
An Analysis of Basic Blocks within SPECjvm98
Applications

Jonathan Lambert
Computer Science Dept.

National University of Ireland
Maynooth, Co. Kildare, Ireland

jonathan@cs.nuim.ie

James F. Power
Computer Science Dept.

National University of Ireland
Maynooth, Co. Kildare, Ireland

jpower@cs.nuim.ie

November 16, 2005

ABSTRACT
In this report we present the results of performing a quan-
titative analysis of basic blocks that are contained within
SPECjvm98 applications. We first investigate the distri-
bution of basic block sizes both statically and dynamically
and then focus on frequently occurring basic blocks. We
then present our findings on the workload differences between
top ranked basic blocks and overall application. Finally we
present the results from the investigation into the existence
of a linear correlation between static and dynamic basic block
frequencies.

Keywords
Java Virtual Machine, Basic block analysis, SPECjvm98 ap-
plications

1. INTRODUCTION
The Java Programming Language [11] has gained widespread
popularity since it was first envisaged by its developers at
Sun Microsystems in early 1995. This popularity was in part
due to the Java Programming Language’s associated inter-
mediate format and underlying runtime environment, and
it initially found favour and use as a secure and platfrom
independent language representation that could be used by
web browsers.

The Java Programming Language is composed of two en-
vironments, the compile time environment and the runtime
environment. The Java compile time environment’s ultimate
function is to produce well formed Java class files that ad-
here to the Java class file specification as set out in [16]. The
Java Runtime Environment (JRE), which includes the Java
Virtual Machine (JVM) [16], is responsible for the loading
and execution of Java class files.

The JVM is an abstract computing machine [16] and is simi-

Technical Report
NUIM-CS-TR-2005-15

Department of Computer Science
National University of Ireland

Maynooth, Co. Kidare, Ireland.

lar to a real computer, in that it responds to a particular set
of instructions in a well defined manner, and executes a se-
quence of prerecorded instructions that are contained within
Java class files. Implementations of the JVM may interpret,
just-in-time-compile or even execute these Java instructions
natively. The Java class file format as specified in [16] de-
fines 201 instructions, with three more special instructions
used internally by the JVM.

An analysis of Java class file instructions can be performed
both statically and dynamically, and the results of such anal-
ysis has been presented in the literature. The quantitative
analysis of Java bytecode has contributed to JVM optimisa-
tions as well as contributing towards Java application mod-
elling.

In this paper we abstract away from direct instruction level
analysis and perform our analysis on basic blocks that are
contained within Java bytecode.

This paper is structured as follows. In Section 2, we briefly
describe the background of basic blocks and outline simi-
lar work that has been undertaken. Then in Section 3, we
describe the benchmark applications and also the method-
ology. Next in Section 4, we present a small example on the
calculation of basic blocks. In Section 5, we present the re-
sults on dynamic and static basic block sizes. In Section 6,
we present our results on frequently executed basic blocks
and their makeup. In Section 7, we consider if frequently
occurring basic blocks are representative of the workload as-
sociated with an application. In Section 8, we relate static
and dynamic basic block frequencies. Finally, in Section 9,
we present our conclusions and future direction.

2. BACKGROUND AND RELATED WORK
The Java Programming Language is an object oriented pro-
gramming language and thus allows a program to be viewed
as a collection of individual units known as objects. Like
many other forms of programming paradigms, Java allows
the programmer to create a number of different types of
statements within source code, some of which are: assign-
ment statements, expression evaluation, looping, conditional
branching and unconditional branching by the invocation
of methods. The compilation of Java source code to its
intermediate class file format transforms these high level
statements to corresponding statements of bytecode instruc-
tions. Associated with conditional branching are sequences
or blocks of instructions that are executed only if a condi-

1

tion is evaluated to be true or false. Unconditional branch-
ing like the “goto” instruction or a method invocation such
as an “invokevirtual”, “invokestatic”, “invokeinterface” or
“invokespecial” also cause a change in program control and
are associated also with sequences of instructions.

We define a basic block within a Java method’s code to be a
sequence of Java instructions, such that if the sequence’s first
instruction is executed by the JVM then all other instruc-
tions in the sequence is executed sequentially, if no runtime
errors or exceptions occur. For a general definition of a basic
block in an imperative programming language see [28].

Basic block analysis is not a new concept, Gregg et al. in
[13] undertook an analysis of basic block sizes and frequen-
cies that occur statically and dynamically within Forth pro-
grams. Maierhofer et al. in [17] present their empirical
results on basic block sizes and discuss how basic block size
affects their optimisation technique. Clausen et al. in [5]
consider a number of techniques for the compression of Java
Bytecode, and one such technique documented by Clausen
et al. is basic block compression. They suggest the use of
stream compression of basic blocks but recognise that the
gains achievable are related to basic block size.

Gagnon in [10] introduces a technique for applying inline-
threading to Java bytecode, a technique based upon the
elimination of dispatch over-heads within basic blocks. Bern-
dal et al. in [2] present a natural extension of inline-threading.
Their technique dynamically collects traces of frequently oc-
curring basic block sequences, and aims to eliminate dis-
patch code between inlined basic blocks.

Quantitative approaches to the analysis of dynamic instruc-
tion frequencies within benchmark applications as a way of
modelling such programs have been undertaken within a
number of studies [7, 4, 12, 14, 22, 8, 26, 27, 18, 15, 24].
In particular [7, 4, 12, 14, 22, 8, 26, 27] have profiled Java
applications at the granularity of Java instructions, while
[18, 15, 24] focus on sequences of instructions known as n-
grams. These studies in part, have aided the work of Power
and O’Donoghue in [19], in considering the viability of su-
per instruction implementation within the Java Virtual Ma-
chine’s instruction set. Dujmovic in [4] presents results on
the dynamic timing of Java instruction bytecodes.

Casey et al. in [3] present a profiling interpreter genera-
tor that identifies superinstructions within Java bytecode.
This interpreter also creates the code for superinstruction
implementation, from the base instruction definitions. The
work of Stephenson et al. in [25] considers the effects of
Java instruction despecialisation, which is a technique that
replaces specialised instructions such as iload 0 with their
generic counterpart iload.

Dujmovic in [9] presents a program difference model for ex-
amining the difference/similarity between benchmark appli-
cations. A similar approach is undertaken by Horgan et
al. in [14], who also present the effects compiler choice can
have on their difference metric. Gregg et al. in [6] perform
a method-level analysis of Java Grande and SPECjvm98
benchmark applications. In particular, they record the na-
ture of method call sites and targets within these applica-

tions, and examine the polymorphicity of virtual method
calls.

3. THE BENCHMARK SUITE
Our findings in this paper are based on the analysis of seven
benchmark applications chosen from the SPEC JVM98 bench-
mark suite [23]. The SPEC suite was developed as a rigorous
Java benchmark that would reflect the real-world behaviour
of Java applications. The benchmark applications analysed
are:

201 compress: A Java implementation of the Modified
Lempel-Zif file compression algorithm. The algorithm
searches for frequently occurring substings and replaces
them with variable size code. Real text files are passed
to the Java LZW compressor.

202 jess: Jess is a Java application based on the CLIPS
expert shell system. The CLIPS system was developed
by NASA in an attempt to provide decision-making
freedom to planetary ground rovers.

205 raytrace: This is a raytrace that works on a scene
representing a dinosaur.

209 db: Database test application that reads a one megabyte
file into memory. This file consists of names, addresses
and phone numbers. The application performs a num-
ber of database functions on the data set, such as ad-
ditions, deletions and sorts. 209 db is the only appli-
cation in the SPECjvm98 suite that is not based on a
real-world application.

213 javac: The Java compiler from Sun Microsystem’s
Java Development Kit (JDK) 1.0.2. A set of source
files are compiled by the compiler.

222 mpegaudio: This application decompresses a 4MB
stream of audio files that comply with the ISO MPEG
Layer-3 audio specification.

228 jack: Jack is a Java parser generator based on the
Purdue Compiler Construction Tool Set (PCCTS).

3.1 Methodology
In our experiments we use seven of the SPECjvm98 bench-
mark applications to study the static and dynamic struc-
ture of a Java application’s basic blocks. The benchmark
programs can be run with one of three data set sizes s1, s10
and s100. All experiments conducted were performed using
a data set size of s100. All benchmark runs were carried out
on a Dell Optiplex GX280 containing a 3GHz Intel Pentium
IV processor with 1 Gb of RAM running the Fedora Core 4
distribution of GNU/Linux.

The Sun Java 2 Runtime Environment, Standard Edition
(build 1.5.0 04-b05) was used to run all benchmarks and

2

the JVM was run in interpretor mode. To capture the basic
blocks of an application, small probes were inserted within
each basic block, and a trace of the execution of each ba-
sic block was then recorded. We did not record basic blocks
within Java library code nor the basic blocks of SPECjvm98
application starter code. Java source code from the Gre-
tel Residual Test Coverage Suite [21] that calculates basic
blocks was incorporated into our experimental setup.

4. DEFINING A BASIC BLOCK
As outlined previously, we define a basic block within a Java
method code to be a sequence of Java bytecode instructions,
such that if the sequence’s first instruction is executed by
the Java Virtual Machine then all other instructions in the
sequence are executed sequentially, if no runtime errors or
exceptions occur. We also note that the instructions in-
vokevirtual, invokeinterface, invokespecial and invokestatic
cause control to change to the invoked method, but for the
purposes of this paper these particular instruction are not
considered to end a basic block.

Program 1 shows the source code of a simple Java class.
This class was compiled using Sun’s javac compiler and the
resulting class file was disassembled using Sun’s javap disas-
sembler. The results from disassembling the code are shown
in Program 2. The output from disassembling the code is
annotated with labels: b1, b2, ..., b8 to identify the basic
blocks within the instruction trace.

One possible way to identify the basic blocks contained in a
method’s code, is to draw a control flow graph of the instruc-
tions. Figure 1 shows the resulting control flow graph of the
opcodes contained within the main() method of Program 2.
We consider a basic block to begin at the first instruction of
a method and end when an opcode in the control flow graph
has more than one outgoing edge, or begin with an opcode
that has more than one incoming edge and end with an op-
code with more than one outgoing edge. Figure 1 shows all
the basic blocks in the control flow graph.

Program 1 A simple program in Java.

public class Simple{

public static void main(String[]args){

int k = 0;

int i = 0;

while(k < 10){

k = k + 2;

}

i++;

while(k < 20){

k = k + 2;

}

}

}

5. BASIC BLOCK STATIC AND
DYNAMIC SIZE ANALYSIS

In this section we present our findings on the static and
dynamic distribution of basic block sizes, across seven of
the SPECjvm98 benchmark applications.

Program 2 Result of running javap disassembler on class
file represented by code segment Program 1, also shown are
the basic blocks contained within this bytecode trace.

public Test();

public static void main(java.lang.String[]);

Pos Opcode Operand Basic block

0: iconst_0 b2

1: istore_1 b2

2: iconst_0 b2

3: istore_2 b2

4: iload_1 b3

5: bipush 10 b3

7: if_icmpge 17 b3

10: iload_1 b4

11: iconst_2 b4

12: iadd b4

13: istore_1 b4

14: goto 4 b4

17: iinc 2, 1 b5

20: iload_1 b6

21: bipush 20 b6

23: if_icmpge b6

26: iload_1 b7

27: iconst_2 b7

28: iadd b7

29: istore_1 b7

30: goto 20 b7

33: return b8

3

Figure 1: The control flow diagram shows the basic blocks representing code segment Program 1.

Table 1 shows the total number of basic blocks contained
statically within SPECjvm98 application code and the num-
ber of basic blocks dynamically executed from these appli-
cations by the JVM.

Table 2 shows the percentage of total number of basic blocks
in a SPECjvm98 application, that contain less than 5, 10, 15
and 20 instructions and also the percentage of basic blocks
that contain at least 20 instructions. These results are based
on the static analysis of basic blocks within the benchmark
applications. For example we can see that 41.88% of ba-
sic blocks contained within 201 compress are composed of
at most four instructions, and on average 48.40% of ba-
sic blocks within SPECjvm98 applications contain no more
than four instructions. Our results tend to agree with those
of Maierhofer and Ertl in [17] who present their findings
on basic block sizes, obtained from the analysis of the JDK
class library. They conclude that 50% of basic blocks con-
tain no more than four instructions with 85% containing at
most ten instructions.

Table 3 shows a similar analysis to that presented in Table 2
but considers those blocks that are dynamically executed by
the JVM. We can see from these results that the percentages
of dynamically executed basic blocks of a particular length
seem to correlate with those percentages exhibited for the
static analysis, and would merit further analysis.

Table 4 records the mean number of instructions x, y com-
posing static and dynamic basic blocks and also their associ-
ated standard deviations sx and sy. For example, the static
basic blocks within the SPECjvm98 application 222 mpega-
udio have a mean instruction count of 19.84 and standard
deviation of 125.73 instructions. In considering the statis-
tics presented in Table 4, Figure 2 shows the frequency dis-

tribution of basic block sizes across all seven benchmark
applications. We also include a cumulative count of basic
blocks containing at least 21 instructions. Figure 2 shows
that basic block sizes of less than 21 instructions seem to
follow a Poisson distribution. We can see from these figures
that the accumulation of basic blocks containing at least 21
instructions occur quite frequently within the applications
analysed statically and seem to contribute to the recorded
deviations in static block sizes as presented in Table 4. For
example, our analysis has identified that for the SPECjvm98
application 201 compress 18 basic blocks account for 9.42%
of all static blocks and these have a mean instruction count
of 31.9 instructions one of which contains 82 instructions.
However the SPECjvm98 application 213 javac contains 34
basic blocks accounting for 3.60% of all static blocks, and
of these two contain 895 and 1623 instructions. The appli-
cation 222 mpegaudio contains four basic blocks with more
than 1000 instructions, the largest basic block having 2831
instructions. In summation, large basic blocks seem to con-
tribute to the high standard deviations recorded.

Dynamically we record considerably different results with
the exception of 222 mpegaudio. With the exception of
222 mpegaudio the results recorded in Table 4 show that
the standard deviations are very close to the mean values
recorded, four benchmark applications recording a standard
deviation less than their mean and two recording a standard
deviation slightly greater than their mean. These results
seem to indicate that although large blocks tend to skew
the static block size statistics, dynamically these blocks are
not executed very frequently. However 222 mpegaudio has
a large standard deviation, this seems to be accounted for by
one particular basic block containing 130 instructions that
dynamically represents 5.09% of total execution.

4

Number of Basic Blocks
Spec Program Static Dynamic

201 compress 191 122+e07
202 jess 2510 30+e07

205 raytrace 597 36+e07
209 db 246 11+e07

213 javac 5853 17+e07
222 mpegaudio 910 66+e07

228 jack 2150 3.77+e07

Table 1: Number of static and dynamic basic blocks
in SPECjvm98 applications.

Number of Instructions
Spec Program < 5 < 10 < 15 < 20 > 19

201 compress 41.88 68.59 83.77 90.58 9.42
202 jess 46.53 78.37 91.35 95.22 4.78

205 raytrace 46.23 69.85 83.25 87.10 12.90
209 db 56.91 82.52 93.90 95.93 4.07

213 javac 46.68 80.28 93.18 96.40 3.60
222 mpegaudio 49.01 75.93 85.71 90.33 9.67

228 jack 51.58 72.74 83.44 96.42 3.58
average 48.40 75.46 87.80 93.14 6.86

Table 2: Number of instructions composing static
basic blocks from SPECjvm98 applications.

Number of Instructions
Spec Program < 5 < 10 < 15 < 20 > 19

201 compress 31.17 61.62 79.16 83.82 16.18
202 jess 59.85 89.35 96.21 98.69 1.31

205 raytrace 68.80 83.19 91.43 93.69 6.31
209 db 50.96 69.35 71.92 71.92 28.08

213 javac 54.44 86.17 94.00 99.43 0.57
222 mpegaudio 53.21 80.33 83.31 88.24 11.76

228 jack 45.71 78.66 94.02 97.74 2.26
average 52.02 78.38 87.15 90.50 9.50

Table 3: Number of instructions composing dynamic
basic blocks from SPECjvm98 applications.

Static Dynamic
Spec Program x sx y sy

201 compress 8.77 9.75 10.22 9.01
202 jess 6.89 6.62 5.13 4.24

205 raytrace 10.63 27.12 5.82 6.37
209 db 6.11 6.26 9.40 9.76

213 javac 6.77 24.87 5.36 4.17
222 mpegaudio 19.84 125.73 16.52 59.92

228 jack 8.31 47.21 6.13 5.86
average 52.02 78.38 87.15 90.50

Table 4: Mean number of instructions x, y com-
posing static and dynamic basic blocks and there
respective standard deviations sx and sy.

From Figure 2 we note that basic blocks containing three
instructions are the most frequent size of basic block found
within SPECjvm98 applications.

6. FREQUENTLY EXECUTED
BASIC BLOCKS

Tables 5 through 11 give the frequencies and instructions for
the top 5 most frequently executed basic blocks from each
of the SPECjvm98 applications analysed. For each table
the first column indicates the number of Java instructions
contained in the basic block, the second column enumerates
the basic block bytecode instructions, the third column lists
the total frequency of occurrence, and the fourth column
expresses the total basic block frequency as a percentage of
total basic blocks executed within that particular applica-
tion.

From Tables 5 through 11 we note that basic blocks con-
taining no more than five instructions account for approxi-
mately 77% of all the top 5 repeatedly ocurring basic blocks
recorded. In particular the basic block containing one in-
struction namely the ‘iinc’ instruction appears within the
top 5 basic blocks for four of the applications analysed, and
is recorded as the most frequently executed block within
228 jack. Table 10 records the largest basic block, contan-
ing 130 instructions. We see from this particular block that
floating point instructions represent the most frequent type
of instruction executed, with object referencing accounting
for the second most frequenct type of instruction occuring
within this block. The abundance of floating point opera-
tions seems to be indicative of mpegaudio’s encoding and
decoding operations.

Our results also show that the top 5 most frequently ex-
ecuted basic blocks on average across all applications ac-
count for approximately 40% of total basic blocks executed.
205 raytrace exhibits the greatest percentage, with a per-
centage of 70.47%, and one basic block “aload 0 getfield fre-
turn”, representing 42.40% of execution. Figure 3 shows
the top 5 basic blocks from each application, and the total
percentage of execution these represent.

Figure 4 shows the distribution of the remaining basic blocks
from a SPECjvm98 application that comprise an execution
of less than 1% and the percentage of static basic blocks.
The results presented so far indicate that a small percent-
age of basic blocks account for the vast amount of execution,
while a large number of basic blocks are executed very infre-
quently. This distribution of frequencies seems to indicate
the presence of a power law [1] relationship between dynamic
block execution and static block frequency.

On close examination of the instructions that compose the
basic blocks shown in tables 5 through 11 we see that the
bigram “aload 0 getfield” identified by O’Donoghue et al. in
[18], occurs in 14 of the 35 basic blocks recorded. In consid-
ering the analysis undertaken by Leddy in [15] we find that
the trigram “aload 0 getfield iload 1” also is present. We
also note the presence of basic blocks that perform similar
tasks but use different instruction. For example, the two ba-
sic blocks “iload 2 aload 0 getfield invokevirtual if icmplt”
and “iload aload 0 getfield invokevirtual if icmplt” occurring
in 228 jack only differ in their first instruction. These basic

5

Figure 2: These graphs show the frequency distribution of basic block sizes, in seven of the SPECjvm98
benchmark applications.

6

Compress

Frequency
Size Basic Block Instructions Total %
6 ILOAD 2 ILOAD ISUB DUP ISTORE 2

IFGE
8.5e+07 6.98

11 ALOAD 0 GETFIELD ASTORE ALOAD
GETFIELD ILOAD 2 IALOAD ISTORE
ILOAD ILOAD 1 IF ICMPNE

8.5e+07 6.98

2 ILOAD IFGT 7.5e+07 6.16
9 ALOAD 0 GETFIELD ILOAD 1 SALOAD

BIPUSH ISHL BIPUSH IUSHR IRETURN
7.44e+07 6.10

12 ALOAD 0 GETFIELD ALOAD 0 DUP
GETFIELD DUP X1 ICONST 1 IADD
PUTFIELD ILOAD 1 BASTORE RETURN

6.6e+07 5.38

Total 3.85e+08 31.6

Table 5: Top five most frequently executed basic
blocks from 201 compress

Jess

Frequency
Size Basic Block Instructions Total %
5 ALOAD 0 GETFIELD ILOAD 1 AALOAD

ARETURN
2.7e+07 8.87

1 IINC 2.5e+07 8.28
3 ALOAD 0 ALOAD 1 IF ACMPNE 2.4e+07 7.81
4 ILOAD 3 ALOAD 0 GETFIELD

IF ICMPLT
1.8e+07 6.14

2 ICONST 0 IRETURN 1.5e+07 4.87
Total 8.2e+07 35.97

Table 6: Top five most frequently executed basic
blocks from 202 jess

Raytrace

Frequency
Size Basic Block Instructions Total %
3 ALOAD 0 GETFIELD FRETURN 1.5e+08 42.40
3 ALOAD 0 GETFIELD ARETURN 4.9e+07 13.46
5 ALOAD 0 GETFIELD ILOAD 1 AALOAD

ARETURN
3.3e+07 9.04

35 ALOAD 0 FLOAD 3 ALOAD 1 INVOKE-
VIRTUAL FMUL FLOAD ALOAD 2 IN-
VOKEVIRTUAL FMUL FADD PUTFIELD
ALOAD 0 FLOAD 3 ALOAD 1 INVOKE-
VIRTUAL FMUL FLOAD ALOAD 2 IN-
VOKEVIRTUAL FMUL FADD PUTFIELD
ALOAD 0 FLOAD 3 ALOAD 1 INVOKE-
VIRTUAL FMUL FLOAD ALOAD 2 IN-
VOKEVIRTUAL FMUL FADD PUTFIELD
ALOAD 0 ARETURN

6.0e+06 1.68

4 FLOAD FLOAD FCMPL IFLE 5.2e+06 1.43
Total 2.4e+08 68.01

Table 7: Top five most frequently executed basic
blocks from 205 raytrace

Db

Frequency
Size Basic Block Instructions Total %
2 ILOAD 3 IFGE 2.3e+07 19.44
24 ALOAD 0 GETFIELD ILOAD 3 AALOAD

GETFIELD ILOAD 1 INVOKEVIRTUAL
CHECKCAST ASTORE ALOAD 0 GET-
FIELD ILOAD 3 ILOAD IADD AALOAD
GETFIELD ILOAD 1 INVOKEVIRTUAL
CHECKCAST ASTORE ALOAD ALOAD
INVOKEVIRTUAL IFLE

2.3e+07 18.99

1 IINC 1.4e+07 11.34
3 ILOAD 2 ILOAD IF ICMPLT 1.2e+07 10.35
5 ILOAD 2 ILOAD ISUB ISTORE 3 GOTO 1.2e+07 10.35

Total 8.4e+07 70.47

Table 8: Top five most frequently executed basic
blocks from 209 db

Javac

Frequency
Size Basic Block Instructions Total %
16 ALOAD 0 ALOAD 0 GETFIELD PUT-

FIELD ALOAD 0 DUP GETFIELD
ICONST 1 IADD PUTFIELD ALOAD 0
GETFIELD ISTORE 1 ILOAD 1
ICONST M1 IF ICMPNE

8.0e+06 4.70

2 ILOAD 1 LOOKUPSWITCH 8.0e+06 4.70
5 ALOAD 0 GETFIELD INVOKEVIRTUAL

ISTORE 1 GOTO
7.9e+06 4.68

2 ILOAD 1 IRETURN 7.8e+06 4.62
3 ALOAD 0 GETFIELD ARETURN 7.3e+06 4.31

Total 3.9e+07 23.01

Table 9: Top five most frequently executed basic
blocks from 213 javac

Mpegaudio

Frequency
Size Basic Block Instructions Total %
3 ILOAD BIPUSH IF ICMPLT 5.7e+07 8.55
130 GETSTATIC ILOAD IINC AALOAD

ASTORE FLOAD 3 ALOAD 0 GET-
FIELD ILOAD AALOAD ILOAD BIPUSH
IADD FALOAD ALOAD ICONST 0
FALOAD FMUL FADD FSTORE 3
FLOAD ALOAD 0 GETFIELD ILOAD
AALOAD ILOAD BIPUSH IADD FALOAD
ALOAD ICONST 1 FALOAD FMUL FADD
FSTORE FLOAD ALOAD 0 GETFIELD
ILOAD AALOAD ILOAD BIPUSH IADD
FALOAD ALOAD ICONST 0 FALOAD
FMUL FADD FSTORE FLOAD ALOAD 0
GETFIELD ILOAD AALOAD ILOAD BI-
PUSH IADD FALOAD ALOAD ICONST 1
FALOAD FMUL FADD FSTORE ILOAD
ICONST 1 IADD BIPUSH IAND IS-
TORE FLOAD 3 ALOAD 0 GETFIELD
ILOAD AALOAD ILOAD FALOAD
ALOAD ICONST 2 FALOAD FMUL
FADD FSTORE 3 FLOAD ALOAD 0
GETFIELD ILOAD AALOAD ILOAD
FALOAD ALOAD ICONST 3 FALOAD
FMUL FADD FSTORE FLOAD ALOAD 0
GETFIELD ILOAD AALOAD ILOAD
FALOAD ALOAD ICONST 2 FALOAD
FMUL FADD FSTORE FLOAD ALOAD 0
GETFIELD ILOAD AALOAD ILOAD
FALOAD ALOAD ICONST 3 FALOAD
FMUL FADD FSTORE ILOAD ICONST 1
IADD BIPUSH IAND ISTORE IINC

3.4e+07 5.09

1 IINC 2.3e+07 3.54
3 ILOAD ILOAD 3 IF ICMPLT 2.1e+07 3.13
3 ILOAD 3 BIPUSH IF ICMPLT 2.1e+07 3.10

Total 1.6e+08 23.41

Table 10: Top five most frequently executed basic
blocks from 222 mpegaudio

Jack

Frequency
Size Basic Block Instructions Total %
1 IINC 3.1e+06 8.26
3 ALOAD INVOKEINTERFACE IFNE 1.9e+06 5.00
5 ILOAD ALOAD 0 GETFIELD INVOKE-

VIRTUAL IF ICMPLT
1.7e+06 4.40

5 ILOAD 2 ALOAD 0 GETFIELD INVOKE-
VIRTUAL IF ICMPLT

1.5e+06 3.91

2 ILOAD IRETURN 1.3e+06 3.60
Total 9.5e+06 25.17

Table 11: Top five most frequently executed basic
blocks from 228 jack

Spec Program no. of basic blocks static % of
with an execution unique

greater 1% basic blocks
201 compress 21 13.46

202 jess 29 2.47
205 raytrace 11 3.10

209 db 16 9.20
213 javac 19 0.74

222 mpegaudio 30 6.00
228 jack 25 4.35
Average 21.5 5.6

Table 12: The number of basic blocks that represent
at least 1% of execution, and their percentage of the
total number of unique static blocks

7

Figure 3: This chart shows for each SPECjvm98 ap-
plication the percentage of total basic blocks exe-
cuted represented by the top 5 most frequent basic
blocks.

blocks are categorically equivalent, both iload 2 and iload
performing a push operation of an integer constant onto the
JVM stack.

Table 12 records the number of basic blocks that individ-
ually account for a dynamic execution of more than 1% of
total execution. Column 1 indicates the SPECjvm98 appli-
cation, column 2 records the number of basic blocks dynam-
ically executed that individually account for more than 1%
of total execution and column 3 indicates the percentage of
unique static basic blocks that these represent. These results
indicate that on average across all applications, 21.5 basic
blocks dynamically executed represent 5.6% of an applica-
tion’s static basic blocks. These results would seem to agree
with the suggestion put forward by Proebsting in [20] for C
programs, that a maximum of 20 superoperators would suf-
fice to get full advantage of the technique of superinstruction
implementation.

In considering the results presented in Table 12 we see that
on average 21.5 basic blocks have a dynamic execution of
more than 1%, excluding the top 5 most frequenctly exe-
cuted basic blocks, at least another 15% of total dynamic
execution is accounted for by the next 15 most frequenctly
executed basic blocks. This results in an average of 55% of
execution being accounted for by the top 21.5 basic blocks,
representing an average of 5.6% of the static basic blocks
within an application.

The technique used here to identify basic blocks is based on
the code supplied with the Gretel Residual Test Coverage

Tool [21]. This tool does not recognise method invocation
instructions such as “invokevirtual”, “invokeinterface”, “in-
vokestatic” and “invokespecial” as ending a basic block. We
believe that it is reasonable to consider these particular in-
struction types as causing such a change and thus would
effect the identification of basic blocks within application
code.

In considering the later point, we note the effect this consid-
eration would have on basic block identification. The appli-
cations 205 raytrace (Table 7), 209 db (Table 8), 213 javac
(Table 9) and 228 jack (Table 9) all record method invo-
cation instructions within their top 5 most frequently oc-
curring basic blocks. As these particular basic blocks ac-
count for the most frequently occurring blocks, the result of
decomposing these into smaller basic blocks would cause a
greater number of smaller basic blocks to be registered as
most frequently occurring blocks.

7. BASIC BLOCKS AS A REPRESENTATIVE
SAMPLE OF BENCHMARK APPLICA-
TION WORKLOADS

In this section we present our findings from an initial study
into the viability of sampling an application’s basic block
trace as a way of producing a representative sample of an
application’s behaviour. The program difference model

d(A, B) =
1

2

NX
i=1

|p(A)
i − p

(B)
i | (1)

proposed by Dujmovic in [9] was used to assign a similarity
value to basic block samples taken from an application. The
frequency fi, i = 0,..., 202 of each instruction was calculated
for each SPECjvm98 application ‘A’, and the frequency of
each instruction occurring in the sample ‘B’ of basic blocks
was also calculated. The relative frequencies pA

i AND pB
i

of each instruction executed in the application and sample
respectively, was calculated using fiP202

i=0 fi
.

We define the workload of an application to mean the fre-
quency of instructions dynamically executed. The workload
difference was calculated using the workload of the entire
application, and the workload associated with the most fre-
quently executed basic blocks. We examined the differences
in workload for 10%, 20%, ..., 90% of frequently executed
basic blocks.

Table 13 shows the results of our investigation where a value
of 0.0 indicates identical workloads, and 1.0 indicating to-
tally different workloads. For example the workload associ-
ated with the basic blocks of 201 compress is nearly identi-
cal to the workload associated with the sampled basic blocks
that account for 60% of 201 compress, having a similarity
value of 0.11.

Considering all applications analysed, the results shown in
Figure 13 indicate that the top 80% of dynamically executed
basic blocks in each application only differ from the work-
loads of the full application by at most 21%. In addition,
in six of the seven applications the top 70% of basic blocks
differ by at most 20%.

8

Figure 4: The above histograms show the percentage of static basic blocks and their percentage frequency of
execution.

9

Basic Blocks Sampled
Spec Program 10% 20% 30% 40% 50% 60% 70% 80% 90%

201 compress 0.46 0.47 0.27 0.25 0.17 0.11 0.09 0.06 0.02
202 jess 0.63 0.58 0.49 0.44 0.37 0.25 0.20 0.12 0.05

205 raytrace 0.61 0.61 0.61 0.61 0.57 0.52 0.28 0.21 0.10
209 db 0.87 0.23 0.23 0.21 0.18 0.18 0.14 0.05 0.03

213 javac 0.38 0.35 0.33 0.31 0.25 0.17 0.14 0.08 0.04
222 mpegaudio 0.25 0.25 0.23 0.19 0.17 0.15 0.12 0.11 0.11

228 jack 0.90 0.49 0.37 0.30 0.28 0.19 0.14 0.08 0.03

Table 13: Similarity between SPECjvm98 applications and Sampled Basic Blocks

Spec Program x sx y sy r

201 compress 0.64 0.39 0.74 1.42 0.11
202 jess 0.09 0.21 0.16 0.57 0.40

205 raytrace 0.28 0.36 0.33 2.41 0.65
209 db 0.58 0.51 0.76 2.60 0.10

213 javac 0.04 0.10 0.06 0.26 0.38
222 mpegaudio 0.20 0.34 0.26 0.68 0.27

228 jack 0.17 0.49 0.21 0.65 0.11

Table 14: Correlation between static basic block fre-
quencies and dynamic basic block frequencies

8. RELATING STATIC AND DYNAMIC BA-
SIC BLOCK FREQUENCIES

In this section we explore whether there exists a linear rela-
tionship between static and dynamic basic block frequencies.
A similar study was undertaken by Dowling et al. in [8] but
was conducted at the individual instruction level, and Dowl-
ing et al. concluded that no overall linear relationship exits
between static and dynamic instruction frequencies.

Pearson’s correlation coefficient was used, and is given by:

r =

P
(x− x)(y − y)

(n− 1)sxsy
(2)

In equation 2 the static and dynamic basic block frequencies
are represented for two sets of data of size n by the random
variables x and y, having means x and y and standard devi-
ations sx and sy.

In our calculation we note that the static basic block fre-
quencies recorded accounted for all basic blocks comprising
a particular application, whereas it was possible that the
dynamic frequencies did not include all such basic blocks.
In such a case a frequency of zero was returned.

Our results from correlating static and dynamic basic block
frequencies are shown in Table 14. Pearson’s correlation co-
efficient returns a value in the range of -1 to 1, and | r |> 0.8
indicates a strong linear corelation, 0.5 ≤| r |≤ 0.8 denoting
a moderate linear correlation and values of | r |≤ 0.5 de-
noting a weak linear correlation. We note from our results
that no application exhibits a strong linear correlation be-
tween static and dynamic basic block frequencies and only
205 raytrace shows a moderate correlation.

9. CONCLUSION AND FUTURE WORK
In this paper we have presented the results of an analy-
sis of basic block sizes, occurring both statically and dy-
namically. We conclude that for SPECjvm98 applications
both statically and dynamically occurring basic blocks are
small in size, with 90% containing less than 20 instructions
both statically and dynamically, and approximatly 50% of
SPECjvm98 application basic blocks containing less than
5 instructions, a result that tends to agree with those put
forward by Maierhofer and Ertl in [17] and would seem to
suggest a pattern accross all Java applications.

From the dynamic analysis of basic block frequencies, we
conclude that a small number of static basic blocks, account
for a large proportion of dynamic execution, a result that
would seem to suggest the presence of a power law distri-
bution. Also we see that approximately 77% of the most
frequently occurring basic blocks contain no more than 5
instructions. We also note that the bigram “aload 0 get-
field” is a common sequence ocurring in 14 of the 35 basic
blocks reported. In particular it starts a basic block very fre-
quently. We also conclude from our results that the choice
of 20 superinstructions as suggested by Proebsting seems to
be a logical threshold, that will afford maximum benefit to
the technique of superinstruction implementation within a
JVM.

Our results also show that the top 80% of the most fre-
quently executed basic blocks differ from the workload of
the total application by as little as 12%. We also conclude
that there does not exist a linear correlation between static
block frequencies and dynamic frequencies, a result that was
shown by Dowling in [8] to hold for instruction frequencies.

It is proposed in the future to examine the effects of Java
bytecode categorisation on basic block frequency distribu-
tion and also to explore the concept of statistically improb-
able basic blocks as a way identifying particular types of
Java applications.

10. REFERENCES
[1] L. Adamic. Zipf, power-laws, and pareto - a ranking

tutorial.
http://www.hpl.hp.com/research/idl/papers/rank-
ing/ranking.html.

[2] Marc Berndl and Laurie Hendren. Dynamic profiling
and trace cache generation for a Java Virtual
Machine. Technical Report No. 2002-8, San Francisco
State University, Department of Computer Science,

10

Number of basic blocks
Benchmark Total Unique Not Executed Executed
201 compress 191 156 22 135

202 jess 2510 1175 542 633
205 raytrace 597 355 47 308

209 db 246 174 43 131
213 javac 5853 2572 933 1639

222 mpegaudio 910 504 121 383
228 jack 2150 575 94 481

Table 15: Total number of basic blocks within each benchmark, number of unique basic blocks, number of
basic blocks not executed and the total of unique basic blocks executed.

August 2002.

[3] Kevin Casey, David Gregg, and Anton Ertl. Towards
superinstructions for Java interpreters. In 7th
International Workshop on Software and Compilers
for Embedded Systems, Vienna, Austria, September
24-26 2003.

[4] Herder C.C and Dujmovic J.J. Frequency analysis and
timing of Java bytecodes. Technical Report
SFSU-CS-TR-00.02, San Francisco State University,
Department of Computer Science, January 2000.

[5] Lars Rder Clausen, Ulrik Pagh Schultz, Charles
Consel, and Gilles Muller. Java bytecode compression
for low-end embedded systems. ACM Transactions on
Programming Languages and Systems, 22(3):471–489,
May 2000.

[6] J. Power D. Gregg and J.T. Waldron. A method-level
comparison of the Java Grande and SPECjvm98
benchmark suites. Journal of Concurrency and
Computation Practice and Experience, 17(7-8),
June-July 2005.

[7] Charles Daly, Jane Horgan, James F. Power, and
John T. Waldron. Platform independent dynamic Java
Virtual Machine analysis: the Java Grande Forum
Benchmark Suite. In Joint ACM Java Grande -
ISCOPE Conference, pages 106–115, Stanford, CA,
USA, June 2001.

[8] T. Dowling, James F. Power, and J. T. Waldron.
Relating static and dynamic measurements for the
Java virtual machine instruction set. In Symposium on
Mathematical Methods and Computational Techniques
in Electronic Engineering, Athens, Greece, December
29-31 2001.

[9] J.J. Dujmovic. Universal benchmark suites. In
MASCOTS’99 Conference Proceedings, IEEE
Computer Society Press, pages 197–205, 1999.

[10] Etienne Gagnon. A Portable Research Framework for
the Execution of Java Bytecode. PhD thesis, McGill
University, 2002.

[11] J. Gosling and B. Joy The Java Language
Specification Second Edition. The Java Language
Specification. McGraw Hill, 1998.

[12] D. Gregg, James F. Power, and J. T. Waldron.
Benchmarking the Java virtual architecture - the
SPEC JVM98 benchmark suite. In N. Vijaykrishnan
and M. Wolczko, editors, Java Microarchitectures,
chapter 1, pages 1–18. Kluwer Academic, 2002.

[13] David Gregg, M. Anton Ertl, and John Waldron. The
common case in Forth programs. In EuroForth 2001
Conference Proceedings, pages 63–70, 2001.

[14] J. Horgan, J. Power, and J. Waldron. Measurement
and analysis of runtime profiling data for Java
programs. In First IEEE International Workshop on
Source Code Analysis and Manipulation, pages
122–130, Florence, Italy, November 10 2001.

[15] Aine Leddy. Dynamic bytecode analysis using
n-grams. 2001.

[16] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification. Addison Wesley, 1996.

[17] Martin Maierhofer and M. Anton Ertl. Local stack
allocation. In CC ’98: Proceedings of the 7th
International Conference on Compiler Construction,
pages 189–203, London, UK, 1998. Springer-Verlag.

[18] D. O’Donoghue, A. Leddy, James F. Power, and J. T.
Waldron. Bi-gram analysis of Java bytecode sequences.
In Second Workshop on Intermediate Representation
Engineering for the Java Virtual Machine, pages
187–192, Dublin, Ireland, June 13-14 2002.

[19] Diarmuid O’Donoghue and James F. Power.
Identifying and evaluating a generic set of
superinstructions for embedded Java programs. In
International Conference on Embedded Systems and
Applications, June 2004.

[20] Todd A. Proebsting. Optimizing an ANSI C
interpreter with superoperators. In Proceedings of the
22nd ACM SIGPLAN-SIGACT symposium on
Principles of Programming Languages, pages 322–332,
New York, NY, USA, 1995.

[21] Jakarta Project. The gretel residual test coverage tool.
http://www.jakarta.apache.org/bcel/projects.html.

[22] R. Radhakrishnan, N. Vijaykrishnan, L.K. John,
A. Sivasubramaniam, J. Rubio, and J. Sabarinathan.
Java runtime systems: Characterization and
architectural implications. IEEE Transactions on
Computers, 50(2):131–146, February 2001.

11

[23] SPEC. The specjvm98 benchmark suite.
http://www.spec.org/osg/jvm98.

[24] Ben Stephenson and Wade Holst. A quantitative
analysis of Java bytecode sequences. In Proceedings of
the 3rd International Symposium on Principles and
Practice of Programming in Java, pages 15–20. Trinity
College Dublin, 2004.

[25] Ben Stephenson and Wade Holst. A quantitative
analysis of the performance impact of specialized
bytecodes in Java. In Proceedings of the 2004
conference of the Centre for Advanced Studies on
Collaborative research, pages 267–281. IBM Press,
2004.

[26] J. Waldron. Dynamic bytecode usage by object
oriented Java programs. In Technology of
Object-Oriented Languages, pages 384–393, Nancy,
France, June 1999.

[27] J. Waldron, C. Daly, D. Gray, and J. Horgan.
Comparison of factors influencing bytecode usage in
the Java Virtual Machine. In Second International
Conference and Exhibition on the Practical
Application of Java, pages 315–327, Manchester, UK,
April 2000.

[28] Maurer D. Wilhelm R. Compiler Design. Addison
Wesley, 1995.

12

