
National College of Ireland

MSc Learning Technologies

2005/2006

Answering Challenges Enhances Learning

Investigation of the performance improvement of
software developers resulting from the deployment o f the

Inner Workings Developer™ practice-based learning
system

Clement McGann

03234614

clement, mcgann@icsmember. ie

August 2006

NationalCollege0/
Ireland
The college for a
learning society

Answering Challenges Enhances Learning

I hereby certify that this material, which I now submit for

assessment of the programme of study leading to the award of Master

of Science in Learning Technologies is entirely my own work and has

not been taken from the work of others save and to the extent that

such work has been citied and acknowledged within the text of my

work.

Clement McGann

Date; August 11, 2006.

Student Number: 03234614

Page 2 of 112

Answering Challenges Enhances Learning

Table of Contents

1 Abstract..5
2 Introduction..6

2.1 Background..................... 6
2.2 Overview.. 6

2.3 Approach... 7

3 Literature Review...8
3.1 Software Quality... 9
3.2 There are problems with the quality of software............12

3.3 How to Attain Quality..19
3.4 Education as a solution.. 27
3.5 Reflection... 33

4 Method.. 39

4.1 Discussion on Methods.. 39
4.2 Field Observation... 39

4.3 Field Study.. 40
5 Field Observation ..41

5.1 Relevance of the field observation ,.....................41

5.2 Audience.. 41

5.3 Description of the Course... 42
5.4 How typical was the course?...43

5.5 Structure of the Course............... 44

5.6 Quiz..44
5.7 Motivation.. 45

5.8 Feedback... 46
5.9 Conclusions from the field observation.........................47

5.10 Other Observations from the Field Observation 48

6 InnerWorkings Developer™......................... 51

6.1 Field Observation... 51
6.2 What is InnerWorkings Developer™?.................... 51

6.3 InnerWorkings Developer™ in Operation...................... 52
6.4 InnerWorkings Developer Learning Issues.................... 53

Page 3 of 112

Answering Challenges Enhances Learning

6.5 Claims of InnerWorkings Developer™............................ 54

7 Field Study..55

7.1 Purpose of the field study..55

7.2 Participants in the field study..55

7.3 Organisation of the Field Study participants..................56

7.4 How valid is this field study? Or: How qualified are the
participants?... ..58

7.5 Was learning enhanced?.. 65

7.6 Field Study Conclusion... 75

8 Future Perspectives 75

9 References................. 76

10 Appendices..85

A. Answers to Field Observation...86

B. Interim report on the field study from the TSB group 89

C. Answers to Field Study Questionnaire................................91

D Field Study Responses......................... 109

E The ISO 9126 Standard - Definition of Quality......................I l l

DannAnf 11?

Answering Challenges Enhances Learning

1 Abstract
This paper considers the current deficiencies in software

quality. Software quality is defined, with reference to the ISO 9126

standard. The effect of the deficiencies is illustrated. Some of the

reasons are explained.

Current approaches to address the issue of software quality are

given, with special reference to sound engineering approaches such as

the Capability Maturity Model. Quality Assurance reduces the effect

of lower quality software. The role of standards and the use of Fagan's

inspection method are mentioned. Opinions differ as to whether the

quality goal is achievable.

Current solutions are based in the engineering tradition. There

are alternative approaches to software writing espoused by Richard

Gabriel who speaks of the artistic nature of programming. He calls for

the empowerment of the ‘mob'; that is the programmers

Education in the Computer Sciences is neglected. To succeed it

needs to address the higher cognitive levels. Reflective learning is

discussed, the need to transform knowledge from ‘knowing’ to ‘doing’;

from ‘declarative’ to ‘procedural’; to actually solve problems and write

code.

Means of how to motivate students are discussed; in particular

how students respond to challenges.

The field observation is of a programming class in industry.

Some aspects of the course are reviewed. The hypothesis that

‘answering challenges enhances learning’ is formed.

The field study tests this hypothesis while trialling

InnerWorkings Developer™. The views of the volunteers confirmed

the hypothesis and were positive to the benefits of InnerWorkings

Developer™.

Page 5 of 112

Answering Challenges Enhances Learning

2 Introduction

2.1 Background
The motivation for this study stems from concern for the quality

of computer software. This quality is disappointing. There have been

and continue to be efforts to address this issue. Although remarkable

achievements are often claimed, the problem persists. Many of these

panaceas focus on the management of and the practice of software

production. Although substantial attention has been paid to

educational issues, this paper asserts that its potential is

underestimated, and it is therefore under-resourced.

Specific motivation for this study arose in the context of a

programming course, in industry, and considerations on how it could

be improved. This is discussed in ‘field observation’ on page 41.

This study was enabled by the availability of a specific

educational product InnerWorkings Developer; this is described on

page 51. The study is described in ‘Field Study’ on page 55.

2.2 Overview
This paper considers software quality to be important; it

considers it to be lacking. Various approaches to address the issue of

software quality are surveyed.

In considering education, as one of the solutions, the issue of

reflective learning is raised. Reflective learning, in this context, means

transforming learning from knowledge of facts to the ability to apply

that knowledge; moving learning from ‘knowing’ to ‘doing’; from

‘declarative knowledge’ to ‘procedural knowledge’.

There are various mechanisms for stimulating this

transformation. It is proposed that ‘answering challenges’, actually

writing code in reply to a quiz question, is such a mechanism.

Page 6 of 112

Answering Challenges Enhances Learning

2.3 Approach
A novice programming class in industry is considered. From

this ‘field observation’ the hypothesis ‘answering challenges enhances

learning’ and subsidiary hypothesises were formed. To confirm these

hypotheses a ‘field study’ was undertaken.

InnerWorkings Developer™ is a learning tool which relies on

issuing challenges. A group of experienced programmers, in industry,

used this product. The ‘field study’ is an analysis of their experience

using InnerWorkings Developer™. Based on their reports, this paper

concludes that ‘answering challenges enhances learning’.

Page 7 of 112

Answering Challenges Enhances Learning

3 Literature Review
The Literature review discusses software quality. It considers

that software quality is an important issue. There is a definition of

software quality. Then the current shortcomings in software quality

are illustrated with some ‘horror stories’. Some reasons for these

defects are mentioned

Having determined that software quality is important, but

lacking, current steps to rectify the situation are outlined. Standards

are discussed along with their difficulties and contradictions.

Accepting that errors are inevitable, we alleviate the situation by

identifying and reducing errors. Quality Assurance is discussed.

Nonetheless quality, the objective to ‘get it right - first time’, is a

laudable aspiration. Ways to achieve it using, methodologies and

education are introduced.

This paper then focuses on education, its deficiencies and

advantages; in particular reflective learning is discussed. This is in

preparation for the research question; the hypothesis that ‘answering

challenges enhances learning’.

Following the literature review, this paper continues with a ‘field

observation’, an observation of a programming class in industry,

which introduces the hypothesis. Then this paper concludes with the

‘field study’ to confirm the hypothesis.

Page 8 of 112

Answering Challenges Enhances Learning

3.1 Software Quality
3.1.1 Software Quality is an important issue.

In a ceremony at the White House on Monday, 14th March 2005,

President Bush presented the National Medal of Technology to one of

the leading visionaries on software quality, Watts Humphrey, Fellow of

the Software Engineering Institute of Carnegie Mellon University, for

applying the principles of engineering and science to software

development. Humphrey and Carnegie Mellon's Software Engineering

Institute are trying to lead the industry toward defect-free software

The National Medal of Technology is the highest honour

awarded by the president for “ technology innovators and rewards

contributions to the nation's economic, environmental, and social well

being (Bush, 2005). Bush said: "Your work is making our country

more competitive, more hopeful, and more prosperous

In a survey, published in Information Week of 300 business-

technology managers, 49% specified ‘improving software quality’ as

priority. (Information Week 2005)

This paper, while lauding Humphries’s application of

engineering principals, doubts that defect-free will be achieved using

this ‘engineering’ approach, advocates also promoting the craft of

programming, in particular moving programming education from the

theoretical to the practical.

3.1.2 What is “software quality”?
Just what do we mean by “Software Quality”? One’s first

though is that it is software which is free of error, if, indeed, such

exists.

However there are other necessary attributes, such as the

ability to change or adapt and the economic imperatives

Change is inevitable; “To live is to change, and to be perfect is to

have changed often” (Newman, 1845) therefore the code must be

maintainable. But change can introduce error.

Page 9 of 112

Answering Challenges Enhances Learning

Economic imperatives cannot be ignored. They require the

software to be written efficiently and to execute efficiently. So we

would add the cost of software production and its performance to our

list. But compromising to these necessary requirements, can

introduce error.

Our list of what constitutes ‘quality software’ can grow to the

extent that it is self-defeating. It can reach the stage where Worse is

Better’ (Gabriel, 1990). This work challenges many of our ideas on

quality by forcing an acknowledgement that the adoption of some

quality attributes results in the denial of others.

There are two issues with ‘Quality’; first: a definition is required;

second: we need a measurement. There are inadequate answers to

both questions. That is not to say that these answers do not exist,

but that these answers continue to be refined. The ISO 9126

standard, discussed below, and described in the Appendix, on page

91, provides both a definition and a measurement of software quality

3.1.3 Software Quality: A definition
What is Software Quality? An early, oft quoted, definition,

identified these attributes: (McCall, 1977)

> Correctness

> Reliability

> Efficiency

> Integrity

> Usability

> Maintainability

> Flexibility

> Testability

> Portability

> Reusability

> Interoperability

Page 10 of 112

Answering Challenges Enhances Learning

3.1.3.1 ISO 9126 Standard
The ISO 9126 Standard has a definition of quality, entitled

‘Software Engineering - Product Quality’. In addition to its ‘quality

model’, ISO 9126 propose three metrics for measuring quality:

External, Internal and ‘in use’ metrics (ISO).

The ISO 9126 definition is summarised in the Appendix, on

page 91.

Shortly after ISO 9126 was published, it attracted comment and

amendments were being proposed. Other definitions were proposed.

Most of the ISO 9126 definitions do not lend themselves to direct

measurement. Several are, of their nature, more subjective than

objective.

Other standards were proposed, such as the IEEE Standard

1061 -1998 IEEE Standard for a Software Quality Metrics

Methodology’ (IEEE, 1993)

The efforts of many contributed to the ‘Eagles’ report (Eagles

1996). This did propose extensions to the ISO standard

Page 11 of 112

Answering Challenges Enhances Learning

3.2 There are problems with the quality of
software.
It has become something of a catch phrase to “blame the

computer* for failures. It was back in 1978 that the Farmers’ Almanac

famously declared: “To err is human, but to really foul things up

requires a computer." Computer systems do come into their fair share

of criticism. We may seek to reject such criticism as unfair, but

perhaps we need to be more realistic and consider the facts. One of

the differences between computer programmers and other trades is

that others can more easily find excuses for their errors, while an

error in programming, once the system fails, leaves little room for

denial. There is an old saying in journalism to the effect that: “Doctors

bury their mistakes, lawyers jail their mistakes and journalists publish

their mistakes for all the world to see” (Richards 2002). What of

programmers? They say: “It's not a bug it’s a featureF (Lubar 1995),

or as Rich Kulawiec said: “Any sufficiently advanced bug is

indistinguishable from a feature?

It is said: “If debugging is the art of removing bugs, then

programming must be the art of inserting them ” Ultimately we cannot

escape responsibility for faulty code. “It is a painful thing, to look at

your own trouble and know that you yourself and no one else has made

i f (Sophocles, 440BC). It is, therefore no surprise to read that 51% IT

workers cite job stress as a problem, which is ten percentage points

higher than the overall figures. (Sosbe 2006)

3.2.1 Horror stories
The purpose of this section is to illustrate, with extreme

examples the defects in software quality.

Page 12 of 112

Answering Challenges Enhances Learning

3.2.1.1 PPARS
A recent local ‘horror story’ was the PPARS payroll system for

the health services. In April 2005 their ‘National Test Centre’ was

celebrating that there were no problems only solutions ...” (PPARS

2005). We now know that in June, the then CEO of St James’s

Hospital, wrote “...the Hospital is now not willing to continue with an

arrangement which clearly threatens its basic functioning,” (Kenny,

2005) In August, the Irish Medical Times reported PPARS as a

disaster, which cost €231 million and could cost €500 million (IMT

2005) The political fallout continues. Many excuses have been

proffered for this error. However we are left with the story of a payroll

system, which failed to accurately calculate wages. The Midland

Health Board carried out a test on a sample number of employee pay

slips to test the systems accuracy; 43% of the sample had one or more

errors on their pay slip. (Kelly 2005) In one notorious incident, a

health service employee was overpaid by € lm as part of an electronic

funds transfer error. And of course we don't know about the

overpayments that were not reported.

3.2.1.2 FISP
The PPARS fiasco was quickly followed by FISP, the central

financial management system for the Health Service, which wasted

€30 million (Reid 2005). A further three million Euro was spent on a

health portal, which failed to be delivered (Irish Health 2005). All that

was delivered is an empty web-site at www.fisp.ie.

3.2.1.3 Budget overruns
Pulse, the Garda record-keeping system was unable to scale up

from its pilot implementation and cost an extra €20 million,

overrunning its budget by 50%, to implement.

The Comptroller and Auditor General reported that a new IT

system for the Irish Blood Transfusion Service overran its budget by

115%.

Page 13 of 112

http://www.fisp.ie

Answering Challenges Enhances Learning

A railway signalling system, the Iarnrod Eireann Mini-CTC

signalling system, overran its budget by 150% (Silicon Republic, 2003)

3.2.1.4 Financial Services
The Irish League of Credit Unions had to write off €34 million

when the ISIS project failed. The system was intended to facilitate

electronic funds transfer and support ATMs. (Averbuch 2004)

Dr Joe McDonagh, a senior lecturer in business studies at

Trinity College Dublin said: “The €150m lost on the health system —

you don't have to look far in this country to see figures higher than that

being lost in failed projects in large financial services firms.” (Kennedy

2005)

3.2.1.5 Department of Works and
Pensions,

The UK Government is no stranger to IT failures - last year a

failed IT upgrade paralysed the UK’s Department of Works and

Pensions, causing 80,000 civil servants to resort to writing out giro

cheques to some 800,000 pensioners. (Lettice 2004)

3.2.1.6 Pentium floating-point error of
1994

Perhaps the most widespread bug was the Pentium floating

point error of 1994 (Lawrence 1994). It was a simple omission. The

Pentium computer chip’s division algorithm relied on a table, from

which five entries were inadvertently omitted. (Pratt 2005)

3.2.1.7 Therac-25
Therac-25, a computer-controlled radiation therapy machine,

had “several types of serious errors in its design, any one o f which

would be obvious to an undergraduate in computer science or

engineering, led to the deaths of six patients”. (Bernecky 2004)

Page 14 of 112

Answering Challenges Enhances Learning

3.2.1.8 Electronic Voting
The Irish government spent €52 million on an electronic voting

system which cannot be used (Reid 2006). The Commission on

Electronic Voting published its findings in July 2006. It reported

“Design weaknesses, including an error in the implementation of the

count rules that could compromise the accuracy o f an election, have

been identified” (Commission on Electronic Voting 2006). It may seem

shocking, but while, most of the time the C-language computer

program counted votes cast correctly, in the words of the commission:

“However there were a small number o f cases that were counted

incorrectly”.

3.2.1.9 Summary
“Surely there have been enough software project failures to

acknowledge the need for Generally Accepted Software Engineering

Practices”. (Morgan 2005). This paper will go further and call an

improved approach to education.

The objective in identifying these ‘horror stories’ is not to deny

that a disciplined approach can identify and address defects, but to

illustrate the consequences badly written software.

3.2.2 Reasons for Low Quality

3.2.2.1 Pressure to deliver
Developers are being pressurised to deliver, and deliver quickly,

quality is not necessarily something that will be at the forefront of

their minds. We all know that doing something quickly does not

always equal doing something well. They will test their programs to

make sure that they work, but few developers, in such circumstances

have time to think about conditions that could lead to their code or

functionality failing.

Page 15 of 112

Answering Challenges Enhances Learning

3.2.2.2 Knowledge
Clients seek software to perform specific functions, freeing them

for more lucrative pursuits. Sometimes software professionals don’t

have quite the right skills or background to understand the business

requirements or apply the right tools to model and produce the

corresponding systems. (Morgan 2005)

3.2.2.3 Data Quality
This paper addresses issues of deficiencies in software quality.

That is not to maintain that there are no other issues, such as

problems of Data Quality. One of the causes of deficiencies in data

quality is poor software quality.

3.2.2.4 The extent of poor quality
Experiences vary, however I would expect to encounter eight

errors in every thousand lines of code. However, from the literature,

that figure appears conservative.

3.2.2.5 Bugs
Many and various reasons have been and will be advanced to

explain these faults. Whatever one says of, for instance: PPARS, we

are still left with a system, which fails to calculate wages. We are left

with ‘bugs’.

Bugs have been with us from the beginning. Thomas Edison

coined the term T>ug’ in 1889 (Pall Mall Gazette 1889). In 1945

(Hopper 1945) Admiral Grace Hopper introduced the term to

computing. (Hopper 1981)

Maurice Wilkes, the creator of the first stored-program

computer, discovered debugging in 1949 “As soon as we started

programming, we found to our surprise that it wasn't as easy to get

programs right as we had thought. Debugging had to be discovered. I

can remember the exact instant when I realized that a large part o f my

life from then on was going to be spent in finding mistakes in my own

programs? (Campbell-Kelly 1998)

Page 16 of 112

Answering Challenges Enhances Learning

In that same year, Alan Turing asked the question “How can one

check a routine in the sense o f making sure that it is right7* He

provided an illustrated answer “In order that the man who checks may

not have too difficult a task the programmer should make a number o f

definite assertions which can be checked individually, and from which

the correctness of the whole program easily follows.” (Turing 1949)

Clearly, he considered it possible.

Admittedly, discussing chip design, it was recently observed

(Magnusson 2006) that “It is nearly 60 years later, and debugging

embedded software has not changed all that much from how it was

done on Wilkes's ED SAC.”

Figures from the Software Engineering Institute at Carnegie

Mellon University estimate that every 1,000 lines of programming code

contains between 100 and 150 errors. That means up to 15% of code

contains bugs. (Sarin 2005)

3.2.3 Poor Quality - Summary
There are two approaches to addressing problems of software

quality. The first, attempts to ensure that the software is written to a

high standard in the first place. The second accepts that errors are

inevitable and uses testing and error detection techniques to identify

and eliminate these errors, later. These approaches are not mutually

exclusive. Indeed, both paths are usually followed. However more

emphasises can be placed on one or on the other.

3.2.4 Is Poor Quality Inevitable?
Dr. Fred Brooks has been labelled as pessimist by some, sceptic

by others and realist by others. In ‘No Silver Bullet’, he argued that

the difficulties are inevitable, arising from software's inescapable

essence. (Brooks 1987) He described this ‘essence’ as “complexity,

conformity, changeability, and invisibility."

Dr Brad Cox presented a contrary view when he asked: “What if

there's a Silver Bullet and the competition gets it first?' (Cox 1992)

Page 17 of 112

Answering Challenges Enhances Learning

Software quality was poor, in the past. In 1970, Professor

A.J.Perlis said “I think it is inevitable that people program, and will

continue to program poorly. Training will not substantially improve

matters.” ... “We have to learn to live with if . Software quality is poor,

in the present. Under the heading "IT Execs to Vendors: Your

Software Stinks”, Information weekly reported: Representing billions o f

dollars in annual technology spending, FT leaders from British

Petroleum, Lockheed Martin, Unilever, and Kaiser Permanente made it

clear that the software industry needs a new business model, better

quality control, and closer product development ties with customers.

"The quality o f software I'm getting from you people is abysmal, " David

Watson, Kaiser's chief technology officer, told an audience o f several

hundred software industry executives. (Kontzer 2005)

Most approaches, to date, hold that the application of sound

engineering principals will impose order on chaos and rectify this

situation. This will be discussed, in the context of the Capability

Maturity Model, on page 26. The advocates of engineering solutions

call “Surely there have been enough software project failures to

acknowledge the need for Generally Accepted Software Engineering

Practices?. (Morgan 2005).

Edsger Dijkstra, the father of structured programming, posed

the real question when he asked whether the programmer is a

"Craftsman or Scientist” (Dijkstra 1975). The programmer needs to be

both. Most approaches concentrate on the ‘scientist’, although the

term ‘engineer’ is usually applied. Perhaps we have neglected the

craftsman. This theme is now being recognised. Last year, June 11

2005, the ACM recognised Richard Gabriel with the ‘Newell Award’.

The citation reads: "For innovations not only on fundamental issues in

programming languages and software design but also on the interaction

between computer science and other disciplines, notably architecture

and poetry" (ACM, 2005).

Page 18 of 112

Answering Challenges Enhances Learning

3.3 How to Attain Quality
These horror stories’ illustrate the shortcomings in many

computer systems. There are various initiatives to address this issue,

such as: Licensing, Standards, Testing, Design Methodologies, Tools,

Education and others. These can be broadly classified into two:

‘getting it right first time’ and ‘fixing it later’. While we aspire to the

former, we adhere to the latter.

As well as reviewing ways to attain quality, we can consider why

we fail to succeed.

There are various approaches to achieve quality. For instance,

these and other experiences have lead to calls for the licensing

engineers. However, that may not be either practical or in the best

interest of the industry or the public (Knight & Leveson 2002).

Whether licensed or not, there is a general consensus that

standards are required, but do standards, of themselves, improve

quality? The use of standards to achieve quality is discussed next.

Then ‘quality assurance’, formally known as ‘testing’ will be discussed.

3.3.1 Standards of Quality
Although there were differences in emphasises among differing

standards, there were not real contradictions. Indeed most depicted

their standards as building on prior standards. However there were

unresolved internal issues within these standards. Although the

Eagles report discusses many of the attributes of quality, it lacks any

comparison or priority of these attributes. This void was to lead to the

‘rise of worse is better’, discussed below.

A considerable body of literature has been written on standards,

leading to the question ‘Do Standards Improve Quality?’

(Schneidewind 1996). Standards, of themselves, do not ensure

quality. They provide a means to measure quality and provide the

means to detect poor quality.

Page 19 of i 12

Answering Challenges Enhances Learning

Standards can measure attributes such as Correctness,

Efficiency and Maintainability

3.3.1.1.1 Correctness

Given any legal input, a program is considered correct if it

produces the desired output. The ability of the program to handle

illegal input (by displaying the appropriate error message), or

robustness, is comparatively less important than its ability to perform

the basic functions of the program.

3.3.1.1.2 Efficiency

A program is efficient if it performs its tasks without

consuming too much processing time and memory space. How much

is “too much” depends on the programming question.

3.3.1.1.3 Maintainability
A program is maintainable if the code is easily understandable,

employing devices such as descriptive variable names, comments,

indentation and modular programming.

3.3.1.2 Conflicting objectives
These laudable goals can be in contradiction. For example, to

write a program to run most efficiently, it may therefore be more

difficult to understand and therefore less maintainable.

The MIT/Stanford style of design attempts to address this by

ranking the objectives. (Note that this only addresses issues of design

rather than the complete code.) Their objectives are:

> Simplicity - the design must be simple, both in

implementation and interface. It is more important

for the interface to be simple than the

implementation.

> Correctness - the design must be correct in all

observable aspects. Incorrectness is simply not

allowed.

Page 20 of 112

Answering Challenges Enhances Learning

> Consistency - the design must not be inconsistent.

A design is allowed to be slightly less simple and less

complete to avoid inconsistency. Consistency is as

important as correctness.

> Completeness - the design must cover as many

important situations as is practical. All reasonably

expected cases must be covered. Simplicity is not

allowed to overly reduce completeness.

This approach in ranking objectives is useful, as it therefore,

resolves the conflicts.

3.3.1.3 “Worse is Better” classification.
Richard Gabriel has described this classification as "Worse is

Better”. (Gabriel, 1990)

He extends the definition as:

> Simplicity-the design must be simple, both in

implementation and interface. It is more important

for the implementation to be simple than the

interface. Simplicity is the most important

consideration in a design.

> Correctness-the design must be correct in all

observable aspects. It is slightly better to be simple

than correct.

> Consistency-the design must not be overly

inconsistent. Consistency can be sacrificed for

simplicity in some cases, but it is better to drop

those parts of the design that deal with less common

circumstances than to introduce either

implementational complexity or inconsistency.

Page 21 of 112

Answering Challenges Enhances Learning

> Completeness the design must cover as many

important situations as is practical. All reasonably

expected cases should be covered. Completeness can

be sacrificed in favour of any other quality. In fact,

completeness must be sacrificed whenever

implementation simplicity is jeopardized.

Consistency can be sacrificed to achieve

completeness if simplicity is retained; especially

worthless is consistency of interface.

3*3*2 Quality Assurance
Testing, now known as ‘Quality Assurance’, is necessary to

avoid poor quality. Most methods of ensuring software quality are

variations on Fagan’s ‘software inspection’. (Fagan 1976)

There is a need to test and to test thoroughly. Now we refer to

‘testing’ as ‘quality assurance’. Quality Assurance is now a

specialisation in its own right (Jedras 2004). There is an economic

limit to testing. The duration of most beta programs is one to three

months, although the period may be shorter (Shea 2006). We need,

also, to improve the software which is produced.

According to the old adage “When you are in a hole - stop

diggincf. Regrettably in some cases - such as PPARS, mentioned

above - Those who identified errors were met with denial, arrogance

and dismissal. Those who questioned were vilified, threatened and

bullied (INO 2005).

In a well-organised project, sound testing procedures are put in

place. There are separate testing teams. Testing is recognised as a

speciality in its own right. There is investment in automated testing

tools.

Page 22 of 112

Answering Challenges Enhances Learning

3.3.3 Failure to Achieve Quality

3.3.3.1 Acceptance of Failure
In more recent years, the reality of software bugs is just

accepted. “Errors are unavoidable? (German 2002). In former years

efforts were only directed at ensuring that code was correctly written,

in the first place. Not that those efforts are being neglected, rather

tools and methods, which can identify defects, are supplementing

them.

This realisation echoed the words of Maurice Wilkes, quoted

earlier, who in 1949 said: “As soon as we started programming, we

found to our surprise that it wasn't as easy to get programs right as we

had thought Debugging had to be discoveredP (Magnusson 2006). As

Mark Halpin said in his memoirs “fixing program bugs was our staple

dief (Halpin 1992)

There is a curious change in the language used. Words such as

“bugs”, "errors” and "flaws” are being replaced by “defects”,

“weakness” and "vulnerability”. In this mindset, "errors” should not

exist, but a "weakness” is something, which can be rectified.

To some extent this shift is a response to malicious Internet

hackers. They seek to identify errors in software, so that they can

exploit them. The response is to identify these errors before the

hackers find them. A lot of money is spent on these exercises. In

North America this exceeds a billion dollars annually (Garvey 2005)

3.3.4 Get right first time.
Efforts to address the issue of improved software quality can be

classified into three approaches. They are: Process, Tools and

Education, none of which can be taken in isolation. That is not to say

that there aren’t other approaches and variations on these themes

Page 23 of 112

Answering Challenges Enhances Learning

3.3.4.1 Process
This acceptance of defects is not universal. In a sense, the only

reason why defects are accepted is that all of our efforts, to date, have

failed to eradicate them. The earlier a defect is detected the less it

costs to rectify it. Unfortunately, short-term objectives, often driven

by marketing, results in lower quality being delivered sooner rather

than superior quality being delivered later. It is therefore not

surprising that we have so many "horror stories”.

A change of attitude is required. Sarah Saltzman argues that we

need to take a longer-term view; we need to realise that making

quality improvements at the development stage is much more cost

effective than reacting to problems the quality assurance team picks

up, or indeed fixing a bug once the application has been deployed. We

" need to foster a cultural change so that developers recognise that they

will not only be measured on speed, but also on the consistency and

quality o f their code.” (Saltzman 2005)

3.3.5 Can quality be achieved?
The Worse is Better’ theory says that simplicity is paramount.

There well may be a link between the number of defects in code and

its comprehension (or simplicity), but that is yet to be established

(Dunsmore and Roper 2000). It is difficult to measure the

comprehension or simplicity of software because such comprehension

is an internal process of humans (Uchida and Shima 2005).

Gabriel’s work concludes that we cannot impose rules on

software creation, and it would be counter-productive to do so. “It just

won't happen— it's like those rockets: We simply do not know how to

get massive software off the ground without crashing and endless

fiddling. But we don't accept that.” He terms his solution as ‘Mob

Software’ “The way out of this predicament is this simple: Set up a

fairly clear architectural direction, produce a decent first cut at some of

the functionality, let loose the source code, and then turn it over to a

mob.” (Gabriel 2000).

Page 24 of 112

Answering Challenges Enhances Learning

This paper agrees with this thesis and advocates ‘empowering

the mob’. There should be more emphasis on helping the programmer

to acquire the necessary skills to write code, rather than imposing

excessive regulation.

3.3.5.1 Methodologies to Achieve
Quality

It is said that: “a bad workman blames his tools”. By

methodologies we mean the tools used and the methods employed.

The various suppliers of compilers and operating systems now

supply sophisticated IDEs (Integrated Development Environments) to

support the writing software. These have improved greatly over recent

years. Since these are pre-determined by the supplier, they will not

be further discussed here. Other than, as will be said below, that it is

better to learn using the same IDE as will be used in software

production.

3.3.5.2 Process
“ The quality of a product is largely governed by the quality o f the

process used to build if . (Humphrey 1997)

Process or Methodology solutions represent the first attempts to

address the issue of software quality. It was proposed that

engineering principles be applied to software construction. Watts

Humphrey was mentioned in the introduction to this work. He is

trying to lead the industry toward defect-free software through the use

of two methods—the Personal Software Process and the Team Software

process—that use advanced engineering techniques. Humphrey also

developed the basis for the Capability Maturity Model for Software,

which became the generally accepted standard for assessing and

improving software processes (Stahl 2005)

Page 25 of 112

Answering Challenges Enhances Learning

3.3.5.2.1 Capability Maturity Model
This dissertation opened with a reference to the award given to

Watts Humphrey. He is known as ‘the father of software quality’. He

is formulated the ‘Capability Maturity Model’ or CMM. He later

formulated ‘Personal Software Process’ or PSP (Humphrey 1997).

Watts Humphrey stated: “the software task should be treated as a

process that can be controlled, measured, and improved” (Humphrey

1994). He was not the first to advocate this approach, but the CMM

did formalise it. Essentially, they sell ‘a kit’. This enables an

organisation to measure how ‘mature’ its ‘capability’ is to create and

maintain software. There are 18 ^ey processes’ to be measured. On

each the organisation can be at five levels. The fifth, or highest, is

‘mature’. These ‘five levels of software maturity’ (Paulk, Curtis,

Chrissis, and Weber 1993) are:

> Level 1 - The Initial Level

> Level 2 - The Repeatable Level

> Level 3 - The Defined Level

> Level 4 - The Managed Level

> Level 5 - The Optimizing Level

When this information is gathered, there is a ‘spice’, that is:

Software Process Improvement and Capability determination This

yields 35 processes organized in 5 categories. Each process can be

performed at 6 different levels. It is the job of management, guided by

consultants, to prioritise these. Individuals, in the organisation, are

then tasked to raise the performance level of a process, for which they

are responsible, to a higher level.

CMM is highly regarded. However it is not without its critics.

Although it isn’t complex, as such, there is a lot of detail. The CMM

can seem to be overly bureaucratic, promoting process over

substance.

Page 26 of 112

Answering Challenges Enhances Learning

He wasn’t the first to propose such an approach. In 1985 IBM

held their ‘Systems Management Institute’ at various locations. They

quoted from (Gibson and Nolan 1974) who spoke of the ‘four stages of

EDP growth’. (Stage four was ‘maturity’).

In 2002 the Carnegie Mellon Software Institute announced the

‘sunset’ of CMM. They now advocate CMMI-SE/SW

3.3.6 Quality - Summary
Software quality is important but it is as elusive as ever. We

have tried standards, methodologies, various techniques and

procedures. While we may be reducing the frequency and impact of

errors, they remain. As Fred Brooks wrote “there is no silver bullet”

(Brooks 1987)

The issue is fundamental. The commission on electronic voting

tell us that a C-language computer program failed, on occasion, to

correctly count votes cast. One wonders not only about their

processes and procedures, but also about the calibre of the

programmers. Computer Science graduates can secure their

qualifications, yet many cannot construct a simple program (Jenkins

2001).

It is time to focus on their education and learning; time to

recognise the “mob”, in the context of ‘mob software’ (Gabriel, 2000)

3.4Education as a solution
The difference in the productivity can be dramatic. Francis

McKeagney, CEO of InnerWorkings reports that 2% of programmers

were responsible for half the software produced. It

Page 27 of 112

Answering Challenges Enhances Learning

It was said many years ago, it is still true: (Stackman 1968)

" When a programmer is good,

He is very, very good,

But when he is bad,

He is horrid

Given that there is such a disparity, it should be profitable and

possible to raise the ability of the laggards.

3.4.1 Deficiencies in Education
Although the industry spends money technical education and

individuals spend time learning technology, little guidance is directed

towards this education. A recent survey (CompTIA 2006) found that

although individuals spent 11 hours a week and $2,200 on education

in the past year, and plan to increase that amount by another $100 in

the next year, only eight percent make these choices based on

employer requirements or recommendations. This survey showed that

most of the cost of IT education is paid by individuals rather than

their employers. It is therefore no surprise that 47% of IT staff do not

receive critical training (Swartz 2005)

IT professionals may pay for their own, possibly inappropriate,

education, but what of the end users? Nearly 90 percent of the cost of

software for end users is wasted because of a lack of training.

(Gartenberg 2005)

Organisations spend, on average $600 per year per employee on

their development. But little of their training appears to be

transferred to the job (Zenger, Folkman and Sherwin 2006). It seems

that we can impart knowledge, but that the application of that

knowledge fails to be implemented.

Page 28 of 112

Answering Challenges Enhances Learning

Even when employees are given training opportunities, it's not

always clear that the training results in the expected outcome.

According to psychologist Daniel Goleman, author of: Working With

Emotional Intelligence, "Estimates o f the extent to which skills taught

in company training programs carry over into day-to-day practice on the

job are as low — and gloomy — as a mere 10%" (Putrich 2005).

There is reason to believe that many of the problems with

software development can be attributed to deficiencies in computer

science degree programs and similar professional education.

Graduates know the syntax of the language used and details of the

associated libraries, but not how to implement or test a system.

(Knight 8b Leveson 2006)

Computer Science graduates can secure their qualifications, yet

many cannot construct a simple program (Jenkins 2001).

3*4.2 Motivation
“A student will not learn unless they are motivated. It must be a

teacher's main task, therefore, to ensure that all their students are

properly motivated” (Jenkins 2001).

Despite the work of Biggs, Ramsden and others, a recent survey

by Development Dimensions International shows that motivation is

often overlooked (King 2006).

Page 29 of 112

Answering Challenges Enhances Learning

Much of the current literature sees lack of motivation as the

primary failure (Biggs 2003) (Ramsden 2003). The advocated solution

is to implement a student-centric approach. The assertion is that

there are two approaches to IT training. In the first, you start by

showing all the features of the new system and then eventually

demonstrate how they can do the specific things they'll need to get

real work done. The second way is to start by demonstrating how they

can do their work with the new system and only later point out the

rest of the features that are available somewhere in the software.

(Hayes 2005) Or to put it another way: You can focus on your work, or

you can focus on their work. The rhetorical question then asked is:

" Which approach will work better?* (Oliver 2004).

We need to motivate. The question is how to motivate.

3.4.2.1 Motivators
Fear can be a motivator. Fear is culturally accepted as a

motivator. Marketers use it to sell products, and politicians use it to

get elected. But using fear as a motivator is wrong. It increases error.

It destroys creativity (McManus, 2006)

Financial rewards can be a motivator. Money is effective is in

lighting a motivational fire — even in employees who claim money

doesn’t matter to them (Welch and Welch, 2006).

Personal affinity, where the students take ownership, achieves a

high level of participation. (Way, 2006).

Page 30 of 112

Answering Challenges Enhances Learning

Others are recognition and celebration. An older list is: (LeDuc,

1980). This list does not recognise the issue of ‘answering challenges’.

> Full appreciation of work done

> Feeling of being in on things

> Sympathetic help on personnel problems

> Job security

> Good wages

> Interesting work

> Promotional growth in the organization

> Personal loyalty to employees

> Good working conditions

> Tactful disciplining

We will now further explore this issue, seeking to maximise

personal affinity. The recent literature on teaching programming has

focused on motivation, and on-line courseware. This paper proposes

another such initiative.

3.4.3 Structure of the Observed Learning Outcome
John Biggs argues against the assessment system, which

simply rewards memorising information and repeating it on cue (Biggs

1982). This, he describes as “declarative knowledge”, rather than

“performative understanding where students use what they know to

solve problems that reflect the real world.” (Later, in this document,

the InnerWorkings challenge will be described as “moving ‘declarative

knowledge’ to ‘procedural knowledge’.”)

Bloom’s taxonomy has been used to analyse and understand

computer science courses. (Lister 2005) However many merge

Bloom’s six classifications (Bloom 1956) into three.

Page 31 of 112

Answering Challenges Enhances Learning

Biggs proposed a five-level model of teaching, which he dubbed

‘SOLO’ or Structure of the Observed Learning Outcome. The levels

being: ‘Pre-structural’, ‘uni-structural’, ‘multi-structural’, ‘relational’,

and ‘Extended abstract level’. (Lister, 2006) These five levels will be

referred to again, later in this document, when the COBOL Quiz

questions are discussed, on page 44.

When we consider these levels, the objective is to move

understanding to the higher level. Programmers, as in any other

discipline, will have different levels of understanding. In predictable

situations, programmers with lower-level knowledge can adequately

function. Higher level knowledge is required when dealing with a

novel or unforeseen situation. Richard Gabriel spoke of (civil)

engineering going so far, but to create you need an architect (Gabriel,

1996).

In recognition of the artistic components in software creation

the University of Illinois now awards Master of Fine Arts in Software,

it has been followed by a Bachelor of Software Development at New

Mexico Highlands University. These programs follow the philosophy of

Richard Gabriel (West and Rostal, 2005).

Page 32 of 112

Answering Challenges Enhances Learning

3.5 Reflection
3.5.1 Relevance

Although the syntax of programming can learnt, there is a

difficulty in putting it into practice. This is illustrated by the

observation that although computer science qualifications continue to

be awarded in ever increasing numbers, the catalogue of IT failures is

undiminished. Reflection addresses the internal construction of

knowledge which results from actual experience of the action.

InnerWorkings claim that their offering is unique in offering practice

based learning for IT. The literature on reflective learning discusses

its application in the fields of teaching, health and business (Boud,

1985) (Pearson 1985) (Candy 1985). We are discussing the relevance

of reflection to learning how to program, in the context of practice

based learning.

3.5.2 Definition of reflection
There are various definitions of reflection. Some regard it as

just thinking about a learning experience in order to understand it.

(Boud 1985) (Reed and Koliba 1995) (Jacovi 2004). This would not

distinguish between simple recall of memory, what some programmers

might call “documentation” and a mental activity which would

construct actual knowledge. Kemmis goes somewhat further saying

that “reflection is a political act which either hastens or defers the

realization o f a more ra tiona ljust and fulfilling society” (Kemmis,

1985).

This issue is, at least partially addressed, by stating that there

are three types of, or stages in, reflection;

Hatton describes these as: firstly: personal judgements;

secondly: conversations with oneself; and thirdly: critical reflections.

Only critical reflection influences behaviour. Hatton (1995)

Page 33 of 112

Answering Challenges Enhances Learning

Schon encourages us to ‘think about our thinking’. His three

levels are: firstly: spontaneous or thoughtless, secondly: repetitive,

there has been unconscious learning and thirdly: we are aware of the

understanding. (Schon 1984)

Our specific interest in reflective learning is in how it might

apply to writing program code. This literature does say that refection

is necessary for learning to be internalised, although it does not speak

of the necessity to actually do something, in our instance to write

code; what some call performance learning. Learning Theory,

heretofore has neglected adult learning. Ideas on reflection and

transformation discuss adult learning.

These definitions seem to have lost an earlier insight. Back in

1929, Dewey was emphatic that reflection was not " thinking cooped up

in the mind” (Dewey 1929). Mezirow returns to Dewey’s perspective

(Mezirow 1991)

Jack Mezirow’s ideas, while still under the general description of

reflection are described as "Transformational Learning”. Mezirow

enhanced Dewey’s ideas on reflective learning with input from

psychoanalytic theory (Boyd and Myers 1988) (cited by Imel 1998) and

from critical social theory (Scott 1997).

Page 34 of 112

Answering Challenges Enhances Learning

3.5.3 Mental Blocks
Edsger Dijkstra spoke of how programmers can be limited by

their knowledge of the syntax of a programming language. He

reported: “I have run a little programming experiment with really

experienced volunteers, but something quite unintended and quite

unexpected turned up. None of my volunteers found the obvious and

most elegant solution. Upon closer analysis this turned out to have a

common source: their notion o f repetition was so tightly connected to the

idea o f an associated controlled variable to be stepped up, that they

were mentally blocked from seeing the obvious. Their solutions were

less efficient, needlessly hard to understand, and it took them a very

long time to find them. It was a revealing, but also shocking experience

for me.” (Dijkstra 1972)

3.5.4 Motivators that work

3.5.4.1 Programming contests
Programming contests have always been attractive. Winning is,

no doubt, is attractive (Gomes, 2006); yet, given the number of

entrants that cannot be the sole motivation. Perhaps it is because

young computer programmers like to battle for fame, money, and they

love algorithms (Arefin, 2005). Whatever the motivation, it exists.

InnerWorkings exploit that desire to compete.

There are many programming contests. Two, frequently

mentioned are: the IOI (International Olympiad in Informatics) and the

ACM-ICPC (Association for Computing Machinery) - (International

Collegiate Programming Contest)

Page 35 of 112

Answering Challenges Enhances Learning

When the ACM (Association for Computing Machinery) first

organised its ICPC (International Collegiate Programming Contest) in

1999, over 2,400 teams entered (Manne, 2000) In the autumn of

2005, more than 5,600 teams representing 1,733 universities from 84

countries participated in regional contests. The top 83 teams will

compete at the 2006 ACM-ICPC World Finals championship on April

9-13, 2006 (Wessner 2006). Contest participation has increased

seven-fold since 1997.

The United Nations Educational, Scientific and Cultural

Organization (UNESCO) proposed the IOI (International Olympiad in

Informatics). The first was held in 1989, see:

http://www.ioinformatics.orq/

Some others are:

> The ‘USA Computing Olympiad’ is at:

http://ace.delos.com/ioiaate

> The Internet Problem Solving Contest’

http://ipsc.ksp.sk/ , who have different rules, will be

held on Friday, May the 19th, 2006.

> For the last three years, Google has sponsored a

‘Code Jam’ in which computer geeks from around

the world compete to solve thorny programming

problems for a $10,000 grand prize. This year there

were more than 14,500 contestants from 32

countries. (American Enterprise 2006)

> “TopCoder” http://www.tQPC0der.com/. which has

weekly on-line contests with the winners completing,

annually, live in Los Vegas. However, this

organisation is different. It really is contract

programming. Prize money is actually a wage or a

contract payment. One competitor Von ’ $75,000

(Hammonds 2004). However he is only one among

38,000 competitors.

Page 36 of 112

http://www.ioinformatics.orq/
http://ace.delos.com/ioiaate
http://ipsc.ksp.sk/
http://www.tQPC0der.com/

Answering Challenges Enhances Learning

While these contests are interesting in their own right, do they

actually evaluate programming, let alone programming skills? It has

been pointed (Shilova and Shilov 2005) they only evaluate:

> Art of problem formal modelling,

> Ability to remember a ‘cook book’ of algorithms

> Rapid typing skills

However, they do demonstrate response to a challenge.

While the ‘art of modelling’ is an important research skill, it is

not a technical skill. While memory and keyboard speed are useful,

they are not vital components of ‘software quality’.

These competitions do have different code judging engines.

However they judge the code from the outside. Other than a scan for

unapproved function calls, the ‘quality’ of the source is not evaluated.

(This may not apply to Top Coder’). They compile and execute the

code. They have pre-prepared test data, for which predicted results

are expected. They are then, evaluated on the memory required,

execution time and sometimes the time taken to write the code.

There is a book and many advice pages on how to compete in

these contests. This advice can be at odds with good programming

practice. Some make this point (Calder 2005).

One has to have sympathy for the disgruntled entrant who

complained that his entry failed because he included too many

comments! Since these contests punish rather than reward good

programming practices, they could well be counter-productive.

This author was gratified that Eberhard Sturm of the University

of Munster, Germany, writing of a contest "/ reviewed the postings o f

1998 in the newsgroup "comp.lang.pll" and here is my favourite

solution posted ...”“I declared it "elegant"” (Sturm 2000).

No code judging engine even claims to identify ‘elegance’.

Page 37 of 112

Answering Challenges Enhances Learning

3.5.4.2 Robot Wars
Robot Wars is yet another phenomenon illustrating how

competition can encourage learning. Competition among humans has

accelerated robot evolution (Branwyn 2003).

There was an event here in NCI. These Vars ’ are evidence of

response to a challenge.

3.5.4.3 Quizzes
Quizzes can be used to assess and reinforce learning. On-line

testing better motivates students to do their own work, and allows the

raising of standards in the courses. (Woit and Mason 200)

Page 38 of 112

Answering Challenges Enhances Learning

4 Method
The research question is whether ‘Answering Challenges

Enhances Learning’, in the context of software development. This

question will focus on the deployment of the Inner Workings practice-

based learning system.

4.1 Discussion on Methods
There are difficulties in organising any experiment in software

quality (Harrison 2005). To remove random effects, an experiment

requires numbers. But very few experiments can afford that number

of programmers. Some experiments depend on the deployment of

students. However industry is understandably sceptical of results

based on the performance of college students.

Harrison points out that although few experiments are rarely

correctly configured, that we could validly study an individual subject.

He quotes Skinner who said: “Instead o f studying a thousand rats for

one hour each or a hundred rats fo r ten hours each, the investigator is

likely to study one rat for a thousand hours” (Skinner 1966). Harrison

argues that single-subject experiments are valid, however they are

almost non-existent.

4.2 Field Observation
The first exercise, the ‘field observation’ was to examine the role

of answering challenges to reinforce knowledge of COBOL. The course

is described in Field Observation on page 41. It took place in the

context of a complete course. A review of the course formulated the

hypothesis, that ‘answering challenges enhances learning’. For the

purposes of this dissertation, the final ten questions, where writing

code was required, are of interest. It is intended that actually writing

code will move knowledge from ‘knowing’ to ‘doing’.

Page 39 of 112

Answering Challenges Enhances Learning

4.3 Field Study
The field study, as will be related later, followed the field

observation. Using InnerWorkings Developer™, the answering of

challenges was the focus of attention. InnerWorkings Developer™ is

described on page 51. After three months, the participants were

asked to rank the improvement, if any, in their learning. From their

replies, we have a Svave pattern’ of their opinions. They were then

asked how various factors could have contributed to their learning;

factors such as ‘answering challenges’ or ‘reading the manual’.

Factors with a wave pattern which closely matched the pattern

that learning had improved were deemed to be associated with that

improvement. Those with patterns which did not match were deemed

to be less associated with the learning which took place.

Page 40 of 112

Answering Challenges Enhances Learning

5 Field Observation

5.1 Relevance of the field observation
The objective of all educational courses is to continually

improve. After each course is completed, it is reviewed to consider

what went well, and what could be improved. This field observation

considers a programming course, in industry. This observation will

note positive aspects of the course, such as the quizzes. It will also

note shortcomings, such as the use of a plain notepad-style editor.

The intention of the field observation was to consider an existing

class in industry. It was during this observation that the hypothesis

‘answering challenges enhances learning’ was formed. This

hypothesis was further tested by the later ‘field study’.

5.2 Audience
The class represented a cross-section of new entrants to

commercial programming. The course was delivered to ten new

programmers, over a three month period. Three of the students had

little or no previous computing experience. Three had BSc degrees in

Computer Science. Two had MSc degrees in computing disciplines.

Two were existing staff members. One previously worked in quality

assurance, testing computer systems prior to production. This

candidate would therefore have had considerable exposure to

computing, but not to programming. The final candidate was not

strictly part of the class. She works half-days availing of Tamily-

friendly’ hours. This candidate progressed at a slower pace than the

rest of the class, and has still to complete the course, as this paper is

being written. The class, therefore, represented a cross-section of new

entrants to commercial programming

Pag© 41 of 112

Answering Challenges Enhances Learning

5.3 Description of the Course
This course has been delivered over many years. Its format has

been refined and improved. The principal textbook was ‘Stern &

Stern’. This particular text, now in its eleventh edition, is well

regarded in COBOL circles (Stem & Stern 2006). The course material

was hosted on an LCMS (Learning Content Management System). The

bulk of the course covered the COBOL programming language. This

portion of the course is discussed in this paper. Other topics, which

are not discussed in this paper, but were covered on the course, were:

> VA, Visual Age™, the IDE ‘integrated development

environment’ used to develop programs on the PC for

delivery on the mainframe.

> LPEX, is a language sensitive editor with some

diagnostics and a context-sensitive help; a

constituent part of the IDE.

> JSP, ‘Jackson Structured Programming’, a

programming design methodology.

> JCL, job control language’ required to execute

programs on the mainframe.

> TSO/ISPF, time sharing option, a mainframe

development environment.

> LE, ‘language environment’, services provided by the

mainframe operating system to application

programs.

> Utility programs, such as SORT, File Aid™ and

Endeavor™

> Testing techniques

> Local rules, regulations and standards

However the prime interest of this paper was that part of the

COBOL course where the students wrote program code in answer to

quiz questions.

Page 42 of 112

Answering Challenges Enhances Learning

The class was split for the final three weeks. Those who would

work for the bank studied the HOGAN™ banking system, which those

who were selected for Life Assurance studied the CLOAS™ system.

Both systems are written in COBOL.

For the purposes of this paper, we will consider the, eight

weeks, COBOL portion of the course. It was divided into fourteen

parts, roughly corresponding to chapters in the Stern & Stern text.

There were deviations from the text. Stern & Stem use the Micro

Focus compiler, whereas the course used IBM compilers, so features

specific to Micro Focus were excluded, such as the ‘screen section’.

Chapters 14, 15 and 17 were omitted and they are not compatible

with our environment. Chapters 1 to 13 and chapter 16 were studied.

5.4How typical was the course?
The course might be typical of others offered in industiy. The

PowerPoint slides were originally based on slides provided by Stern &

Stern. The quiz questions were based on questions provided by Stern

& Stem. These were extensively amended for the environment these

programmers would eventually work in. However the structure

remained the same. As noted earlier, in ‘Education as a solution’ on

page 27, it is unusual to see this level of investment in education.

Instructor-led training continues to be the norm.

The course might not be typical of courses offered in academia.

Even though applications managing 85% of the world’s business data

are written in COBOL (Stern 8b Stern quoting Gartner) there are few

academic courses in COBOL. In academia a student is responsible for

their own success or failure. In industiy, a failed student can be a

negative reflection on the lecturer. In academia, students pay a fee. In

industry they are paid a salary. However their future salary and

placement is at the lecturer’s recommendation. The lecturer, in turn,

is judged on how the pupils eventually perform ‘on the job ’.

Page 43 of 112

Answering Challenges Enhances Learning

5.5 Structure of the Course
The COBOL portion of this course, which is the subject of this

field observation, was divided into fourteen portions. Each portion

had classroom sessions, power-point slides, sample computer

programs to be written and a quiz.

5.6 Quiz
5.6.1 Structure of the quiz

To reinforce learning, students were asked to complete 14 sets

of questions. Each set had 70 questions. Most of the questions were

taken directly from Stern & Stern. See discussion, earlier on Bigg’s

SOLO levels in ‘Structure of the Observed Learning Outcome’ on page

31.

> There were 20 true/false questions that only

required ability to repeat lecture information. Each

merited 5 points; ‘Pre-structural’.

> There were 20 ‘fill in the blanks’ questions, which

sought to endure that information was in context.

Each merited 10 points; TJni-structural’.

> There were 20 multi-choice questions. Several

aspects need to be understood, however they are still

treated separately. Each merited 20 points; ‘Multi-

structural’.

> Finally there were the 10 questions where writing

program code was required. Each merited 30 points.

It is intended that actually writing code will move

knowledge from ‘knowing’ to ‘doing’; from ‘declarative

knowledge’ to ‘procedural knowledge’.

Page 44 of 112

Answering Challenges Enhances Learning

5.6.2 Purpose of the Quiz
The purpose of the quizzes was to ‘challenge’ the students. The

students were motivated by these challenges. The quizzes reinforced

learning. There was, some, feedback automatically generated as

answers were entered, either complimenting and supplying additional

information or correcting and encouraging. The issue of feedback is

further discussed below.

Obviously the quiz can also be used for assessing the students.

However that was a secondary consideration to enhancing their

motivation.

5.7 Motivation
The students were motivated by the quiz. Answering 14 sets of

70 questions is not a trivial exercise. They all completed all of the

questions. Some completed some sets of questions twice and even

thrice when they were dissatisfied with their score.

As this was merely a field observation, rather than a study or

experiment, it is speculative to attribute reasons for the motivation.

However the eagerness of the students to complete the quizzes, and to

complete them to a satisfactory level, is informal evidence that there

was motivation; that answering challenges enhanced motivation.

Some of the laggards completed the quizzes in the evening,

others early in the morning and some from their home PCs. A feature

of an LCMS is that these times are logged.

Finally the course was finished, the class had gone out for a

celebratory meal, and there was prize giving and a reception with the

rest of the programmers. But two still had some questions

unanswered. There could be no penalty for not completing them, and

no material reward for completing them. However they did complete

them. For whatever reason, they were motivated to complete these

challenges.

Page 45 of 112

Answering Challenges Enhances Learning

This was, in part, a reason to embark on the field study.

5.8 Feedback
In conversation with the students, they expressed satisfaction

with the immediate feedback they received from some of the

questions. True-false, multi-choice and sometimes fill-in-the-blanks

type questions can be set up to give immediate feedback. This

feedback can encourage; it can motivate. However other questions

cannot be configured to give immediate feedback. In particular, the

final group of questions, where a segment of code is required to be

written cannot be immediately assessed.

This is regrettable, for it is in writing code that procedural

knowledge is invoked.

Another shortcoming, expressed by the students, of the LCMS is

that code is entered via a notepad-style text editor. They would have

preferred to have used a text-editor appropriate for COBOL, such as

LPEX from IBM. Nevertheless there was nothing to prevent them from

writing their code in LPEX, which would have performed some syntax

checking, and then ‘cut-and-paste’ their code into the quiz answer

panel.

The shortcomings they identified, in the writing code segments,

were:

> There was an inevitable delay in receiving feedback

> Code was entered via a notepad style editor rather

than an IDE.

Page 46 of 112

Answering Challenges Enhances Learning

5.8.1 Correcting Code
If, as this paper postulates, actually writing code is essential;

and if, as the students maintained, prompt feedback (or corrections)

are demanded, then there is an issue and a solution must be sought.

(This paper will suggest that InnerWorkings Developer™ is such a

solution).

Correcting program code is tedious. It takes time. Without fully

compiling and testing, accuracy is lost. Teachers just do not have the

time to do this properly. The net effect, frequently, is that such

corrections are neither timely nor accurate.

The very area which is most deserving of our attention, if we

wish to transform learning from ‘knowing’ to ‘doing’ , is the area least

supported.

5.9 Conclusions from the field observation
This programming course has been run over many years. It has

been refined over those years. The success criteria for this, and

similar courses in industry, are not the students’ marks in an

examination, but their manager’s perception of their performance, in

terms of productivity and quality of the program code they write.

This has led to increasing emphasises on actual writing of code during

the course. Previous incarnations of this course were of six months

duration. Three months of education followed by a three month

project. The project was usually a rewrite of an older system, the

original often written in Assembly language. However, all the old

Assembly language systems have been retired, replaced or rewritten.

The adoption of complete systems, that is HOGAN for banking

applications and CLOAS for life assurance, in which programs are, in

fact, sub-programs of the overall system, means that it is not easy to

identify three month projects which can be completed by novice

programmers. So they are now released to their teams after three

months education.

Page 47 of 112

Answering Challenges Enhances Learning

Form experience of these classes, over the years, it is concluded

that:

> Actual practice in writing code is necessary to

transform their learning.

The evidence from this field observation is that:

> Students are motivated by challenge, which is

answering the quiz.

> Students prefer to enter their code in an IDE or its

language sensitive editor.

As InnerWorkings Developer™, possibly uniquely, meets these

requirements, it was worthy of further attention, and the field study,

discussed next

5.10 Other Observations from the Field
Observation
Attending the course were two students (MSC1, MSC2) with MSc

qualifications, three with a BSc (BSC1, BSC2, BSC3), two with internal

computing experience (INT1, INT2) and three without specific academic

qualification or prior experience (N0N1, N0N2, N0N3).

(These grades differ from those declared at the prize giving

ceremony, in that these penalise incorrect answers)

Page 48 of 112

Answering Challenges Enhances Learning

Figure 1 - Field Observation - Student Grades

Student Grades

100
90

80
■» nom

70 — msc1
non2

60 — bsc1
—*—bsc2
— bsc3

40 —— non3
inti

30 int2

50

20

10
0

msc2

over fourteen tests
non1

Table 1 - Field Observation - Student Grades over fourteen tests

90 68 78 80 72 86 76 72 86 82 92 88 86 84 non1
92 84 80 84 90 88 94 92 94 92 94 86 90 86 msc1
84 64 76 88 90 72 86 80 56 84 78 72 68 68 non2
72 62 56 84 74 50 66 66 74 72 82 76 52 84 bsc1
72 64 50 76 72 44 92 78 62 76 84 42 72 64 bsc2
82 90 76 84 68 54 64 70 38 66 68 54 62 74 bsc3
85 88 92 92 88 88 92 90 94 98 94 96 90 92 non3
53 48 28 24 54 34 36 56 62 66 38 46 64 64 inti
74 86 60 82 84 72 72 66 78 72 int2
90 88 86 86 90 78 86 82 96 88 78 78 76 82 msc2

Paae 49 of 112

Answering Challenges Enhances Learning

Consider their average marks: Table 2 - Field
Observation -

In spite of the range of prior academic Average Grades

achievement, there is little to distinguish the Average Marks

students. The best performing student had gg

neither experience nor qualification; however the non2 76
bsc1 69lowest performer had no qualifications either. The ^SC2 68

two MSc students did perform well. In simply bsc3 68
1 i non3 91looking at the grades, one cannot immediately jn̂

distinguish BSc students from those without *nt2 75

qualifications.
msc2 85

Consider the standard deviation: Table 3 - Field
Observation -

Here we see that the lowest deviation, that is s*®Jld®rd Devlationof Grades
those with the most consistent performances are

the two MSc students and the one student without standard Deviation

qualifications who was the best performer. non1 7
msc1 4

This highest deviation, those with the least non2 10
bsc1 11

consistency, is those with BSc qualifications and bSC2 15

the student who was the lowest performer. Such a bsc3 ^
non3 4

lack of consistency suggests that if these students jnti 14

are capable of improvement. ®
msc2 6

It is outside the scope of this paper to

consider why computer science graduates lack

consistency. It is merely an observation.

However it is within the scope of this paper

to further explore how answering challenges

motivates; hence the field study

Pane 50 of 112

Answering Challenges Enhances Learning

6 InnerWorkings Developer™
6.1 Field Observation
From the field observation the hypothesis was formed that

> ‘Answering challenges enhances learning’

The subsidiary hypotheses formed were:

> ‘Prompt feedback motivates’

> ‘An IDE is helpful to learning’

It would, therefore, be instructive to identify a way in which

these could be further studied to see if the hypothesis is confirmed in

another environment. Hence the field study.

By serendipity or happy coincidence, InnerWorkings have

developed a learning tool, called InnerWorkings Developer™, which

does provide challenges, prompt feed-back and uses an IDE.

The field study was undertaken to further develop the

hypothesis that ‘answering challenges enhances learning’.

6.2 What is InnerWorkings Developer™?
InnerWorkings Developer™ is an interesting learning tool. The

current implementation is focused on learning VB .NET and C# .NET.

It does not seek to teach these computer languages, indeed one has to

have a working knowledge of the language and of the Microsoft .NET

IDE (Integrated Development Environment) to use it.

Rather, it seeks to ‘make real’, ‘reinforce’ or ‘cement-in’

knowledge. InnerWorkings term this as ‘structured practice’. This

paper considers it to be ‘transformational learning’.

Paae 51 of 112

Answering Challenges Enhances Learning

The usual approach to teaching programming is to ‘learn by

instruction’. Students are taught how to analyse problems, the syntax

of a computer language and they are then expected to construct

solutions. The emphasis is on syntax. They are told how to test and

how to debug.

The InnerWorkings Learning Methodology addresses the

neglected area of ‘practice’. Although conventional programming

education will expect students to write sample programs, there are

practical limitations. This is discussed further, later, in a field

observation.

The consequences of deficiencies in our programming skills

were discussed earlier. Could it be that we have neglected a lesion

from earlier ages in how skills are learnt? Could it be that this neglect

has led to the current failure rate in software projects?

Many trades and professions have, at their core, systems of

‘master and apprentice’. This has stood them well, sometimes for

centuries. Employing one-to-one tuition in learning programming

would be prohibitively expensive. Apart from which the idea would

run counter to our ideas of being ‘modern’ and technologically

innovative.

6.3 InnerWorkings Developer™ in Operation
It is a set of ‘challenges’, or ‘drills’, or problems, along with an

environment (or desktop) in which to solve them. The actual writing

of code is done in the usual Microsoft .NET IDE. This is the IDE

which is used for the development of production (or real) programs.

Each challenge is designed to take eight hours to complete

Help or ‘learning support’ is provided. Access is provided to the

usual Microsoft help web-site ‘Patterns and Practices’. Access is

provided to Safari Books, but this assumes that such access has been

purchased. Finally email support is provided by InnerWorkings.

There is further comment on this, below, in the field study.

Paae 52 of 112

Answering Challenges Enhances Learning

Once a challenge is completed, it is submitted to the code-

judging engine, known as Inferent™. It identifies any errors and

advises the student.

There are some other components which were not available for

the field study, an administration platform and a reporting

component. They were announced in June 2006. However these are

more concerned with assessment rather than the learning process,

which is of interest to this paper

6.4 InnerWorkings Developer Learning Issues
The principal differences between traditional learning activity

and the learning activity which takes place using InnerWorkings

Developer lie in the area of ‘practice’. This is described as ‘practice-

based learning’. It moves learning from ‘knowing’ to ‘doing’; from the

theoretical to the practical.

The term ‘drills’ is sometimes used; this should not be confused

with rote-leaming. It is not an issue of memorising a repeated

activity; rather it is the application of existing knowledge to answer a

challenge or to solve a problem.

This method takes advantage of the students desire to answer

challenges. The hypothesis of this paper is that answering challenges

enhances learning. Students are motivated by answering challenges.

This motivation is discussed in the second field report.

Students are motivated by immediate feedback.

Traditional teaching relied on teacher or an instructor to review

an answer. Just because a program compiles clean, and

processes some test data, does not mean that it is correct. While

feedback might be given, there is an inevitable delay. Inferent™

was found to give prompt and accurate feedback,

Paaa 53 of 112

Answering Challenges Enhances Learning

6.5 Claims of InnerWorkings Developer™
InnerWorkings Developer™ claims to:

> Teach

> Improve Quality

> Validate Skill

The field study did confirm its ability to improve knowledge.

6.5.1 Validating skills
InnerWorkings Developer™ has ability to ‘judge code’ with the

Inferet™ engine. This can be used to assess programmers. As the

reporting ability of InnerWorkings Developer™ was not available when

the field study was contemplated, it was not tested. However the

ability of Inferet™ to give immediate feedback was important.

6.5.2 How InnerWorkings Developer™ functions
The claims for this toolset were studied in the Field Study; the

measurement methods are discussed, below.

There is a gap between ‘knowing’ and ‘doing’. Traditionally

many skills are acquired using the ‘master and apprentice’ system.

Inner Workings describe their toolset as unique.

The Inner Workings toolset is focused exclusively on Microsoft

technologies.

This particular approach claims to be unique, if so we would not

expect to find literature, which addresses this precise issue. However

there is a wealth of literature describing other approaches to

addressing the three primary objectives.

> Teaching software creation

> Improving software quality

> Assessing software skills

Pane 54 of 112

Answering Challenges Enhances Learning

7 Field Study
7.1 Purpose of the field study

The purpose of the field study was to confirm the main

hypothesis that “answering challenges enhances learning”.

Subsidiary hypotheses would also be tested.

The principal hypothesis is:

> “Answering challenges enhances learning”

The subsidiary hypotheses are:

> “Prompt feedback motivates”

> “An IDE is helpful to learning”

These three hypotheses confirm the Field Observations.

How help features are used will be explored. Perhaps a future

study will explore the use of context-sensitive help systems.

There will be a summary of how InnerWorkings Developer™

matches these hypotheses as well as a summary of the product from

those testing it.

7.2 Participants in the field study
The volunteers participating in the field study were four groups

of four. Most of the participants were employees of Irish Life and

Permanent pic. IL&P is a financial services company formed from a

series of recent mergers. The participants in this study were all on a

voluntary basis. The approval of their managers had been obtained.

However, participation was not a requirement of their job.

Pace 55 of 112

Answering Challenges Enhances Learning

They all had prior experience of Visual Basic, but less exposure

to .NET. Their participation in the study was facilitated by; and had

the approval of their local management. The two participating groups

were separated by geography and came from different parent

companies. There was no contact between the groups. This adds to

the confidence of the findings of the field study. Two groups, in

different cities, came to similar conclusions.

All of participants are commercial programmers. Their

programming experience ranged up to fifteen years, nine years being

the average. They are, therefore, well positioned to express a

judgement on any new learning software. In general, they endorsed

the product and its ‘practice based learning’ methodology.

7.3 Organisation of the Field Study participants
Initially, there were sixteen volunteers, in four groups of four.

> Four were from IPSI, a subsidiary of IL&P, based in

Dublin, which provides support for foreign, mainly

Italian and German, Life Assurors. All four

participated.

> Four were from the TSB, Trustee Savings Bank,

which has recently merged with IL&P. All four

participated.

> Of the group of four nominated by NCI, only one

participated in the study.

> Of the final group of four volunteers, three were from

other parts of IL&P; only one participated.

(Actually two participated, but only one reported)

Paae 56 of 112

Answering Challenges Enhances Learning

Of the two groups of four who knew each other, all completed

the field study. Their participation in the study had been agreed by

their managers. Of the other eight, who had weaker associations with

one another, only two completed the field study. The implication is

that mutual support, and management approval, ensured the success

of the former, while the latter group suffered from isolation. For the

purposes of this paper, this is merely an observation, deserving of

further study.

The results are therefore grouped by the four from TSB in Cork,

the four from IPSI in Dublin, as well as the two individuals, one from

Irish Life Assurance and the final participant from NCI.

There was little or no monitoring of the participants during the

study, so as not to contaminate their findings. While the IPSI group

had a positive attitude towards InnerWorkings Developer™ from the

outset, the TSB group were initially negative. Their attitude changed

during the study. On enquiry, this was the result of one of their

group spending time, at home, experimenting with the product, and

them influencing their colleagues. There was no external influence on

the participants. A negative conclusion would have been as

acceptable as a positive conclusion. A difference between the IPSI and

TSB groups was in their use of the InnerWorkings Developer™

‘Developer Support’ email help facility, this is discussed later.

7.3*1 Field Study Questionnaire
The actual questionnaire is in the appendix. It was, mainly, a

set of questions with a five point Likert scale. Its purpose was to

establish:

How qualified were the participants to express judgement on

this method (answering challenges) and on InnerWorkings

Developer™. In short, how valid is this field study.

Pane 57 o f 112

Answering Challenges Enhances Learning

The important, central, question was whether, or not, learning

was enhanced. This was explored. Was it reinforcement of existing

learning or the acquisition of new knowledge? We conclude that it

was both. Although both were positive, there is a minor divergence

between the IPSI and TSB groups, which is explored. Another

anomaly was that the participant with most programming experience,

fifteen years was neutral on all questions in this section.

InnerWorkings Developer™ transforms learning by issuing

challenges. So the role of these challenges is discussed. If these

challenges were critical to the learning process, we would expect to

see a level of correlation between the (total) actual learning reported

and the learning which resulted from answering challenges.

7.4 How valid is this field study?
Or: How qualified are the participants?
How qualified are the participants to express an opinion on the

hypothesis that answering challenges enhances learning and on

InnerWorkings Developer™? To answer this question we will
establish:

> Are they comfortable with computer assisted

learning?

> Have they high expectations from the study?

> Are they representative of the target audience?

> Have they the expertise?

Are they comfortable with computer assisted learning?
Ideally they should be; if not, extra care would be required in

interpreting their experiences. Would we be assessing their

interaction with the computer or their interaction with InnerWorkings

Developer™? All were comfortable with computer assisted

learning.

Pace 58 of 112

Answering Challenges Enhances Learning

Have they high expectations from the study? If the

participants had low expectations, then they might be easily satisfied.

A positive result would not predict a similar finding from a more

demanding audience. They had high expectations.

Are they representative of the target audience? This study

benefited from the selection of the participants. All, but one, of the

participants are professional programmers. They are the target
audience for this learning method.

Have they the expertise? This study benefited from the

practical programming experience of the participants, who have a

combined programming experience of well over seventy years.

This study was further enhanced by the prior specific expertise

of the participants in the areas being addressed in the ‘challenges’

Paae 59 of 112

Answering Challenges Enhances Learning

7.4.1 How Comfortable were they with Computer
Assisted Learning
This might have posed some difficulty, if they were

uncomfortable with Computer Assisted Learning. In the event, none

were negative. The majority were “very comfortable” with Computer
Assisted Learning

Table 4 - Field Study - How Comfortable are the Participants with Computer
Assisted Learning?

NCI1 TB S 1 T S B 2 T S B 3 T S B 4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1
4 4 5 5 5 3 4 5 5 5

Figure 2 - Field Study - How Comfortable are the Participants with Computer
Assisted Learning?

C o m fo rt wi th C om p uter A s s is t ed L e a rnin g

ILA 1 ft I

I P S I 4 ft I

I P S I 3 ft I

IP S 12 4 I

IP S 11 a i

T S B 4 ft 1

T S B 3 ft 1

T S B 2 ft 1

T B S 1 4 1

N C 11 4 1

1 2 3 4 5

1=very uncomfortable; 2=uncomfortable; 3=neutral; 4=comfortable; 5=very comfortable

Pane 60 of 112

Answering Challenges Enhances Learning

7.4.2 Did the participants have a high or low
expectation?

The prior expectations of the participants are relevant to the field
study. If the participants had low expectations, then they might
be easily satisfied. A positive result would not predict a similar
finding from a more demanding audience.

The participants did expect that their participation in the study
would improve their knowledge

Table 5 - Field Study - Expectations of Participants

NCI1 TB S 1 TS B 2 T S B 3 T S B 4 IPSI1 IP S O IP S O IPSI4 ILA1
3 4 5 4 4 3 4 5 5 4

In answer to “I expected InnerWorkings to benefit my knowledge”
1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree.
Figure 3 - Field Study - Prior Expectations of the Participants

Prior Expectations I

ILA1 I ' - 4
IPSI4 I - b

IPSO I - 5
IPSO [

IPSI1 [

TSB4 [

TSB3 |
TSB2 [

TBS1 [

NCI1 [

Pane 61 of 112

Answering Challenges Enhances Learning

7.4.3 How qualified were the participants?
This set of question was to ascertain their prior knowledge and
experience. This was to gauge their qualification to express
opinions on the hypothesis and on InnerWorkings Developer™.
Table 6 - years of programming experience

Years of NCI TSB IPSI I LA
All programming experience ? 15 ? 8 12 5 2 7 11 11
Visual Basic Programming ? 7 ? 3 10 5 2 6 8 9

Table 7 - Years of Programming Experience

Years of Programming Experience

IPS14

ipsis mmmmtmm

H
TSB2I

NCIlH 1--------- 1--------- 1--------- i--------------
0 2 4 6 8 10 12 14

■ Visual Basic ■ Other Programming

The participants had considerable experience of programming,

in particular programming in Visual Basic. They had, on average nine

years programming experience. (Two participants choose not to

answer this question). The TSB group were the most experienced,

with an average twelve years programming experience. As noted

earlier, this group were initially rather negative about the merits of

this learning method and of on InnerWorkings Developer™, but later

revised their opinion. It has been suggested that more experienced

programmers are slower to adopt change and need more evidence

before changing. However, for the purposes of this paper, this is just
an observation, not a finding.

Pane 62 of 112

Answering Challenges Enhances Learning

7.4.4 How knowledgeable were the participants?
While years experience of programming is an indication of a

general ability to express a considered opinion, specific expertise in

the technology being learnt would further enhance credibility.

Four questions were asked to ascertain specific expertise in:

> Object Oriented concepts

> Microsoft .NET

> web technologies

> XML

Again they display a high level of expertise, particularly the IPSI

and TSB participants.

Pane 63 of 112

Answering Challenges Enhances Learning

Table 8 - Participant Expertise

NCI1 TB S 1 TS B 2 TS B 3 T S B 4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1

o o 4 4 4 y 5 3 4 5 4 5

.N E T 2 4 5 4 5 3 2 5 4 2

W e b 2 5 4 4 4 4 4 5 5 2

X M L 2 4 4 2 4 4 4 5 4 4

In answer to he question “ was familiar with ... » .

1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree.

Table 9 - Participant Expertise

Familiarity with Concepts

ILA1

IPSI4

IPSI3

IPSI2

IPSI1

TSB4

TSB3

TSB2

TBS1

NCI1

i

i

7.4.5 How qualified are the participants - conclusion
We can conclude that based on the above criteria, the

participants were qualified to express judgement on this method

(answering challenges) and on InnerWorkings Developer™.

Pane 64 of 112

Answering Challenges Enhances Learning

7.5 Was learning enhanced?
For the purposes of investigating InnerWorkings Developer™,

this was the central question. For the purposes of the hypothesis,

that answering challenges enhances learning, some refinement is

required. However InnerWorkings Developer™ issues challenges.

That is how it supports learning. In a very real sense, if

InnerWorkings Developer™ enhances learning, then the hypothesis is

established.

7.5.1 Was learning enhanced?
The central question on the questionnaire was: “InnerWorkings

did enhance my knowledge”

Table 10 - Was Learning Enhanced?

NCI1 TB S 1 T S B 2 T S B 3 TS B 4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1
4 3 4 4 4 4 4 5 5 4

1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree.

Table 11 - Was Learning Enhanced?

Enhanced Knowledge

PaaefiS of 112

Answering Challenges Enhances Learning

All agreed that their knowledge had been enhanced by their

participation in the field study. The lead TSB programmer, with

fifteen years experience, was neutral on this, and all other, questions

in this section. The simplistic explanation is that more sophisticated

learning software would be required to impact on one already so

skilled. He was critical of the programmer support (help feature),

which would have influenced him views. This is discussed later. The

field study lasted for three months. After the first month, the TSB

group was rather negative in their conclusions. Without any outside

intervention, they re-evaluated their opinion, prompted by one of their

own number who continued to use InnerWorkings Developer™ from

his home PC. Although both the TSB group and the IPSI group were,
in overall terms, positive towards InnerWorkings Developer™, there

were interesting, albeit minor, differences between them. These are

discussed later.

Paae 66 of 112

Answering Challenges Enhances Learning

7.5.2 Knowledge Transformation
Or: 'Reinforce Existing Knowledge or Acquire New Knowledge’

‘Knowledge Transformation* or ‘practice based learning’, appears

initially to be simply just ‘drills’ or ‘learning by rote’. It is that, but

knowledge transformation is much more, it is true learning.

InnerWorkings Developer™ does not, initially, have any learning

content. It is not a primer on the VB .NET computer language.

If all that was happing with practice based learning was that

programming exercises were being carried out, we would expect to see

that existing knowledge was being reinforced. We would not expect to

see any acquisition of new knowledge.

If, on the other hand, we were discussing traditional CBT

Computer Based Training, or indeed many classroom ‘talk and chalk’

learning, we would expect there to be acquisition of new knowledge

with little reinforcement of existing knowledge. There would only be

reinforcement of existing knowledge during revision sessions.

Yet, we find, that although there is not any explicit delivery of

new knowledge, the participants all report the expected reinforcement
of existing knowledge, as well as acquisition of new knowledge, in

almost equal amounts. Another factor must be operating for this

effect. That factor, this paper suggests, is transformational learning.

Learning is not truly acquired until it is practiced. If this is true, then

it would be natural for the participants to report that new knowledge

was acquired.

It is interesting that the participants reports on the

reinforcement of existing knowledge and the acquisition of new

knowledge are nigh identical.

Pane 67 of 112

Answering Challenges Enhances Learning

I reinforced existing learning from InnerWorkings
I learnt something new from InnerWorkings

Table 12 - New and Existing Knowledge

NCI1 TB S 1 T S B 2 T S B 3 T S B 4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1

reinforced
existing
learning

4 3 4 4 4 4 4 5 5 5

I learnt
something
new

4 3 5 4 4 4 4 5 5 4

1=strongly disagree; 2=disagree; 3=neutra

Table 13 - New and Existing Knowledge

; 4=agree; 5=strongly agree.

Reinforced Existing v New Knowledge

Now Knowledge

Cxistmg

7.5.3 How was learning enhanced?

7.5.3.1 Microsoft help feature
It could be argued that since InnerWorkings Developer™

provides a portal through to the Microsoft .NET help facility, that this

could have been providing the new learning. The question “I found the

Microsoft help feature helpful” was asked. There was no correlation.

This was not the source of the new learning.

Paae 68 of 112

Answering Challenges Enhances Learning

7.5.3*2 Other sources of learning
Further questions were asked to ascertain whether other

possible sources of learning could be responsible for this new

learning:

> I found the Microsoft help feature helpful

> I helped myself, learning through trial & error

> I helped myself, by reading the manual
> I helped myself, by reviewing other course notes

> I got help by asking a friend

> I got help via the InnerWorkings email facility

These did not correlate to the learning experience, whereas the

challenges did:

> I got satisfaction from responding to challenges

> I learnt from the challenges

Paae 69 of 112

Answering Challenges Enhances Learning

7.5.4 Graph of Results
When the answers to the question, the replies can be plotted:

7.5.4.1 Knowledge
“InnerWorkings did enhance my knowledge”

1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree.

Table 14 - Knowledge was enhanced

NCI1 TBS1 TSB2 TSB3 TSB4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1
4 3 4 4 4 4 4 5 5 JL4

Figure 4 - Knowledge was Enhanced

5

4

3

2

1

0

This is the base line. Other graph lines can be compared with

this line. If there is a close match, then the probability is that there is

a relationship between the two sets of data, as with cause and effect.

If there is no match then there is unlikely to be a relationship.

Pane 70 of 112

Answering Challenges Enhances Learning

7.5.5 Expectation
To illustrate, compare the answers to 1 expected InnerWorkings

to benefit my knowledge’ to the base line InnerWorkings did enhance

my knowledge'

When we compare that set of answers to some other questions,

such as: I expected InnerWorkings to benefit my knowledge, and plot

both together; there is a veiy similar pattern:

InnerWorkings did enhance my knowledge
I expected InnerWorkings to benefit my knowledge
1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree.
Table 15 - Expectation and Actual

NCI1 TBS1 TSB2 TSB3 TSB4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1
3 4>- r'4-̂ v- j 4 y-_v 4 -• *•••; 5/-,V: 5 r : 4 ,

3 4 5 4 4 3 4 5 5 4

Figure 5 - Compare Knowledge and Expectation

Pane 71 of 112

Answering Challenges Enhances Learning

7.5.6 Challenge
Similarly, and importantly, for this study the graph of

knowledge and challenges are very close. This confirms that there is a

close relationship, during this field study, between answering

challenges and the learning acquired.

InnerWorkings did enhance my knowledge
I learnt from the challenges
1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree
Table 16 - Compare Challenge and Knowledge

NCI1 TBS1 TSB2 TSB3 TSB4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1
■ 3 * ■4., -4 - - 4 . - 4 f;5"J JS’ '7." 5‘. *

4 4 4 4 4 3 4 5 4 4

Figure 6 - Compare Knowledge and Challenge

Paae 72 of 112

Answering Challenges Enhances Learning

7.5.7 Read the Manual
It might have been the case that significant learning was

acquired in other ways, so a series of questions were asked:

> I found the Microsoft help feature helpful

> I helped myself, learning through trial & error

> I helped myself, by reading the manual

> I helped myself, by reviewing other course notes

> I got help by asking a friend

> I got help via the InnerWorkings email facility

Their graphs were not similar to the "knowledge* baseline.

Consider "I helped myself, by reading the manual*

I helped myself, by reading the manual’
1=strongly disagree; 2=disagree; 3=neutral; 4=agree; 5=strongly agree
Table 17 Reading the Manual to Acquire Knowledge

NCI1 TBS1 TSB2 TSB3 TSB4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1
"4 ' - 3 ; ; 4 4: - 4 • 4. 4 5 5 4..« '*
4 3 2 2 2 4 2 5 4 4

Figure 7 - Reading the Manual & Acquiring Knowledge

1

0 > : : : ; : ; : 1 ;-----
1 2 3 4 5 6 7 8 9 10

Paae 73 of 112

Answering Challenges Enhances Learning

7.5.8 Summary
Using this mechanism, there appears to be a high correlation

for some questions, and weak or low correlation for others.

There was a high correlation for:

> I got satisfaction from responding to challenges

> I learnt from the challenges

> I helped myself, learning through trial & error

There was a weak correlation for:

> I helped myself, by reading the manual

> I helped myself, by reviewing other course notes

There was a low correlation for:

> I found the Microsoft help feature helpful

> I got help by asking a friend

> I got help via the InnerWorkings email facility

7.5.9 Spearman’s rho
Spearman’s rho test can be used to verify correlations.

Computing the non-parametric correlations between "knowledge’ and

‘challenge’ gives a result of .574. This is a high correlation. However

repeating this test, comparing "knowledge’ and "reading the manual’

gave a similarly high result of .499.

This test confirms a close relationship between answering

challenges and acquiring knowledge. That this test appears to

contradict the earlier graph on the issue of learning through reading

the manual does not negate the primary hypothesis, that "answering

challenges enhances learning’. Indeed, it would be of positive interest

if the exercise of using InnerWorkings Developer™ resulted in learning

through reading the manual.

Paae 74 of 112

Answering Challenges Enhances Learning

7.6 Field Study Conclusion
These statistics, therefore support the hypothesis that, in this

case, learning was enhanced by answering challenges

8 Future Perspectives
This exercise illustrates the promise of this new method of

improving programming skills, and hopefully future software. The

study was limited in its scope and extent. However, as earlier

mentioned, there were positive attributes to the study.

The following list might be useful for future studies and

experiments:

The study was not a true experiment as there was no ‘control

group’. The original intention was to trial the product with a larger

group of programmers. Unfortunately their availability was

postponed.

The extent of improvement was not measured:

Teaching / Learning - was it better? Could it be achieved with

less effort?

Quality - is there an improvement in quality? Is there a

reduction in the number of defects?

Assessment - how useful is the toolset in assessing students,

(the reporting facility was not available)

Paae 75 of 112

Answering Challenges Enhances Learning

9 References
ACM (2005), Press Release,

http://campus.acm.org/public/pressroom/Dress releases/3 2005/
newell award 3 15 2005.cfm Retrieved December 12 2005

American Enterprise (2006), (anonymous) Nerd Inequality, American
Enterprise March 2006, Vol. 17 Issue 2, p8,

Arefin, Ahmed Shamsul (2005) Art of Programming Contest, ACM
Solver Publications, Dhaka, Bangladesh December 2005

Averbuch, Sheila M., (2004) Irish League of Credit Unions looks to
develop new IT platform Electric News March 12, 2004
http://www.electricnews.net/news.html?code=9403671 retrieved
7 August 2006

Bernecky, Robert (2004) Rewriting History Computing Canada, March
12,2004

Biggs, John B. & Collis, K. F. (1982) Evaluating the quality of learning:
The SOLO taxonomy. New York, Academic Press.

Biggs, John B., (2003) Teaching for Quality Learning at University:
What the student does (2nd edition). Open University Press,
Maidenhead, Buckinghamshire. ISBN: 0-334-21168-2

Bloom, B. S. (Ed.). (1956): Taxonomy of Educational Objectives
Handbook 1: Cognitive Domain. New York: Longman, Green &
Co.

Boud, D., (1985). Keogh, R., & Walker, D. (Eds), Reflection: Turning
Experience into Learning. New York, Nichols

Boyd, Robert D., and Myers, J. Gordon. (1988) Transformative
Education, International Journal of Lifelong Education. Vol 7, no.
4 (October-December 1988): pp 261-284.

Branwyn, Gareth (2003) Absolute Beginner's Guide to Building Robots
Que September 19, 2003; i s b n : 0-7897-2971-7

Brooks, Frederick P. Jr., (1987), No Silver Bullet: Essence and
Accidents of Software Engineering, Computer, Vol. 20, No. 4.
April 1987 pp. 10-19.

Bush, George, W., (2005), Whitehouse Press Briefing
http://www.whitehouse.QOv/news/releases/2005/03/20050314.ht
m] Retrieved December 12, 2005

Calder, Brad (2005) General Tips
http://www,cse.ucsd.edu/users/calder/UCSDProqramContest/tips.
html Retrieved November 11, 2005

Pane 76 of 112

http://campus.acm.org/public/pressroom/Dress
http://www.electricnews.net/news.html?code=9403671
http://www.whitehouse.QOv/news/releases/2005/03/20050314.ht
http://www,cse.ucsd.edu/users/calder/UCSDProqramContest/tips

Answering Challenges Enhances Learning

Campbell-Kelly, Martin (1998) Programming the EDSAC: Early
Programming Activity at the University of Cambridge_/EEE Annals
of the History of Computing October-December 1998 Vol. 20, No.
4, pp 46-67

Commission on Electronic Voting (2006)
http://www.cev.ie/htm/report/download second.htm Retrieved 7
August 2006. Page 106 and 189

CompTIA (Computing Technology Industry Association) (2006), Tech
Workers Get Little Career Guidance or Support, Certification

Magazine; March 2006, Vol. 8 Issue 3, p8

Candy, P., Harri-Augstein, S., & Thomas, L. (1985). and the
Self-Organized Learner: a model of Learning Conversations.
Reflection: Turning experience into learning _D Boud, Keogh, R.,
& Walker, D. (Eds),. London, Kogan

Cox, Brad, (1992), What if there is a Silver Bullet and the competition
gets it first?, Journal of Object-oriented Programming, June 1992.
Reprinted in Dr. Dobb's Journal October 1992

Dewey, J. (1929). The Quest for Certainty, Southern Illinois University
Press, USA.

Dijkstra, Edsger W., (1972) The Humble Programmer Communications
of the ACMVol 15 Issue 10 (October 1972) pp 8 5 9 -8 6 6
ISSN:0001-0782

Dijkstra, Edsger W., (April 18,1975) Craftsman or Scientist? Luncheon
Speech at "ACM Pacific 75" at San Francisco

Donald Schon (1983), The Reflective Practitioner: How Professionals
Think in Action p 54

Dunsmore, Alistair and Roper, Marc, (2000), A Comparative Evaluation
of Program Comprehension Measures The Journal of Systems

and Software vol. 52, no. 3, 2000, pp. 121-129

Eagles (Evaluation of Natural Language Processing Systems) (October
1996) Final Report httD://www.issco.uniae.ch/proiects/ewa96/
retrieved December 2005.

Fagan, M. E. (1976) Design and Code Inspections to Reduce Errors in
Program Development, IBM Systems Journal, No. 3, pp. 184-211

Fisher Lawrence, (1994), Pentium flaw creates confusion for PC buyers,
New York Times December 14 1994, pp. D1, D18.

Pane 77 of 112

http://www.cev.ie/htm/report/download
http://www.issco.uniae.ch/proiects/ewa96/

Answering Challenges Enhances Learning

Gabriel, Richard P, (1990). Lisp: Good News, Bad News, How to Win
Big, Keynote address, known as “Worse is Better,” presented at
the European Conference on the Practical Applications o f Lisp,
Cambridge University, March. 1990, Reprinted in Al Expert, June
1991, pp. 31-39 .
Published in Patterns of Software, 1996, Oxford University Press;
ISBN: 0195121236, see also:
http://dreamsonas.com/NewFiles/PatternsOfSoftware.pdf
retrieved 5 August 2006

Gabriel, Richard P., (1996) Patterns of Software, Oxford University
Press; ISBN: 0195121236 (see link above)

Gabriel, Richard P., (2000). “Mob Software: The Erotic Life of Code”.
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, October 19, 2000, in Minneapolis,
Minnesota, USA. See also:
http://dreamsonas.com/NewFiles/MobSoftware.Pdf retrieved 5
August 2006

Gartenberg, Michael, (2005), The High Cost of Not Training, Computer
World, July 11, 2005 p 21

Garvey, Martin J., (2005), Logic Library application helps developers
improve software quality, reduce quality-assurance times, and
ensure secure software distribution, Information Weekly 11 April
2005

German, Daniel M., (2002), Debugging,
http://turinamachine.ora/courses/2002/sena265F02/lectures/12
debua.pdf retrieved on 12 March 2006.

Gibson, Cyrus F. and Nolan, Richard, L (1974) Managing the four
stages of EDP growth Harvard Business Review January-
February 1974 Vol 52 No. 1, pp 76-88

Gomes, Lee (2006) Programming Contest Pits World's Top Geeks In
Battles Over Coding The Wall Street Journal February 8 2006

Halpin Mark (1992) Memoirs (Part 2) Annals o f the History of
Computing, Vol 14, No. 1, pp 61-69,

Hammonds, Keith H. (2004) There are good people everywhere Fast
Company, July 2004 Issue 84, p40,

Harrison, Warren (2005) Skinner W asn’t a Software Engineer IEEE
Software May / June 2005 pp 5-7

Hatton, N. S., D. (1995). "Reflecting in teacher education: towards
definition and implementation" Teacher and Teaching Education
II pp. 3 3 - 4 9

Paae 78 of 112

http://dreamsonas.com/NewFiles/PatternsOfSoftware.pdf
http://dreamsonas.com/NewFiles/MobSoftware.Pdf
http://turinamachine.ora/courses/2002/sena265F02/lectures/12

Answering Challenges Enhances Learning

Hayes, Frank, (2005), Messy Training, Computer World, August 15,
2 0 0 5 ,p 50

Hopper, Grace Murray, (1981), The First Bug, Annals of the History o f
Computing, vol. 3, no. 3, pp. 285-286, 1981.

Hopper, Grace Murray, (1945), http://ei.cs.vt.edu/~historv/Bua.GIF
retrieved January 6 2006, also
http ://w w w . waterholes.com/~dennette/1996/hooDer/bua.htm
retrieved March 18, 2006

Humphrey, Watts S, (1994) A Discipline for Software ,
Addison-Wesley Professional, Reading, MA,. i s b n : 0201546108

Humphrey, Watts S., (1997) Introduction to the Personal Software
Process Addison-Wesley Professional, Reading, MA., i s b n :

0201548097

IEEE Computer Society (1993) IEEE Standard 1061-1998, "IEEE
Standard for a Software Quality Metrics Methodology", March 12
1993
http://ieeexplore.ieee.ora/xpl/freeabs all.isp?isnumber=6Q79&arnumb
er=237006&count= 1

Imel, Susan (1998) Transformative Learning in Adulthood, ERIC Digest
no. 200. http://www.calpro-online.org/eric/docs/dia200.pdf retrieved
9 August 2006

Information Week (2005) Do your IT division's priorities include
improving software quality? Information Week July 4, 2005.
http://www.informationweek.com/storv/showArticle.ihtml?articleID=16
5600249 retrieved Dec 4, 2005

I NO (Irish Nurses Organisation) Press Release 4 October 2005
http://www.ino.ie/DesktopModules/Articles/ArticlesView.aspx?TabID=6
1298JtemID=5243&.mid=8026 retrieved 20 March 2006

Irish Health (2005), Irish Health, 12 November 2005
http: / /www. irishhealth .com/index. html?level=4&id=8321
Retrieved March 4, 2006

ISO 9126
ISO/IEC 9126-1:2001 Software engineering -- Product quality --
Part 1: Quality model
http://www.iso.ora/iso/en/CatalOQueDetailPaae.CataloQueDetail?
CSNUMBER=227498JCS1=35&ICS2=808JCS3= Retrieved 6
August 2006
ISO/IEC TR 9126-2:2003 Software engineering - Product quality
-- Part 2: External metrics
http://www.iso.orq/iso/en/CataloaueDetailPaae.CataloaueDetail?
CSNUMBER=22750&ICSl=35&ICS2=808tICS3= Retrieved 6
August 2006

Paae 79 of 112

http://ei.cs.vt.edu/~historv/Bua.GIF
http://www
http://ieeexplore.ieee.ora/xpl/freeabs
http://www.calpro-online.org/eric/docs/dia200.pdf
http://www.informationweek.com/storv/showArticle.ihtml?articleID=16
http://www.ino.ie/DesktopModules/Articles/ArticlesView.aspx?TabID=6
http://www.iso.ora/iso/en/CatalOQueDetailPaae.CataloQueDetail
http://www.iso.orq/iso/en/CataloaueDetailPaae.CataloaueDetail

Answering Challenges Enhances Learning

ISO/IEC TR 9126-3:2003 Software engineering - Product quality
-- Part 3: Internal metrics
http://www.iso.orQ/iso/en/CataloaueDetailPaQe.CataloaueDetail?
CSNUMBER-22891&ICS1=358JCS2=808JCS3= Retrieved 6
August 2006
ISO/IEC TR 9126-4:2004 Software engineering — Product quality
-- Part 4: Quality in use metrics
http://www.iso.ora/iso/en/CataloaueDetailPaae.CataloaueDetail?
CSNUMBER=39752&ICS1=35&ICS2=80&ICS3= Retrieved 6
August 2006

Jacovi et al., M., Shahar, E., and Soroka, V. (2004). "Blogs for
Corporate Learning" IBM Research Report - Computer Science

H-0231, November 9, 2004

Jedras, Jeff, (2004), Quality is job one in software engineering,
Computing Canada, November 11, 2004, Vol. 30 Issue 17, p 28

Jenkins, Tony (2001) Teaching Programming - A Journey From
Teacher To Motivator, First LTSN-ICS one day conference on the
Teaching of Programming. April 2, 2001 at University of Leeds

Kelly, Joanne, (2005) Taoiseach’s IT PPARs system comments
incorrect” Irish Developers Network News, October 5, 2005

Kemmis, S. (1985). Action Research and the Politics of Reflection;
Reflection: Turning experience into learning. D. Boud, Keogh, R.,
& Walker, D. (Eds),. London, Kogan p140

Kennedy, John (2005) Plan or be damned, warns expert on PPARS
Silicon Republic October 5, 2005

Kenny, Enda, (2005), St James’s CEO PPARS Letter Blows
Taoiseach’s Defence of System Out of the Water, Finn Gael
Press Briefing. October 5, 2005

King, Bill (2006) Motivation is the Key to Successful Employee
Expansion Management, January / February 2006, Vol. 21 Issue
1. P 2

Knight, John C. & Leveson, Nancy G, (2006), Software and Higher
Education. Communications of the ACM\ January 2006, Vol. 49
Issue 1, p 160

Knight, John C. & Leveson, Nancy G, (2002), Should Software
Engineers be Licensed? Communications of the ; November
2002, Vol. 45 Issue 11, pp 87-90.

Kontzer, Tony (2005) IT Execs to Vendors: Your Software Stinks
Information Week April 28, 2005
http://www.informationweek.com/storv/showArticle.1html7articleI
D=161601417 retrieved 4 December 2005

Paae 80 of 112

http://www.iso.orQ/iso/en/CataloaueDetailPaQe.CataloaueDetail
http://www.iso.ora/iso/en/CataloaueDetailPaae.CataloaueDetail
http://www.informationweek.com/storv/showArticle.1html7articleI

Answering Challenges Enhances Learning

LeDuc Jr., A.L. (1980), Motivation of Programmers. ACM SIGMIS
Database, Volume 11, Issue 4 (Summer 1980) pp 4-12,

ISSN:0095-0033

Lettice, John (2004) Failed Windows XP Upgrade Downs 60,000 UK
Gov't PCs eWeek, November 27, 2004
http://www.eweek.eom/article2/0.1759.1732672.00.asp retrieved
October 5, 2005

Lister, Raymond (2005). Methods for Evaluating the Appropriateness
and Effectiveness of Summative Assessment via Multiple-choice
Examinations for Technology-Focused Disciplines, Making a
Difference: 2005 Evaluations and Assessment Conference. 30th.
November - 1st. December, Sydney

Lister Raymond (2006), Not Seeing the Forest for the Trees: Novice
Programmers and the SOLO Taxonomy, Proceedings of the 11th
annual SIGCSE conference on Innovation and technology in
computer science education Bologna, Italy pp118-122 ISSN: 0097-
8418

Lubar, David (1995). “It’s not a bug it’s a feature!” Addison-Wesley,
Reading, Mass., ISBN: 0201483041

Magnusson, Peter S. (2006) Biting Bugs Back - System Level
Simulation Speeds Software Debugging, Embedded Technology

Journal March 14, 2006

Manne, Fredrik (2000) Competing in Computing SIGCSE Bulletin 2000

McCall, J., Richards, P. & Walters, G. (1977), Factors in software
quality, Technical Report: RADC TR-77-369, Vols. 1-3, Rome Air
Development Centre, United States Air Force, Hanscom AFB,
MA.

McManus, Kevin (2006). Are you Afraid? Industrial Engineer, April
2006, Vol. 38 Issue 4, p18

Mezirow, J. (1991). Transformative Dimensions of Adult Learning, San
Francisco, USA, Jossey Bass.

Morgan, Jeanette Nasem, (2005), Why the Software Industry Needs a
Good Ghost buster. Communications o f the ACM, August 2005,
Vol. 48 Issue 8, p129-133

Newman, John Henry, (1845), Development of Christian Doctrine.
Oliver, D., Dobele, T., Greber, M. and Roberts, T. (2004), This Course

Has A Bloom Rating Of 3.9. In Proceedings of the Sixth
Australasian Computing Education Conference (ACE2004),
Dunedin, New Zealand. CRPIT, vol. 30. Lister, R. and Young, A.
L„ Eds., ACS. 227-231

Paae 81 of 112

http://www.eweek.eom/article2/0.1759.1732672.00.asp

Answering Challenges Enhances Learning

Pall Mall Gazette, (March 11, 1889), quoted in the Oxford English
Dictionary.

Paulk, Mark C.; Curtis, Bill; Chrissis, Mary Beth; Weber, Charles V.
(February 1993), Capability Maturity Model for Software, Version
1.1 Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, Pennsylvania
http://www.sei.cmu.edu/publications/documents/93.reports/93.tr
.024.html retrieved April, 8, 2006

Paulk, Mark C., (October 16, 1994),The Evolution of SEI's Capability
Maturity Model for Software, Software Engineering Institute, CMM
Evolution,

Pearson, M., and Smith, D. (1985). Debriefing in Experience-based
Learning. Reflection: Turning experience into learning. D. Boud,
Keogh, R., & Walker, D. (Eds),. London, Kogan

Perlis, A.J. , (1970) Software Engineering Techniques, page 33,
J.N.Buxton and B.Randell (editors), NATO Scientific Affairs
Division, Brussels 39, Belgium, April 1970.

PPARS (2005) PPARS Newsletter 14 April 2005
http://www.ppars.ie/Public/News/Newsletters/NewsletterV.3.%20
Finall4 04 0 5 .p p t. Retrieved March 4 2006

Pratt, Vaughan (July 26, 2005) Anatomy of the Pentium Bug
http://boole.stanford.edu/pub/anapent.pdf Retrieved March 18
2006

Putrich, David, (2005), Employee Development on a Shoestring”,
Computer World, July 4 2005, p 32

Ramsden, Paul (2003) Learning to Teach in Higher Education, 2nd
edition Routledge Falmer, London ISBN: 0-415-30345-1

Reed, J., and Koliba, C,. (1995). "Facilitating Reflection: A Manual for
Leaders and Educators."
http://www.uvm.edu/~dewev/reflection manual/index.html
Retrieved January 6, 2006,

Reid, Liam (2005), HSE to suspend second computer project, Irish
Times 6 October 2005
http://www.ireland.com/newspaper/front/2005/1006/26361793Q
OHMlCOMPUTERS.html Retrieved 4 March 2006

Reid, Liam (2006), Renewed pressure to abandon electronic voting,
Irish Times 6 October 2005
http://www.ireland.eom/newspaper/front/2006/0428/1190312100H
M1VOTING.html Retrieved 4 August 2006

Richards Ian, (2002). Leading parallel lives: journalism and professional
ethics. IIPE/AAPAE 2002 Conference

Paae 82 of 112

http://www.sei.cmu.edu/publications/documents/93.reports/93.tr
http://www.ppars.ie/Public/News/Newsletters/NewsletterV.3.%20
http://boole.stanford.edu/pub/anapent.pdf
http://www.uvm.edu/~dewev/reflection
http://www.ireland.com/newspaper/front/2005/1006/26361793Q
http://www.ireland.eom/newspaper/front/2006/0428/1190312100H

Answering Challenges Enhances Learning

Saltzman, Sarah (2005), Application development Giving developers
the time to improve software quality at the development stage is
more cost-effective than fixing bugs during the testing phase
False economies of beat-the-clock coding, Computer Weekly July
5, 2005; p 18

Sarin Cliff, (2005), Don't Let the Software Bugs Bite, Computer Weekly,
11/8/2005 pages 34-35

Schneidewind, Norman F. (1996) Do Standards Improve Quality? IEEE
Software] January 1996, Vol. 13 Issue 1, p22, 3p

Scott, Sue M. "The Grieving Soul in the Transformation Process." In
Transformative Learning in Action: Insights from Practice. New
Directions for Adult and Continuing Education no. 74, edited by P.
Cranton, pp. 41-50. San Francisco, CA: Jossey-Bass, Summer
1997.

Shea, Garry, (2006) Better Beta, Computer World, January 30 2006

Shilova, S. O. and Shilov, N. V., (2005) On Mathematical Contents of
Computer Science Contests Proceedings of KAIST International
Symposium on Enhancing University Mathematics Teaching May
12-16, 2005 Daejeon, Korea

Silicon Republic (2003) Learning from IT disasters, 29 May 2003
http://www.siliconreDublic.com/news/news.nv7storvid-sinqlel38
7 retrieved 2 April 2006

Skinner, B.F. (1966) Operant Behavior: Areas of Research and
Application, Appleton-Century-Crofts,

Sophocles, (440BC), Ajax

Sosbe, Tim, (2006) Balancing Act, Certification Magazine, Vol 8,
February 2, 2006.

Stackman, H., Eeickson, W. J. and Grant, E. E, (1968) Exploratory
Experimental Studies Comparing Online and Offline
Programming Performance Communications of the ACM, January
1968, pp 3-11

Stahl, Stephanie (2005) Ethernet Inventor And Software-Quality
Visionary Earn Technology Medals, Information Week March 14,
2005

Stern, Nancy B.; Stern, Robert A.; Ley, James P. (2006) COBOL for the
21st Century 1 1th edition, John Wiley & Sons Inc i s n b :

0471722618

Paae 83 of 112

http://www.siliconreDublic.com/news/news.nv7storvid-sinqlel38

Answering Challenges Enhances Learning

Sturm, Eberhard (2000) Eberhard's PL/I Problem, originally published
by IBM in The PL/I Connection
http://www.ibm.com/software/ad/Dli/Dlil297.htm (now
apparently unavailable) re-published in The PL/I Newsletter
September 2000
http://www.users.biaDond.com/robin v/pli-n2.htm (retrieved 2
April 2006)

Swartz, Nikki, (2005), Employees Not Receiving Critical Training,
Information Management Journal, March/April 2005, Vol. 39 Issue
2, page 7.

Turing, Alan Mathison (1949). Checking a large routine. Paper given by
Alan M Turing on June 24, 1949 at the inaugural conference of
the EDSAC computer at the Mathematical Laboratory, Cambridge
http://www.turinQarchive.ora/viewer/?id=462&title-01 retrieved
April 9, 2006

Turner, R., (2003), Seven pitfalls to avoid in the hunt for best practices,
IEEE Software 20, 1,January / February 2003, pages 67 -69 .

Uchida, Shinji and Shima Kazuyuki, 2005, An Experiment of Evaluating
Software Understand ability, Journal Cybernetics
and Informatics Volume 2 - Number 6, May 2005.

Way, Thomas, P., (2006), A Virtual Laboratory Model for Encouraging
Undergraduate Research, Proceedings of the 37th SIGCSE
technical symposium on Computer science education Houston,
Texas, USA, IS S N :0097-8418

Welch, Jack and Welch, Suzy (2006), Keeping Your People Pumped.
Business Week, March 27 2006 Issue 3977

West, David and Rostal, Pam (2005). Apprenticeship Agility in
Academia, Conference on Object Oriented Programming
Systems Languages and Applications, San Diego, CA, USA, pp
371 - 374

Wessner, Laura (2006) College Coders Converge on San Antonio for
30th Annual International “Battle of the Brains” IBM Press Release
issued Armonk, N.Y. February 6, 2006

Woit, Denise and Mason, Dave (2 0 0 0) Enhancing student learning
through on-line quizzes ACM SIGCSE Bulletin, Proceedings o f
the thirty-first SIGCSE technical symposium on Computer science
education SIGCSE '00, p 3 67 Volume 32 Issue 1. is s n :0 0 9 7 -8 4 1 8

Zenger, Jack; Folkman, Joe and Sherwin, Bob (2006) Make Learning
Stick Leadership Excellence; January 2006, Vol. 23 Issue 1, p10-
11

Paae 84 of 112

http://www.ibm.com/software/ad/Dli/Dlil297.htm
http://www.users.biaDond.com/robin
http://www.turinQarchive.ora/viewer/?id=462&title-01

Answering Challenges Enhances Learning

10 Appendices
A. Two answers from the field observation.

B. Interim report on the field study from the TSB group

C. The answers from the participants in the field study along

with their comments.

D. A summary of the field study Likert-scale scores, as used

in the graphs

E. ISO 9126 standard on quality

Pane 85 of 112

Answering Challenges Enhances Learning

A. Answers to Field Observation
These questions were asked four months after the course

completed. They were only asked of the two MSc students

Sent: 18 April 2006 12:19
To: MCGANN, CLEMENT
Subject:

Clement,

Here are the few questions you wanted us to have a look at.

Age: 23

Previous Programming Knowledge: Mostly Java, som e C++, assembler, SQL, HTML, php

Previous COBOL knowledge: None

Previous eLearning: None

To what extent did 'answering the W ebC T challenges' contribute to your learning? It was
good, encouraged re-reading of the book to make sure o f answers

To what extent did the W ebC T exercises enhance existing learning? The quizzes w ere a
good way to reinforce what we learned through the slides

W as there new learning? If so how much? Yes, all of it was new to me

How would you compare W ebCT with conventional education? Being able to do the qu izzes
in your own time was very beneficial

How much benefit was there in writing COBOL code? A great amount, being able to put into
practice what w e had seen was a great advantage

Would you attend another course using W ebC T? Yes, definitely

Would you recommend the COBOL W ebCT course to others? Yes, it was very good.

Thanks,

Paae 86 of 112

Answering Challenges Enhances Learning

Sent: 18 April 2006 12:51
To: MCGANN, CLEMENT
Subject: WebCT questionnaire

Hi Clement

They're treating us pretty well so far over here, and the heating is a little better.

Thanks for all your help,

Age: 23

Previous Programming Knowledge: Mostly C++; some Java, Eiffel, assembler, SQL,
HTM L

Previous C O B O L knowledge: None

Previous eLearning: None

Q: To what extent did ’answering the W ebCT challenges' contribute to your learning?

They were a good secondary contribution, after writing programs. They highlighted things
I was unclear on, reinforced existing knowledge and forced me to learn the
theory/terminology to go with the practical knowledge gained by coding.

Q: To what extent did the W ebCT exercises enhance existing learning?

They reinforced what I had already learned by going back on it a few days after we had
covered it in slides/programs, and acted as a check on what I thought I already knew.

Q: Was there new learning? If so how much?

There was some new learning on the theory side, and in clarifying things, but not a huge
amount, as we had already written relevant test programs and moved on.

Q: How would you compare W ebCT with conventional education?

It would not be a full replacement but it was a helpful adjunct to conventional education.
The quizzes were helpful and the having access to the slides online was also useful
(particularly as it meant we didn't have to take notes while going through slides).

Q: How much benefit was there in writing C O B O L code?

Paae 87 of 112

Answering Challenges Enhances Learning

Questions that required the writing of C O B O L code were of equal benefit to the non-code
questions, even if the sample programs were necessarily fairly simple. It made sure we
knew how to use different verbs and code structures we might have been able to avoid in
writing programs, e.g. all the different types of PERFORM , different versions of
S U B TR A C T with multiple operands, different operand order etc.

Q: Would you attend another course using W ebCT?

Yes, it was definitely helpful, though I would be reluctant to do a course which only used
W e bCT if a full course was available.

Q: Would you recommend the C O B O L W ebCT course to others?

Yes. Some are the questions were very particular to the book, and there was some
repetition of questions within quizzes, but overall it made a good contribution to learning
CO B O L, by testing and reinforcing existing knowledge. Once I had successfully
completed a quiz and checked the answers I got wrong, I was confident about moving on
to the next section.

Paae 88 of 112

Answering Challenges Enhances Learning

B. Interim report on the field study from
the TSB group

Review of InnerWorkings training software

Reviewer Details

Course Layout

There is a problem with the software here. The organisation of

the course is very confusing to work with.

You would expect to see an introductory course that would be

common to all of the .Net Languages, i.e. an introduction to .Net and

OO Principles. From here you would expect to see the course broken

down into the various language tracks available within the course.

For each language you would also expect to see a menu that would

present the course topics from fundamental up to expert level.

The inclusion of special topics such as bridging courses (VB6 to

VB.Net) and supplemental courses (SQL a tutorial or Client / Server

Systems Architecture - An Introduction) could be of benefit to most

students, even as a reminder.

At present the course layout does not appear to be in any

particular order and this lead to each member of our group starting

work on topics that were not suitable.

Paae 89 of 112

Answering Challenges Enhances Learning

Module Layout

The course module layout is missing a veiy important element.

Modules should begin with an option theoretical section. This would

allow the student to become familiar with the concept that the module

is related to.

While some principles such as LSP are explained they are not

explained in a manner suited to a beginner level student.

Exercise Consistency

The learning experience of the student could be enhanced if the

each exercise used a common example application. At present each

sub-topic within a module works from a different example application.

It would be more efficient to allow a student to become familiar with

one application and to build on this with more advanced concepts as

they are introduced through each topic.

MSDN References

The use of MSDN references within the training software should

be kept to a minimum. While MSDN reference material does provide

excellent reference guides this material is only suited to a person who

is already proficient with the language and concept being covered. It

is certainly not a suited to a student of a topic.

Conclusion

This training software does have great potential however it is

not suited to a novice developer or a developer migrating to the .Net

platform, in its current state.

Paae 90 of 112

Answering Challenges Enhances Learning

C. Answers to Field Study Questionnaire
Answer 1 - NCI1

Years of programm ing experience

Nam e: Years of Visual Basic Programming
Strong
Agree

Agree Neutral
or N/A

Dis
agree

Strong
Disagree

I was familiar with Object Oriented concepts □ V □ □ □
I was familiar with .NET □ □ □ V □
I was familiar with web technologies □ □ □ V □
I was familiar with XML □ □ □ V □
I was comfortable with Computer Assisted Learning □ V □ □ □

I expected InnerWorkings to benefit m y knowledge □ □ V □ □
InnerWorkings did enhance my knowledge □ V □ □ □
T h e challenges were well constructed □ □ □ yl □
I got satisfaction from responding to challenges □ V □ □ □

I learnt from the challenges □ V □ □ □

Entering code using the .N E T IDE helped □ V □ □ □

I would have preferred a plain text editor □ □ □ V □

I like to receive prompt feedback on m y effort □ □ V □ □

T h e Code Judge did give prompt feedback □ V □ □ Q
T h e Code Judge gave accurate feedback □ V □ □ □
T h e Code Judge gave useful feedback □ □ V □ □

I found the Microsoft help feature helpful □ V □ □ □

I helped myself, learning through trial & error □ V □ □ □

I helped myself, by reading the manual □ V □ □ □

I helped myself, by reviewing other course notes □ □ □ V □

I got help by asking a friend □ □ □ V □

I got help via the InnerWorkings email facility □ □ □ V □

T h e InnerWorkings email facility was helpful □ □ V □ □

I learnt something new from InnerWorkings □ V □ □ □
I reinforced existing learning from InnerWorkings □ V □ □ □
It must be used in conjunction with other education □ V □ □ □

I would use InnerWorkings in the future □ V □ □ □
InnerW orkings needs to be improved □ □ V □ □
This method has a future □ V □ □ □

Paae 91 of 112

Answering Challenges Enhances Learning

State how it can be improved

The program allows login to the practice set without internet

connection only within the MS visual studio, so to review or read the

practice I have to be either on the net or running MS Visual Studio.

The other thing, if I started the program before running the

Visual Studio and launched a practice set the program loads MS

Visual Studio and tries to logon again, it seems that the program does

not recognise that it is already running, and it figures it out by failing

to login because it is already logged in.

The other thing is there is no equivalent practice set for both MS

Visual Studio 2005 and 2003, so if I have 2005 version of MS IDE I

can’t do drills which only done in 2003 and not done for 2005.

For beginners there is no enough drills, I needed a lot of work to

get to work some of the drills which were for me advance but I did.

Paae 92 of 112

Answering Challenges Enhances Learning

Years of programm ing experience
_15__

Nam e: Years of Visual Basic Program m ing
7

Answer 2 - TSB1

Strong
Agree

Agree Neutral
or N/A

Dis
agree

Strong
Disagree

I was familiar with Object Oriented concepts □ X □ □ □

I w a s familiar with .N E T □ X □ □ □

I was familiar with web technologies X □ □ □ □

I w as familiar with X M L □ X □ □ □

I w as comfortable with Com puter Assisted Learning □ X D 0 □

I expected InnerWorkings to benefit m y knowledge □ X □ □ □

InnerWorkings did enhance m y knowledge □ □ X □ □

T h e challenges were well constructed □ □ X □ □

I got satisfaction from responding to challenges □ X n □ □

I learnt from the challenges □ X □ □ □

Entering code using the .N E T IDE helped X □ □ □ □

I would have preferred a plain text editor □ □ □ X □

I like to receive prompt feedback on m y effort □ X □ D □

T h e C o de Judge did give prompt feedback □ X □ □ □

T h e C o de Judge gave accurate feedback □ X □ □ □

Th e C o de Judg e gave useful feedback □ X □ □ □

I found the Microsoft help feature helpful □ □ □ X □

I helped myself, learning through trial & error □ □ X □ □

I helped myself, by reading the manual □ □ X □ □

I helped myself, by reviewing other course notes □ X □ □ □

I got help by asking a friend □ □ □ X □

I got help via the InnerWorkings email facility □ □ □ X □

Th e InnerWorkings email facility was helpful □ □ X □ □

I learnt something new from InnerWorkings □ □ X □ □

I reinforced existing learning from InnerWorkings □ □ X □ □

It must be used in conjunction with other education □ X □ □ □

I would use InnerWorkings in the future □ □ X □ □

InnerW orkings needs to be improved □ X □ □ □

This method has a future □ X □ □ □

Paae 93 o f 112

Answering Challenges Enhances Learning

State how it can be improved

Mainly, MSDN should not be used as the help system; it should

be replaced by a step by step guide, specifically based around the

examples and problems posed by the system.

I didn't use the email help system, but IVe never had to use it

on any other self paced training systems IVe used before. I generally

find the turnaround time associated with emailing a tutor stifles the

flow of a system and results in you essentially hitting a brick wall

until such time as a reply is received.

Paae 94 of 112

Answering Challenges Enhances Learning

Years of programming experience 2 Industrial; 6 College

Nam e: Brian O ’Sullivan Years of Visual Basic Program m ing 3
Strong Agree Neutral Dis- Strong

Answer 3 - TSB2

Agree or N/A agree

I was familiar with Object Oriented concepts 7 □ □ □

I was familiar with .N E T □ 7 □ □

I was familiar with web technologies □ 7 □ □

I was familiar with X M L □ □ □ 7

I was comfortable with Com puter Assisted Learning 7 □ □ □

I expected InnerWorkings to benefit m y knowledge □ 7 □ □

InnerWorkings did enhance m y knowledge □ 7 □ □ □

T h e challenges were well constructed □ □ 7 □ □

I got satisfaction from responding to challenges □ 7 □ □ □

I learnt from the challenges n 7 □ □ □

Entering code using the .N E T IDE helped 7 □ □ □ □

I would have preferred a plain text editor □ □ □ □ 7
I like to receive prompt feedback on m y effort 7 □ □ □ □

T h e Code Ju d g e did give prompt feedback □ 7 □ □ □

T h e Code Ju d g e gave accurate feedback □ □ 7 □ □

T h e C o de Judge gave useful feedback □ □ □ 7 D

I found the Microsoft help feature helpful □ □ □ □ 7
I helped myself, learning through trial & error 7 □ □ □ □

I helped myself, by reading the manual □ □ □ 7 □

I helped myself, by reviewing other course notes 7 □ □ □ □

I got help by asking a friend □ □ □ 7 □

I got help via the InnerWorkings email facility □ □ □ □ 7
Th e InnerWorkings email facility was helpful □ □ □ not u se d

I learnt something new from InnerWorkings □ 7 □ □ □

I reinforced existing learning from InnerWorkings □ 7 □ □ □

It must be used in conjunction with other education 7 □ □ □ □

I would use InnerWorkings in the future □ □ 7 □ □

InnerW orkings needs to be improved 7 □ □ □ □

This method has a future 7 □ □ □ □

Paae 95 of 112

Answering Challenges Enhances Learning

State how it can be improved

1. Amend Course Layout

a. Use progression ladders to aid students in what path
to take through the software

b. Clearly mark beginner modules

2. Amend Module Layout

a. Include a theory section

3. Exercise Consistency

a. For each module use the same application example.
For each new topic in the module add to the
application

4. MSDN References

a. MSDN references are only useful as a refresher for an
already experienced individual. They are worthless to
a learner

b. The MSDN references should be replaced by more
friendly examples

Paae 96 of 112

Answering Challenges Enhances Learning

Years of programm ing experience

Nam e: Years of Visual Basic Program m ing

Answer 4 - TSB3

Strong
Agree

Agree Neutral
or N/A

Dis
agree

Strong
Disagree

I was familiar with Object Oriented concepts □ V □ □ □

I was familiar with .N E T V □ □ □ □

I was familiar with web technologies □ V □ □ □

I was familiar with X M L □ V □ □ □

I was comfortable with Com puter Assisted Learning V □ □ □ □

I expected InnerWorkings to benefit m y knowledge V □ □ □ □
InnerWorkings did enhance m y knowledge □ □ □ □
T h e challenges were well constructed □ □ V □ □
I got satisfaction from responding to challenges □ □ V □ □
I learnt from the challenges □ V □ n □
Entering code using the .N E T ID E helped V □ □ □ □
I would have preferred a plain text editor □ □ □ □
I like to receive prompt feedback on m y effort □ V □ □ □

Th e C o de Judge did give prompt feedback □ □ V □ □
Th e C o de Judge gave accurate feedback □ □ V □ □
Th e Code Judge gave useful feedback □ □ V □ □

I found the Microsoft help feature helpful □ □ □ □

I helped myself, learning through trial & error □ V □ □ □

I helped myself, by reading the manual □ □ □ V □
I helped myself, by reviewing other course notes □ □ □ V □
I got help by asking a friend □ □ □ V □
I got help via the InnerWorkings email facility □ □ □ □ V
Th e InnerWorkings email facility was helpful □ □ □ □ N A

I learnt something new from InnerWorkings V □ □ □ □
I reinforced existing learning from InnerWorkings □ V □ □ □
It must be used in conjunction with other education □ V □ □ □

I would use InnerWorkings in the future □ □ □ □
InnerW orkings needs to be improved V □ □ □ □
This method has a future □ □ V □ □

Paae 97 of 112

Answering Challenges Enhances Learning

State how it can be improved

1. Less reliance on MSDN which is only a useful resource if

you have lots of time to search possible solutions and are

an experienced developer used to using such forums. I

imagine this tool will be aimed at developers from a

beginner's level onward.

2. Clearer progression path for each course i.e. identify a

path for the developer so Beginners/Intermediates and

Advance programmers have an idea where to begin.

3. E-mail tutoring is a good concept; however it may not be

feasible in the real world to wait if you are stuck on an

area. Instructor led courses are hard to beat in this sense.

Perhaps an always online instructor/monitor (chat room

type facility) would help this situation.

Paae 98 of 112

Answering Challenges Enhances Learning

Years of program m ing experience 12

Nam e: Years of Visual Basic Program m ing 10
Strong Agree Neutral Dis- Strong

Answer 5 - IPSI1

Agree or N/A agree Disagree

1 was familiar with Object Oriented concepts V □ □ □ □

1 was familiar with .N E T V □ □ □ □

1 was familiar with web technologies □ V □ □ □

i was familiar with X M L □ □ □ □

I w as comfortable with Com puter Assisted Learning V □ □ □ □

1 expected InnerWorkings to benefit m y knowledge □ V □ □ □

InnerWorkings did enhance m y knowledge □ V □ □ □

Th e challenges were well constructed □ □ n □

1 got satisfaction from responding to challenges □ V □ □ □

1 learnt from the challenges □ V □ □ □

Entering code using the .N E T ID E helped □ ■V □ □ □
1 would have preferred a plain text editor □ □ n V n
1 like to receive prompt feedback on m y effort V □ □ □ □

Th e C o de Ju d g e did give prompt feedback □ □ V □ □

Th e C o de Judge gave accurate feedback □ □ V □ □

Th e C o de Judge gave useful feedback □ □ V □ □

1 found the Microsoft help feature helpful □ □ □ V □
1 helped myself, learning through trial & error □ □ □ □
1 helped myself, by reading the manual □ □ □ V □

1 helped myself, by reviewing other course notes □ □ □ V □
1 got help by asking a friend □ □ □ V □
1 got help via the InnerWorkings email facility □ □ □ V □
Th e InnerWorkings email facility was helpful □ □ V □ a

1 learnt something new from InnerWorkings □ V □ □ □
1 reinforced existing learning from InnerWorkings □ V □ □ □
It must be used in conjunction with other education D V □ □

1 would use InnerWorkings in the future □ V □ □ □
InnerW orkings needs to be improved □ V □ □ □
Th is method has a future □ V □ □ □

Paae 99 af 112

Answering Challenges Enhances Learning

State how it can be improved

Clearer instructions on topic breakdown in conjunction with

difficulty level

Email facility response times would need to be very quick in

order for this to work

Paae 100 of 112

Answering Challenges Enhances Learning

Years of program m ing experience 7

Nam e: Years of Visual Basic Program m ing 6

Answer 6 - IPSI2

Strong Agree Neutral Dis Stroni
Agree orN /A agree Dtsagre

I w as familiar with Object Oriented concepts X □ □ □ □
I w as familiar with .N E T X □ □ □ □

I was familiar with web technologies X □ □ □
I was familiar with X M L X □ □ □ □

I w as comfortable with Com puter Assisted Learning X □ □ □ □

I expected InnerWorkings to benefit m y knowledge X n □ □ □

InnerW orkings did enhance m y knowledge X □ □ □ □

T h e challenges were well constructed X □ □ □ □

I got satisfaction from responding to challenges X □ □ □ □

I learnt from the challenges X □ □ □ □

Entering code using the .N E T ID E helped X □ □ □ □
I would have preferred a plain text editor X □ □ □ □
I like to receive prompt feedback on m y effort X □ □ □ □

Th e C o de Judge did give prompt feedback

T h e C o de Judge gave accurate feedback

T h e C o d e Judge gave useful feedback

X
X
X

□
□
□

□
n
□

□
□
□

□
□
□

I found the Microsoft help feature helpful X □ □ □ □
I helped myself, learning through trial & error X □ □ □ □
I helped myself, by reading the manual X □ □ □ □
I helped myself, by reviewing other course notes □ X □ □ □
I got help by asking a friend 0 □ X □ □
I got help via the InnerWorkings email facility □ □ □ □ X
T h e InnerW orkings email facility was helpful □ □ X □ □

I learnt something new from InnerWorkings X □ □ □ □
I reinforced existing learning from InnerWorkings X □ □ □ □
It must be used in conjunction with other education X □ □ □ □

I would use InnerWorkings in the future X □ □ □ □
InnerW orkings needs to be improved □ □ X □ □
Th is method has a future X □ □ □ □

Pane 101 of 112

Answering Challenges Enhances Learning

State how it can be improved:

The Inner workings Computer Based training is an excellent

package, something I would definitely use again in the future.

However from my personal experience of using in the workplace it

would be more beneficial to perform the modules on an allocated

training day or training lab, possibly as part of an employee induction

process.

It's not something you can start / stop and get back to relatively

easy as the modules do take up a fair bit of time.

Thanks for the opportunity to evaluate this,

Regards

Paae 102 of 112

Answering Challenges Enhances Learning

Answer 7 - IPSI3

Y ears of program m ing experience _ 2

Nam e: Years of Visual Basic Program ming _ 2
Strong
Agree

Agree Neutral
or N/A

Dis
agree

Strong
Disagree

I was familiar with Object Oriented concepts □ ■ 0 □ □

I w as familiar with .N E T □ □ □ ■ □

I was familiar with web technologies □ ■ □ □ □

I w as familiar with X M L □ ■ □ □ □

I w as comfortable with Com puter Assisted Learning □ ■ □ □ □

I expected InnerWorkings to benefit m y knowledge □ ■ □ □ □
InnerWorkings did enhance m y knowledge □ ■ □ □ □
Th e challenges were well constructed □ ■ □ □ □
I got satisfaction from responding to challenges □ ■ 0 □ □
I learnt from the challenges □ ■ □ □ □

Entering code using the .N E T ID E helped ■ □ □ □ □

I would have preferred a plain text editor □ □ □ □ ■

I like to receive prompt feedback on m y effort ■ □ □ □

Th e C o de Judge did give prompt feedback □ ■ □ □ □

Th e C o de Judge gave accurate feedback □ □ ■ □ □

Th e C o d e Judge gave useful feedback □ □ □ ■ □

I found the Microsoft help feature helpful □ □ □ ■ □

I helped myself, learning through trial & error □ ■ n □ □

I helped myself, by reading the manual □ □ □ ■ □

I helped myself, by reviewing other course notes □ □ □ ■ □

I got help by asking a friend □ □ □ ■ □

I got help via the InnerWorkings email facility □ ■ □ n □

Th e InnerW orkings email facility was helpful D ■ □ □ □

I learnt something new from InnerWorkings □ ■ □ □ □
I reinforced existing learning from InnerWorkings □ ■ □ □ □
It must be used in conjunction with other education □ □ □ ■ □

I would use InnerWorkings in the future ■ D □ □ □

InnerW orkings needs to be improved □ ■ □ □ □

This method has a future □ ■ □ □ □

State how it can be improved

Paae 103 of 112

Answering Challenges Enhances Learning

The Judge could give more accurate feedback, pointing you at

what has been done badly/incorrectly.

Here's a hastily cobbled together answer, as a general comment

I have to say that I found the tool extremely useful but very time

consuming, I think the time estimates for each task are too low and as

I've been very busy I haven't managed to complete a full module but I

would certainly like to continue using it (when I get a chance).

Answer 8 - IPSI3, later

Using the email help facility means waiting forever. I prefer

immediate feedback

I use trial & error. I prefer to try 5 different things, rather than

waiting

I used it at home. Vm enthusiastic about it. I did this for my

own advancement

I missed the theory. It does not include any explanations on

theory.

The fourth challenge was way too hard and lacked explanations

Other exercises required less knowledge theory

I was initially lost

I expected an interactive course and then lost track

Start with easy concepts and then more complicated

Every exercise was different - added familiarisation overhead;

rather than using the same base and adding to it

I attended a course in DIT Cork - for eCollege - FAS course done

by interactive training figure - for studying .NET - like interactive book

and audio listen. It had examples and a multiple choice exam -

It doesn't launch the IDE

Paae 104 of 112

Answering Challenges Enhances Learning

Overall impression of the tool: very good, very easy to use

interface. All relevant information is readily available and navigation

thru the app extremely easy and logical. The integration into Visual

Studio is useful.

The task oriented learning is a good approach. The best way to

learn of course is by doing exercises rather than just reading course

material. There was a good range of tasks, some quite challenging for

a .NET beginner though.

The availability of relevant reference material and hints is a

good feature.

The only negatives I would have -

> Some of the tasks didn't always work when

completed, even when following the problem

definition exactly.
> The code judging isn’t very flexible. If you don't stick

to the suggested approach exactly you fail (and

variable names must match exactly what's in the

problem definition).

> Some of the practice-sets are a bit too time

consuming. I would suggest there are too many

tasks / modules in some of the practice sets.

Hope this is of some help -

Paae 105 af 112

Answering Challenges Enhances Learning

Answer 9 - IPSI4

Yea rs of programm ing experience 11
Nam e: Y ea rs of Visual Basic Program ming 8

Strong Agree Neutral Dis Strong
Agree or N/A agree Disagree

I was familiar with Object Oriented concepts □ X □ □ □

I was familiar with .N E T □ X □ n □

I w as familiar with web technologies X □ □ □ □

I w as familiar with X M L □ X □ □ □
I was comfortable with Com puter Assisted Learning X □ □ □ □

I expected Innerworkings to benefit m y knowledge X □ □ □ □
Innerworkings did enhance m y knowledge X □ □ n □
Th e challenges were well constructed □ X □ □ □
I got satisfaction from responding to challenges □ X □ □ □

i learnt from the challenges □ X □ L! □

Entering code using the .N E T ID E helped X □ □ □ □

I would have preferred a plain text editor □ □ □ □ X
I like to receive prompt feedback on m y effort □ X □ □ □

Th e C o de Judge did give prompt feedback □ X □ □ □

T h e C o de Judge gave accurate feedback □ n X □ □

Th e C o de Judge gave useful feedback □ □ X □ □

I found the Microsoft help feature helpful □ X □ □ □

I helped myself, learning through trial & error □ X □ □ □

I helped myself, by reading the manual □ X □ □ □

I helped myself, by reviewing other course notes □ X □ □ □

I got help by asking a friend □ □ □ X □

I got help via the Innerworkings email facility □ □ X □ □

Th e Innerworkings email facility was helpful □ □ X □ □

I learnt something new from Innerworkings X □ □ □ □

I reinforced existing learning from Innerworkings X □ □ □ □

It must be used in conjunction with other education □ □ X □ □

I would use Innerworkings in the future X □ □ □ □

Innerworkings needs to be improved □ □ X □ □

This method has a future X □ □ □ □

Paae 106 of 112

Answering Challenges Enhances Learning

State how it can be improved

This isn’t really a criticism but just an observation: For

developers new to .NET there is still a lot of learning required to

complete some of the tasks. It required a sizable investment of time

(worthwhile nonetheless). Some of the individual tasks took hours to

complete, meaning modules could take up to 10 - 15 hours to finish

(including reading background material as well as doing the tasks).

Paae 107 of 112

Answering Challenges Enhances Learning

Answer 10 - ILA1

Thank you for your evaluation of Innerworkings
Please answer the questions below and add your own comments

Years of programming experience
Name: Years of Visual Basic Programming

I was familiar with Object Oriented concepts
I was familiar with .NET
I was familiar with web technologies
I was familiar with XML
I was comfortable with Computer Assisted Learning

Strong
Agre»
GK
□
□

Agree Neutral Dis Strong
or N/A agree Disagree

□ □ □ □

□ □ s Z □

□ □ Z P

□ 0 0

□ □ □ □

I expected Innerworkings to benefit my knowledge □ □ □ □
Innerworkings did enhance my knowledge □ Z 0 nu n

The challenges were well constructed Z □ □ □
I got satisfaction from responding to challenges r □ □ □ □
I leamt from the challenges □ Z □ □ a

Entering code using the .NET IDE helped rZ □ □ □ □
I would have preferred a plain text editor

D /
□ 0 □ Z

I like to receive prompt feedback on my effort rZ □ □ □ a

The Code Judge did give prompt feedback 0 □ ET D 0
The Code Judge gave accurate feedback □ □ O ' □ □
The Code Judge gave useful feedback □ □ GK □ D

I found the Microsoft help feature helpful □ z □ □ □
I helped myself, learning through trial & error □ □ □ □
I helped myself, by reading the manual □ □ □ □
I helped myself, by reviewing other course notes □ z □ □ □
I got help by asking a friend □ cK 0 □ □
I got help via the Innerworkings email facility □ □ □ □
The Innerworkings email facility was helpful □ □ Z □ □

I leamt something new from Innerworkings □ 0^ □ □ □
I reinforced existing learning from Innerworkings □ □ □ □
It must be used in conjunction with other education 0 ^ □ □ □ □

I would use Innerworkings in the future □ 0 □ □
Innerworkings needs to be improved Z □ □ □ □
This method has a future Z 0 □ 0 □
State how it can be improved

ZM\<Io k ,j U jT Tfor ,
MutHctd

\CO
^ 1 ** flX/PUf . totvt* t ^

S .
Oft-C.A*A WlcNi T T Z W t M T f r x t f Aiuj> »P CtMt6M A u>«3< JUiXfc

Paae 108 of 112

Answering Challenges Enhances Learning

I found the Microsoft help feature helpful
I helped myself, learning through trial & error
I helped myself, by reading the manual
I helped myself, by reviewing other course notes
I got help by asking a friend
I got help via the Innerworkings email facility
The Innerworkings email facility was helpful

I learnt something new from Innerworkings
I reinforced existing learning from Innerworkings
It must be used in conjunction with other education

I would use Innerworkings in the future
Innerworkings needs to be improved
This method has a future

4
4
4
2
2
2
3

4
4
4

4
3
4

2 2 1
3 4 5
3 2 2
4 2 5
2 2 2
2 1 1
3 0 0

3 5 4
3 4 4
4 4 5

3 3 3
4 5 5
4 3 5

Page 110 of 112

B Field Study Responses
Table 18 - Summary of Field Study Responses

NCH TBS1 TSB2 TSB3 TSB4 IPSI1 IPSI2 IPSI3 IPSI4 ILA1

Years of programming experience
Years of Visual Basic Programming

? 15 ? 8 12 5 2 7 11 1 1
? 7 ? 3 10 5 2 6 a 0

I was familiar with Object Oriented concepts 4 4 4 5 5 3 4 5 4 5
I was familiar with .NET 2 4 5 4 5 3 2 5 4 2
I was familiar with web technologies 2 5 4 4 4 4 4 5 5 2
I was familiar with XML 2 4 4 2 4 4 4 5 4 4
I was comfortable with Computer Assisted Learning 4 4 5 5 3 4 5 5 5

I expected Innerworkings to benefit my knowledge 3 4 5 4 4 3 4 & 5 4
Innerworkings did enhance my knowledge 4 3 4 4 4 4 4 6 5 4
The challenges were well constructed 2 3 3 3 4 4 5 4 4
I got satisfaction from responding to challenges 4 4 3 4 4 3 4 5 4 5
I learnt from the challenges 4 4 4 4 4 4 4 m m ,R H 4

Entering code using the .NET IDE helped 4 5 5 5 4 5 5 5 5 5
I would have preferred a plain text editor 2 1 1 1 2 1 1 1 1 1
I like to receive prompt feedback on my effort 3 4 4 5 5 4 5 5 4 5

The Code Judge did give prompt feedback
The Code Judge gave accurate feedback
The Code Judge gave useful feedback

E The ISO 9126 Standard - Definition of
Quality

The ISO 9126 Standard has a definition of quality, entitled

‘Software Engineering - Product Quality’. In addition to its ‘quality

model’, ISO 9126 propose three metrics for measuring quality:
External, Internal and ‘in use’ metrics (ISO 9126)

The ISO 9126 definition is:

Functionality - >

> Suitability

> Accuracy

> Interoperability

> Compliance

> Security

A set of attributes that

bear on the existence of a set

of functions and their specified

properties. The functions are

those that satisfy stated or

implied needs.

Reliability

> Maturity

> Recoverability

> Fault Tolerance

A set of attributes that

bear on the capability of

software to maintain its level of

performance under stated

conditions for a stated period

of time.

Usability

> Leam-ability

> Understand-ability
> Operability

A set of attributes that
bear on the effort needed for

use, and on the individual

assessment of such use, by a

stated or implied set of users.

Answering Challenges enhances Learning

Efficiency

> Time Behaviour

> Resource Behaviour

Maintainability

> Stability

> Analysability

> Changeability

r Testability

Portability

> Install-ability

> Conformance

> Replace-ability

> Adaptability

-END

Paae 112 of

A set of attributes that

bear on the relationship

between the level of

performance of the software

and the amount of resources

used, under stated conditions.

A set of attributes that

bear on the effort needed to

make specified modifications.

A set of attributes that

bear on the ability of software

to be transferred from one

environment to another.

