
Elastic Algorithmic Skeletons into
Distributed Systems

Sonia Campa1, Marco Danelutto1, Horacio González-Vélez2,
Alina Madalina Popescu2 and Massimo Torquati1

(1) Computer Science Department, University of Pisa Italy
E-mail: {campa, marcod, torquati}@di.unipi.it
(2) Cloud Competency Center, National College of Ireland, Ireland
E-mail: {Alina-madalina.Popescu, horacio}@ncirl.ie

DUBLIN
10 June 2014

Background

• Latency
• Hierarchical Memory – How many

cycles do I need to?
• File Sizes? SneakerNet?

• Resources are finite
• 32 bit vs 64 bit? Max Matrix Size?
• Local Cores ?
• Specialised Units ?
• MakeSpan? Power? Other?

RESOURCES or LATENCY ?

2

Use the Cloud

 Computational Resources* where the
Boundaries are determined by Economic
Factors rather than Technical Limits
On-demand Computing
Software as a Service
Internet as a Platform

*N.B. Computational resource is commonly used to describe accessible computing equipment and software.

Textbook Definition

Credits: Kate Craig-Wood, NIST, and G-Cloud

Cloud 101

Is it HPC?
Parallel ?

DSM? DM? D?

Concepts

• Main goal
• Deploy FastFlow on virtual multi-core

machine and cluster of virtual multi-
core machines.

• Our contribution
a.Virtualisation overhead measurement in

the KVM environment
b.FastFlow deployment and testing on the

Amazon EC2 public cloud infrastructure

7

Algorithmic Skeletons

Higher-Order Functions
Abstract and Implement Patterns of Parallel

Computation, Communication, and Interaction
Decouple Behaviour (Computation) from Structure

(Coordination)

Cole, M. Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman/MIT Press, London, 1989.

Algorithmic Skeletons

Skeleton Scope Example
Data-Parallel Data

Structures
Scan, Map, Broadcast,

Reduce, Gather, Scatter,

Task-Parallel Tasks Farm, Pipeline, …

Resolution Family of
Problems

Div &Conq, Br & Bnd, Dyn
Prog, Heuristic Opt, …

Gonzalez-Velez H, Leyton M. A Survey of Algorithmic Skeleton Frameworks: High-Level Structured Parallel Programming Enablers. Software:
Practice and Experience. 2010 Dec;40(12):1135-1160. [http] .

http://dx.doi.org/10.1002/spe.1026

Pattern or Skeleton?

• Skeleton: Defines a parallel pattern in terms of computational
nodes, data and control dependencies

Parallel Pattern
=

Algorithmic Skeleton + GoF SE Req’s

• Aim: Write the application using skeletons once and
deploy “everywhere”
 Application and Performance Portability

• Run-time support to cope with low-level platform details

10

FastFlow concepts

11

• Structured parallel programming framework
• FastFlow: Skeletons = C++ classes & templates (via

Pthreads).
• Target: Multi-core CPU, Dist Sys, GPU
• Stream parallel patterns: pipeline, task-farm, loopback
 Ongoing work for map and map-reduce skeletons on

multi-core
• Task-offloading on Tile64 and GPUs
• ParaPhrase Programming Framework

FastFlow concepts

12

Virtual Platforms

13

• Virtualisation 101
– Multiple OS on a single physical machine
– Partitioning of resources (power efficiency)
– Security

• Reset the VM after a job has finished
– Checkpoint & Restart
– Dynamic Configuration Changes

• Load a different VM vs reinstalling
• Add/delete virtual cores, disk space, NICs,….

Virtual Platform for HPC

• HPC support via System-level virtualisation techniques (hw)
• Overhead

– Overhead cannot be statically quantified in advance
• Overhead is compensated via

• more virtual resources and favourable performance /
cost ratio

• application dependant

14

Eucalyptus private cloud

• Implementation Environment

• Single VM ϵ Eucalyptus Private cloud @ NCI
• Linux KVM virtual environment
• 2 6-core CPUs Intel Xeon E6-2540 @2.5 GHz, with

8MB L3 with Linux CentOS x86_64
• VM (Linux CentOS x86_64) has 6 cores

• Forced to be executed on a single socket of the
physical machine

15

Eucalyptus private cloud

16

Sequential benchmark

17

• Micro-benchmark: the Square Matrix Multiplication (MatMul)
• 2 versions: Standard & Cache-oblivious

Standard Algorithm:
 double A[N][N],B[N][N],C[N][N]
 for(i=0;i<N;++i)

 for(j=0;j<N;++j)

 for(k=0;k<N;++k)

 C[i][j] += A[i][k]*B[k][j];

Cache-Oblivious Algorithm:
 double A[N][N],B[N][N],C[N][N];
 for(i=0;i<N;++i)

 for(j=0;j<N;++j)

 for(k=0;k<N;++k)

 C[j][k] += A[j][i]*B[i][k];

Overhead: sequential run

18

MatMul
Overhead

512 1024 2048

Standard 5.96% 6.01% 7.48%

Cache-Oblivious 27.43% 11.52% 10.29%

Time in Sec.

(approximated)

512 1024 2048

P V P V P V

Standard 0.34 0.36 2.4 2.59 110.8 119.2

Cache-Oblivious 0.15 0.19 0.68 0.76 8.5 9.4

P= Physical V=Virtual

Parallel benchmark

19

• As parallel benchmark we use again Matrix Multiplication
Implemented using FastFlow software accelerator:
 Main code:

 double A[N][N],B[N][N],C[N][N]
 for(index=0;index<N;++index)

 farm.offload(index);

Worker code:

 <for each input idx value>
 for(j=0;j<N;++j)

 for(k=0;k<N++k)

 C[idx][j] += A[idx][k]*B[k][j];

Overhead: parallel run

20

Parallel MatMul 512 1024 2048

Max. Overhead 21% 10% 16%

Amazon EC2 public cloud

21

• Distributed virtual environment : Amazon EC2
• 7 Linux Ubuntu x86_64 virtual machines
• Intel CPU E-2670 @2.6GHz with 20MB L3 cache

Distributed test

22

• The 1st stage produces a stream of matrices (double elements)
• The middle stage computes the square of each input

– It is internally parallel (task-farm skeleton)
• The last stage collects and sends back results to the 1st stage.

Farm of Farm pattern
with outer loop

Performance

23

• Matrix size 1024x1024 double elements (8MB)
• For the graph in the right-hand-side we used 6 VMs

Performance

24

• Physical cluster: 2 nodes each one with 2 Intel Xeon CPUs E5-2650
@2.0GHz 8-cores 16-context with 20MB L3 cache (32 cores total)

• The 2 nodes are connected using Infiniband Card (40Gb/s)

Conclusions

25

• Tested FastFlow on virtual multi-core machine and
virtualized public cloud infrastructure

• Virtualized execution is costly, but overhead is predictable
and bounded
– 2-30% for our benchmark on KVM-based virtualization

• FastFlow can be smoothly deployed on public cloud
obtaining good performance

• The strength of the approach lies on the structured parallel
programming methodology adopted

• FastFlow is the first parallel skeleton programming
environment to be efficiently executed on the cloud

Further Reading

26

• Campa S, Danelutto M, Goli M, Gonzalez-Velez H, Popescu AM, Torquati M. Parallel
patterns for heterogeneous CPU/GPU architectures: Structured parallelism from cluster
to cloud. Future Generation Computer Systems. 2014; 37:354–366.
doi:10.1016/j.future.2013.12.038

• Goli M, Gonzalez-Velez H. N-body Computations Using Skeletal Frameworks on
Multicore CPU/graphics Processing Unit Architectures: an Empirical Performance
Evaluation. Concurrency and Computation–Practice & Experience. 2014; 26(4):972–986.
doi:10.1002/cpe.3076

• Boob S, Gonzalez-Velez H, Popescu A. Automated Instantiation of Heterogeneous
FastFlow CPU/GPU Parallel Pattern Applications in Clouds. In: PDP’14. Torino: IEEE;
2014. p. 162–169.

27

Questions,
Comments or
Suggestions?

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Textbook Definition
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Algorithmic Skeletons
	Algorithmic Skeletons
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

