

Course: HDSDA

Name: Brian Gibbons

Student ID: 13109961

E-mail: brian.gibbons@student.ncirl.ie

Extract and Analyse Player Performance Data from

the Fantasy Premier League Website

i

Table of Contents
Executive Summary .. iii

1. Introduction .. 1

1.1 Purpose ... 1

1.2 System Description ... 1

1.3 Rules .. 2

1.4 Scoring System .. 2

1.5 Leagues and Prizes .. 3

2. Literature Review .. 5

2.1 Fantasy Premier League Website ... 5

2.2 PL Fantasy Blog ... 7

3. Data Extraction from FPL Website .. 9

3.1 Python ... 9

3.1.1 Why Python? ... 9

3.1.2 Version .. 9

3.1.3 Installation .. 10

3.1.4 Executing Code in Python ... 11

3.2 Scraping the Data .. 14

3.2.1 Web Page Layout ... 14

3.2.2 Python Web Scraping JSON Script ... 17

3.2.2.2 Testing the Script .. 18

3.2.3 Python Web Scraping HTML Script .. 20

3.3 Running the System .. 23

3.4 Copyright Information... 23

4. Mysql Database ... 24

4.1 Introduction .. 24

4.2 Purpose ... 24

4.3 Download .. 24

4.4 Create Database and Tables ... 24

4.5 Data Manipulation and Cleansing ... 26

4.6 ODBC Driver .. 31

5. Qlikview Dashboard .. 34

ii

5.1 Introduction .. 34

5.2 Download .. 34

5.3 ODBC Connection .. 34

5.4 Data Load .. 37

5.4.1 Schema, Joins and Associations ... 37

5.5 Creating Charts and Tables ... 38

5.6 Making Selections ... 42

5.7 Switching Between Sheets .. 45

5.8 Setting Variables ... 46

5.9 Key Performance Indicators .. 50

5.9.1 Dashboard Tabs ... 50

5.10 Testing ... 56

6. Further Developments .. 57

6.1 Contingencies .. 57

7. Conclusions ... 58

Bibliography .. 59

Appendices .. 62

Appendix A – Project Proposal .. 62

Appendix B – Requirements Specification .. 65

Appendix D – Progress Management Reports .. 74

Progress Management Report 1 ... 74

Progress Management Report 2 ... 80

Progress Management Report 3 ... 87

Appendix E – Python Web Scraping Code ... 94

Appendix F – MySQL Code .. 98

Appendix G – Qlikview Data Load Code .. 103

Appendix H – Dashboard Regression Test Plan .. 105

Appendix I – Link to Google Drive Folder with Data ... 107

iii

Executive Summary
The purpose of this project was to provide a system which could be used as a tool to aid decision

making in the Fantasy Premier League football game. This objective was achieved by scraping the

Fantasy Premier League (FPL) website of all of the player scoring data and creating an inventive,

unique, intuitive and user-friendly dashboard which allowed for easy access to this data. The

dashboard also allows users to drill down into the player data to show patterns and trends which are

otherwise unavailable from the website.

The overall system comprises of cutting edge technology in the form of the Python programming

language, MySQL Relational Database Management System (RDBMS) and Qlikview Business

Intelligence software to produce a fully integrated, fully tested and robust platform to allow users

the ability to derive actionable insight from the data.

1

1. Introduction
The Fantasy Premier League game is one of the most widely played fantasy sports games in the

world. There are over 3 million players from almost every country in the world taking part in the

2013/14 season (Premier League, 2014). The vast majority of these players come from Ireland and

the UK where the majority of the fan base for the Barclays Premier League are situated. However, in

recent years the base of players has spread significantly across the USA and South East Asia in

particular where the appetite for Premier League football has increased in proportion to the

availability of the live matches on television in these countries through large broadcast providers

such as Sky and ESPN.

1.1 Purpose

The overall purpose of this project was to create a single integrated platform which would allow

users to view useful information and trends on all players in the game which can help managers

make informed calls on who the most suitable players are to choose based on past performances.

The final platform was an interactive dashboard in Qlikview where the end user can make selections

based on teams/positions/players/price etc.

1.2 System Description

There were a number of processes involved in the overall system which are described by the graphic

below.

Fig 1.1: Overall System description

The first step in the system was to scrape the website using scripts written in the python

programming language. A number of different packages were used to aid in this process. The

2

outputs of these scripts were a number of CSV files with information on all players in the FPL

contained within them.

These CSV files were then loaded into a mysql database as structured tables which could be queried

using the SQL querying language.

An ODBC connection was then made using an ODBC driver between the mysql database and the

Qlikview interface. This allowed us to import all of the data into our qlikview database which in turn

enabled us to perform all of the analysis we required. All graphs and tables in qlikview are created

from the source data retrieved from the website on that particular date.

1.3 Rules

The premise of the game is simple. You are the manager of your own squad of players. You must

choose 15 players from a combination of any of the clubs in the Premier League. There are a number

of rules which are applied to ensure a fair and equitable set up for all managers.

1. Every player has an initial value at the start of the season. The initial squad of players

chosen originally must have a value of no more than £1m. As the season goes on the price of

these players fluctuates based on their performances. The more points a player scores, the

more people transferring that player in, the more his price will rise and vice versa.

2. The squad of players consist of 2 goalkeepers, 5 defenders, 5 midfielders and 3 forwards. A

minimum of 1 goalkeeper, 3 defenders, 2 midfielders and 1 forward must be played every

game week. Based on these rules, a team of 11 players must be chosen to start each game

week with 4 substitutes in reserve should any player not play.

3. A maximum of 3 players from any single team can be chosen. This prevents players from

overloading their teams with players from the top performing team and forces the manager,

along with the price constraints, to purchase cheaper players from teams in lower end of the

league.

4. A manager is allowed to make one free transfer every game week. If a manager makes more

than one change per game week then 4 points will be deducted from their overall score. If a

manager does not make any transfers in a game week then their one free transfer is carried

over to the next game week where they will have two free transfers. This does not apply

continuously so if the manager does not make a transfer in two consecutive game weeks

then they will still only have 2 free transfers available to them

5. During the course of the season a manager will be granted two wildcards. When a manager

plays their wildcard it means they can make an unlimited amount of transfers that game

week without incurring any point reductions. This effectively enables the manager to change

their entire team if they wish to do so. One of the wildcards can be played at any stage

during the season while the other can only be played during the busy month of December.

(Premier League, 2014)

1.4 Scoring System

The scoring system is quite simple and it is based around points awarded to players based on the

number of goals, assists, clean sheets, bonus points and saves they make, depending on the position

they play. The full scoring system taken from the website is shown below.

3

Action Points

For playing up to 60 minutes 1

For playing 60 minutes or more 2

For each goal scored by a goalkeeper

or defender
6

For each goal scored by a midfielder 5

For each goal scored by a forward 4

For each goal assist 3

For a clean sheet by a goalkeeper or

defender
4

For a clean sheet by a midfielder 1

For every 3 shot saves by a goalkeeper 1

For each penalty save 5

For each penalty miss -2

Bonus points for the best players in a

match
1-3

For every 2 goals conceded by a

goalkeeper or defender
-1

For each yellow card -1

For each red card -3

For each own goal -2

Fig 1.2: Points Scoring System (Premier League, 2014)

One player can be chosen in the team as captain. The captain will have any points he accrues

doubled. It is always a good idea for a manager to choose a player who they think will accumulate

the most points as captain. One vice-captain can also be chosen. In the case where the captain does

not play, the captaincy will be transferred to the vice-captain.

1.5 Leagues and Prizes

Once a team is entered it is automatically included in the worldwide league against the 3 million plus

other managers around the world. The prizes on offer for the overall league are:

“Subject to any unforeseen changes, the Winner's Prize will be a 7-night break in the United Kingdom

for two people to include VIP hospitality at two Barclays Premier League matches (the identity of

which is determined by The Premier League) and visits to a selection of popular tourist attractions in

the UK. The Winner's Prize includes travel and seven nights' hotel accommodation on a bed &

breakfast basis”

“The Quarterly Prizes (one each quarter during the season) shall each consist of a VIP Trip for two to

a Barclays Premier League match (the identity of which is determined by The Premier League). The

prize includes travel, two nights’ accommodation including breakfast and two match tickets”

“The Monthly Prizes (one each month during the season) shall each consist of a tablet computer, a

Nike Incyte match ball and EA SPORTS FIFA 14 game. The precise specification and nature of these

shall be at the discretion of The Premier League” (Premier League, 2014)

4

Managers can enter into public leagues which are available to every manager or can enter their own

private leagues with friends. Many users of the website create money leagues where every manager

in the league must submit a pre-determined sum of money into the overall pot prior to the first

game week. The winner of the league is then given the final accumulated sum at the end of the

competition. These money leagues are entirely governed by the members of the league and no

authorisation needs to be given by the Premier League for these to take place.

5

2. Literature Review
The main motivation behind the creation of this system was a lack of rival systems which could give

the user the information they required to assist them in the tasks involved with managing a fantasy

football team. These tasks include but are not limited to transfers, substitutions, captaincy choices,

formation selection etc.

2.1 Fantasy Premier League Website

The fantasy premier league website does provide a screen which provides users with information

which helps managers make decisions on these aspects of the game. However, the look and feel of

the screen is not very intuitive and all data is represented as numbers and text. Due to the lack of

graphical data it can be difficult for a manager to spot trends and analyse a player’s performance

adequately as the human eye responds better to graphical information than numeric or textual

information. In fact 90% of information transmitted to the brain is visual, and visuals are processed

60,000X faster in the brain than text (J6 Design, 2012). An example of the data available on the

website is shown below.

Fig 2.1: FPL Player statistics (Premier League, 2014)

6

Fig 2.2: Statistical information from the Fantasy Football website (Premier League, 2014)

As we can see, the player’s information is shown in a tabular format and players can be chosen

based on position or team name. A range of Key Performance Indicators (KPIs) are also available to

the user in the “Sorted by” dropdown box in the top right hand corner.

Fig 2.3: KPIs on Fantasy Premier League screen (Premier League, 2014)

These KPIs all contain very useful information. However, it becomes difficult for a user to compare

players with each other and a time series of scoring history is only available when an individual

player is selected which makes it difficult to identify patterns in the data as can be seen below.

7

Fig 2.4: Player History Data (Premier League, 2014)

This is not an ideal view of the data as it is very hard to spot trends and does not give the manager

much of an indication of the potential for future points scoring without doing further manual

analysis themselves.

2.2 PL Fantasy Blog

A similar type project has already been completed which is called PLFantasy. This is a blog created by

an unknown user who has created an information dashboard using the tableau software (PLFantasy,

2014). The dashboard is viewed from a player level and the user can select whatever player they

would like for analysis purposes. The dashboard can be downloaded from the main website and

viewed in tableau public format (Tableau, 2014).

8

Fig 2.5: PLFantasy Dashboard (PLFantasy, 2014)

This dashboard provides a more graphical interface to the user and many of the KPIs stand out

better than they do in the Premier League website screen. However, a lot of the information in the

dashboard would not be very relevant to FPL managers and a lot of the data shown is not very well

explained.

If a user wishes to have full access to the dashboard they must sign up to the blog. This would turn a

lot of users away as they would only be interested in the information contained within the

dashboard itself.

For these reasons, a gap in the market was identified for a program where users of the game could

have instant access to all of the information they need to make the correct team selections without

having to sign up or pay for any extra add-ons.

9

3. Data Extraction from FPL Website
All of the data which we needed for analysis was contained within the FPL website. Any user can go

in and try and manually extract all of this data if they so wish. However, with over 600 players in the

game database, this would be a very time intensive activity and would have to be repeated after

every game week had completed. It was decided that a computer programme would be written to

carry out this task automatically which would be run at the end of every game week, extracting all of

the information required from the website. The python programming language was used for this

task.

3.1 Python

The python programming language is an interpreted, interactive, object-oriented programming

language. It incorporates modules, exceptions, dynamic typing, very high level dynamic data types,

and classes. Python combines remarkable power with very clear syntax. It has interfaces to many

system calls and libraries.

It is a high-level general-purpose programming language that can be applied to many different

classes of problems. The language comes with a large standard library that covers areas such as

string processing (regular expressions, Unicode, calculating differences between files), Internet

protocols (HTTP, FTP, SMTP, XML-RPC, POP, IMAP, CGI programming), software engineering (unit

testing, logging, profiling, parsing Python code), and operating system interfaces (system calls, file

systems, TCP/IP sockets). Python is an open source programming language and can be downloaded

completely free of charge onto any machine (Python, 2014).

3.1.1 Why Python?

There were a number of reasons python was chosen as the language to carry out all of the data

scraping work.

1. It is free. This enabled us to download the packages online and install them on our machines

immediately. Work could begin as soon as the set up was complete

2. It is easy to learn. Python’s simple and straight-forward syntax also encourages good

programming habits, especially through its focus on white space indentation, which

contributes to the development of neat looking code (Six Feet Up, 2013)

3. Python is very good at handling and parsing strings. It contains a number of very useful

libraries which help the programmer scrape data from websites. Almost all of the data to be

scraped for this project was in the form of strings.

3.1.2 Version

There are currently two up to date versions of python available for installation. Version 3.x was

created in 2008 and is still under active development and has already seen over five years of stable

releases, including version 3.3 in 2012 and 3.4 in 2014. The final 2.x, version 2.7 release came out in

mid-2010, with a statement of extended support for this end-of-life release. The 2.x branch will see

no new major releases after that (Wiki Python, 2014).

There are a couple of reasons why programmers would choose version 2.x over the more up to date

3.x version.

http://www.sixfeetup.com/blog/why-pep8-for-plone-development
http://www.sixfeetup.com/blog/why-pep8-for-plone-development

10

1. If you’re deploying to an environment you don’t control, that may impose a specific version,

rather than allowing you a free selection from the available versions

2. If you want to use a specific third party package or utility that doesn’t yet have a released

version that is compatible with Python 3, and porting that package is a non-trivial task, you

may choose to use Python 2 in order to retain access to that package (Wiki Python, 2014).

For the purposes of this project it was decided to use the 2.7.6 version of python. One of the main

reasons for this was that the version on computers in the college is 2.7.6. This meant that work could

be completed in the college as well as at home.

3.1.3 Installation

As the machine which was used for most of the project tasks used the Windows operating system,

an installation procedure for python specific for Windows was used. Windows does not require

Python natively and thus does not pre-install a version of Python.

The package can be downloaded from the python.org website. For our case the 2.7.6 release was

downloaded.

Fig 3.1: Python download (Python, 2014)

The Windows x86 MSI Installer (2.7.6) (sig) file was downloaded. On completion of the download,

the .exe file is run and the folder is saved into the computer C drive by default.

11

Fig 3.2: Python download

This can be changed by the user if they so wish. Once this has been completed, the user can open

the python terminal and begin writing code.

3.1.4 Executing Code in Python

There are a number of different ways to execute code within python. The first and least used

method is to write the code into the python terminal. When a statement is written and executed in

the terminal the results of the statement are returned within the same terminal.

Fig 3.3: Python terminal

This type of code writing can be useful for testing certain lines of code to give us answers straight

away without having to run full scripts. However, when attempting to write sequential code in script

format to run iteratively through a sequence of statements, other alternatives should be used.

One such method is to use the IDLE GUI for python which enables the user to run code straight from

the terminal or to create scripts which can be run sequentially.

12

Fig 3.4: Python IDLE editor and terminal

In the example above, we create a script to print out to sentences to the terminal. In order to run

the script F5 must be pressed and the output will be shown on the IDLE GUI.

The method used in this project for writing scripts was to run code from a python text file through

the windows command prompt. This involved writing the script in Notepad++, saving it as a python

file and running that file through the command prompt.

All of the code written for this program was done in Notepad++. Notepad++ is a free source code

editor and Notepad replacement that supports several languages (Notepad ++, 2014). When writing

a script in python, you can select the python language from the drop down and this highlights all of

the key words making the script much more legible.

13

Fig 3.5: Notepad++ Interface

In order to run this script we must then open up the windows command prompt and cd to the

directory where we have saved the file.

Fig 3.6: Windows Command Prompt

As we can see the when we execute the code using the command - python “scriptname.py” – the

results from the script are output to the command prompt. This was the method used to run all of

the scripts in the system.

14

3.2 Scraping the Data

3.2.1 Web Page Layout

All of the data that we require from the FPL website is contained in each individual players scoring

history. In order to access this through the website we must go to the transfers screen and select a

player for whom we wish to see their previous scores.

In order to see how this data is sent to the client we can highlight a certain part of the text and select

“Inspect Element” as below.

Fig 3.7: Inspect element Google developer

This brings up the HTML source code behind the website and allows the user to view the structure of

the web page.

Fig 3.8: Background HTML code

15

It is possible to extract all of the information we need using this HTML code. However, this would

take a very long time as any program written would have to scrape every item of information for

every single player in the game. It would be much more beneficial if we could find the underlying file

sent to the webpage which contains all of the data for each individual player.

If we click on the Network tab in the developer screen we can see the data which is sent between

the server and the client. This contains all of the information which can be viewed on the webpage

such as text files, javascript files and images.

Fig 3.9: Files sent between server and client

If we clear the screen of all the data and click on a player in the Transfers section of the webpage we

should be able to limit what is sent between the server and the client to just information about that

individual player. This is shown to us in the form of the API for the fantasy premier league website as

we can see below.

The file that interests us here is the first file using the GET method which is an application/json type

file. By clicking on this file we can see all the information relating to it.

16

Fig 3.10: FPL API

We are interested in finding the data which relates to the players scoring history and future fixture

list. If we click on the preview tab we can see that the field relating to these features in the json file

are called fixture_history and fixtures.

Fig 3.11: API Overview

In order to extract this data from the website for every player we needed to find a unique identifier

for the file relating to each player in the game in order to create a loop in python. In the headers tab

in the developer screen we can see that there is a field called “Request URL”. By copying and pasting

this link into the browser we can see that the information from the json file is displayed.

Fig 3.12: JSON File

17

After some investigation it was concluded that by altering the last number in this link we could

retrieve each players scoring and history data. The id in this link relates to the individual player’s id in

the game which begins at 1 for the first player i.e. the Arsenal goalkeeper and ends with the number

of the last player to have come into the system during the year. This could be a player who has

transferred into a club at some stage of the season or perhaps a youth team player brought into the

senior squad.

Now that the structure of the website and the location of the required data was known, the next

activity was to create the python script which would scrape all of the data for us.

3.2.2 Python Web Scraping JSON Script

The first thing that needed to be created was a connection between python and the website. The

inbuilt library in python called urllib was used to achieve this. This module provides a high-level

interface for fetching data across the World Wide Web and the urlopen() function accepts URLs as

inputs for creating connections and opening network objects (Python, 2014).

The library was imported into the python session using the command

import urllib

and the connection was made to the API which contains the json file using:

htmltext = urllib.urlopen("http://fantasy.premierleague.com/web/api/elements/" + str(i) + "/")

The str(i) section of the URL here enabled us to create a variable “i” which we could loop in order to

create a connection with the file relating to each player. We needed first to find what range was

required for i so that all players in the game would be included. An initial estimate range of 1- 1,000

was used and this was refined as the script was developed and tested. For initial test purposes, the

value of i was just taken as 1. Once the process was functional for a single player then the looping

system would be implemented for all players.

In order to interpret the json file the package “json” was imported into the session. JSON (JavaScript

Object Notation) is a compact, text based format for computers to exchange data and is once loaded

into Python just like a dictionary. JSON data structures map directly to Python data types, which

makes this a powerful tool for directly accessing data without having to write any XML parsing code

(Python for Beginners, 2014). A variable called “data” was created which was the entire json file

handled using the json library using the function json.load():

data = json.load(htmltext)

Once this was defined, the required fields could be chosen from the file as required. In order to pull

back the players entire scoring history the command:

scoredata = data["fixture_history"]["all"]

18

Other data such as the player name, value, position, team name and percentage of managers

selected by were extracted in the same manner and stored as variables.

In order to view the output of the results, a text file was created in the script and all of the data was

appended to the text file using comma separated values (csv). The file was created at the start of the

script using:

myfile = open("player_history.txt", "w")

and each of the variables were appended to the file for each line in the data. The “w” at the end of

this command implies that the file is writable meaning every time the script is run the new data will

replace the old data.

myfile.write(playerdata + "," + teamname + "," + position + "," + selected + "," + str(price) + ',' + str(i)

+ "\n")

3.2.2.1 Create the Loop

Once the system was in place for an individual player it was necessary to introduce a loop into the

script which could iterate through all of the players in the game and append their data to the master

file. As mentioned in the previous section, a variable called “i” was used to store the player id and

increment by 1 as the loop progresses.

The basic structure of the loop is shown below in pseudo code:

1. Create writable text file

2. Close the text file

3. Set i = 1

4. Create Loop (while i < 1000):

a. Open a connection to the API URL htmltext =

urllib.urlopen("http://fantasy.premierleague.com/web/api/elements/" + str(i) + "/")

b. Create the json object using json.load(htlmtext).

c. Extract the scoring history, player name, player team, player value and percentage

of managers selected by.

d. Perform some data cleansing on the file (see Appendix E for code)

e. Append all of the different variables to the file using comma separated values.

f. Increment the value of i by 1 (i +=1)

5. Print “Process complete” to the terminal.

This loop will run until the value of i reaches 1000 at which point it will stop and the script will be

complete. The output of the loop should be a text file with each value separated by a comma and

each row on a new line of the file (“\n”).

3.2.2.2 Testing the Script

When the script was run initially it was noticed that errors were occurring and the script was

breaking at certain points along its execution. In order to discover the exact points at which the

19

script was breaking, a test file was incorporated into the script which allowed us to view the exact

points in the script and exact values of i in the loop which were causing the issues.

At the start of the script, a new file was created:

errfile = open("errfile.txt", "w")

The purpose of this file was to capture information on the location of the loop at which the code was

failing. In order to write to this file an error handling process was added to the script. Error handling

in python is done using a try-except block statement.

The try-except statement block works as follows.

1. First, the try clause (the statement(s) between the try and except keywords) is executed.

2. If no exception occurs, the except clause is skipped and execution of the try statement is

finished.

3. If an exception occurs during execution of the try clause, the rest of the clause is skipped.

Then if its type matches the exception named after the except keyword, the except clause is

executed, and then execution continues after the try statement.

For our file the try-except block statement worked as follows:

1. Begin Loop

2. Try to execute the code within the loop for each individual player

3. If no exception occurs skip the except clause and move onto the next iteration of the loop

4. If an exception does occur skip the execution of the try block and execute the except block.

5. Within the except block open the errfile.txt file.

6. Write the value of i to the file so it can be investigated manually.

7. Move onto next iteration of the loop.

The final output of this code was a file containing the list of all player ids which caused the script to

fail. Once this list was available it was then possible to manually enter the player ids into the API to

check for any common features that may be causing the failure of the program.

It was discovered that there were two main reasons for the failure of the script. The first reason was

that the range of the loop was too large meaning that we were accounting for more players than

were actually in the game. When the program encountered a player id which did not exist and try to

access the API url for this player, an error was thrown as the URL did not exist. This error was fixed

by refining the loop to the maximum number of players in the game. However, this meant that if any

new players were added in the mean time, they would not be included in the program. In order to

maintain the integrity of the program, the try-except block was maintained in the program and a

float of 10 above the maximum number of players was built in which allowed for any new players

added at any stage. Even if no new players were added, the code would still execute due to the

presence of the try-except block.

The other reason for the failure of the program was the presence of certain characters in the names

of some of the foreign players in the game. For example, Andre Shürrle has the special character ü in

https://docs.python.org/2/reference/compound_stmts.html#try

20

the name. The default encoding of files in python is ASCII which only defines unaccented characters

(Python, 2014). In order to overcome this situation the encoding of the file was changed to utf-8

(Unicode Transformation Format 8) which can handle any Unicode code point. In order to do this the

library “io” was imported into the session and the default encoding of the file was changed to UTF-8:

import io

myfile = io.open("player_history.txt", "a", encoding='utf8')

When this change was made the script ran without any errors and the file was saved off with all of

the required data.

3.2.3 Python Web Scraping HTML Script

While the vast majority of the data required for the analysis was extracted from the JSON files in the

previous section, some other supplementary information was required which was not available in

the JSON file. In order to extract the league table and fixture details from the website it was

necessary to scrape the background HTML from the website. The library used to carry this out in

python was called BeautifulSoup.

Beautiful Soup (BS) is a Python library for pulling data out of HTML and XML files. It works with the

parser to provide idiomatic ways of navigating, searching, and modifying the parse tree. It commonly

saves programmers hours or days of work (Crummy, 2013). In order to begin using the BS library it

must first be downloaded. It can be downloaded as a tar.gz file and extracted using the 7zip software

or you can install it with with pip install BeautifulSoup or easy_install BeautifulSoup from the

command line.

The library is imported into the session using:

from bs4 import BeautifulSoup

3.2.3.1 Web Scraping Fixtures and Results

A text file created to store the fixtures and results information from the script:

fix_file = open('fixtures.txt', 'w')

The connection was made with the website again using the urllib.open() function. In order to scrape

the fixtures information from the website a loop was created which iterated through each of the 38

game weeks and extracted every result and upcoming fixture left to be played. The html code was

read in using:

html = urllib.urlopen(myurl).read(), where myurl = “http://fantasy.premierleague.com/fixtures/” +

str(i)

The loop used for this was a while loop with a range of 1 – 38 for the value of the variable “week”.

The BeautifulSoup function BeautifulSoup () was then used to parse all of the HTML text:

soup = BeautifulSoup(html)

21

Once this was complete we needed to find what HTML tags contained the information we were

looking for. Once again, the developer screen in chrome was used by right clicking on the data in the

website and finding the tag in the HTML that was required.

Fig 3.12: Background HTML code for fixture details

When the required tags were identified, it was a matter of writing the code which would pull out the

information from these tags for us.

hometeam = soup.findAll("td", {"class":"ismHomeTeam"})

awayteam = soup.findAll("td", {"class":"ismAwayTeam"})

score = soup.findAll("td", {"class":"ismScore"})

The above code pulls out the home team (tag = “td”, class = “ismHomeTeam”), away team (tag =

“td”, class = “ismAwayTeam”) and the score in the fixture (tag = “td”, class = “ismScore”). All of this

information is then appended to the text file using:

fix_file.write(str(week) + ',' + hometeam[i].text + ',' + score[i].text + ',' + awayteam[i].text.strip() + ',' +

'\n'), where i is the number of fixtures in that game week.

As different game weeks have different numbers of fixtures (some teams may play twice in a game

week and some teams may not play at all) the value of i varies from game week to game week. To

counteract this, instead of setting a range for the value of i as we had before, a loop was created

which continued executing until it failed:

Fig 3.13: Python Looping Code

This created a line in the text file for each fixture for each game week with the name of the home

team, the away team and the score in the fixture.

22

3.2.3.1 Web Scraping League Table

Scraping the league table was done in a similar manner to the fixtures scraping. The URL for the

website was defined and a connection made using the urllib.open() function:

html = urllib.urlopen(base).read(), where base = "http://fantasy.premierleague.com/transfers/"

The BeautifulSoup() function was used to parse all of the HTML of the website:

soup = BeautifulSoup(html)

A text file was created which would store all of the information scraped by the program.

league_table = open("league_table.txt", "w")

The tags with the required information in the HTML were identified.

Fig 3.14: Background League Table code

And the information scraped from them:

Fig 3.15: program to scrape league table

23

The output of this program was a csv text file which has the columns, table position, team name,

games played and points. As there are only 20 teams in the league, the loop for this was simpler

than the previous program we had a definite start and end value for our iterator, i.

3.3 Running the System

All three scripts were saved to a single, executable python file called master.py. This file was

executed from the command line using the command:

“Python master.py”

As the code iterates through each of the steps a message was printed to the terminal which gives

details on the progress of the program letting the user know exactly the section of code the program

is executing at any time.

Fig 3.16: Output to terminal

All of the code for the scraping activities can be found in Appendix E.

3.4 Copyright Information

The scraping of data from websites on the internet is something of a legal grey area with the owners

of each website having different rules for downloading content. The FPL website gives the following

guidelines to avoiding copyright infringement:

 You may download and print material from the Website as is reasonable for your own

private and personal use.

 You may forward such material from the Website to other people for their private and

personal use too provided you credit the FPL as its source and add the Website

address: www.premierleague.com. You must draw their attention to these terms which also

apply to them (Premier League, 2014).

In this case it was interpreted that any information scraped from the website was legal as long as it

would not be used for commercial purposes. In this case it is not as it is required for an academic

project. The dashboard which will be created to distribute the information will have a link to the

home page of the website as specified above.

24

4. Mysql Database

4.1 Introduction

Mysql is the second most widely used open source relational database management system

(RDBMS) in the world (DB Engines, 2013). It is developed by Oracle and released originally in 1995. It

uses the SQL (Structured Query Language) and is implemented in C and C++. The main command line

tool is the command line client which allows the user to input code directly into the terminal or to

run previously saved SQL scripts.

4.2 Purpose

Mysql was used in this project to create a database of all of the information which was scraped from

the FPL website in the form of a number of different tables. Using Mysql a lot of data manipulation

was carried out on the underlying data in order to prepare for the data load into the Qlikview

environment.

The Mysql database was act as a bridge between the raw data taken from the website and the final

dashboard to be presented to the end user. The tables that were created in Mysql could be easily

loaded into qlikview via ODBC (Open Database Connectivity).

4.3 Download

MySQL Community Edition is a freely downloadable version of Mysql which is supported by an active

community of open source developers and enthusiasts. It can be downloaded from the Mysql

website (MySQL, 2014) across any platform. The user must first create an account with Mysql before

beginning the download but once this is complete the download can commence. Once the files are

downloaded to the C drive of the machine the user can begin loading data, creating databases and

tables and avail of all the functionality Mysql has to offer.

4.4 Create Database and Tables

A database was created for the sole purpose of storing the tables relating to the project. The

database was called PROJECT and it was created using the following command:

create database PROJECT;

use PROJECT;

Once the database was initialised using the “use” function, the tables which were to be used for

holding the data were created. The main table was called PLAYER_STATS and had the following

fields and datatypes:

CREATE TABLE PLAYER_STATS(

GAME_DTE VARCHAR(30),
GAMEWEEK INTEGER,
OPPOSITION VARCHAR(30),
MINS_PLYD INTEGER,
GOALS_SCORED INTEGER,
ASSISTS INTEGER,

25

CLEAN_SHEET INTEGER,
GOALS_CONCEDED INTEGER,
OWN_GOALS INTEGER,
PENALTIES_SAVED INTEGER,
PENALTIES_MISSED INTEGER,
YELLOW_CARDS INTEGER,
RED_CARDS INTEGER,
SAVES INTEGER,
BONUS INTEGER,
EA_PPI INTEGER,
BONUS_POINTS_SYS INTEGER,
NET_TRANSFERS INTEGER,
PLAYER_VALUE INTEGER,
POINTS INTEGER,
PLAYER_NAME VARCHAR(50),
TEAM_NAME VARCHAR(30),
POSITION VARCHAR(30),
SELECTED_BY VARCHAR(5),
PRICE INTEGER,
PLAYER_ID INTEGER
)
;

In order to load the scraped data from the text file into the newly created table the following
command was used:

LOAD DATA LOCAL INFILE "C:/Users/Gibbo/Documents/Data

Analytics/Project/Python/player_history.txt"

INTO TABLE PLAYER_STATS

COLUMNS TERMINATED BY ','

;

This command takes the text file player_history.txt and loads the data into the table PLAYER_STATS.

Once this was complete it was then possible to select from the table as required.

26

Fig 4.1: MySQL Terminal

4.5 Data Manipulation and Cleansing

Some of the fields in this table required some manipulation in order for them to be useful in the final
analysis. For example, the OPPOSITION field in the table is a character field which gives an
abbreviated name of the opposition team, whether it was a home or away match and the final score.

Fig 4.2: Output from query 1

Ideally we would like to have these as three separate fields so some manipulation was required as
shown below:

CREATE TABLE PLAYER_HISTORY
AS
(
SELECT
GAME_DTE,
GAMEWEEK,
SUBSTRING(TRIM(OPPOSITION), 1, 3) AS OPPOSITION,
SUBSTRING(TRIM(OPPOSITION), 5, 1) AS HOME_AWAY,
SUBSTRING(TRIM(OPPOSITION), 8, 3) AS SCORE,

CASE WHEN SUBSTRING(TRIM(OPPOSITION), 8, 1) > SUBSTRING(TRIM(OPPOSITION), 10, 1) THEN
'WIN'
 WHEN SUBSTRING(TRIM(OPPOSITION), 8, 1) < SUBSTRING(TRIM(OPPOSITION), 10, 1) THEN
'LOSE'
 ELSE 'DRAW'
END AS MATCH_OUTCOME,

MINS_PLYD ,
GOALS_SCORED ,

27

ASSISTS ,
CLEAN_SHEET ,
GOALS_CONCEDED ,
OWN_GOALS ,
PENALTIES_SAVED ,
PENALTIES_MISSED ,
YELLOW_CARDS ,
RED_CARDS ,
SAVES ,
BONUS ,
EA_PPI ,
BONUS_POINTS_SYS ,
NET_TRANSFERS ,
PLAYER_VALUE ,
POINTS ,
PLAYER_NAME ,
TEAM_NAME ,
POSITION ,
CAST(SELECTED_BY AS DECIMAL(3,1)) AS SELECTED_BY,
PRICE ,
PLAYER_ID

FROM PLAYER_STATS
)
;

In this instance, the table PLAYER_HISTORY was created by selecting data from the PLAYER_STATS
table and manipulating some of the fields into the desired format. The new field OPPOSITION
extracts the abbreviated team name from the original OPPOSITION field in PLAYER_STATS. The fields
HOME_AWAY and SCORE create two new fields from OPPOSITION which tell us if the team played at
home or away and what the score of the match was. The field MATCH_OUTCOME tells us whether
the team won, drew or lost the match based on the score while the field SELECTED_BY modifies
the original character SELECTED_BY field to a decimal.

A total of 8 tables were created in mysql. These are shown in the console below:

28

Fig 4.3: Output from query 2

The table TEAM was created as a reference table which mapped the abbreviated name in the
PLAYER_HISTORY table to an actual team name. The structure of the table is shown below:

CREATE TABLE TEAM(
TEAM_NAME VARCHAR(30),
TEAM_ABBRV CHAR(3)
)
;

INSERT INTO TEAM VALUES('Arsenal', 'ARS');
INSERT INTO TEAM VALUES('Crystal Palace', 'CRY');
INSERT INTO TEAM VALUES('Aston Villa', 'AVL');
INSERT INTO TEAM VALUES('Stoke City', 'STK');
INSERT INTO TEAM VALUES('Fulham', 'FUL');
INSERT INTO TEAM VALUES('Cardiff City', 'CAR');
INSERT INTO TEAM VALUES('Chelsea', 'CHE');
INSERT INTO TEAM VALUES('Man Utd', 'MUN');
INSERT INTO TEAM VALUES('Liverpool', 'LIV');
INSERT INTO TEAM VALUES('Everton', 'EVE');
INSERT INTO TEAM VALUES('West Brom', 'WBA');
INSERT INTO TEAM VALUES('Hull City', 'HUL');
INSERT INTO TEAM VALUES('West Ham', 'WHU');
INSERT INTO TEAM VALUES('Sunderland', 'SUN');
INSERT INTO TEAM VALUES('Man City', 'MCI');
INSERT INTO TEAM VALUES('Newcastle', 'NEW');
INSERT INTO TEAM VALUES('Norwich', 'NOR');
INSERT INTO TEAM VALUES('Southampton', 'SOU');
INSERT INTO TEAM VALUES('Swansea', 'SWA');

29

INSERT INTO TEAM VALUES('Tottenham', 'TOT');

The table PLAYER_POINTS provides a summary of the total points of all players in the game:

Fig 4.4: Output from query 3

The tables LEAGUE_TABLE and FIXTURES were created by loading all of the data from the text files
league_table.txt and fixtures.txt:

CREATE TABLE LEAGUE_TABLE
(
POSITION INTEGER,
TEAM_NAME VARCHAR(30),
GAMES_PLAYED INTEGER,
POINTS INTEGER
)
;

LOAD DATA LOCAL INFILE
"C:/Users/Gibbo/Documents/DataAnalytics/Project/Python/league_table.txt"
INTO TABLE LEAGUE_TABLE
COLUMNS TERMINATED BY ','
;

CREATE TABLE FIXTURES
(
GAMEWEEK INTEGER,
HOME_TEAM VARCHAR(30),
SCORE VARCHAR(10),
AWAY_TEAM VARCHAR(30)
)
;

30

LOAD DATA LOCAL INFILE "C:/Users/Gibbo/Documents/Data Analytics/Project/Python/fixtures.txt"
INTO TABLE FIXTURES
COLUMNS TERMINATED BY ','
;

The table FIXTURE_STATUS was created to modify the FIXTURE table to contain an identifier which
indicates if the match is complete or is still to be played:

CREATE TABLE FIXTURE_STATUS
AS
(
SELECT GAMEWEEK,
 HOME_TEAM,
 SCORE,
 AWAY_TEAM,
 CASE WHEN SCORE LIKE ('%0%')
 OR SCORE LIKE ('%1%')
 OR SCORE LIKE ('%2%')
 OR SCORE LIKE ('%3%')
 OR SCORE LIKE ('%4%')
 OR SCORE LIKE ('%5%')
 OR SCORE LIKE ('%6%')
 OR SCORE LIKE ('%7%')
 OR SCORE LIKE ('%8%')
 OR SCORE LIKE ('%9%') THEN 'RESULT' ELSE 'TBP' END AS STATUS

FROM FIXTURES
)
;

The table FIXTURES_REMAINING was created to provide an overall view of the remaining fixtures for
each team. The code is shown below:

CREATE TABLE FIXTURES_REMAINING
AS
(
SELECT FIX.GAMEWEEK,
 TM.TEAM_NAME,
 CASE WHEN TM.TEAM_NAME = FIX.HOME_TEAM THEN FIX.AWAY_TEAM ELSE
FIX.HOME_TEAM END AS OPPOSITION,
 CASE WHEN TM.TEAM_NAME = FIX.HOME_TEAM THEN 'H' ELSE 'A' END AS
HOME_OR_AWAY

FROM FIXTURES FIX

LEFT JOIN TEAM TM
ON TM.TEAM_NAME = FIX.HOME_TEAM

31

OR TM.TEAM_NAME = FIX.AWAY_TEAM

WHERE SCORE LIKE '%V%'
)
;

This table is created by joining to the FIXTURES table to the TEAM table on HOME_TEAM OR
AWAY_TEAM. The purpose of this is to create a single row per team per game week remaining and
show all the fixtures that team has left. For each game remaining, there will be two rows in the
table, one for the away team and one for the home team.

Fig 4.5: Output from query 4

In this table we can see where teams can have multiple games in a single game week. For instance,
Man Utd are at home to Sunderland and Hull City in game week 37. The rest of the code for the
mySQL database can be viewed in Appendix F.

4.6 ODBC Driver

In order to connect the Mysql database to the qlikview application an ODBC connection must be

made between the two. The ODBC driver can be downloaded from

http://dev.mysql.com/downloads/connector/odbc/ . This is a standardized database driver for

Windows, Linux, Mac OS X, and Unix platforms (MySQL, 2014). The installer for Windows was

downloaded and the default settings maintained throughout the process.

Once the download is complete, the ODBC connection was configured. The ODBC Data Sources was

opened in Administrative tools in the Control Panel and a new Data Source Name (DSN) added.

32

Fig 4.6: Install ODBC Driver

The MySQL ODBC 5.1 Driver was selected and “Finish” was selected. Another user form was filled in
with details of the connection to be made.

Fig 4.7: Create ODBC Connection

The form was filled in with the above information:

Data Source Name: The name of the data source

Description: Description of the data source

TCP/IP Server: localhost as the connection is being set up on the local machine

User: Root as this is the user on the local machine

Password: MySQL password.

Database: The database which we wish to connect to in MySQL

33

We then click “Test” to see if the connection has been successful or not.

Fig 4.8: ODBC Connection successful

The ODBC DSN has now been set up successfully and connections can be made with qlikview. We
will discuss how to connect to qlikview in the next chapter.

34

5. Qlikview Dashboard

5.1 Introduction

QlikView is a powerful and flexible Business Intelligence platform for turning data into knowledge

(Visual Intellegence, 2014). It enables users to easily consolidate, search, and visually analyse all

their data for actionable insight. It allows users to:

- Consolidate relevant data from multiple sources into a single application

- Explore the associations in the data

- Enable decision making

- Visualize data with engaging, state-of-the-art graphics

- Search across all data—directly and indirectly

Interact with dynamic apps, dashboards and analytics (Qlik, 2014)

Through the creation of interactive, graphical dashboards qlikview allows the end user to view the

data in the way that is most relevant to them cutting out the need for the middle man in the

Management Information (MI) and decision processes. It allows users to uncover hidden trends and

make discoveries that drive innovative decisions.

5.2 Download

A personal version of qlikview can be downloaded from the website

http://www.qlik.com/us/explore/experience/free-download . This allows users to create their own

dashboards on their local machines. There is a range of helpful reading material and tutorials on the

qlik.com website which prepares the user to create their first simple dashboard. The downside to

the personal edition of qlikview is that dashboards created by other users cannot be opened using

this edition. A qlikview user license is required for this purpose.

5.3 ODBC Connection

When the application is opened an introduction screen is shown to the user:

http://www.qlik.com/us/explore/experience/free-download

35

Fig 5.1: Qlikview Introduction dashboard

To create a new qlikview document the “New” tab is opened and a blank canvas appears. This is

where all of the graphs and tables etc will be created from the data. Before these are created the

data must first be loaded in. The “Edit Script” tab is selected and the following screen appears to the

user:

36

Fig 5.2: Qlikview Load Editor

In order to create the ODBC connection with the DSN created in the previous section, ODBC is

selected from the drop down box in the Data tab and the click Connect. The following options are

presented:

Fig 5.3: ODBC Connection

The DSN which was created was called Test and this is selected from the options. When this is done

the document should be saved to a location on the local machine. Once this is complete the

connection has been made and the data from the MySQL database can be loaded into the

application.

37

5.4 Data Load

The data was loaded in using the script editor in Qlikview. The syntax for loading in the tables is very

similar to SQL. An example of the loading of one of the tables is shown below:

PLAYER:

LOAD

GAME_DTE,

GAMEWEEK,

LOOKUP('TEAM_NAME', 'TEAM_ABBRV', OPPOSITION, 'TEAM') AS OPPOSITION_NAME,

LOOKUP('TEAM_POSITION', 'TEAM_NAME', LOOKUP('TEAM_NAME', 'TEAM_ABBRV', OPPOSITION,

'TEAM'), 'LEAGUE') AS OPPOSITION_POSITION,

HOME_AWAY,

SCORE as RESULT,

MATCH_OUTCOME,

MINS_PLYD,

GOALS_SCORED,

ASSISTS,

CLEAN_SHEET,

GOALS_CONCEDED,

OWN_GOALS,

PENALTIES_SAVED,

PENALTIES_MISSED,

YELLOW_CARDS,

RED_CARDS,

SAVES,

BONUS,

EA_PPI,

BONUS_POINTS_SYS,

NET_TRANSFERS,

PLAYER_VALUE/ 10 as PLAYER_VALUE, //Value appears as a multiple of 10 in the file

POINTS,

PLAYER_NAME,

TEAM_NAME,

POSITION,

PRICE/10 as PRICE,

SELECTED_BY,

PLAYER_ID

;

SQL SELECT *

FROM PLAYER_HISTORY

;

In this case the table PLAYER is loaded in and is taken from the SQL table PLAYER_HISTORY. Some

changes have been made to the table fields in PLAYER_HISTORY. The lookup function will be

explained at a later stage. The script for loading in all of the data is shown in the Appendix G.

The script is executed by clicking on the “Reload” button.

5.4.1 Schema, Joins and Associations

When the data load is complete the schema of the tables can be viewed using CTRL + t. The schema

is shown below:

38

Fig 5.4: Qlikview Databse Schema

Unlike SQL where a join is explicitly defined between tables and columns, in Qlikview an associative

join occurs between tables where they share fields with the same names. The QlikView internal logic

allows a multi-table data model. Tables are linked by the naming of the keys so that QlikView

“knows” how to evaluate the relations at run-time. The associations are evaluated as joins at the

moment when the user clicks in the application, making a selection (Qlik, 2012). That means that

these links are implicit joins that have not yet been made.

The Qlikview script can also contain actual joins where two or more tables are joined in the load

script and the end result is a single table which is a function of the join condition and selections from

the tables. This is not evaluated on selection by the user.

Hence, the main difference between the associations and joins is that the associations are evaluated

at demand; as the user makes selections. As opposed to the joins that are evaluated when the script

runs.

5.5 Creating Charts and Tables

There are a number of different types of charts and tables available in qlikview. The data is generally

split up into dimensions and expressions. The dimensions are generally the range over which you

wish to make the calculation on the data. The expression data is the metric on which a certain

39

calculation is performed. For example, if a business user wanted to find the volume of sales per

month, the dimension would be the month value and the expression would be the sum of the sales.

The general rule is that you will have a data point for every dimensional value in a chart so in this

case there would be a value for the sum of the sales for each of the months in the year.

In order to create a chart, the dimensions and expressions must be defined. The user must right click

on the canvas and select “New Sheet Object”. The type of chart/table can then be selected from the

drop down menu.

Fig 5.5: Qlikview Graph Type Selection

The entire range of fields that have been loaded into the qlikview session are available for selection

as dimensions.

40

Fig 5.6:Dimension Selection

In this instance the dimension selected is the field PLAYER_NAME. The expression is then taken as
the overall sum of the points scored by each player.

Fig 5.7: Expression Selection

41

This provides us with a bar graph that shows every player’s total points in the game.

Fig 5.8: Total Points Scored

The number of dimensions shown on the screen can be limited by using the dimension limits tab in

the graph creation screen. This can then allow the user to scroll down through all of the players with

each name and value clearly legible.

A table can be created in the same way with dimensions and expressions. This type of table is called

a straight table. A table box is different in that there are no expressions and the user just selects the

fields they wish to display in the table. The below table is a straight table as it has the calculated

dimensions called selection rank and overall rank.

Fig 5.9: Master Points Table

The calculated dimension for the Selection rank is:

=Aggr(Rank(Sum(POINTS),1,1),PLAYER_NAME)

And the calculated dimension for the Overall rank is

=Aggr({1} Rank(Sum({1}POINTS),1,1),PLAYER_NAME)

42

The difference between the two of these is that when a user makes a selection such as team name

or position, the overall rank will stay the same while the selection rank will update the calculation

based on the selection that has been made. The {1} in the code for the second calculated dimension

tells it to ignore all selections made. So for example, if only defenders were selected the table would

look like the following:

Fig 5.10: Master Points Table with selections

From this we can see that Seamus Coleman is the top points scoring defender and is 7th in the overall

ranking. Also at the bottom of the table we can see that the total number of points scored by all

defenders is 9,016. This is an option when creating the table to have totals or not.

5.6 Making Selections

As discussed previously, an associative join occurs between tables where they share fields with the

same names. When certain selections are made, this implicit join is evaluated and the results are

displayed to the screen. In order to make the process of making selections easier, list boxes were

used in the dashboard which gives the user the option to selected whatever data they require. Three

main list boxes were used for every tab in the dashboard – Team Name, Position and Player Name

43

Fig 5.11: Selection Boxes

In the example above, the position Defender is selected. This means that only defenders appear in

the Player name list box. If the user wished to only display defenders for Manchester United then

the following would be displayed:

44

Fig 5.12: Selection Boxes with Selections

The graphs in the dashboard will be updated accordingly also. For example, the graph which was

created to show the goals scored by each player would now look like this.

45

Fig 5.13: Graph with selection

From this we can see that only three Manchester United defenders have scored goals. These

selections can be made to filter the data as the user wishes.

5.7 Switching Between Sheets

In order to create more real estate for the qlikview objects, a number of different sheets were

created which allowed for the segregation of the graphs and tables into different sections. When a

sheet is created an action can be created on an object so that when it is selected a certain task is

carried out. In order to switch between sheets a number of text objects were created and the action

on these was to activate a certain sheet. This was done in the Actions tab of the object:

Fig 5.14: Set Actions

46

The sheet ID of the required sheet was set and when the text object was clicked the set sheet was

activated. In the dashboard, 4 main tabs were created for the 4 sheets. These can be seen below:

As each tab is selected, the colour of the text object changes to highlisght which sheet the user is

currently using. This is done using conditional formatting in qlikview.

When the tab is selected the graphs on that particular sheet will appear.

Fig 5.15: Tab selection

5.8 Setting Variables

Variables are a very useful feature in qlikview. They allow the developer to create a set or

changeable value based on a formula or just a hard coded value. These variables can then be

referenced in the creation of the qlikview objects to limit certain features or include in the

calculation of an expression.

To create a variable the Variable Overview box was selected from settings.

47

Fig 5.15: Set variables

The variable vPriceFilter was created to place a limit on the players returned in the graphs and the

selection boxes based on the players’ respective values. This allows the user to put a range on the

price of the players that are returned if they have a limited transfer budget.

The price filter was implemented in the form of a drop down input box where the value selected set

the vPriceFilter to that value.

Fig 5.16: Set Variable value

48

When a value is selected from this dropdown the players returned in the graphs and selection boxes

are only those who have a value equal to or less that the value selected in the drop down. When the

value is set to the maximum all players are returned.

Fig 5.17: Tab selection with max price

When the value is set to a lower price only players with that price or lower are returned.

Fig 5.18: Tab selection with price filter

Variables were also used to show certain graphs when certain conditions are met. The sub tabs in

the sheets were created as sheet objects and an action created on each object to set a certain

variable to a certain value.

49

Fig 5.19: Set variable to text objects

In this instance by selecting the object the variable vargraph was set to a value of 7. In a graph in the

sheet a rule was applied to only show that graph when the value of the vargraph variable = 7.

Fig 5.20: Conditional Layout

50

When that tab is selected, only that graph will appear.

Fig 5.21: Select tabs

This applies for all sub tabs with each one of these highlighting a single graph to the page.

5.9 Key Performance Indicators

At the beginning of the dashboard development a number of potential users were interviewed as to

what features and KPIs they would like to see included in the dashboard. The majority of these were

the same ones available in the website itself but with an emphasis on a nicer more user friendly

graphical interface which would allow the user to navigate their way through the system and easily

identify targets for transfers and substitutions.

Other aspects identified included:

- Functionality to view a moving average of players scoring history which allowed the user to

get a clearer picture of the players form.

- An ability to compare players scoring across game weeks with other players in the game

- Functionality to see a players average scoring in home games vs. away games

- Functionality to see a player’s average scoring against the top teams vs. the bottom teams.

5.9.1 Dashboard Tabs

5.9.1.1 Overview

Each of the tabs on the dashboard attempts to provide the required functionality to the user. The

first tab is the Overview sheet which gives a high level overview of the statistics in the game. It

contains the up to date league table, a table with all of the players sorted by highest scoring to

lowest scoring, a pie chart with the percentage of the total points scored by position and a bar graph

showing the top scoring teams in the game.

51

Fig 5.22: Overview Tab

5.9.1.2 Overall Data

The overall data tab contains information about the top scoring players across a range of metrics.

These metrics are:

- Total Points

- Goals Scored

- Assists

- EA Player Performance Index (PPI)

- Price

- Minutes Played

- Bonus Points

- Price Change

- Average Points per Game

Each sub tab in this sheet relates to a different graph. The image below shows the graph relating to

the Price Change metric. The players are split into the top price risers and the lowest price fallers.

Two buttons are added to the graph which allows the user to view either one or the other.

52

Fig 5.23: Overall Data – Price Rise Graph

Fig 5.24: Overall Data – Price Fall Graph

5.9.1.3 Player Data

The Player Data tab allows the user to view certain information about whichever players they

choose. In order to show a graph, a player must be selected from the selection box along the side.

The metrics in this section are split up into 4:

- Points

- Goals Scored

- Value v Transfers

53

- Moving Average

The data in this section shows a time series data on a game week level. The dist sub tab in the

section shows the players scoring history in a graphical manner showing the points scored, goals

scored, yellow/red cards received assists and clean sheets if the player is a defender or goalkeeper.

Fig 5.25: Player Data – Points per Game week

The Value v Transfers sub-tab shows how the player’s value relates and responds to the net transfers

of that player in the game.

Fig 5.26: Player data – Price Change per game week vs. Transfers

The moving average tab shows the n-day moving average for each player selected. The players can

be compared against each other to provide useful information on the form of certain players. The

54

number of days used to calculate the moving average can be chosen by the user using a drop down

box in the graph and a variable.

Fig 5.27: Moving Average Points per Game week

5.9.1.4 Predictions

The predictions tab contains data on the breakout of the player scoring by home vs. Away away

matches, top teams vs bottom teams and points scored against teams remaining. The tab home vs.

Away gives the user an insight into the average scoring of the player for games at home compared to

games played away from home.

Fig 5.28: Average Points Home vs. Away

55

As expected, the majority of players have a higher scoring average when playing at home compared

to away from home. The sub tab Points by Opposition Position shows the players average scoring

against the top n teams compared to the bottom 20 – n teams. The value of n is selected from a

drop down box and is stored as a variable. This allows the user to compare average scoring against

top teams vs. Bottom teams.

Fig 5.29: Average Points Top vs. Bottom teams

The code for the expression here is given as:

=avg(

{<

MINS_PLYD -= {0},

OPPOSITION_POSITION = {"<=$(=vTopTeams)"}

>}

POINTS

)

 And the code for the dimensions is:

=if(PRICE <= vPriceFilter, PLAYER_NAME)

The final sub tab in the dashboard is called Remaining Fixtures. Here the user has the ability to see

what fixtures a team/player have remaining and the previous scores that player achieved against

those teams in the past. This, coupled with the previous two sub-tabs in this sheet, gives the user

some valuable insight into the scoring potential of the player for their remaining games.

56

Fig 5.30: Remaining Fixtures per team

Fig 5.31: Points vs. Remaining teams per Player

5.10 Testing

The testing of the dashboard data was done in phases after each additional piece of functionality

was introduced. Once a new version of the dashboard was created regression testing was carried

out on the system to ensure that the new features had not broken any of the existing logic. One of

the key issues with testing the data in qlikview is ensuring the associations work as required. This

involves ensuring that all key fields in the tables are named the same and any fields which are not

related are given different field names.

The regression test plan is shown in Appendix H.

57

6. Further Developments
Given the tight time frame for the project completion, a limited amount of functionality was inserted

into the dashboard to ensure that the deadlines in the Proposal Reports were met (Gibbons, 2014).

There is a lot of scope remaining in this area for further development both in terms of functionality

of the dashboard and in terms of deployment across multiple channels (mobile, internet platforms)

One aspect of the original project requirements specification which was not implemented was the

introduction of a data mining program which would take the player scoring data and a number of

other independent variables as input and create a model which would predict future scoring based

on these variables (Gibbons, 2014). There were a number of reasons why this was not added to this

release of the system.

1. The data mining class was being run in parallel with the project and as such not all necessary

skills had been covered.

2. The tight time frame of the project meant that other requirements had to be prioritised and

this was rated as a “Would” on the MoScoW analysis scale of importance

3. The amount of data available at the time was limited. The data scraping activities began with

around 20 game weeks of the season completed which meant there were only 20 rows per

player available. This was deemed to not be enough data to complete a worthwhile data

mining exercise. However, for the release of the system for next season all of the data from

this season will be available so this functionality can be implemented with the R

programming language the most likely technology to be used.

As there are few other systems online which carry out the same type of analysis covered here, the

next step of development is to host the dashboard online. There are a couple of options available to

implement this. The dashboard could be recreated in the tableau software as all documents created

in tableau are available online to members of the public (Tableau, 2014). The other option is to

purchase server space and deploy the qlikview dashboard to the server. Given the limited budget

available to the project the most likely source of action will be to re-create the dashboard in

Tableau. This could also prove beneficial or the data mining functionality as Tableau has a built in

interface with R.

6.1 Contingencies

The current system is tested and passed for the FPL website as it currently stands. However, the

layout of the website is changing from year to year. This means that the scraping programs written

for the current website may not be applicable to the website after changes have been made. A full

system regression test will be required at the start of next season to identify any changes that need

to be made to the program.

In the case that the website changes during the course of this season, a copy is kept of all scripts,

text files, databases and dashboards both on the local machine and in the cloud to Google Drive

(Google, 2014). This ensures that if the layout of the dashboard does change, the majority of the

data from the season will still be available and the project can still complete on time with the caveat

that a further development cycle is required for the website layout.

58

7. Conclusions
The end goal of this project was to create a fully functional, interactive dashboard which managers

in the FPL game could use intuitively to help them with decisions about their teams. This goal has

been achieved and the dashboard created is a robust tool for any managers in the game. The overall

system uses a number of tools which are integrated seamlessly and interact with each other at

different steps of the process.

The system is a unique source for all information regarding the FPL game and provides a valuable

resource to all users. There is a wide scope for further development of the system and new

functionality will be added in the coming months. The summer period, during which there are no

premier league games, will provide the time to introduce and test new functionality into the

dashboard. The final end goal of having a prediction model in place for next season will add a unique

layer of insight which has never before been achieved.

Once all of these features have been implemented and tested, the dashboard will be hosted online

and advertised originally through social media. The number of hits the website gets will be tracked

and as the word spreads about the tool we hope to see a large increase in traffic to the site. This

would hopefully end up with monetisation of the site in terms of advertising revenue.

59

Bibliography
Crummy, 2013. Crummy BeautifulSoup. [Online]

Available at: http://www.crummy.com/software/BeautifulSoup/bs4/doc/

[Accessed 1 March 2014].

DB Engines, 2013. Database Systems Rankings. [Online]

Available at: http://db-engines.com/en/ranking

[Accessed 1 May 2014].

Gibbons, B., 2014. Project Proposal - Extract and Analyse Player Performance Data from the Fantasy

Premierleague Website, Dublin: s.n.

Gibbons, B., 2014. Requirements Specification - Extract and Analyse Player Performance Data from

the Fantasy Premierleague Website, Dublin: s.n.

Google, 2014. Google Drive. [Online]

Available at: https://drive.google.com/

[Accessed 5 Jan 2014].

J6 Design, 2012. j6 Design. [Online]

Available at: http://www.j6design.com.au/ClientArea/Whyuseimages

[Accessed 20 April 2014].

MySQL, 2014. Mysql. [Online]

Available at: http://dev.mysql.com/downloads/mysql/

[Accessed 30 September 2013].

MySQL, 2014. Mysql Dev. [Online]

Available at: http://dev.mysql.com/downloads/connector/odbc/

[Accessed 5 February 2014].

Notepad ++, 2014. Notepad ++. [Online]

Available at: http://notepad-plus-plus.org/

[Accessed 21 April 2014].

PLFantasy, 2014. PLFantasy. [Online]

Available at: http://premierleaguefantasy.blogspot.ie/p/player-dashboard.html

[Accessed 20 April 2014].

Premier League, 2014. Fantasy Premier League. [Online]

Available at: http://fantasy.premierleague.com/

[Accessed 20 April 2014].

Premier League, 2014. Fantasy Premier League. [Online]

Available at: http://fantasy.premierleague.com/

[Accessed 23 February 2014].

60

Premier League, 2014. Fantasy Premier League API. [Online]

Available at: http://fantasy.premierleague.com/web/api/elements/180

[Accessed 25 February 2014].

Premier League, 2014. Fantasy Premier League Rules. [Online]

Available at: http://fantasy.premierleague.com/rules/

[Accessed 20 April 2014].

Python for Beginners, 2014. Python API and JSON. [Online]

Available at: http://www.pythonforbeginners.com/api/python-api-and-json

[Accessed 1 May 2014].

Python, 2014. Python unicode. [Online]

Available at: https://docs.python.org/2/howto/unicode.html

[Accessed 1 February 2014].

Python, 2014. Urllib. [Online]

Available at: http://docs.python.org/2/library/urllib.html

[Accessed 25 March 2014].

Python, 2014. urllib python. [Online]

Available at: https://docs.python.org/2/library/urllib.html

[Accessed 1 May 2014].

Python, 2014. What is Python. [Online]

Available at: https://docs.python.org/2/faq/general.html#what-is-python

[Accessed 21 April 2014].

Qlik, 2012. Qlikview. [Online]

Available at: qlikview.com

[Accessed 15 March 2014].

Qlik, 2014. Qlik. [Online]

Available at: http://www.qlik.com/us/explore/products/overview

[Accessed 1 April 2014].

Qlikview, 2014. Qlikview Community. [Online]

Available at: http://community.qlik.com/content

[Accessed 10 April 2014].

Six Feet Up, 2013. Six Feet Up. [Online]

Available at: http://www.sixfeetup.com/blog/why-we-choose-python

[Accessed 21 April 2014].

Tableau, 2014. Tableau. [Online]

Available at: http://public.tableausoftware.com/views/PlayerPage/Dashboard1?:showVizHome=no

[Accessed 20 April 2014].

61

Tableau, 2014. Tableau. [Online]

Available at: http://www.tableausoftware.com/products/online

[Accessed 3 May 2014].

Visual Intellegence, 2014. Why Choose Qlikview. [Online]

Available at: http://www.visualintelligence.co.nz/QlikView.php

[Accessed 1 May 2014].

Wiki Python, 2014. Python 2 or Python 3. [Online]

Available at: https://wiki.python.org/moin/Python2orPython3

[Accessed 21 April 2014].

62

Appendices

Appendix A – Project Proposal

Objectives and Contribution to the Knowledge

The Premier League Fantasy Football game is played by over 3 million people worldwide. The unique

User Interface allows players to easily access their team scores, make transfers, check their mini-

leagues and make substitutions.

The project idea is to create a user friendly dashboard which will give detailed stats on each players

scoring throughout the season allowing them to make informed decisions on transfers, substitutions

etc.

Background

All of the data is provided on the website as text files but no graphical representation of this data

can be generated. For a player to check certain stats across a team/player/position they would have

to copy and paste the data they want to an excel file and generate whatever results they want

themselves. This would be extremely time-consuming and would have to be repeated after every

gameweek has completed.

With the final dashboard, the idea is that all of this information will be consolidated into one master

view and the user can slice and dice the data whatever way they want with no need for manual

calculation.

The concept of a dashboard for fantasy football stats does exist but in most cases membership to a

website and, in a lot of cases, a fee is required. One website that creates a free dashboard is called

http://premierleaguefantasy.blogspot.ie/p/player-dashboard.html

This is created using Tableau but it is quite cumbersome and not very user friendly.

Technical Approach

There are a number of steps involved in the implementation of the system.

1. Create a script(s) to scrape the website for all of the historical scoring data for each player
using python

2. Cleanse the data using python/excel
3. Create a schema for mysql database and insert structured data into tables
4. Use Qlikview to create a dashboard of all stats based on the tables in this database
5. (Possibly) mine the available data to produce suggestions on what players to buy/sell based

on historical matches.

Special resources required

http://premierleaguefantasy.blogspot.ie/p/player-dashboard.html

63

Python (free)

Mysql(free)

Excel(download limited free version)

Qlikview(download limited free personal edition)

Project Plan

Technical Details

The principle language used will be python and the urllib, regex and json libraries will be used to

scrape the data from the website. SQL will be used to manipulate the data also in mysql with the

final dashboard created using qlikview after making a connection with the sql database.

Analysis may be done with R further down the line in the project to mine the available data whereby

the data will be mined to give suggestions on which players to buy/sell based on their historical

performances against teams in the division.

Systems/Datasets

The system description will be as per the technical approach. The source data is to be pulled from

the fantasy football website itself using mainly the json files which are sent to the server. As the data

will be unstructured, a process will be put in place to cleanse all of the data before inputting into a

database.There will be a couple of iterations to the extraction of data. At first I will use the regex

library to pull the source data from the XML code behind the website. If this is taking too long, which

64

is possible as the amount of code to be scraped in this case will be huge given the number of

connections to be made to the website, then I will use the json library to pull all the json files back if

they are available.

Evaluation, Tests and Analysis

The system will be tested at every stage and results will be compared back to the original website for

comparison purposes. Eg. A check will be done to ensure a players points on a certain game week

match the value given on the website. Tests will also be carried out that the data has been cleansed

properly and any bugs in the cleansing programme will be rectified as far as possible. Notes will be

made of any issues encountered for documentation purposes.

The performance of the system will be measured by having players of the fantasy game use the

dashboard and give feedback on the output. Any feedback will be incorporated as far as possible and

is feasible into the next iteration of the system.

The main performance metrics which can be measured empirically are the speed of the scraping

algorithm and the speed of the queries to the database.

Consultation with Specialisation Person(s)

Oisin Creaner: Voiced reservations about the size of the dataset which will be analysed.

Stephen Mullins: User of the fantasy football website. Thought the idea was a very good one as

there is nothing similar readily available to fantasy football players.

65

Appendix B – Requirements Specification

Introduction

Purpose

The purpose of this document is to set out the requirements for the development of a Qlikview

dashboard for the analysis of Fantasy Premier League Data. The document will describe the

functional requirements for the user to interact with the dashboard and also how the systems

(website -> mysql -> Qlikview) interact with one another. The non-functional requirements such as

connectivity, performance and extendibility will also be discussed

The intended customers are the end-users of the dashboard, any individuals assigned to test the

system end to end and the project sponsor.

Project Scope

The scope of the project is to develop a dashboard in Qlikview which the end user can interact with

in order to gain insight and alternative views into player scoring data. The data used for the project

is scraped from the Fantasy Premier League website (Premier League, 2014) using the python

scripting language. The python programme will make multiple requests to the website in order to

extract all data for every player in the game.

The data will be saved down to a CSV file and loaded into a mysql database environment.

A connection will then be made between Qlikview and the database via ODBC. The data will then be

available for analysis in Qlikview. All the graphs and tables will be developed in the Qlikview

environment

An informal interview was carried out with a number of Fantasy Premier League users to elicit any

functional requirements which they would find useful in helping them maximise their point scoring

potential.

The number of users interviewed was limited to those available at the time of elicitation. Many

individuals available for interviewing did not play the game and so were not used for the process.

Definitions, Acronyms, and Abbreviations

SQL = Structured Query Language

FPL = Fantasy Premier League

ODBC = Open Database Connectivity

Qlikview = Data Visualisation software for creation of user defined dashboards

User Requirements Definition

66

The end users interviewed gave very good feedback as to what functionality they would like to see in

the system. The main functionality suggested was:

- The user can select a certain player and see multiple views of the players scoring statistics
- The user can see trendlines for player scoring statistics
- The user can interact with the dashboard intuitively
- The information in the dashboard can be exported to excel
- The dashboard can suggest which players to purchase based on a range of input variables

(price etc.)

Requirements Specification

Functional requirements

Requirement Number Requirement MoSCoW Priority

1 Web Scraping Programme

1.1 Python programme must scrape data from Fantasy

Premier League website for all players in the

game

M

1.2 Programme must be able to interpret .json file

types

M

1.3 Scraping programme must be run after every

gameweek has completed and all bonus points

updated

M

1.4 Ouput file from scraping programme is to be a

single csv file with all player info

M

1.5 Programme must be ran from the command line

prompt

M

2 Mysql Database

2.1 The csv file must be loaded into a mysql database M

2.2 The mysql tablesand data load should be ran

together in one script.

S

3 Qlikview Dashboard

3.1 The Qlikview application should be downloaded

and connected to the mysql database

M

3.2 The data from the mysql database must be loaded

into the qlikview environment using relevant code

M

3.3 Graphs and tables of player statistics and

trendlines must be created within the qlikview

application. The code for each of these

graphs/tables to be generated independently

M

3.4 All of the charts graphs must be exportable to

excel

M

3.5 User cannot make amendments to dashboard. Can

only view and select the data

M

4.1 A model should be created in R which will

interpret input variables for each player and

output suggestions based on which players are

good/bad picks at that time based on the

underlying variables

S

Requirement 1: Create Web Scraping Programme

Description & Priority

67

This requirement describes how the system scrapes the data from the website. This is essential to

the overall system as it is where all of the data is extracted. As such it is a Must on the MoSCoW

scale.

Use Case

Scope

The scope of this use case is to show the how the system extracts the data from the website

Description

This use case describes the flow of the python system.

Use Case Diagram

Flow Description

Precondition

The correct URL is given for the web API

Activation

This use case starts when the developer runs the code from the command line

Termination

The system terminates when all of the data has been extracted

68

Post condition

The data for all players is saved down to a csv file

Requirement 2: Load csv data into Mysql Database

Description & Priority

The data from the csv file is loaded into a mysql database for ease of access. This must be done so

we can connect the database to the qlikview application.

Use Case: 2.1-2.2

Scope

The scope of this use case is to show how the data is loaded into the mysql database.

Description

This use case describes the mysql database

Use Case Diagram

Flow Description

Precondition

The data has been extracted and saved to a csv file

Activation

69

The mysql script is run from the mysql prompt

Termination

The system is terminated when the script has successfully run

Post condition

The data will be available in the mysql database

Requirement 3: Create Qlikview Dashboard

Description & Priority

The Qlikview dashboard will act as the GUI for the system and enable the user to make selections

and view the data

Use Case: 2.1-2.2

Scope

The scope of this use case is to show how the dashboard is created and how the user interacts

with it.

Description

This use case describes the qlikview dashboard

Use Case Diagram

Flow Description

70

Precondition

The ODBC connection between the mysql database and qlikview has been established

Activation

The qlikview load script has been run

Termination

When the load script is finished

Post condition

The data will be visible in the dashboard.

Non-Functional Requirements

Connectivity requirement

The python programme must be able to establish a connection with the host website of the fantasy

premier league. In order to do this, the package urllib (Python, 2014) will be imported into the

programme. This allows the programme to establish a connection with the website and for scraping

to commence

A connection must also be made between the qlikview application and the mysql database. In order

to do this, an ODBC driver will be downloaded and a connection set up to the mysql database in

question.

71

In this case the database is called Test and the connection is made via ODBC. The DSN was set up in

the configuration settings for the ODBC driver.

Recovery requirement

If for some reason the website is down and access is not possible, or the running of the system fails

for some reason, a backup copy of all tables in the database will be kept to ensure that data is not

lost and tables can be repopulated.

Extendibility requirement

Because the layout and format of a website can change, the programme may not be usable for next

season’s data. A copy of all of the current season data will be kept so that the analysis can continue

into next season when adjustments to the programme may have to be made.

Interface requirements

GUI

The GUI for the system will be a completed dashboard which will contain data for all players on the

game. The user will be able to make selections on the data based on a number of different attributes

72

e.g. Goals/assists/points etc. and this can be drilled down to team/player level. The diagram below

shows an initial mockup of the dashboard and how the user can make selections:

Application Programming Interfaces (API)

The system will use the fantasy premier league’s API. An example is shown in the link below:

http://fantasy.premierleague.com/web/api/elements/180/ (Premier League, 2014)

This produces a JSON file which is interperated by the JSON package in python and the relevant data

is extracted and saved down to a csv file.

System Architecture

http://fantasy.premierleague.com/web/api/elements/180/

73

System Evolution

There are a number of add-ons that could be made to the system after the project has completed.

There is scope to add additional features such as a data mining algorithm in R which could be run

against the data and based on a number of variables the optimum transfer could be generated.

If the system is functioning correctly, there are no major bugs and a beta test by a number of game

players was carried out with positive feedback, then it would be possible to host the dashboard

online allowing users from all over the world to access the functionality. Considerations such as

server cost etc would need to be taken into account for this and it would only be feasible if the

system was running efficiently and with no errors.

74

Appendix D – Progress Management Reports

Progress Management Report 1

Purpose of Document

The purpose of this document is to give an update to all relevant stakeholders on the project status.

This will give the stakeholders a chance to voice their concerns/issues with the progress of the

project or any other issues or concerns they may have. The outcome of the report will dictate future

activities as, based on discussions, some functionality may be added, removed or adapted.

The document should also provide an idea as to the resource requirements for the remainder of the

project in order to wait on programme.

Project Timeline

The diagrams below show the original project plan from the Project Proposal document (Gibbons,

2014).

The below diagrams show the updated project plan at this stage in the project:

75

As we can see, step 1 in the project has taken 5 less days to complete than originally planned (25

days – 20 days). This 5 day accumulated float has been built into the data mining and report writing

activities.

Project Requirements Status

The below chart indicates the status of each of the current requirements. The status will be green if

it is on schedule, amber if there is a risk of it going off schedule and red if it is currently off schedule.

This information was taken from the Requirements Specification (Gibbons, 2014)

Requirement

Number

Requirement % Complete Status

1 Web Scraping Programme

1.1 Python programme must scrape data from

Fantasy Premier League website for all players

in the game

100

1.2 Programme must be able to interpret .json file

types

100

1.3 Scraping programme must be run after every

gameweek has completed and all bonus

points updated

100

1.4 Ouput file from scraping programme is to be a

single csv file with all player info

100

1.5 Programme must be ran from the command

line prompt

100

76

2 Mysql Database

2.1 The csv file must be loaded into a mysql

database

100

2.2 The mysql tablesand data load should be ran

together in one script.

100

3 Qlikview Dashboard

3.1 The Qlikview application should be

downloaded and connected to the mysql

database

100

3.2 The data from the mysql database must be

loaded into the qlikview environment using

relevant code

100

3.3 Graphs and tables of player statistics and

trendlines must be created within the qlikview

application. The code for each of these

graphs/tables to be generated independently

10

3.4 All of the charts graphs must be exportable to

excel

5

3.5 User cannot make amendments to dashboard.

Can only view and select the data

0

4.1 A model should be created in R which will

interpret input variables for each player and

output suggestions based on which players

are good/bad picks at that time based on the

underlying variables

0

Planned Actions

Planned Actions Importance

Complete the Qlikview dashboard High

Regression testing of all previous functionality after every run High

Test system end to end High

Analyse the incoming data in R and link to the application Medium

Update progress charts and RAID logs Low

RAID Log

77

Risks

Risk Ref
Risk

Category
Risk Description Raised by

Date

Identified
Priority Impact Prob

Mitigation

Category
Mitigation Owner

R01 technology No data backup available BG 01-Mar-14 H H L prevention Backup all files to Google Drive BG

R02 Learning

Not enough covered in data mining class to

adapt R functionality BG 01-Mar-14 M M H acceptance Try to learn enough techniques in own time BG

R03 Learning Expiry of free trial software BG 01-Mar-14 M M L contingency Work in college instead of home BG

Assumptions

Ref # Assumption Importance Certainty Influence Test Test Date

A01

Supervisors will provide prompt feedback

and guidance 4 - critical 3 - Probable H Send request to test level of response
26-Feb-14

A02

No major injuries/illness will be incurred by

developer 4 - critical 1 - unknown H N/A
-

A03

College facilities will be available

throughout the lifecycle of the porject 3 - important 3 - Probable H Send an email to facilities to confirm

07-Mar-14

Closed Issues

78

Issue Ref Issue Description Raised by
Date

Raised
Impact Priority Action Plan Status Owner

Target

Resolution

Date

Actual

Resolution

Date

101

Error thrown when running the

python script BG 27-Feb-14 H H

Identify the issue using a try-except block in

python script closed BG 07-Mar-14 04-Mar-14

102

Not all players were being added

to the data file BG 30/2/14 H H

Output all of the players who were not being

returned to a seperate error file and check

for any consistencies closed BG 10-Mar-14 07-Mar-14

103

Error thrown when loading txt

file into mysql BG 30/2/14 H H Search internet for cause of issue closed BG 10-Mar-14 07-Mar-14

Dependencies

Dependency Ref Project Dependency Description
Raised

by

Date

Raised
Impact Priority

Period

Affected
Action Plan Owner

Target

Resolution

Date

Actual

Resolution

Date

D001

Company

Facilities

IT facilities available for running

model BG 26-Feb-14 M H Feb - May

Confirm availability with

IT BG May-14 May-14

79

Conclusions and Suggestions

At this moment in time the project is well on schedule to be fully completed by the set deadline. Any

risks or issues outlined in this document should be monitored on an ongoing basis throughout the

project to ensure they do not adversely affect the completion date. The RAID log should be kept fully

up to date to enable the effective management of risks and issues and these should then be

assigned to the appropriate stakeholder and addressed as appropriate.

No additional resources are required for the project at this time.

80

Progress Management Report 2

Purpose of Document

The purpose of this document is to give an update to all relevant stakeholders on the project status.

This will give the stakeholders a chance to voice their concerns/issues with the progress of the

project or any other issues or concerns they may have. The outcome of the report will dictate future

activities as, based on discussions, some functionality may be added, removed or adapted.

The document should also provide an idea as to the resource requirements for the remainder of the

project in order to wait on programme.

Project Timeline

The diagrams below show the original project plan from the Project Proposal document (Gibbons,

2014).

The below diagrams show the updated project plan at this stage in the project:

81

Note that the project schedule has not altered since the last report

Project Requirements Status

The below chart indicates the status of each of the current requirements. The status will be green if

it is on schedule, amber if there is a risk of it going off schedule and red if it is currently off

schedule. This information was taken from the Requirements Specification (Gibbons, 2014)

Requirement Number Requirement % Complete Status

1 Web Scraping Programme

1.1 Python programme must

scrape data from Fantasy

Premier League website for all

players in the game

100

1.2 Programme must be able to

interpret .json file types

100

1.3 Scraping programme must be

run after every gameweek has

completed and all bonus

points updated

100

82

1.4 Ouput file from scraping

programme is to be a single

csv file with all player info

100

1.5 Programme must be ran from

the command line prompt

100

2 Mysql Database

2.1 The csv file must be loaded

into a mysql database

100

2.2 The mysql tablesand data load

should be ran together in one

script.

100

3 Qlikview Dashboard

3.1 The Qlikview application

should be downloaded and

connected to the mysql

database

100

3.2 The data from the mysql

database must be loaded into

the qlikview environment

using relevant code

100

3.3 Graphs and tables of player

statistics and trendlines must

be created within the qlikview

application. The code for each

of these graphs/tables to be

generated independently

50

3.4 All of the charts graphs must

be exportable to excel

50

3.5 User cannot make

amendments to dashboard.

Can only view and select the

data

0

83

4.1 A model should be created in R

which will interpret input

variables for each player and

output suggestions based on

which players are good/bad

picks at that time based on the

underlying variables

0

Planned Actions

Planned Actions Importance

Complete the Qlikview dashboard High

Regression testing of all previous functionality after every run High

Test system end to end High

Analyse the incoming data in R and link to the application Medium

Update progress charts and RAID logs Low

84

RAID Log

Risks

Risk Ref
Risk

Category
Risk Description Raised by

Date

Identified
Priority Impact Prob

Mitigation

Category
Mitigation Owner

R01 technology No data backup available BG 01-Mar-14 H H L prevention Backup all files to Google Drive BG

R02 Learning

Not enough covered in data mining class to

adapt R functionality BG 01-Mar-14 M M H acceptance Try to learn enough techniques in own time BG

R03 Learning Expiry of free trial software BG 01-Mar-14 M M L contingency Work in college instead of home BG

Assumptions

Ref # Assumption Importance Certainty Influence Test Test Date

A02

No major injuries/illness will be incurred by

developer 4 - critical 1 - unknown H N/A
-

Closed Issues

Issue Ref Issue Description Raised by
Date

Raised
Impact Priority Action Plan Status Owner

Target

Resolution

Date

Actual

Resolution

Date

101

Error thrown when running the

python script BG 27-Feb-14 H H

Identify the issue using a try-except block in

python script closed BG 07-Mar-14 04-Mar-14

85

102

Not all players were being added

to the data file BG 30/2/14 H H

Output all of the players who were not being

returned to a seperate error file and check

for any consistencies closed BG 10-Mar-14 07-Mar-14

103

Error thrown when loading txt

file into mysql BG 30/2/14 H H Search internet for cause of issue closed BG 10-Mar-14 07-Mar-14

104

Errors thrown when scraping the

website for the fixture list BG 29/3/14 H H Check for solutions on stack overflow Closed BG 30/3/14 30/3/14

Dependencies

Dependency Ref Project Dependency Description
Raised

by

Date

Raised
Impact Priority

Period

Affected
Action Plan Owner

Target

Resolution

Date

Actual

Resolution

Date

D001

Company

Facilities

IT facilities available for running

model BG 26-Feb-14 M H Feb - May

Download appropriate

free software BG Mar-14 Mar-14

86

Conclusions and Suggestions

At this moment in time the project is well on schedule to be fully completed by the set deadline. Any

risks or issues outlined in this document should be monitored on an ongoing basis throughout the

project to ensure they do not adversely affect the completion date. The RAID log should be kept fully

up to date to enable the effective management of risks and issues and these should then be

assigned to the appropriate stakeholder and addressed as appropriate.

No additional resources are required for the project at this time.

87

Progress Management Report 3

Purpose of Document

The purpose of this document is to give an update to all relevant stakeholders on the project status.

This will give the stakeholders a chance to voice their concerns/issues with the progress of the

project or any other issues or concerns they may have. The outcome of the report will dictate future

activities as, based on discussions, some functionality may be added, removed or adapted.

The document should also provide an idea as to the resource requirements for the remainder of the

project in order to wait on programme.

Project Timeline

The diagrams below show the original project plan from the Project Proposal document (Gibbons,

2014).

The below diagrams show the updated project plan at this stage in the project:

88

Note that the since the last report, it was decided to remove the application of mining the data in R

from the scope of this release. The reason for this is explained below.

Project Requirements Status

The below chart indicates the status of each of the current requirements. The status will be green if

it is on schedule, amber if there is a risk of it going off schedule and red if it is currently off

schedule. This information was taken from the Requirements Specification (Gibbons, 2014)

Requirement Number Requirement % Complete Status

1 Web Scraping Programme

1.1 Python programme must scrape data

from Fantasy Premier League website for

all players in the game

100

1.2 Programme must be able to interpret

.json file types

100

1.3 Scraping programme must be run after

every gameweek has completed and all

bonus points updated

100

1.4 Ouput file from scraping programme is to

be a single csv file with all player info

100

1.5 Programme must be ran from the

command line prompt

100

2 Mysql Database

89

2.1 The csv file must be loaded into a mysql

database

100

2.2 The mysql tablesand data load should be

ran together in one script.

100

3 Qlikview Dashboard

3.1 The Qlikview application should be

downloaded and connected to the mysql

database

100

3.2 The data from the mysql database must

be loaded into the qlikview environment

using relevant code

100

3.3 Graphs and tables of player statistics and

trendlines must be created within the

qlikview application. The code for each of

these graphs/tables to be generated

independently

50

3.4 All of the charts graphs must be

exportable to excel

50

3.5 User cannot make amendments to

dashboard. Can only view and select the

data

0

3.6 Full end to end system test and UAT on

the dashboard scraping -> databse ->

dashboard

20

4.1 A model should be created in R which will

interpret input variables for each player

and output suggestions based on which

players are good/bad picks at that time

based on the underlying variables

0

Due to the tight time constraints it has been decided that action 4.1 is not in scope for this version of

the project. It was decided that a fully tested and fully functional dashboard was a higher priority

than attempting to rush through the data mining aspect and take time away from system and UAT

test.

Action 4.1 has been delayed until the next release of the project

Planned Actions

90

Planned Actions Importance

Regression testing of all previous functionality after every run High

Test system end to end High

Update progress charts and RAID logs Low

Complete formal write up of the project High

91

RAID Log

Risks

Risk Ref
Risk

Category
Risk Description Raised by

Date

Identified
Priority Impact Prob

Mitigation

Category
Mitigation Owner

R01 technology No data backup available BG 01-Mar-14 H H L prevention Backup all files to Google Drive BG

R02 Learning

Not enough covered in data mining class to

adapt R functionality BG 01-Mar-14 M M H acceptance

Due to time constraints this functionality

has been pushed out to release 2 BG

R03 Learning Expiry of free trial software BG 01-Mar-14 M M L contingency

Work in college/work instead of home. The

office at work has the fully licensed

software so this should not be an issue BG

Assumptions

Ref # Assumption Importance Certainty Influence Test Test Date

A01

No major injuries/illness will be incurred by

developer 4 - critical 1 - unknown H N/A
-

A02

All code etc. Has been backed up to

numerous locations to mitigate against file

corruption/damage to laptop etc 4 - critical 1 - unknown H Save all documents to external hard drive and the cloud

92

Closed Issues

Issue Ref Issue Description Raised by
Date

Raised
Impact Priority Action Plan Status Owner

Target

Resolution

Date

Actual

Resolution

Date

101

Error thrown when running the

python script BG 27-Feb-14 H H

Identify the issue using a try-except block in

python script closed BG 07-Mar-14 04-Mar-14

102

Not all players were being added

to the data file BG 30/2/14 H H

Output all of the players who were not being

returned to a seperate error file and check

for any consistencies closed BG 10-Mar-14 07-Mar-14

103

Error thrown when loading txt

file into mysql BG 30/2/14 H H Search internet for cause of issue closed BG 10-Mar-14 07-Mar-14

104

Errors thrown when scraping the

website for the fixture list BG 29/3/14 H H Check for solutions on stack overflow Closed BG 30/3/14 30/3/14

105

Duplication of records when

importing data to qlikview BG 10/4/14 H H

Check for solutions on qlikview community.

Associative join in qlikview not the same as

inner joins in SQL (Qlikview, 2014) Closed BG 11/4/14 11/4/14

Dependencies

Dependency Ref Project Dependency Description
Raised

by

Date

Raised
Impact Priority

Period

Affected
Action Plan Owner

Target

Resolution

Date

Actual

Resolution

Date

D001

Company

Facilities

IT facilities available for running

model BG 26-Feb-14 M H Feb - May

Download appropriate

free software BG Mar-14 Mar-14

93

Conclusions and Suggestions

At this moment in time the project is well on schedule to be fully completed by the set deadline. Any

risks or issues outlined in this document should be monitored on an ongoing basis throughout the

project to ensure they do not adversely affect the completion date. The RAID log should be kept fully

up to date to enable the effective management of risks and issues and these should then be

assigned to the appropriate stakeholder and addressed as appropriate.

No additional resources are required for the project at this time.

94

Appendix E – Python Web Scraping Code

import json

import urllib

import re

import io

from bs4 import BeautifulSoup

import os

Extract all of the player based information from the website #

i = 1

#Open the player file and make it writable

myfile = open("player_history.txt", "w")

myfile.close()

#Create a file to contain all the numbers for which there was errors.

errfile = open("errfile.txt", "w")

errfile.close()

#Website from which to scrape

while i < 700:

 htmltext = urllib.urlopen("http://fantasy.premierleague.com/web/api/elements/" + str(i) +

"/")

 #Use a try-except block to ignore htmls that do not relate to players

 try:

 #Use the json command to read in the json file

 data = json.load(htmltext)

 #Extract the score history from the json file

 scoredata = data["fixture_history"]["all"]

 #Extract the player names

 playerdata = data["first_name"] + " " + data["second_name"]

 #Extract player team

 teamname = data["team_name"]

 #Extract player position

 position = data["type_name"]

 #Extract the players price

 price = data["event_cost"]

 #Percentage selected

 selected = data["selected_by"]

95

 #Open the file using the io.open with encoding='utf8' to counteract irregualr

characters

 myfile = io.open("player_history.txt", "a", encoding='utf8')

 #Append the data to the file

 for datapoint in scoredata:

 mystring = str(datapoint)

 #Clean the data strings

 mystring1 = mystring.replace("[", "")

 mystring2 = mystring1.replace("u'", "")

 mystring3 = mystring2.replace("]", "")

 mystring4 = mystring3.replace("'", "")

 #Write the data to the file

 myfile.write(mystring4 + "," + playerdata + "," + teamname + "," + position +

"," + selected + "," + str(price) + ',' + str(i) + "\n")

 except:

 #Write all of the numbers for which there was errors to a file

 errfile = open("errfile.txt", "a")

 errfile.write(str(i) + "\n")

 pass

 print i

 i += 1

print "Player data scraped"

Extract all of the fixture and result information from the website #

base = "http://fantasy.premierleague.com/fixtures/"

#Create a loop to run through the 38 gameweeks

week = 1

fix_file = open('fixtures.txt', 'w')

while week < 39:

 myurl = base + str(week)

 html = urllib.urlopen(myurl).read()

 soup = BeautifulSoup(html)

 fixture_table = soup.find("table", {"class":"ismFixtureTable"})

 #scrape the website for the games played and points

 hometeam = soup.findAll("td", {"class":"ismHomeTeam"})

 awayteam = soup.findAll("td", {"class":"ismAwayTeam"})

 score = soup.findAll("td", {"class":"ismScore"})

 i = 0

96

 #Keep looping until the code fails

 while True:

 try:

 fix_file.write(str(week) + ',' + hometeam[i].text + ',' + score[i].text + ',' +

awayteam[i].text.strip() + ',' + '\n')

 i += 1

 except:

 break

 print week

 week += 1

fix_file.close()

print "Fixture data scraped"

Extract the league table from the website #

base = "http://fantasy.premierleague.com/transfers/"

html = urllib.urlopen(base).read()

soup = BeautifulSoup(html)

#scrape the website for the games played and points

games_played = soup.findAll("td", {"class":"col-pld"})

points = soup.findAll("td", {"class":"col-pts"})

#create an empty list for team names

team = []

#Find all of the team names and append them to the list

for text in soup.find_all('table', {"class":'leagueTable'}):

 for links in text.find_all('a'):

 team.append(links.text.strip())

league_table = open("league_table.txt", "w")

league_table.close()

league_table = open("league_table.txt", "a")

#print out the league table

i=0

while i < 20:

 league_table.write(str(i+1) + "," + team[i] + "," + games_played[i].text + "," + points[i].text +

"\n")

97

 i +=1

league_table.close()

print "League table scraped"

print "All data scraped"

98

Appendix F – MySQL Code

DROP DATABASE PROJECT;

create database PROJECT;

use PROJECT;

/*CREATE THE TABLE WITH THE INFO FROM THE JSON FILE FROM PYTHON*/

CREATE TABLE PLAYER_STATS(

GAME_DTE VARCHAR(30),

GAMEWEEK INTEGER,

OPPOSITION VARCHAR(30),

MINS_PLYD INTEGER,

GOALS_SCORED INTEGER,

ASSISTS INTEGER,

CLEAN_SHEET INTEGER,

GOALS_CONCEDED INTEGER,

OWN_GOALS INTEGER,

PENALTIES_SAVED INTEGER,

PENALTIES_MISSED INTEGER,

YELLOW_CARDS INTEGER,

RED_CARDS INTEGER,

SAVES INTEGER,

BONUS INTEGER,

EA_PPI INTEGER,

BONUS_POINTS_SYS INTEGER,

NET_TRANSFERS INTEGER,

PLAYER_VALUE INTEGER,

POINTS INTEGER,

PLAYER_NAME VARCHAR(50),

TEAM_NAME VARCHAR(30),

POSITION VARCHAR(30),

SELECTED_BY VARCHAR(5),

PRICE INTEGER,

PLAYER_ID INTEGER

)

;

LOAD DATA LOCAL INFILE "C:/Users/Gibbo/Documents/Data

Analytics/Project/Python/player_history.txt"

INTO TABLE PLAYER_STATS

COLUMNS TERMINATED BY ','

;

99

/*DELETE THE ENTRY RELATING TO GARETH BALE*/

delete from PLAYER_STATS where player_name = 'Gareth Bale'

;

/*MODIFY THE OPPOSITION FIELD FROM THE PLAYER_STATS TABLE TO SHOW RESULTS IN CORRECT

FORMAT*/

CREATE TABLE PLAYER_HISTORY

AS

(

SELECT

GAME_DTE,

GAMEWEEK,

SUBSTRING(TRIM(OPPOSITION), 1, 3) AS OPPOSITION,

SUBSTRING(TRIM(OPPOSITION), 5, 1) AS HOME_AWAY,

SUBSTRING(TRIM(OPPOSITION), 8, 3) AS SCORE,

CASE WHEN SUBSTRING(TRIM(OPPOSITION), 8, 1) > SUBSTRING(TRIM(OPPOSITION), 10, 1) THEN

'WIN'

 WHEN SUBSTRING(TRIM(OPPOSITION), 8, 1) < SUBSTRING(TRIM(OPPOSITION), 10, 1) THEN

'LOSE'

 ELSE 'DRAW'

END AS MATCH_OUTCOME,

MINS_PLYD ,

GOALS_SCORED ,

ASSISTS ,

CLEAN_SHEET ,

GOALS_CONCEDED ,

OWN_GOALS ,

PENALTIES_SAVED ,

PENALTIES_MISSED ,

YELLOW_CARDS ,

RED_CARDS ,

SAVES ,

BONUS ,

EA_PPI ,

BONUS_POINTS_SYS ,

NET_TRANSFERS ,

PLAYER_VALUE ,

POINTS ,

PLAYER_NAME ,

TEAM_NAME ,

100

POSITION ,

CAST(SELECTED_BY AS DECIMAL(3,1)) AS SELECTED_BY,

PRICE ,

PLAYER_ID

FROM PLAYER_STATS

)

;

/*CREATE THE LEAGUE TABLE TABLE*/

CREATE TABLE LEAGUE_TABLE

(

POSITION INTEGER,

TEAM_NAME VARCHAR(30),

GAMES_PLAYED INTEGER,

POINTS INTEGER

)

;

LOAD DATA LOCAL INFILE "C:/Users/Gibbo/Documents/Data

Analytics/Project/Python/league_table.txt"

INTO TABLE LEAGUE_TABLE

COLUMNS TERMINATED BY ','

;

/*CREATE THE FIXTURES/RESULTS TABLE SCRAPED FROM PYTHON*/

CREATE TABLE FIXTURES

(

GAMEWEEK INTEGER,

HOME_TEAM VARCHAR(30),

SCORE VARCHAR(10),

AWAY_TEAM VARCHAR(30)

)

;

LOAD DATA LOCAL INFILE "C:/Users/Gibbo/Documents/Data Analytics/Project/Python/fixtures.txt"

INTO TABLE FIXTURES

COLUMNS TERMINATED BY ','

;

/*MODIFY THE ABOVE TABLE TO SHOW GAMES PLAYED AND REMAINING GAMES*/

CREATE TABLE FIXTURE_STATUS

AS

(

101

SELECT GAMEWEEK,

 HOME_TEAM,

 SCORE,

 AWAY_TEAM,

 CASE WHEN SCORE LIKE ('%0%')

 OR SCORE LIKE ('%1%')

 OR SCORE LIKE ('%2%')

 OR SCORE LIKE ('%3%')

 OR SCORE LIKE ('%4%')

 OR SCORE LIKE ('%5%')

 OR SCORE LIKE ('%6%')

 OR SCORE LIKE ('%7%')

 OR SCORE LIKE ('%8%')

 OR SCORE LIKE ('%9%') THEN 'RESULT' ELSE 'TBP' END AS STATUS

FROM FIXTURES

)

;

CREATE TABLE TEAM(

TEAM_NAME VARCHAR(30),

TEAM_ABBRV CHAR(3)

)

;

INSERT INTO TEAM VALUES('Arsenal', 'ARS');

INSERT INTO TEAM VALUES('Crystal Palace', 'CRY');

INSERT INTO TEAM VALUES('Aston Villa', 'AVL');

INSERT INTO TEAM VALUES('Stoke City', 'STK');

INSERT INTO TEAM VALUES('Fulham', 'FUL');

INSERT INTO TEAM VALUES('Cardiff City', 'CAR');

INSERT INTO TEAM VALUES('Chelsea', 'CHE');

INSERT INTO TEAM VALUES('Man Utd', 'MUN');

INSERT INTO TEAM VALUES('Liverpool', 'LIV');

INSERT INTO TEAM VALUES('Everton', 'EVE');

INSERT INTO TEAM VALUES('West Brom', 'WBA');

INSERT INTO TEAM VALUES('Hull City', 'HUL');

INSERT INTO TEAM VALUES('West Ham', 'WHU');

INSERT INTO TEAM VALUES('Sunderland', 'SUN');

INSERT INTO TEAM VALUES('Man City', 'MCI');

INSERT INTO TEAM VALUES('Newcastle', 'NEW');

INSERT INTO TEAM VALUES('Norwich', 'NOR');

INSERT INTO TEAM VALUES('Southampton', 'SOU');

102

INSERT INTO TEAM VALUES('Swansea', 'SWA');

INSERT INTO TEAM VALUES('Tottenham', 'TOT');

/*TEAM LEVEL VIEW OF THE REMAINING FIXTURES*/

CREATE TABLE FIXTURES_REMAINING

AS

(

SELECT FIX.GAMEWEEK,

 TM.TEAM_NAME,

 CASE WHEN TM.TEAM_NAME = FIX.HOME_TEAM THEN AWAY_TEAM ELSE

HOME_TEAM END AS OPPOSITION,

 CASE WHEN TM.TEAM_NAME = FIX.HOME_TEAM THEN 'H' ELSE 'A' END AS

HOME_OR_AWAY

FROM FIXTURES FIX

LEFT JOIN TEAM TM

ON TM.TEAM_NAME = FIX.HOME_TEAM

OR TM.TEAM_NAME = FIX.AWAY_TEAM

WHERE SCORE LIKE '%V%'

)

;

CREATE TABLE PLAYER_POINTS

AS

(

SELECT PLAYER_NAME

 ,SUM(POINTS) AS TOT_POINTS

FROM PLAYER_STATS

GROUP BY 1

)

;

103

Appendix G – Qlikview Data Load Code

SET ThousandSep=',';

SET DecimalSep='.';

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='€#,##0.00;-€#,##0.00';

SET TimeFormat='hh:mm:ss';

SET DateFormat='DD/MM/YYYY';

SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff]';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

ODBC CONNECT TO Test;

TEAM:

LOAD

TEAM_NAME,

TEAM_ABBRV

;

SQL SELECT *

FROM TEAM

;

LEAGUE:

LOAD

POSITION AS TEAM_POSITION,

//Modify the team names to match the values in the player history table

IF(MATCH(TEAM_NAME, 'Cardiff', 'Stoke', 'Hull'),

 TEAM_NAME & ' City',

 IF(TEAM_NAME = 'Spurs', 'Tottenham',

 TEAM_NAME)) AS TEAM_NAME,

GAMES_PLAYED,

POINTS AS TEAM_POINTS

;

SQL SELECT *

FROM LEAGUE_TABLE

;

PLAYER:

LOAD

GAME_DTE,

GAMEWEEK,

LOOKUP('TEAM_NAME', 'TEAM_ABBRV', OPPOSITION, 'TEAM') AS OPPOSITION_NAME,

LOOKUP('TEAM_POSITION', 'TEAM_NAME', LOOKUP('TEAM_NAME', 'TEAM_ABBRV', OPPOSITION,

'TEAM'), 'LEAGUE') AS OPPOSITION_POSITION,

HOME_AWAY,

SCORE as RESULT,

MATCH_OUTCOME,

MINS_PLYD,

GOALS_SCORED,

ASSISTS,

CLEAN_SHEET,

GOALS_CONCEDED,

OWN_GOALS,

PENALTIES_SAVED,

PENALTIES_MISSED,

YELLOW_CARDS,

RED_CARDS,

SAVES,

BONUS,

104

EA_PPI,

BONUS_POINTS_SYS,

NET_TRANSFERS,

PLAYER_VALUE/ 10 as PLAYER_VALUE, //Value appears as a multiple of 10 in the

file

POINTS,

PLAYER_NAME,

TEAM_NAME,

POSITION,

PRICE/10 as PRICE,

SELECTED_BY,

PLAYER_ID

;

SQL SELECT *

FROM PLAYER_HISTORY

;

FIXTURES:

LOAD

GAMEWEEK AS GAMEWEEK_NO,

HOME_TEAM & ' v ' & AWAY_TEAM AS FIXTURE,

HOME_TEAM,

SCORE,

AWAY_TEAM,

STATUS

;

SQL SELECT *

FROM FIXTURE_STATUS

;

FIXTURES_REMAINING:

LOAD

GAMEWEEK AS GAMEWEEK_NO,

TEAM_NAME,

OPPOSITION,

HOME_OR_AWAY

;

SQL SELECT *

FROM FIXTURES_REMAINING

;

POINTS:

LOAD

PLAYER_NAME,

TOT_POINTS

;

SQL SELECT *

FROM PLAYER_POINTS

;

Table:

Load * inline

[

No. Players

5,

10,

15,

105

20

]

;

Appendix H – Dashboard Regression Test Plan

Test

Case

ID

Area Description Expected

Results

Actual

Results

Pass/fail Tester Date

D1 Dashboard League table is

correct as at the

date the

dashboard was

loaded

League Table

calculated in

the dashboard

should match

the actual

league table

Calculated

table

matches real

table from

the website

Pass BG 28/03/2014

D2 Dashboard Player points data

matches that of

the website

Points data in

the dashboard

should match

the points given

in the website

Points match Pass BG 28/03/2014

D3 Dashboard All players are

available for

selection in the

dashboard

Every player

that appears in

the website

should be

available in the

dashboard

All players

are available

Pass BG 28/03/2014

D4 Dashboard Information for

each player

should be correct

eg (price, goals

scored, assists,

yellow cards etc)

Information

should be

correct

Information

is correct as

per the

website

Pass BG 28/03/2014

D5 Dashboard When a team is

selected, only

players from that

team should be

available in the

player selection

box

1. Select a team

2. Look at the

player selecton

box

3. Only players

from that team

should be

available for

further

selection

When a team

is selected

only players

from that

team can be

selected

Pass BG 28/03/2014

D6 Dashboard When a position

is selected, only

players in that

position should

be available in

the player

selection box

1. Select a

position

2. Look at the

player selecton

box

3. Only players

from that

position should

be available for

further

selection

When a

position is

selected only

players from

that team can

be selected

Pass BG 28/03/2014

106

D7 Dashboard Tab names

should be

consistent across

sheets

1. Select a sheet

by clicking on a

tab.

2. The names of

the tabs should

be the same

across all sheets

Names of

tabs are

consistent

Pass BG 28/03/2014

D8 Dashboard When a tab is

selected, the tab

should change to

a bright blue

colour

1. Select a tab

2. the tab

should change

to a bright blue

colour

The tab

changes to a

bright blue

colour

Pass BG 28/03/2014

D9 Dashboard The drop down

box for the

moving average

graph should

allow you to

change the

number of

gameweeks the

moving average

relates to

1. Select the

Moving

Average tab in

the Player Data

sheet

2. Select a

player

3. Select the

number of steps

from the drop

down

4. The result

should be that

number of steps

moving average

Ok for 1 - 6

steps

Pass BG 28/03/2014

D10 Dashboard When a value is

selected from the

dropdown only

players at or

below that value

should be

available

1. Select a

value from the

dropdown

2. Check the

player selection

box

3. Only players

within that

value should be

available for

selection

Only players

at or below

the value are

returned

Pass BG 28/03/2014

D11 Dashboard Graphs and tables

can be exported

to excel

1. Click the XL

icon on any

table or graph

2. The data

should be

exported to an

excel file

Data is

exported to

an excel file

Pass BG 28/03/2014

107

Appendix I – Link to Google Drive Folder with Data

https://drive.google.com/folderview?id=0Bx62KS94j6uhM18tUjNfRDdsQVE&usp=sharing

