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Background  

• Latency 
• Hierarchical Memory – How many 

cycles do I need to? 
• File Sizes?  SneakerNet? 

• Resources are finite 
• 32 bit vs 64 bit? Max Matrix Size?  
• Local Cores ? 
• Specialised Units ? 
• MakeSpan? Power? Other? 

 

RESOURCES or LATENCY ?  
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Use the Cloud  



   Computational Resources* where the 
Boundaries are determined by Economic 
Factors rather than Technical Limits 
On-demand Computing 
Software as a Service  
Internet as a Platform  

*N.B. Computational resource is commonly used to describe accessible computing equipment and software. 

Textbook Definition 



Credits: Kate Craig-Wood, NIST, and G-Cloud 

Cloud 101 



Is it HPC? 
Parallel ? 

DSM? DM? D? 



Concepts  

• Main goal 
• Deploy FastFlow on virtual multi-core 

machine and cluster of virtual multi-
core machines. 

 

• Our contribution 
a.Virtualisation overhead measurement in 

the KVM environment 
b.FastFlow deployment and testing on the 

Amazon EC2 public cloud infrastructure 
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Algorithmic Skeletons 

Higher-Order Functions 
Abstract and Implement Patterns of Parallel 

Computation, Communication, and Interaction 
Decouple Behaviour (Computation) from Structure 

(Coordination) 

Cole, M. Algorithmic Skeletons: Structured Management of Parallel Computation. Pitman/MIT Press, London, 1989. 



Algorithmic Skeletons 

Skeleton Scope Example 
Data-Parallel Data 

Structures 
Scan, Map, Broadcast, 

Reduce,  Gather, Scatter, 

Task-Parallel Tasks Farm, Pipeline, … 

Resolution Family of 
Problems 

Div &Conq, Br & Bnd, Dyn 
Prog, Heuristic Opt, … 

Gonzalez-Velez H, Leyton M. A Survey of Algorithmic Skeleton Frameworks: High-Level Structured Parallel Programming Enablers. Software: 
Practice and Experience. 2010 Dec;40(12):1135-1160.  [ http ] . 

http://dx.doi.org/10.1002/spe.1026


Pattern or Skeleton? 

• Skeleton: Defines a parallel pattern in terms of computational 
nodes, data and control dependencies 

Parallel Pattern  
=  

Algorithmic Skeleton + GoF SE Req’s  
 

• Aim: Write the application using skeletons once and 
deploy “everywhere” 
 Application and Performance Portability 

• Run-time support to cope with low-level platform details 
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FastFlow concepts 
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• Structured parallel programming framework  
• FastFlow: Skeletons = C++ classes & templates (via 

Pthreads). 
• Target: Multi-core CPU, Dist Sys, GPU 
• Stream parallel patterns: pipeline, task-farm, loopback 
 Ongoing work for map and map-reduce skeletons on 

multi-core 
• Task-offloading on Tile64 and GPUs 
• ParaPhrase Programming Framework 



FastFlow concepts 
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Virtual Platforms 
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• Virtualisation 101  
– Multiple OS on a single physical machine  
– Partitioning of resources (power efficiency) 
– Security 

• Reset the VM after a job has finished  
– Checkpoint & Restart 
– Dynamic Configuration Changes  

• Load a different VM vs reinstalling  
• Add/delete virtual cores, disk space, NICs,….  



Virtual Platform for HPC 

• HPC support via System-level virtualisation techniques (hw) 
• Overhead 

– Overhead cannot be statically quantified in advance 
• Overhead is compensated via  

• more virtual resources and  favourable performance / 
cost ratio 

• application dependant 
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Eucalyptus private cloud 

• Implementation Environment 

• Single VM ϵ Eucalyptus Private cloud @ NCI 
• Linux KVM virtual environment 
• 2  6-core CPUs Intel Xeon E6-2540 @2.5 GHz, with 

8MB L3 with Linux CentOS x86_64 
• VM (Linux CentOS x86_64) has 6 cores  

• Forced to be executed on a single socket of the 
physical machine  
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Eucalyptus private cloud 
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Sequential benchmark 
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• Micro-benchmark: the Square Matrix Multiplication (MatMul) 
• 2 versions: Standard & Cache-oblivious 

 

Standard Algorithm: 
  double A[N][N],B[N][N],C[N][N] 
  for(i=0;i<N;++i) 

     for(j=0;j<N;++j) 

        for(k=0;k<N;++k) 

          C[i][j] += A[i][k]*B[k][j]; 

 

Cache-Oblivious Algorithm: 
  double A[N][N],B[N][N],C[N][N]; 
  for(i=0;i<N;++i) 

     for(j=0;j<N;++j) 

        for(k=0;k<N;++k) 

           C[j][k] += A[j][i]*B[i][k]; 

 



Overhead: sequential run 
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MatMul 
Overhead 

512 1024 2048 

Standard 5.96% 6.01% 7.48% 

Cache-Oblivious 27.43% 11.52% 10.29% 

Time in Sec. 
 

(approximated) 

512 1024 2048 

P V P V P V 

Standard 0.34 0.36 2.4 2.59 110.8 119.2 

Cache-Oblivious 0.15 0.19 0.68 0.76 8.5 9.4 

P= Physical V=Virtual 



Parallel benchmark 
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• As parallel benchmark we use again Matrix Multiplication 
Implemented using FastFlow software accelerator: 
 Main code: 

  double A[N][N],B[N][N],C[N][N] 
  for(index=0;index<N;++index) 

     farm.offload(index); 

Worker code: 

  <for each input idx value> 
  for(j=0;j<N;++j) 

     for(k=0;k<N++k) 

        C[idx][j] += A[idx][k]*B[k][j]; 



Overhead: parallel run 
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Parallel MatMul 512 1024 2048 

Max. Overhead 21% 10% 16% 



Amazon EC2 public cloud 
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• Distributed virtual environment : Amazon EC2 
• 7 Linux Ubuntu x86_64 virtual machines 
• Intel CPU E-2670 @2.6GHz with 20MB L3 cache 

 



Distributed test 
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• The 1st stage produces a stream of matrices (double elements) 
• The middle stage computes the square of each input 

– It is internally parallel (task-farm skeleton)  
• The last stage collects and sends back results to the 1st stage. 
 

 

Farm of Farm pattern  
with outer loop 

 



Performance  
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• Matrix size 1024x1024 double elements (8MB) 
• For the graph in the right-hand-side we used 6 VMs    



Performance 
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• Physical cluster: 2 nodes each one with 2 Intel Xeon CPUs E5-2650 
@2.0GHz 8-cores 16-context with 20MB L3 cache (32 cores total) 

• The 2 nodes are connected using Infiniband Card (40Gb/s) 



Conclusions 
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• Tested FastFlow on virtual multi-core machine and 
virtualized public cloud infrastructure 

• Virtualized execution is costly, but overhead is predictable 
and bounded  
– 2-30% for our benchmark on KVM-based virtualization 

• FastFlow can be smoothly deployed on public cloud 
obtaining good performance 

• The strength of the approach lies on the structured parallel 
programming methodology adopted 

• FastFlow is the first parallel skeleton programming 
environment to be efficiently executed on the cloud  

 



Further Reading 
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Questions,  
Comments or  
Suggestions? 
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