrical Engineering and Computer Sciences, Tech. Rep .

Dean, J. & Ghemawat, S. (2004), Mapreduce: Simplified data processing on large clusters, in ‘Pro-

ceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation -

Volume 6’, OSDI’04, USENIX Association, Berkeley, CA, USA, pp. 10–10.

URL: http://dl.acm.org/citation.cfm?id=1251254.1251264

Delimitrou, C. & Kozyrakis, C. (2014), Quasar: resource-efficient and qos-aware cluster management,

in ‘Proceedings of the 19th international conference on Architectural support for programming lan-

guages and operating systems’, ACM, pp. 127–144.

Delimitrou, C., Sanchez, D. & Kozyrakis, C. (2014), ‘Tarcil: Reconciling scheduling speed and quality

34

in large, shared clusters’.

URL: https://web.stanford.edu/group/mast/cgi-bin/drupal/system/files/2014.techreport.tarcil.pdf

Engler, D. R., Kaashoek, M. F. & O’Toole, Jr., J. (1995), Exokernel: An operating system architecture

for application-level resource management, in ‘Proceedings of the Fifteenth ACM Symposium on

Operating Systems Principles’, SOSP ’95, ACM, New York, NY, USA, pp. 251–266.

URL: http://doi.acm.org/10.1145/224056.224076

Ghodsi, A., Zaharia, M., Hindman, B., Konwinski, A., Shenker, S. & Stoica, I. (2011), Dominant

resource fairness: Fair allocation of multiple resource types, in ‘Proceedings of the 8th USENIX

Conference on Networked Systems Design and Implementation’, NSDI’11, USENIX Association,

Berkeley, CA, USA, pp. 323–336.

URL: http://dl.acm.org/citation.cfm?id=1972457.1972490

Gray, J. (2007), ‘Tape is dead, disk is tape, flash is disk, ram locality is king’, Gong Show Presentation

at CIDR .

Gray, J. & Graefe, G. (1997), ‘The five-minute rule ten years later, and other computer storage rules

of thumb’, SIGMOD Rec. 26(4), 63–68.

URL: http://doi.acm.org/10.1145/271074.271094

Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D., Katz, R., Shenker, S. & Stoica,

I. (2011), Mesos: A platform for fine-grained resource sharing in the data center, in ‘Proceedings of

the 8th USENIX Conference on Networked Systems Design and Implementation’, NSDI’11, USENIX

Association, Berkeley, CA, USA, pp. 295–308.

URL: http://dl.acm.org/citation.cfm?id=1972457.1972488

Isard, M. (2007), ‘Autopilot: Automatic data center management’, Operating Systems Review

41(2), 60–67.

URL: http://research.microsoft.com/apps/pubs/default.aspx?id=64604

Isard, M., Budiu, M., Yu, Y., Birrell, A. & Fetterly, D. (2007), Dryad: Distributed data-parallel pro-

grams from sequential building blocks, in ‘Proceedings of the 2Nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007’, EuroSys ’07, ACM, New York, NY, USA, pp. 59–72.

URL: http://doi.acm.org/10.1145/1272996.1273005

Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K. & Goldberg, A. (2009), Quincy: Fair

scheduling for distributed computing clusters, in ‘Proceedings of 22nd ACM Symposium on Oper-

ating Systems Principles’, Association for Computing Machinery, Inc., pp. 261–276.

URL: http://research.microsoft.com/apps/pubs/default.aspx?id=81516

Kopp, C., Mock, M., Papapetrou, O. & May, M. (2013), Large-scale online mobility monitoring with

exponential histograms., in ‘BD3@ VLDB’, Citeseer, pp. 61–66.

Laney, D. (2001), ‘3d data management: Controlling data volume, velocity and variety’, META Group

Research Note 6, 70.

Li, H., Ghodsi, A., Zaharia, M., Shenker, S. & Stoica, I. (2014), Tachyon: Reliable, memory speed

storage for cluster computing frameworks, in ‘Proceedings of the ACM Symposium on Cloud Com-

puting’, SOCC ’14, ACM, New York, NY, USA, pp. 6:1–6:15.

URL: http://doi.acm.org/10.1145/2670979.2670985

35

Li, M., Tan, J., Wang, Y., Zhang, L. & Salapura, V. (2015), Sparkbench: A comprehensive benchmark-

ing suite for in memory data analytic platform spark, in ‘Proceedings of the 12th ACM International

Conference on Computing Frontiers’, CF ’15, ACM, New York, NY, USA, pp. 53:1–53:8.

URL: http://doi.acm.org/10.1145/2742854.2747283

Logothetis, D., Trezzo, C., Webb, K. C. & Yocum, K. (2011), In-situ mapreduce for log processing, in

‘2011 USENIX Annual Technical Conference (USENIX ATC11)’, p. 115.

Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N. & Czajkowski, G.

(2010), Pregel: a system for large-scale graph processing, in ‘Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data’, ACM, pp. 135–146.

Massie, M. L., Chun, B. N. & Culler, D. E. (2004), ‘The ganglia distributed monitoring system: design,

implementation, and experience’, Parallel Computing 30(7), 817–840.

Mishra, A. K., Hellerstein, J. L., Cirne, W. & Das, C. R. (2010), ‘Towards characterizing cloud backend

workloads: insights from google compute clusters’, ACM SIGMETRICS Performance Evaluation

Review 37(4), 34–41.

Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P. & Abadi, M. (2013), Naiad: A timely

dataflow system, in ‘Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles’, SOSP ’13, ACM, New York, NY, USA, pp. 439–455.

URL: http://doi.acm.org/10.1145/2517349.2522738

Nguyen, H., Shen, Z., Gu, X., Subbiah, S. & Wilkes, J. (2013), Agile: Elastic distributed resource scaling

for infrastructure-as-a-service, in ‘Proc. of the USENIX International Conference on Automated

Computing (ICAC13). San Jose, CA’.

Raman, R., Livny, M. & Solomon, M. (1999), ‘Matchmaking: An extensible framework for distributed

resource management’, Cluster Computing 2(2), 129–138.

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M. & Wilkes, J. (2013), Omega: flexible, scalable

schedulers for large compute clusters, in ‘Proceedings of the 8th ACM European Conference on

Computer Systems’, ACM, pp. 351–364.

Sharma, B., Chudnovsky, V., Hellerstein, J. L., Rifaat, R. & Das, C. R. (2011), Modeling and syn-

thesizing task placement constraints in google compute clusters, in ‘Proceedings of the 2nd ACM

Symposium on Cloud Computing’, ACM, p. 3.

Tan, W., Fong, L. & Liu, Y. (2014), Effectiveness assessment of solid-state drive used in big data

services, in ‘Web Services (ICWS), 2014 IEEE International Conference on’, pp. 393–400.

Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., Graves, T., Lowe,

J., Shah, H., Seth, S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B. & Baldeschwieler, E.

(2013), Apache hadoop yarn: Yet another resource negotiator, in ‘Proceedings of the 4th Annual

Symposium on Cloud Computing’, SOCC ’13, ACM, New York, NY, USA, pp. 5:1–5:16.

URL: http://doi.acm.org/10.1145/2523616.2523633

Verma, A., Korupolu, M. & Wilkes, J. (2014), Evaluating job packing in warehouse-scale computing,

in ‘IEEE Cluster’, Madrid, Spain.

Waldspurger, C. A. & Weihl, W. E. (1994), Lottery scheduling: Flexible proportional-share resource

36

management, in ‘Proceedings of the 1st USENIX Conference on Operating Systems Design and

Implementation’, OSDI ’94, USENIX Association, Berkeley, CA, USA.

URL: http://dl.acm.org/citation.cfm?id=1267638.1267639

Xin, R., Deyhim, P., Ghodsi, A., Meng, X. & Zaharia, M. (2014), ‘Graysort on apache spark by

databricks’.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker,

S. & Stoica, I. (2012), Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing, in ‘Proceedings of the 9th USENIX conference on Networked Systems Design

and Implementation’, USENIX Association, pp. 2–2.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. & Stoica, I. (2010), Spark: cluster computing

with working sets, in ‘Proceedings of the 2nd USENIX conference on Hot topics in cloud computing’,

pp. 10–10.

Zhang, Q., Hellerstein, J. L. & Boutaba, R. (2011), Characterizing task usage shapes in googles compute

clusters, in ‘Large Scale Distributed Systems and Middleware Workshop (LADIS11)’.

Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V. & Wilkes, J. (2013), Cpi 2: Cpu perfor-

mance isolation for shared compute clusters, in ‘Proceedings of the 8th ACM European Conference

on Computer Systems’, ACM, pp. 379–391.

Zhou, S. (1992), Lsf: Load sharing in large heterogeneous distributed systems, in ‘I Workshop on

Cluster Computing’.

37

Appendix A

A.1 Script to Sample the Input Dataset

Input dataset consists of set of Journals located in an Amazon S3 bucket. Along with

journals there are Manifest files that contain list of journals processed by a single batch

job. A.1 shows a snipped of a single Manifest file.

[
{

"bucket": "journals",
"length": 256645126,
"key": "zzZ1y_v06_20150623T024600Z_7edd3b29-562f-4258-af9b-80c109fef60e.input"

},
...
{
"bucket": "journals",
"length": 77076486,
"key": "zzp7D_v06_20150622T210855Z_2371bafb-bbd2-4874-9a28-6fa3a68bd3d1.input"

}
]

Listing A.1: Sample of a Manifest file

Script in A.2 copies Amazon S3 objects between buckets.

#!/usr/bin/env bash

set -e

n=10
while read size object; do
(aws s3 cp --region us-east-1 \
s3://journals-us-east-1/$object \
s3://lvsl-thesis-journals/) &

n=$(($n - 1))
if [$n -eq 0]; then
wait
n=10

fi
done < ./sampled_journals.txt

wait
echo "Done!"

Listing A.2: Script to copy s3 objectsd between bucket in bulk

38

Script in A.3 used to pick the random subset of journals from a manifest file:

import sys
import json
import random
import bisect

from collections import namedtuple
from itertools import cycle

Journal = namedtuple(’Journal’, ’size s3_object’)

def main(percent):
journals = []
for line in sys.stdin:

entry = json.loads(line)
skip injected data
if ’injected’ in entry[’key’]:

continue
journals.append(Journal(int(entry[’length’]), entry[’key’]))

number_of_journals = len(journals)
sample_size = number_of_journals * 0.1 # 10%

max_size = max(journals).size
number_of_buckets = 31
size_of_bucket = 15 * 1048576 # 15MiB

buckets = [size_of_bucket * i for i in range(1, number_of_buckets + 1)]
bins = [[] for _ in range(number_of_buckets)]

for j in journals:
index = bisect.bisect_left(buckets, j.size)
bins[index].append(j)

shuffle each bin
for journals_in_bin in bins:

random.shuffle(journals_in_bin)

get random journals
bin_indexes = cycle(range(number_of_buckets))
sampled_journals = []
while len(sampled_journals) < sample_size:

while True:
index = next(bin_indexes)
if not bins[index]: # bin already empty

continue
sampled_journals.append(bins[index].pop())
break

print ’\n’.join("%s %s" % (j.size, j.s3_object) for j in sorted(sampled_journals ←↩
))

if __name__ == ’__main__’:
main(sys.argv[1])

Listing A.3: Python script for sampling input data

39

A.2 Script to Run Spark on Amazon Elastic Map Reduce

(EMR)

#!/usr/bin/env bash
set -e
if [-n "$DEBUG"]; then
set -x

fi

if [! -f "$1"]; then
echo "Uber JAR does not exists: ’$1’" >&2
exit 201

fi
if [-z "$2"]; then
echo "Provide aws_key" >&2
exit 201

fi
if [-z "$3"]; then
echo "Provide aws_secret" >&2
exit 201

fi

UBER_JAR=$1
UBER_JAR_NAME=$(basename $UBER_JAR)
AWS_KEY=$2
AWS_SECRET=$3
REGION=eu-west-1
KEY_PAIR_NAME=lvsl-ec2-dev
VPC_SUBNET_ID=subnet-11bc3866
NUM_NODES=20
NODE_TYPE=c3.8xlarge
S3_LOGS_PATH=s3n://lvsl-spark-logs-dub/

function die {
echo ${1:-"Unknown error"} >&2
exit 200

}

Create an EMR cluster
CLUSTER_ID=$(aws emr create-cluster --name "Spark cluster" \

--bootstrap-action Path=s3://elasticmapreduce/bootstrap-actions ←↩
/configure-hadoop,Args=[-y,yarn.nodemanager.resource.memory ←↩
-mb=80000] \

--ami-version 3.8 \
--applications Name=Spark,Args=[-x,-l,DEBUG,-d,spark.driver. ←↩

cores=20,-d,spark.driver.maxResultSize=6000m,-d,spark. ←↩
driver.memory=15240m,-d,spark.yarn.am.memory=15240m,-d, ←↩
spark.yarn.am.cores=20,-d,spark.dynamicAllocation.enabled= ←↩
false,-d,spark.rdd.compress=true,-d,spark.task.cpus=2,-d, ←↩
spark.akka.threads=10] Name=Ganglia \

--ec2-attributes KeyName=$KEY_PAIR_NAME \
--instance-type $NODE_TYPE \
--instance-count $NUM_NODES \
--use-default-roles \
--enable-debugging \
--log-uri $S3_LOGS_PATH \
--ec2-attributes SubnetId=$VPC_SUBNET_ID,KeyName=$KEY_PAIR_NAME ←↩

\
--region $REGION \
--output text)

if [$? != 0]; then
die "Failed to start an EMR cluster."

fi

echo "Cluster created: $CLUSTER_ID. Initialisation..."
Waiting for cluster to initialize
while [[! $(aws emr describe-cluster --cluster-id $CLUSTER_ID --region $REGION -- ←↩

query "Cluster.Status.State" --output text) =~ ^(WAITING|TERM)]]; do

40

if [$? != 0]; then
die "Unable to get EMR cluster status"

fi
echo -n ’.’
sleep 5

done

if [[$(aws emr describe-cluster --cluster-id $CLUSTER_ID --region $REGION --query " ←↩
Cluster.Status.State" --output text) =~ ^TERM]]; then

die "Cluster failed to start."
fi

Get master’s public DNS name
MASTER_NODE=$(aws emr describe-cluster --cluster-id $CLUSTER_ID --region $REGION -- ←↩

query "Cluster.MasterPublicDnsName" --output text)
if [-z $MASTER_NODE]; then
die "Unable to get the master’s public DNS name"

fi

Start the proxy in background. This used from Foxy Proxy plugin
(ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -i "/Users/$USER/. ←↩

ssh/$KEY_PAIR_NAME.pem" -ND 8157 hadoop@$MASTER_NODE) &

echo ’ ’
echo "Cluster is ready: http://$MASTER_NODE:18080/"

scp -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -i "/Users/$USER/. ←↩
ssh/$KEY_PAIR_NAME.pem" $UBER_JAR hadoop@$MASTER_NODE:/home/hadoop/ ←↩
$UBER_JAR_NAME

if [$? != 0]; then
die "Unable to SCP uber JAR."

fi

Add step to the cluster
SPARK_ARGS="[--class,com.github.lvsl.thesis.sparkimpl.App,/home/hadoop/ ←↩

$UBER_JAR_NAME,/home/hadoop/output,$AWS_KEY,$AWS_SECRET,3840]"
STEP_ID=$(aws emr add-steps --region $REGION \

--cluster-id $CLUSTER_ID \
--output text \
--steps Type=Spark,Name="Spark Program",ActionOnFailure= ←↩

TERMINATE_JOB_FLOW,Args=$SPARK_ARGS)
if [$? != 0]; then
die "Unable to launch a step."

fi

STEP_ID=${STEP_ID#STEPIDS}

echo "Step added: $STEP_ID"

Wait for step completion --query ’Step.Status.State’
while [[! $(aws emr describe-step --cluster-id $CLUSTER_ID --step-id $STEP_ID -- ←↩

region $REGION --query "Step.Status.State" --output text) =~ ^(COMPLETED| ←↩
CANCELLED|FAILED)]]; do

echo -n ’.’
sleep 5

done
if [[! $(aws emr describe-step --cluster-id $CLUSTER_ID --step-id $STEP_ID --region ←↩

$REGION --query "Step.Status.State" --output text) =~ ^COMPLETED]]; then
die "$CLUSTER_ID/$STEP_ID was not completed!"
fi

echo "Step completed. Type yes to terminate the cluster"

read
aws emr terminate-clusters --region $REGION --cluster-ids $CLUSTER_ID
if [$? != 0]; then
die "Unable to terminate the cluster."

fi
kill -TERM $(jobs -p)
exit 0

Listing A.4: Script to run a Spark Job in EMR cluster

41

Appendix B

B.1 CloudWatch EC2 Instance Metrics

Figure B.1: EC2 Instance DiskReadBytes, Bytes

42

Figure B.2: EC2 Instance DiskReadOps, Number of IOPS

Figure B.3: EC2 Instance DiskWriteBytes, Bytes

43

Figure B.4: EC2 Instance DiskWriteOps, Number of IOPS

Figure B.5: EC2 Instance NetworkIn, Bytes

44

Figure B.6: EC2 Instance NetworkOut, Bytes

B.2 Spark Executor Metrics

Figure B.7 and Figure B.8 screenshots display various metrics produces by Spark tasks

during the execution. Stage 0 represents the mapping of the job, and stage 1 the

reducing part. Metrics have the following statistics: minimum, 25-th, 50-th(median),

75-th percentiles and maximum. This allows better observe the distribution of values

for a particular metric.

Figure B.9 shows the detailed CPU Utilization (consume by userspace) metrics for a

Spark cluster during the first stage: fetching journals from AWS S3 and parsing Avro.

45

F
ig

u
re

B
.7

:
S

p
a
rk

S
ta

g
e

0
M

et
ri

cs

46

F
ig

u
re

B
.8

:
S

p
a
rk

S
ta

g
e

1
M

et
ri

cs

47

F
ig

u
re

B
.9

:
S

p
a
rk

S
ta

g
e

1
M

et
ri

cs

48

Appendix C

C.1 Spark JournalProcessor Code

This appendix contains full source code of a Spark based implementation of Journal-

Processor.

// App.scala
package com.github.lvsl.thesis.sparkimpl

import java.io.File

import scala.Iterator
import scala.collection.JavaConversions.asScalaBuffer
import scala.collection.mutable.ArrayBuffer

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext

import com.amazonaws.services.s3.AmazonS3Client
import com.amazonaws.services.s3.model.ListObjectsRequest
import com.amazonaws.services.s3.model.ObjectListing
import com.amazonaws.services.s3.model.S3ObjectSummary
import com.github.lvsl.thesis.sparkimpl.data.AggObservation
import com.github.lvsl.thesis.sparkimpl.data.AggResult
import com.github.lvsl.thesis.sparkimpl.data.Observation
import com.tresata.spark.sorted.PairRDDFunctions.rddToSparkSortedPairRDDFunctions

object App {

val PARTITIONS = 32 * 19 * 4 // 19 nodes of c3.8xlarge, 4 tasks per core

val DATA_DIR = if (sys.env("USER") == "hadoop") {
"/mnt/var"

} else {
"/tmp"

}

def main(args : Array[String]) {
// ID for a job
val runId = data.uuid

// Configuration
val conf = new SparkConf().setAppName("Lvsl thesis, run: %s" format runId)

// Speed up with Kryo
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
conf.set("spark.kryoserializer.buffer.max.mb", "1024")
conf.set("spark.kryo.registrationRequired", "false")
conf.registerKryoClasses(Array(
classOf[data.AggObservation],

49

classOf[data.AggResult],
classOf[data.Observation]

))

val sc = new SparkContext(conf)

// XXX: for some reason s3: protocol does not work as well as * wildcard
// use unions a hack to get RDD with multiple binary files
sc.hadoopConfiguration.set("fs.s3n.awsAccessKeyId", args(1))
sc.hadoopConfiguration.set("fs.s3n.awsSecretAccessKey", args(2))

println("Spark Configuration:")
sc.getConf.getAll.map(println)

// List Bucket
println("Listing journal bucket...")
val s3client = new AmazonS3Client
s3client.setEndpoint("https://s3-external-1.amazonaws.com")

val listRequest = new ListObjectsRequest

listRequest.withBucketName("lvsl-thesis-journals")

var listResponse: ObjectListing = null
val journals: ArrayBuffer[S3ObjectSummary] = new ArrayBuffer
do {
listResponse = s3client.listObjects(listRequest)
journals ++= listResponse.getObjectSummaries
listRequest.withMarker(listResponse.getNextMarker)
println("Listed: %s" format journals.length)

} while (listResponse.isTruncated)

println("Done listing journals: %s" format journals.length)

// Shuffle and take requested number of journals
val numberOfJournals = {
val n = args(3).toInt
if (n == -1) {
journals.length

} else if (n > 0) {
n

} else {
throw new IllegalArgumentException("Bad number of journals to process: %s" ←↩

format n)
}

}
// get bucket and key
val shuffled = util.Random.shuffle(journals).take(numberOfJournals).map(
summary => (summary.getBucketName, summary.getKey))

println("Going to process: %s journals" format shuffled.length)

// fetch the file and parse it
val pairs = sc.parallelize(shuffled, shuffled.length).flatMap(x => {
val (bucket, key) = x
val localFile = new File("%s/%s" format (DATA_DIR, key))

println("Going to fetch %s from %s" format (key, bucket))

val tm = data.getS3TransferManager

val download = tm.download(bucket, key, localFile)

try {
download.waitForCompletion

} finally { tm.shutdownNow }

println("Fetched %s from %s" format (key, bucket))
try {
data.readAvroJournal("%s/%s" format (bucket, key), new java.io. ←↩

FileInputStream(localFile))

50

} finally {
println("Removing temp file: %s" format localFile)
val status = localFile.delete
println("Removal status: %s" format status)

}
})

// This will trigger shuffle
val sorted = pairs.groupSort(PARTITIONS, Some(implicitly[Ordering[data. ←↩

Observation]]))
val mapped = sorted.mapStreamByKey(data.aggregateObservations)

val resultRDD = mapped.mapPartitionsWithIndex((index, items) => {
val indexName = "%s_%s.index.txt.gz" format (runId, index)
val chunkName = "%s_%s.chunk.txt.gz" format (runId, index)

val indexFilePath = "%s/%s" format (DATA_DIR, indexName)
val chunkFilePath = "%s/%s" format (DATA_DIR, chunkName)

val indexFile = new File(indexFilePath)
val chunkFile = new File(chunkFilePath)

val writer = data.gzipTextWriter(indexFilePath)
val chunkWriter = data.gzipTextWriter(chunkFilePath)

var counter = 0
var pos: Long = 0
items.foreach(o => {
writer.append("%s %s %s %s" format (o._1, o._2.count, o._2.duplicates, pos))
writer.newLine()
counter += 1

// write chunk
o._2.values.foreach(ao => {
chunkWriter.append("%d %s %e %e %e %e" format (
ao.startTimestmp, ao.unit, ao.statistics.count, ao.statistics.sum, ao. ←↩

statistics.min, ao.statistics.max))
chunkWriter.newLine()
pos += 1

})
})

writer.close()
chunkWriter.close()

// Copy files to S3. Assume default credentials somewhow set
val tm = data.getS3TransferManager

println("[%s] Starting Upload..." format index)

val indexUpload = tm.upload("lvsl-spark-output-dub", "%s/%s.index.txt.gz" ←↩
format (runId, index), indexFile)

val chunkUpload = tm.upload("lvsl-spark-output-dub", "%s/%s.chunk.txt.gz" ←↩
format (runId, index), chunkFile)

try {
indexUpload.waitForCompletion
chunkUpload.waitForCompletion

} finally {
tm.shutdownNow
indexFile.delete
chunkFile.delete

}

println("[%s] Upload complete!" format index)

Iterator((index, counter))
}, true)

// Print RDD structure

51

println(resultRDD.toDebugString)

resultRDD.collect.map(println)
}

}

Listing C.1: Main Application Class

// package.scala
package com.github.lvsl.thesis.sparkimpl

import java.io.BufferedWriter
import java.io.File
import java.io.FileOutputStream
import java.io.InputStream
import java.io.OutputStreamWriter
import java.nio.ByteBuffer
import java.nio.charset.Charset
import java.security.MessageDigest
import java.util.Arrays
import java.util.zip.GZIPOutputStream

import scala.Iterator
import scala.Vector
import scala.collection.JavaConverters.asScalaIteratorConverter
import scala.collection.SortedMap
import scala.math.Ordering.Implicits.infixOrderingOps

import org.apache.avro.Schema
import org.apache.avro.file.DataFileStream
import org.apache.avro.generic.GenericDatumReader
import org.apache.avro.generic.GenericRecord
import org.apache.commons.compress.archivers.tar.TarArchiveEntry
import org.apache.commons.compress.archivers.tar.TarArchiveInputStream
import org.joda.time.DateTime
import org.joda.time.format.ISODateTimeFormat

import com.amazonaws.ClientConfiguration
import com.amazonaws.regions.Region
import com.amazonaws.regions.Regions
import com.amazonaws.services.s3.AmazonS3Client
import com.amazonaws.services.s3.transfer.TransferManager

package object data {

import scala.math.Ordering.Implicits._
import scala.collection.JavaConverters._

val ONE_MINUTE_MILLIS = 60 * 1000

val OBSERVATION_PATTERN = "^Datapoint\\[AccountId=(.*),MetricId=(.*),FQMI=(.*), ←↩
Timestamp=(.*),AggegationId=(.*),Count=(.*),Sum=(.*),Max=(.*),Min=(.*),Unit ←↩
=(.*)\\]$".r

val avroSchemaParser = new Schema.Parser

val avroDatapointSchema = avroSchemaParser.parse("""{
|"namespace": "com.github.lvsl.avro",
|"name": "AvroDatapoint",
|"type": "record",
|"fields": [
| {"name": "metricName", "type": ["string", "null"]},
| {"name": "metricId", "type": "long"},
| {"name": "aggregationId", "type": "int"},
| {"name": "unit", "type": "string"},
| {"name": "accountId", "type": "string"},
| {"name": "timestamp", "type": "long"},
| {"name": "putAtTimestamp", "type": "long"},
| {"name": "count", "type": "double"},

52

| {"name": "min", "type": "double"},
| {"name": "max", "type": "double"},
| {"name": "sum", "type": "double"},
| {"name": "dimensions", "type": [{ "type": "map", "values": "string" }, "null ←↩

"]},
| {"name": "distribution", "type": ["bytes", "null"]}
|]
|}""".stripMargin)

val avroDatapointReader = new GenericDatumReader[GenericRecord](←↩
avroDatapointSchema)

/**
* Statistics object
*/
case class Statistics(
count: Double,
sum: Double,
min: Double,
max: Double) {

val avg: Double = sum / count
}

/**
* Observation object
*/
case class Observation(
statistics: Statistics,
timestamp: Long,
unit: String,
aggToken: Int
) extends Ordered[Observation] {

def compare(that: Observation): Int = {
val a = (this.timestamp, this.aggToken)
val b = (that.timestamp, that.aggToken)
if (a == b) {
0

} else if (a < b) {
-1

} else {
1

}
}

}

/**
* Parse string into an Observation object
*/
def parseObservation(s: String): (String, Observation) = {
val OBSERVATION_PATTERN(_, _, metricId, isoTime, aggId, count, sum, max, min, ←↩

unit) = s
val stats = new Statistics(count.toDouble, sum.toDouble, min.toDouble, max. ←↩

toDouble)
val dt: DateTime = ISODateTimeFormat.dateTimeParser().parseDateTime(isoTime)

(metricId, new Observation(stats, dt.getMillis, unit, aggId.toInt))
}

/**
* Generate index and chunk for partition, upload them to S3.
* Return iterator with partition index and summary about partition
*/
def storePartition(partitionIndex: Int, items: Iterator[(String, AggObservation) ←↩

]): Iterator[(Int, String)] = {
Iterator((partitionIndex, "Size of partition: " + items.size))

}

/**

53

* Aggregation result
*/
case class AggResult(
duplicates: Int,
count: Int,
values: Vector[AggObservation]

)

/**
* Aggregate an iterator of Observations into series of AggObservations
* Note: Observations must be sorted
*/
def aggregateObservations(obs: Iterator[Observation]): TraversableOnce[AggResult ←↩

] = {
if (obs.isEmpty) {
throw new IllegalArgumentException("Got empty iterator")

}

var items: SortedMap[(String, Long), AggObservation] = SortedMap()

var currentAggToken: Long = 0
var prevTimestamp: Long = -1
var duplicates = 0
var count = 0
while (obs.hasNext) {
val o = obs.next
if (o.timestamp < prevTimestamp) {
throw new IllegalStateException("Observations are not sorted")

} else {
prevTimestamp = o.timestamp

}
if (o.aggToken != currentAggToken) {
count += 1
currentAggToken = o.aggToken
val key = (o.unit, truncateMillis(o.timestamp))

if (items.contains(key)) {
items += (key -> items(key).aggregate(o))

} else {
val agg = AggObservation(key._2, key._1)
agg.aggregate(o)
items += (key -> agg)

}
} else {
duplicates +=1

}
}
Iterator(AggResult(duplicates, count, items.values.toVector))

}

/**
* Truncate milliseconds to a second
*/
def truncateMillis(millis: Long): Long = millis - (millis % ONE_MINUTE_MILLIS)

/**
* Aggregated observations into one minute buckets
*/
case class AggObservation(
startTimestmp: Long,
unit: String
) {

var statistics: Statistics = null

var total_observations = 0

def aggregate(obs: Observation): AggObservation = {

if (obs.unit != this.unit) {
throw new IllegalArgumentException(

54

"Attemp to aggregate observation with different unit")
}

if (obs.timestamp < this.startTimestmp ||
obs.timestamp - this.startTimestmp > ONE_MINUTE_MILLIS) {

throw new IllegalArgumentException(
"Attempt to aggregate observation for wrong bucket")

}

statistics = if (statistics == null) {
obs.statistics

} else {
new Statistics(
statistics.count + obs.statistics.count,
statistics.sum + obs.statistics.sum,
math.min(statistics.min, obs.statistics.min),
math.max(statistics.max, obs.statistics.max))

}

total_observations += 1

this
}

override def toString(): String = {
"AggObservation(" + startTimestmp + ", " + unit + ", " + total_observations + ←↩

", " + statistics.toString() + ")"
}

}

/**
* Journal header reader
*
*/
def readJournalHeader(stream: InputStream): (Boolean, Int) = {
// check the magic

val OJML = Vector(0x4f, 0x4a, 0x4d, 0x4c)
val magic = Vector(stream.read(), stream.read(), stream.read(), stream.read())

// check version
val (hi, lo) = (stream.read(), stream.read())
(magic == OJML, (hi << 8) + lo)

}

/**
* Compute canonical metricId
*/
def computeCanonicalMetricId(accId: String, metricId: Long): String = {
val hasher = MessageDigest.getInstance("SHA-1")
hasher.update(accId.getBytes(Charset.forName("UTF-8")))

val buff = ByteBuffer.allocate(8)
buff.putLong(metricId)

hasher.update(buff.array)

val value = Arrays.copyOfRange(hasher.digest(), 0, 16)

value.map("%02x" format _).mkString
}

/**
* Parse Avro GenericRecord into tuple: (canonicalMetricId, Observation)
*/
def parseAvroRecord(record: GenericRecord): (String, Observation) = {
val canonicaMetricId = computeCanonicalMetricId(
record.get("accountId").asInstanceOf[org.apache.avro.util.Utf8].toString,
record.get("metricId").asInstanceOf[Long])

val stats = Statistics(

55

count=record.get("count").asInstanceOf[Double],
sum=record.get("sum").asInstanceOf[Double],
min=record.get("min").asInstanceOf[Double],
max=record.get("max").asInstanceOf[Double])

val ob = Observation(
statistics=stats,
timestamp=record.get("timestamp").asInstanceOf[Long],
unit=record.get("unit").asInstanceOf[org.apache.avro.util.Utf8].toString,
aggToken=record.get("aggregationId").asInstanceOf[Int]

)

(canonicaMetricId, ob)
}

/**
* Read header of embedded journal
*/
def readEmbeddedJournalHeader(entry: TarArchiveEntry, tarStream: ←↩

TarArchiveInputStream): Boolean = {
val GOOD_JOURNAL_HEADER = (true, 7)
val journalHeader = readJournalHeader(tarStream)
if(journalHeader != GOOD_JOURNAL_HEADER) {
throw new IllegalStateException("Bad embedded journal(%s[%s]): %s" format (←↩

entry.getName, entry.getSize, journalHeader))
}
true

}

/**
* Read avro journals from a stream
*/
def readAvroJournal(fileName: String, content: java.io.FileInputStream): ←↩

Iterator[(String, Observation)]= {

if(readJournalHeader(content) != (true, 6)) {
throw new IllegalStateException("Bad journal")

}

// read tar archive
val tarArchive = new TarArchiveInputStream(content)
for {
index <- Iterator.from(1).takeWhile(x => {
val entry = tarArchive.getNextTarEntry
println(" === Bytes read from %s: %s [tar: %s] ===" format (fileName, ←↩

tarArchive.getBytesRead, entry.getName))
entry != null && entry.getName != "MANIFEST" && readEmbeddedJournalHeader(←↩

entry, tarArchive)
})
record <- (new DataFileStream[GenericRecord](tarArchive, avroDatapointReader) ←↩

).iterator.asScala
} yield {
parseAvroRecord(record)

}
}

/**
* Gzipped text writer
*/
def gzipTextWriter(filename: String): BufferedWriter = {
val file = new File(filename)
val outStream = new FileOutputStream(file, false)
val zipStream = new GZIPOutputStream(outStream)
val outWriter = new OutputStreamWriter(zipStream, "ASCII")
new BufferedWriter(outWriter)

}

/**
* Get UUID
*/
def uuid = java.util.UUID.randomUUID.toString

56

/**
* Get configured TransferManager client
*
*/
def getS3TransferManager(): TransferManager = {
val cliConfig = (new ClientConfiguration)
.withMaxConnections(10)
.withMaxErrorRetry(10)
.withGzip(false)
.withSocketTimeout(3000)
.withConnectionTimeout(3000)
.withTcpKeepAlive(true)
.withConnectionTTL(3000) // 3 sec

val s3Cli: AmazonS3Client = (new AmazonS3Client(cliConfig))
.withRegion(Region.getRegion(Regions.US_EAST_1))

new TransferManager(s3Cli)
}

}

Listing C.2: Various utility code

57

	Abstract
	Introduction
	Summary
	Outline

	Literature Review
	Survey of Big-Data Processing Systems
	Processing Models
	MapReduce Performance
	Spark Performance
	Choosing Hardware Resources

	Survey of Key Components of Cluster Management Systems
	Distributed Scheduling
	Resource Allocation
	Resource Isolation
	Data Locality
	Fault Tolerance

	Design
	Workload Description
	Terminology
	Time-based Aggregation and Deduplication
	Index and Chunk Generation
	Format of Input and Output Data

	Migration Methodology
	Experiment Design
	Compute and Storage Resources
	Sampling the Input Dataset
	Validation of Output Dataset
	Metrics Collection

	Cost Estimation

	Implementation
	Implementation of Input Sampling
	MapReduce Implementation
	Tuninig MapReduce Solution

	Spark Implementation
	Secondary Sort

	Evaluation
	Observations
	Ganglia Metrics
	CloudWatch Metrics
	I/O Performance
	Spark Executor Metrics

	Analysis
	MapReduce I/O Performance
	Spark I/O Performance
	On Non Uniform Distribution of Load
	Resource Allocation Using YARN

	MapReduce and Spark API

	Conclusion
	Monitoring of the Cluster
	Debugging Application
	Migration Best Practices
	Observed Patterns

	Future Work
	Fix Spark disk configuration
	Evaluate Different Instance Types
	Execution Unmodified MapReduce on Spark

	
	Script to Sample the Input Dataset
	Script to Run Spark on Amazon Elastic Map Reduce (EMR)

	
	CloudWatch EC2 Instance Metrics
	Spark Executor Metrics

	
	Spark JournalProcessor Code

