
Inter-Cloud application migration
and portability using Linux

containers for better resource
provisioning and interoperability

Ivin polo sony

Submitted as part of the requirements for the degree

of MSc in Cloud Computing

at the School of Computing,

National College of Ireland

Dublin, Ireland.

September 2015

Supervisor Dr Horacio gonzalez-velez

Abstract

In a cloud computing environment, availability, efficient resource utilization, fault tol-

erance and feasible resource provisioning is of primary concern. There are certain

situations in which a virtual machine is running on top of a physical host and needs to

be migrated for various reasons such as maintenance or lack of hardware resource avail-

ability. Live application migration is one of the widely used technique to address these

concerns and this is achieved by migrating virtual machines over a network to another

physical host.But migrating a virtual machine over a network uses up the bandwidth

because along with the application an operating system is also transferred which adds

as an overhead along with the application.A Linux container on the other hand is much

more lighter since it uses the underlying operating system making it a prominent can-

didate for application migration. In this research paper application migration is done

by migrating a Linux container over a network by considering the following factors: 1)

Availability of the underlying network. 2) Consideration of total changes in the while

migration 3) Availability of compute time in the destination host. The paper also sheds

a light into the possibility of migrating a work load easily without thinking of the huge

cost and time associated with migration of application among nodes.

ii

Contents

Abstract ii

1 Introduction 1

2 Background 3

2.1 Migration and Resource Management 4

2.2 Application Migration by process migration 5

2.3 Operating System Virtualization and Linux Containers 7

3 Design and Specification 10

3.1 Networking Requirements . 10

3.2 System/Software Requirements . 10

3.3 Checkpointing and migrating RunC Opencontainer running on native

network . 11

3.4 Volume attached docker migration with a shared disk backend 13

4 Implementation 14

4.1 Checkpointing and migrating RunC Opencontainer running on native

network . 14

4.1.1 RunC Opencontainer . 14

4.1.2 Automation Script . 17

4.2 Volume attached docker migration with a shared disk backend 17

4.2.1 Flocker . 17

4.2.2 Weave . 18

4.2.3 Node setup . 18

4.2.4 Proxy server . 18

5 Evaluation 19

5.1 Migration Process . 19

iii

5.2 Checkpointing and migrating RunC Opencontainer running on native

network . 20

5.3 Volume attached docker migration with a shared disk backend 22

6 Conclusions 24

6.1 Limitation of the implementation . 25

Bibliography 26

iv

List of Figures

3.1 Overall architecture of the cross platform application migration 11

3.2 Checkpointing , dumping , transfer and restoring container state between

nodes . 12

3.3 Architecture of migration of database docker containers from one node

to another . 13

5.1 The average time required for migration VM vs Linux Container 20

5.2 Network Congestion during migration 21

5.3 Relative network congestion on Azure for 10 iterations 22

5.4 Curl request before migration . 22

5.5 Curl request after migration . 23

v

Chapter 1

Introduction

Provisioning of available resources in a cloud environment has become extremely impor-

tant. The cloud resource management strategies are mainly based on the monitoring

of service requests and intelligent scheduling of processes [3]. Cloud computing is so

popular because of the fact that the resources available to a particular machine are not

isolated.Virtualization makes it possible to divide and share all kinds of resources in a

distributed environment. The restriction that was there regarding the hardware avail-

ability of resources before deploying an application is removed because of the virtualized

environment which removes the hardware dependencies of the application. Virtualiza-

tion is done with the help of hypervisors or Virtual Machine monitor(VMM) such as

Xen[12] which loads the kernel and other dependencies associated with a particular

guest operating system [2]. There are certain situations in which a virtual machine is

running on top of a physical host and needs to be migrated for various reasons such

as maintenance or lack of hardware resource availability. There are different ways of

achieving this like suspending the virtual machine and transferring it to a different host,

but when the virtual machine is running a critical application, if it needs to be trans-

ferred without shutting it down, that is when you use Live virtual machine migration

[2]. There are different scenarios in which virtual live migration really has advantages,

but in certain cases when the size of the Virtual Machine is large, for example, if the

Virtual Machine contains a MySQL database then this approach is expensive. The

Cloud infrastructure came into existence mainly on the fact that available resources

can be shared seamlessly between Virtual machines [3].

Cloud computing has allowed us to seamlessly share available resources among tenants.

Despite the success of cloud computing , issues and limitations still exists. Lack of

portability and interoperability among cloud platforms is an issue which is faced by the

whole cloud computing industry. Some of the issues such as proprietary protocols and

1

formats are platform dependent, thus making it isolated to a particular platform. As

discussed in the previous paragraph, the importance of resource sharing and migration

of workloads in a cloud environment. If interoperability and portability can be achieved

among cloud platforms, it not only would help remove vendor lock-in but also remove

flaws of a particular cloud platform. A seamless migration of the state of a particular

application form one cloud platform to another makes it possible to achieve portability

and interoperability among cloud platforms. In the following chapters, various tech-

niques of migration and isolation of applications are explored and migration of the state

of various running applications using linux container are being implemented.

2

Chapter 2

Background

The research problem that is going to be discussed for the literature review is Inter-

Cloud application migration and portability using Linux containers for better resource

provisioning and interoperability” .

The literature review is organized into the following headings: Migration and resource

management,Application Migration by process migration and Operating System Vir-

tualization and Linux Containers. Migration and resource management section talks

about the importance of resource provisioning in the cloud ecosystem and strategies

that are being used to achieve it such as live VM migration. Furthermore, a comparison

of live VM migration and application level migration is done and we have discussed

different strategies that are used in live VM migration.

Application migration by process migration looks at application migration from the

perspective of process migration.Process migration is a much more mature method

than VM migration hosted in a hypervisor . This section explains the problems and

complications that could occur due to process migration. Operating System Virtual-

ization and Linux Containers section points out that OS Virtualization using Linux

containers can be a feasible option for application migration.In this section discussion

about various OS level Virtualization is done and consideration of the usage of Linux

containers is assessed.

3

2.1 Migration and Resource Management

In cloud computing, Virtualization allows us to dynamically provision the available re-

sources within a group of physical machines, however resource provisioning of a collec-

tion of VMs is a difficult task.Migration of a virtual machine from one physical machine

to another is one of the strategies used for resource provisioning and balancing by most

cloud providers.Mishra et al [18] describe live virtual machine migration as transferring

the state of the virtual machine from one physical machine to another thus enabling

uninterrupted maintenance and load balancing. In the cloud ecosystem Virtualization

is one of the fundamental solutions for resource provisioning since Virtualization pro-

vides a virtualized view of the available resources. Virtual Machine Monitors (VMMs)

or Hypervisors are used to isolate and allocate the available resources to each VM [2].

Since each VM has to be provisioned with a certain amount of resources before it is in-

stantiated ,over provisioning of resources could happen. Mishra et al [18] point out that

identifying the virtual machine types and parameters such as CPU cycles needed or the

amount of RAM that could be required for memory usage could help in better resource

provisioning rather than the conventional bin-packing approach. Unfortunately there

is no fail safe method of identifying how much resource a VM would require especially

for a web application, you could never predict the amount of traffic that could come

in.

A load balancer handles most of the resources in the cloud ecosystem but prediction

of network traffic is a complex task and it might not be accurate enough.Mishra et al

[18] identify some of the techniques used for live migration such as suspend and copy,

pre-copy and post-copy.Mishra et al [18] go on to explain that the process of suspending

the VM ,copying all the pages to the target machine and resuming the VM is called

suspend-and-copy live migration. Clark et al [4] describes the pre-copy approach an

iterative page transfer from source to destination without suspension of the VM until

all the pages that are required for proper working are transferred .In terms of Post-copy

migration the transfer time is differed until the process that is being executed [9].These

approaches do have conditions attached to the migration time i.e., if the size of the VM

large,the time taken to transfer the pages would increase.

Cloud resource provisioning systems suspend/migrate running jobs or Virtual Machines

in order to utilize and balance the available resources but the cost of moving the whole

Virtual Machine is too high due to its size. Migration of the application is much

more feasible and efficient [19]. He,Guo & Guo [8] point out that VM migration is a

complicated process which requires freezing and transferring of the state of the VM

and memory to another physical machine over the network.

4

Similarly,Wood et al [34] state that in a Wide area network scenario also the VM

migration is a task which is difficult to achieve especially when the size of the VM can

be as large as 50 gigabytes.

Wood et al [34] also states that one of the most important parameter that has to be

considered is the amount of I/O during VM migration which could create a bottle neck

in the network which leads to increase in migration time and of-course higher downtime.

Furthermore,He,Guo & Guo [8] mentions that resource provisioning and management

is cumbersome especially because guest the Operating System(OS) always occupies a

considerable amount of VM as well as cloud resources. Looking at the above stated

scenario ,a better approach towards resource provisioning and management is needed,

especially in a hybrid cloud environment. To conclude, the main points to take away

from this section are the following. Live VM migration is one of the core enabling

factors of resource provisioning in cloud computing, but in certain scenarios when the

size of the VM is too large, it could lead to congestion in the network and increase the

downtime of the VM. Furthermore, various migration techniques that are carried out

in the cloud ecosystem such as pre-copy and post-copy migration is being discussed.

In the next section application migration using process migration is going to be reviewed

to analyze if process migration is the right way to do application migration.

2.2 Application Migration by process migration

Milóičić et al [17] define process migration as the transfer of a current running process

to another machine without losing the state of the process.An application is a combi-

nation of many processes running together as a whole. So in terms application level

migration , process migration is an obvious step forward.Application migration , by

migrating a group of processes , is a more fine grained approach towards the manage-

ment of available resources in the cloud ; for example, migration of a memory intensive

application from a memory limited host machine to a memory abundant machine in

real time.Nguyen and Thoai [19] suggest that Check-pointing and restarting the pro-

cess which was saved during a state when the process was error free and independent

of any failure is a good method for application migration.Even though the technique

suggested by Nguyen and Thoai [19] is highly fault tolerant and doesn’t create any dif-

ference in the application state, it is also pointed out that there is a downtime during

the check-pointing and freezing stage, this would hamper the user experience in a big

way.

Since an application contains one or more processes, all the issues that are there for

5

process migration are also there for application migration, so Clark et al [4] propose

VM copying and migration over process migration.

Nguyen and Thoai [19] also point out that Virtual machine migration, helps in main-

taining the consistency of in-memory data compared to process migration.

Milóičić et al [17] point out the residual problem of process migration making it not a

good solution for application migration. Apart from the problems that were suggested

by Milóičić et al [17] there are other dependencies attached to the process and main-

taining these dependencies could create an extra overhead which could gradually lead

to more time for migration of the process. Process migration involves continuous mon-

itoring of memory pages and copying them according to need in the pre-copy approach

of migration.

Ibrahim et al [10] point out that constant monitoring of page modification could cause

an increase in transitional look-aside buffer(TLB) flushes and soft page faults on write

operation which could in turn hamper the performance of the application. Furthermore,

continuous copying of pages to the Input output buffer which is sent to the destination

machine may cause memory contention.

It is a fact that live migration would involve continuous monitoring and copying of the

application memory from target to source [10, 4], in the case of process migration also

the this gradual copying of memory is done consistently while the application is still

running which could in turn cause memory contention.

To conclude, process migration is a swift way of transferring application from one ma-

chine to the other and of-course it is a much more fine grained approach.As mentioned

above there are major problems that could occur in certain scenarios and process mi-

gration is not the answer for application migration where the fault tolerance is really

low.

The various migration techniques that are used all depend on the copying of memory

from one machine to other, this technique is fine until the migration happens live and

there not much frequent changes in the memory ,but if the application changes the

memory more frequently the more complicated the migration process becomes.

The above two sections provide a contradictory view about application migration in

general. The first section talks about the heaviness of the VM-hypervisor architecture

and how troublesome it would be to migrate a large VM. In the second section there

is discussion about process migration, but some major flaws and troubles associated

with process migration are identified. The reality is that there is no literature available

which explains an architecture which flawlessly migrates an application without any

6

implications. In the next section operating system Virtualization is explored because

by evaluating the problems with hypervisor based live virtual machine migration and

process migration, it is found that it can be a light weight approach towards application

migration.

2.3 Operating System Virtualization and Linux Contain-

ers

One of the major advantages of doing OS level Virtualization is the transparent migra-

tion of applications [15]. Similarly Osman et al [20] point out that for a transparent

application migration, hardware and operating system Virtualization are the main ap-

proaches.Osman et al [20] goes on to explain that Virtualization enables individual

applications to be executed in a virtualized environment.

Laadan & Nieh [15] emphasize the fact that with OS Virtualization , the process is

isolated within the virtual environment making it possible to run an application within

the context without effecting other instances of the same application running in other

virtualized environments.Therefore , application independence could be achieved, which

implies that different versions of the same application could run at the same physical

machine and also this concept could well be implemented to cloud environments where

physical machines could be replaced by virtual machines. Although there are two types

of OS Virtualization namely host independent and host dependent OS Virtualization ,

only host-independent OS virtualization has the capability to do application migration.

Laadan & Nieh [15] explains that host independent OS Virtualization has a private

virtual namespace which could isolate and identify the resources which where referenced

by the application.Operating System Virtualization is also known as container-based

virtualization.

Xavier et al [35] call container-based vitualization the light weight alternative for hy-

pervisors and Xavier et al [35] also state that the instances of applications running

on container instances perform at a near-native level due to its closeness to the base

operating system.There have been various implementations of Linux containers in the

past; both hypervisors and Linux containers are mature technologies.It is recently that

Linux containers have gained renewed attention because of the need for density in the

instances of applications

For example, hosting companies have a homogeneous environment where many in-

stances of the same application are deployed on their servers but needs to be isolated

from each other, for this kind of homogeneous environment containers are the best

7

suite because, no matter how many instances of containers are created in an OS it

won’t effect the system performance unlike VMs .

There are various implementations of Linux containers, to name a few openVZ, docker

containers etc [14, 11]. The main advantage that a container has on a virtual machine

running on a hypervisor is its ability to instantiate quickly as compared to VMs since

there is no requirement of a guest OS for a container. In terms of the migration of

containers there are a few approaches that have been implemented. Romero & Hacker

[21] explain the live migration process in OpenVZ as a three step process . Firstly, the

container is suspended and the memory is dumped onto a file ,secondly the dumped

memory file is copied onto the target machine and the migrated container is resumed

and the source container is stopped and memory is cleaned. Although the live migra-

tion reduces downtime, killing and copying the container onto a different machine is

faster. The different approaches towards migration, effects the resources available in the

cloud in a big way . Romero & Hacker [21] have compared live migration approaches in

terms of parallel applications and the results suggest that frequent checkpointing op-

erations in the application actually reduces the performance of the application. There

are various literature available which has implemented check-pointing for efficient ap-

plication portability, for example, Condor project[24] uses a check-pointing library but

these implementation doesn’t allow inter process communication which is needed by

certain applications [25]. The CRIU [26] implementation support process tree unlike

other implementations of checkpoint and restart mechanism which could be an efficient

candidate for live migration of Linux containers. CRIU [26] implementation’s Linux

kernel API would help in management of the user space. In a Linux container based en-

vironment unlike hypervisors all the containers share the same operating system kernel

so process aggregation within the linux kernel is something which is imperative for ap-

plication migration. The recent improvement in the Linux kernel (Linux kernel 2.6.24)

enables process aggregation and freeze of a group of processes [13] . Cgroups or control

Groups [13] helps in resource tracking, grouping and partitioning of processes.Docker

[11] is a Linux container Virtualization platform, this utilizes the advantages of cgroups

and namespaces within the Linux kernel.

8

Parameter LXC Warden Docker OpenVZ

Process Iso-

lation

Uses pid names-

pace

Uses pid names-

pace

Uses pid names-

pace

Uses pid names-

pace

Network

Isolation

Uses cgroups Uses cgroups Uses cgroups Uses cgroups

Filesystem

Isolation

Using chroot Overlay File sys-

tem using over-

layfs

Using chroot Using chroot

Container

Lifecycle

Tools lxc-

create,lxc-

stop,lxc-startto

create,start,stop

a ontainer

Containers are

managed by run-

ning commands

on a warden

client which talks

to warden server

Uses Docker dae-

mon and a client

to manage the

containers

uses vzctl to man-

age container life-

cycle

Table 2.1: Comaprison of different linux containers [5]

From the above table it is clear that docker container [11] is a prominent choice for

application portability and maintenance. Even though docker container doesn’t sup-

port live migration [11] but a combination of CRIU [26] with docker containers make

it possible for efficiently isolating a running application by pausing and resuming a

running docker container [27].

9

Chapter 3

Design and Specification

In this chapter, the overall specification of the combination of tools which would be

used in the application migration is explained. The proposed combination of tools

would automate the migration of workloads/applications between two physical nodes.

3.1 Networking Requirements

During live server migration across network, the ability to have the IP addresses of

the new virtual instance reachable just after migration is a challenge. To satisfy this

requirement an independent daemon is setup to maintain the same IP address as the

source virtual instance. Unlike the conventional virtual machine migration techniques

such as VMotion by VMware, this experiment doesn’t require the destination server to

be in the same VLAN.

3.2 System/Software Requirements

For this experiment Docker containers are used as linux containers.Docker requires a

64-bit installation. To run properly, docker needs the following software to be installed

at runtime:

1. Criu Library (www.criu.org)

2. Runc Open Container

3. Flocker plugin [23]

10

4. kernel must be 3.10 at minimum

5. iptables version 1.4 or later

6. procps (or similar provider of a ”ps” executable) XZ Utils 4.9 or later

7. a properly mounted cgroupfs hierarchy (having a single, all-encompassing

”cgroup” mount point is not sufficient)

8. Configure a DNS server for use by Docker.

9. Linux, FreeBSD, or OS X

10. Vagrant (1.6.2 or newer)

11. bash

3.3 Checkpointing and migrating RunC Opencontainer

running on native network

Figure 3.1: Overall architecture of the cross platform application migration

The experiment is for migrating workloads/applications between different cloud plat-

forms with the state of the application still maintained. In the figure 3.1 it shows an

overall architecture of the process of migrating a Linux container from and to Open-

Stack , Amazon and Azure cloud platforms. For this experiment a the file system of a

Docker container is used for spawning a runC Linux container.

11

Figure 3.2: Checkpointing , dumping , transfer and restoring container state between
nodes

The figure 3.3 shows checkpointing ,dumping, transferring of the state of the runC

container with application state between two physical nodes. To maintain the state of

the application all the system variables are dumbed to the disk. The system variables

include memory maps, sockets , PID structure , devices etc. The file system then has

to be compared to the template file system of the application that is then available

on the destination node. This whole process is then automated by the automation

script. This experiment is isolated only to the context of machines running linux

as its base operating system although the proposed concept can also be applied on

windows based machines also. The base operating system that is being considered

for this experiment is Ubuntu 14.04 with kernel version 3.16.A direct comparison of

live migration of application hosted on a virtual machine and a linux container will be

made during the proposed experiment.The main consideration for efficiency of the live

migration is of time taken for the migration and effect of migration on the performance

of the migrated application/s.

12

3.4 Volume attached docker migration with a shared disk

backend

Figure 3.3: Architecture of migration of database docker containers from one node to
another

In the experiment the docker containers are database servers connected to a webserver.

The database server is then moved to another physical node and there is no change

in the overall configuration of the network.The state of the database container should

persists even after the transfer. For the configuration of the setup. Some docker plugins

are being used for networking and persistent volume transfer. Docker container does not

allow transfer of volumes attached to a docker container. For this reason flocker plugin

is used to migrate the attached volume with the docker container. The IP address of

the container changes when its on the new host and it is very difficult discover the

network change while using a container. For this reason weave [33] is used for network

discovery and identification.

13

Chapter 4

Implementation

This chapter describes the implementation and configuration of the migration applica-

tions between different Cloud platforms. For the experiment,a popular data structure

server, Redis[1] is considered since it a memory persistent key value pair database unlike

other database servers which stores on the disk.For this experiment a software which

utilizes memory persistence was of importance to prove the state changes of the appli-

cation. The implementation consists of two experiments and a performance analysis of

containers on source and destination platforms of the migrations.

4.1 Checkpointing and migrating RunC Opencontainer

running on native network

The experiment is conducted for migrating a Linux container from an Amazon EC2[22]

to a Microsoft Azure compute instance[29]. Both the cloud platforms have the ex-

act same configuration. Both the cloud instance have the same kernel configuration

and version number.Public IP addresses are also assigned to both the instances. The

following implementation is also carried out the same way on both the instances.

Docker natively does not support live migration, so for this experiment Runc

Opencontainer[31] is used with a Redis binary running within the container.

4.1.1 RunC Opencontainer

RunC is a command line interface tool for spawning and running Linux containers

according to the Open Container Initiative specifications[30].

14

Building configuring and installing RunC

Configuring Golang and Golang version manager

1 bash < <(curl -s -S -L https://raw.githubusercontent.com/moovweb/gvm/master/ ←↩
binscripts/gvm-installer)

2 echo " [[-s "$HOME/.gvm/scripts/gvm"]] && source "$HOME/.gvm/scripts/gvm"" >> ←↩
~/.bashrc

3 gvm install go1.4

4 gvm use go1.4

Runc Install

1 mkdir -pv $GOPATH/src/github.com/opencontainers/

2 cd github.com/opencontainers

3 git clone https://github.com/opencontainers/runc

4 cd runc

5 make

6 sudo make install

Building configuring and installing CRIU

Configuring Kernel

1 General setup options

2

3 CONFIG_CHECKPOINT_RESTORE=y (Checkpoint/restore support)

4 CONFIG_NAMESPACES=y (Namespaces support)

5 CONFIG_UTS_NS=y (Namespaces support -> UTS namespace)

6 CONFIG_IPC_NS=y (Namespaces support -> IPC namespace)

7 CONFIG_PID_NS=y (Namespaces support -> PID namespaces)

8 CONFIG_NET_NS=y (Namespaces support -> Network namespace)

9 CONFIG_FHANDLE=y (Open by fhandle syscalls)

10 CONFIG_EVENTFD=y (Enable eventfd() system call)

11 CONFIG_EPOLL=y (Enable eventpoll support)

12

13 Networking support -> Networking options options for sock-diag subsystem

14

15 CONFIG_UNIX_DIAG=y (Unix domain sockets -> UNIX: socket monitoring interface)

16 CONFIG_INET_DIAG=y (TCP/IP networking -> INET: socket monitoring interface)

17 CONFIG_INET_UDP_DIAG=y (TCP/IP networking -> INET: socket monitoring interface -> ←↩
UDP: socket monitoring interface)

18 CONFIG_PACKET_DIAG=y (Packet socket -> Packet: sockets monitoring interface)

19 CONFIG_NETLINK_DIAG=y (Netlink socket -> Netlink: sockets monitoring interface)

20

21 Other options

15

22

23 CONFIG_INOTIFY_USER=y (File systems -> Inotify support for userspace)

24 CONFIG_IA32_EMULATION=y (x86 only) (Executable file formats -> Emulations -> IA32 ←↩
Emulation)

Installation :-

1 git clone https://github.com/xemul/criu

2 sudo apt-get install libprotobuf-dev libprotobuf-c0-dev \

3 protobuf-c-compiler protobuf-compiler python-protobuf \

4 python-ipaddr libaio-dev asciidoc xmlto

For this experiment, the file system of a running container is exported and it then used

by runC to spawn and run a Linux container. The runC container is then redirected

to the OCF(Open Container Format) file which contains the specifications of the said

container.

1 sudo runc start config.json

Once the runC container starts, the config.json file which container argument for start-

ing the redis server is executed. The runC container is configured to use the native

network. Once the redis server starts, it joins the native operating system’s process

tree. The redis server can then be accessed by the port number that is defined in the

config file.

Checkpointing:- The Checkpointing process is very complex in terms of Linux con-

tainers because , to maintain all the state of a particular application it is imperative

to dump and maintain all the variables that are assigned and are dependent. If there

is even a slight change in the one of the files. The restore process fails. For the check-

pointing process the runC container is configured with CRIU [26] binary.

1 sudo runc checkpoint

The runC CLI checks creates a folder called ”criu-work” in the /var/run/oci/container-

id. The folder also contains the specification needed for restoration of the state of the

container.

Migrating: A copy of the file system of the initial container is kept of the destination

node. A comparison between both the source file system and a template file system is

made and only the difference is transfered to the destination.

16

4.1.2 Automation Script

The automation script is being remotely executed using an ssh shell.The open source

library paramiko[6] is used to connect to both the cloud platforms and to execute

commands remotely. The role of the automation script is the following: a) Check the

connectivity of the destination cloud platform. b) Copy the initial file system to the

destination. c) Checkpoint the active runC container on the source cloud platform. d)

Execute a ”diff” command on the file system base. e) Copy the delta of the diff to the

destination cloud platform f) Reinitialize the runC container on the destination cloud

platform.

1 k = paramiko.RSAKey.from_private_key_file(PRIVATEKEY)

2 c = paramiko.SSHClient()

3 c.set_missing_host_key_policy(paramiko.AutoAddPolicy())

4 print "connecting"

5 c.connect(hostname = server, username = "ubuntu", pkey = k)

6 print "connected"

7 commands = ["cd /home/ubuntu/Runc_Experiments/Redis/ && bash rsyc.sh "]

8 for command in commands:

9 print "Executing {}".format(command)

4.2 Volume attached docker migration with a shared disk

backend

A docker container with attached volume is being migrated in this implementation.This

setup is important to prove the portability of data among different nodes. For achieving

this setup Flocker plugin [23] for docker [11] and Weave [33] for networking between

docker containers.

4.2.1 Flocker

Flocker is an open source container data volume manager for dockerized applica-

tions.For this experiment, Flocker is used since a native docker container does not

allow us to migrate a data volume attached to a native docker container.

Installing Flocker Client

1 sudo apt-get -y install apt-transport-https software-properties-common

17

2 sudo add-apt-repository -y "deb https://clusterhq-archive.s3.amazonaws.com/ubuntu/ ←↩
$(lsb_release --release --short)/\$(ARCH) /"

3 sudo apt-get update

4 sudo apt-get -y --force-yes install clusterhq-flocker-cli

Installing Flocker node service

1 sudo apt-get -y install apt-transport-https software-properties-common

2 sudo add-apt-repository -y "deb https://clusterhq-archive.s3.amazonaws.com/ubuntu/ ←↩
$(lsb_release --release --short)/\$(ARCH) /"

3 sudo apt-get update

4 sudo apt-get -y --force-yes install clusterhq-flocker-node

4.2.2 Weave

Weave is also a plugin that is used with docker containers. Weave helps in creating

a virtual network for docker containers which are deployed among multiple hosts and

it also helps in automatic discovery.Weave is being used in this experiment to make

docker containers accessible to the outside world.

1 sudo curl -L git.io/weave -o /usr/local/bin/weave

2 sudo chmod a+x /usr/local/bin/weave

4.2.3 Node setup

For this setup two instances are created on virtualbox[32] and Weave and Flocker

plugins are installed on to it. Vagrant[7] is used to power-up these machines.

4.2.4 Proxy server

A proxy server to load balance the HTTP traffic coming into the network.The proxy

server is an open-source python implementation.For this configuration reactor module

of Twisted Web[16] library is used.

1 from twisted import reactor as reactor

2 reactor.listenTCP(8080, server.Site(proxy.ReverseProxyResource();

3 reactor.run()

Docker-compose[28] is used for configuration and orchestrations of docker containers

for this experiment.

18

Chapter 5

Evaluation

The main aim of this experiment is to prove that Linux containers can be used to over-

come vendor-lockin and interoperability problems in a very efficient way by migrating

the state of a running application.One of the main problems of migration is mistakes

that happens during manual configurations, but in this experiment all system variables

and file system required for the application is maintained .

5.1 Migration Process

The migration process consists of the following phases:

1. Phase I : During the first phase available resources are checked. The memory

utilized and the required memory of the destination node is checked. The space

required for creating a new container is checked. Once the requirements are fixed

the memory and space for the container is reserved on the destination node.

2. Phase II : During the second phase the same base image of the to be migrated

application is pulled down from the global repository. The network proxy is

initiated and diverted to the destination node. Before the traffic is diverted the

diff function is called to check if there are any changes in the new container and

the changes are applied.

3. Phase III : During the third phase all the traffic is diverted to the new container

and the initial container is removed or paused.

19

5.2 Checkpointing and migrating RunC Opencontainer

running on native network

The efficiency of a good process of migration can be identified by the time taken for

the migration over the network. The following graph compares the migration time of

VM and Linux containers on a network.

Figure 5.1: The average time required for migration VM vs Linux Container

In the 5.1 a VM with a configuration of 1 GB memory and Ubuntu as operating

system is migrated along with the same configuration for a Linux container.Both the

VM and Linux container is then installed with a Redis Server. Evaluation is done by

examining the migration of an Redis server[1]. The evaluation is done by identifying

the effect of migration on the Redis server. The other evaluation criteria that is going

to be fundamental is the network congestion during the migration process. A real-time

network monitoring is developed for this experiment. The tool is going to continuously

monitor the network traffic. In terms of expected result the migration speed and the

effect of Linux containers on the network should be less than that of a virtual machine.

20

Figure 5.2: Network Congestion during migration

As the above graph shows a real time state of the network during the migration process

of the delta file system to the destination cloud platform i.e Azure.

21

Figure 5.3: Relative network congestion on Azure for 10 iterations

The above graph (5.3) shows the relative network usage during the iterative migration

of Linux containers to and from the azure cloud instance.

From the figures 5.3 and 5.2 it can be seen that the migration process has negligible

effect on the overall network. The process of migration is also better compared to a

VM migration both in terms of speed and network congestion.

5.3 Volume attached docker migration with a shared disk

backend

The objective of this experiment was to identify the statefulness of the application

migration. In this experiment data moves along with the state of the docker container.

The network identity is preserved even after migration.

Figure 5.4: Curl request before migration

5.4 shows a counter at the web server which is hosted. The counter increases on every

curl request.

22

Figure 5.5: Curl request after migration

As the figure 5.5 shows that count of the curl request is still maintained even after

migration. From figures 5.4 and 5.5 it is clear that the migration was stateful and the

network identity is preserved. This means that there is no need for reconfiguration of

the database’s new location after the migration after the migration.

23

Chapter 6

Conclusions

The thesis portrayed a proof of concept that, in the said configurations the state of

an application can be transfered across cloud platforms without any kind of changes

to the application. In the evaluation chapter two experiments were conducted. The

first part was to prove that the state of the application is maintained across different

cloud platforms. The experiment also proved that all the variables that are needed for

a particular application can be transfered to the destination cloud platform with out

any hassle.The second experiment proved the statefulnes of the data which are associ-

ated with the docker container. The migration did not require any kind configuration

change. The web server was not aware the migration making this scenario apt for web

applications. The experiment also proves that there is no difference in performance of

the application on different platforms.

The experiment not only shows the efficiency of application migration but also other

economic aspects as well. Consider a case where a user is a subscriber of services

from two cloud providers, one is considerably cheap in a certain point of time. Now

in the case of VMs migrating a whole data-center for certain time of the day would

be one big operation. But in the case of the scenario explained in the experiment it is

just a matter of seconds depending on the data that is available and there is no need

of an extra configuration management.Although this solution is not a perfect answer

for vendor lock-in and interoperability but this experiment opens up a new possibility

of migrating applications without thinking about the cost and configuration changes

involved.

24

6.1 Limitation of the implementation

The experiment was executed using a Redis server because of the limitation of non
availability of resources in terms of compute time and memory.With a higher configu-
ration and compute time the results can be achieved with other applications such as a
web server mail server or a video streamer. The configuration was made only consid-
ering TCP connections between servers since it is difficult to freeze the other type of
sockets in user space.The checkpointing library[26] used in this experiments have cer-
tain limitation associated with checkpointing. Tasks with debuger associated with it
cannot be checkpointed since the library uses the same debuger (ptrace) to checkpoint
the tasks , so the system does not allow to debugers to run. This checkpoint mechanism
only allow sockets TCP, UDP, UNIX, packet and netlink, anything other than this is
not checkpointed. The Linux container only works in a 64 bit machine.

25

Bibliography

[1] Salvatore Sanfilippo aka antirez. Redis(Software). https://redis.io, 2015. [Online; accessed

19:52, 9 February 2015].

[2] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,

Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.,

37(5):164–177, October 2003.

[3] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic. Cloud

computing and emerging {IT} platforms: Vision, hype, and reality for delivering computing as

the 5th utility. Future Generation Computer Systems, 25(6):599 – 616, 2009.

[4] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach,

Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proceedings of the 2Nd

Conference on Symposium on Networked Systems Design & Implementation - Volume 2, NSDI’05,

pages 273–286, Berkeley, CA, USA, 2005. USENIX Association.

[5] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. Virtualization vs containerization to sup-

port paas. In Cloud Engineering (IC2E), 2014 IEEE International Conference on, pages 610–614.

IEEE, 2014.

[6] Jeff Forcier. Paramiko . https://github.com/paramiko/paramiko/, 2015. [Online; accessed 19:52,

9 July 2015].

[7] Mitchell Hashimoto. Vagrant(Software). https://vagrantup.com, 2015. [Online; accessed 19:52,

9 February 2015].

[8] Sijin He, Li Guo, and Yike Guo. Real time elastic cloud management for limited resources. In

Cloud Computing (CLOUD), 2011 IEEE International Conference on, pages 622–629. IEEE, 2011.

[9] Michael R. Hines, Umesh Deshpande, and Kartik Gopalan. Post-copy live migration of virtual

machines. SIGOPS Oper. Syst. Rev., 43(3):14–26, July 2009.

[10] K.Z. Ibrahim, S. Hofmeyr, C. Iancu, and E. Roman. Optimized pre-copy live migration for memory

intensive applications. In High Performance Computing, Networking, Storage and Analysis (SC),

2011 International Conference for, pages 1–11, Nov 2011.

[11] Docker Inc. wdockercompo sehatisdocker. https://www.docker.com/whatisdocker/, 2015. [On-

line; accessed 19:52, 9 February 2015].

[12] Ian Pratt University of Cambridge Computer Laboratory Keir Fraser, Steven Hand. Xen. http:

//www.xenproject.org/, 2015. [Online; accessed 19:52, 9 February 2015].

[13] kernel.org team. cgroup. https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt,

2015. [Online; accessed 19:52, 9 February 2015].

26

 https://redis.io
https://github.com/paramiko/paramiko/
 https://vagrantup.com
https://www.docker.com/whatisdocker/
http://www.xenproject.org/
http://www.xenproject.org/
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

[14] Kir Kolyshkin. Main Page. http://openvz.org/Main_Page, 2008. [Online; accessed 19:52, 9

February 2015].

[15] Oren Laadan and Jason Nieh. Operating system virtualization: Practice and experience. In

Proceedings of the 3rd Annual Haifa Experimental Systems Conference, SYSTOR ’10, pages 17:1–

17:12, New York, NY, USA, 2010. ACM.

[16] Twisted matrix laboratories. What is Twisted? . https://twistedmatrix.com/trac/, 2015.

[Online; accessed 19:52, 9 July 2015].

[17] Dejan S. Milóičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian Zhou. Process

migration. ACM Comput. Surv., 32(3):241–299, September 2000.

[18] M. Mishra, A. Das, P. Kulkarni, and A. Sahoo. Dynamic resource management using virtual

machine migrations. Communications Magazine, IEEE, 50(9):34–40, September 2012.

[19] Duy Nguyen and Nam Thoai. Ebc: Application-level migration on multi-site cloud. In Systems

and Informatics (ICSAI), 2012 International Conference on, pages 876–880. IEEE, 2012.

[20] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The design and implementation of

zap: A system for migrating computing environments. SIGOPS Oper. Syst. Rev., 36(SI):361–376,

December 2002.

[21] F. Romero and T.J. Hacker. Live migration of parallel applications with openvz. In Advanced

Information Networking and Applications (WAINA), 2011 IEEE Workshops of International Con-

ference on, pages 526–531, March 2011.

[22] Amazon team. Amazon Elastic Compute Cloud (Amazon EC2) . https://aws.amazon.com/ec2/,

2015. [Online; accessed 19:52, 9 July 2015].

[23] ClusterHQ team. Flocker(Software). https://clusterhq.com/, 2015. [Online; accessed 19:52, 9

February 2015].

[24] Condor Team. Condor. http://research.cs.wisc.edu/htcondor/, 2015. [Online; accessed 19:52,

9 February 2015].

[25] Condor Team. Condor. http://research.cs.wisc.edu/htcondor/manual/v7.9/2_4Road_map_

Running.html, 2015. [Online; accessed 19:52, 9 February 2015].

[26] CRIU Team. CRIU. http://criu.org/, 2015. [Online; accessed 19:52, 9 February 2015].

[27] CRIU Team. CRIU. http://criu.org/Docker, 2015. [Online; accessed 19:52, 9 February 2015].

[28] Docker team. Docker compose. http://weave.works/, 2015. [Online; accessed 19:52, 9 February

2015].

[29] Microsoft Azure team. Microsoft Azure . https://azure.microsoft.com/en-us/documentation/

articles/fundamentals-introduction-to-azure/, 2015. [Online; accessed 19:52, 9 July 2015].

[30] Opencontainer team. Opencontainer Initiative. https://www.opencontainers.org/, 2015. [On-

line; accessed 19:52, 9 July 2015].

[31] Runc team. RunC. https://runc.io/, 2015. [Online; accessed 19:52, 9 July 2015].

[32] Virtualbox team. Virtualbox. https://www.virtualbox.org/, 2015. [Online; accessed 19:52, 9

February 2015].

[33] Weaveworks team. Weave(Software). http://weave.works/, 2015. [Online; accessed 19:52, 9

February 2015].

[34] Timothy Wood, K Ramakrishnan, J Van Der Merwe, and P Shenoy. Cloudnet: A platform

for optimized wan migration of virtual machines. University of Massachusetts Technical Report

TR-2010-002, 2010.

27

http://openvz.org/Main_Page
https://twistedmatrix.com/trac/
https://aws.amazon.com/ec2/
 https://clusterhq.com/
http://research.cs.wisc.edu/htcondor/
http://research.cs.wisc.edu/htcondor/manual/v7.9/2_4Road_map_Running.html
http://research.cs.wisc.edu/htcondor/manual/v7.9/2_4Road_map_Running.html
http://criu.org/
http://criu.org/Docker
 http://weave.works/
https://azure.microsoft.com/en-us/documentation/articles/fundamentals-introduction-to-azure/
https://azure.microsoft.com/en-us/documentation/articles/fundamentals-introduction-to-azure/
https://www.opencontainers.org/
 https://runc.io/
 https://www.virtualbox.org/
 http://weave.works/

[35] M.G. Xavier, M.V. Neves, F.D. Rossi, T.C. Ferreto, T. Lange, and C.A.F. De Rose. Performance

evaluation of container-based virtualization for high performance computing environments. In

Parallel, Distributed and Network-Based Processing (PDP), 2013 21st Euromicro International

Conference on, pages 233–240, Feb 2013.

28

	Abstract
	Introduction
	Background
	Migration and Resource Management
	Application Migration by process migration
	Operating System Virtualization and Linux Containers

	Design and Specification
	Networking Requirements
	System/Software Requirements
	Checkpointing and migrating RunC Opencontainer running on native network
	Volume attached docker migration with a shared disk backend

	Implementation
	Checkpointing and migrating RunC Opencontainer running on native network
	RunC Opencontainer
	Automation Script

	Volume attached docker migration with a shared disk backend
	Flocker
	Weave
	Node setup
	Proxy server

	Evaluation
	Migration Process
	Checkpointing and migrating RunC Opencontainer running on native network
	Volume attached docker migration with a shared disk backend

	Conclusions
	Limitation of the implementation

	Bibliography

