
A Novel Methodology for Mapping Objective
Video Quality Metrics to the Subjective MOS Scale

Arghir-Nicolae Moldovan, Ioana Ghergulescu, and Cristina Hava Muntean
School of Computing

National College of Ireland
Mayor Street, IFSC, Dublin 1, Ireland

e-mail: amoldovan@student.ncirl.ie; ioana.ghergulescu@ncirl.ie; cristina.muntean@ncirl.ie

Abstract—With the rapid growth in video-based services, and
as users are becoming increasingly quality-aware, the reliable
estimation of video quality has become extremely important.
While a multitude of objective Video Quality Assessment (VQA)
metrics with various performance and complexity have been
proposed, the nonlinearity of video quality and the lack of clear
interpretations of the metrics make difficult to understand how
the objective metric values reflect the video quality as perceived
subjectively in terms of Mean Opinion Scores (MOS). This paper
proposes and evaluates a methodology for mapping objective
VQA metric values to subjective MOS scores based on publicly
available VQA databases. Three different databases were used
for comparing the performance of various objective metrics and
evaluating the proposed methodology.

Index Terms—Video quality assessment (VQA), mean opinion
score (MOS), subjective methods, objective metrics, video quality
mapping, performance evaluation, public video quality databases.

I. INTRODUCTION

OVER the past few years there has been an increasing
adoption of in Internet multimedia services and applica-

tions such as video-on-demand, IPTV and video conferencing.
It is expected that these services will continue to grow at a
fast pace, with the mobile video in particular being estimated
to increase 14-fold between 2013 and 2018, and to reach 69%
of the global mobile Internet traffic by 2018 [1]. At the same
time, mobile users are increasingly becoming quality-aware
with the proliferation of high-definition multimedia content
and high resolution device displays [2].

In this context, it has become extremely important to be able
to reliably estimate the quality of multimedia services, in order
to provide the users with a good Quality of Experience [3].
Researchers and industry alike have recognised this, and much
work has been conducted in order to develop objective VQA
metrics that can be implemented with multimedia services for
automatic estimation of video quality without the need for the
users to provide their opinion [4].

However the usability of objective VQA metrics is limited
by the lack of clear interpretations of their values and how
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these reflect the subjective user-perceived video quality ex-
pressed on the MOS scale (i.e., 1 – bad, 2 – poor, 3 – fair, 4 –
good, and 5 – excellent) [5]. This paper addresses the issue by
proposing a methodology for mapping the values of objective
VQA metrics to subjective MOS scores. The methodology
builds on previous research works in the area, and makes
use of data from public VQA databases [6]. The quality
estimation performance of six different full-reference objective
VQA metrics was evaluated on three different databases, and
the proposed methodology was exemplified and evaluated for
the best performing metric.

The rest of the paper is structured as follows. Section II
briefly presents the state of the art in the area of video quality
assessment. Section III presents the proposed methodology
for mapping objective VQA metric values to subjective MOS
scores, while Section IV presents the evaluation results. Sec-
tion V draws conclusions and presents future work directions.

II. VIDEO QUALITY ASSESSMENT BACKGROUND

There are two main approaches for assessing the video
quality, namely subjective VQA methods and objective VQA
metrics [7].

A. Subjective VQA Methods

Subjective methods for video quality assessment are con-
sidered the most accurate and reliable way for assessing the
video quality. Several subjective VQA methods are standard-
ised by ITU in the recommendations ITU-R Rec. BT.500
[8] for television and ITU-T Rec. P.910 [9] for multimedia
applications. These standards provide useful guidelines and
instructions regarding the selection of the subjects and of the
test material, the setup of the test environment, the rating
scales to be used for assessment, as well as the methods for
analysing the data.

There are two major subjective VQA approaches based
on the presentation of test sequences: double stimulus (DS)
and single stimulus (SS). In case of DS methods such as the
Degradation Category Rating (DCR) [9], viewers are presented
with pairs of sequences and are asked to rate either each
sequence individually or to rate the difference between them.
SS methods such as the Absolute Category Rating (ACR) [9],



enable a higher number of test sequences to be rated in the
same testing duration.

Various discrete (e.g., 1 – bad to 5 – excellent) or continuous
(e.g., 1 to 100) scales can be used for rating purposes, although
when compared against each other they were shown to lead to
very similar results as long as a careful test design is conducted
and clear information is provided to participants [10].

A multitude of subjective studies were conducted by various
research groups such as for example the Video Quality Experts
Group (VQEG)1 with some of these being overviewed in
[11]. Moreover, the results of many studies have been made
accessible to other researchers as public VQA databases [6].

B. Objective VQA Metrics

As the need for subjects opinion renders unfeasible the
use of subjective VQA methods in real-world applications,
there has been much research work on proposing objective
VQA metrics that quantify mathematically the video quality.
Objective VQA metrics are wildly employed for assessing the
video quality in both prototype-based [12] and simulation-
based solutions [13]. Relative to the presence of the original
reference video stream unaffected by the factors under test,
the existing objective VQA metrics can be classified in: no-
reference (NR), reduced-reference (RR) and full-reference (FR)
metrics [7].

NR objective VQA metrics have a high flexibility as they
do not require the presence of the reference video. These
metrics quantify the video quality based on various factors
such as blockiness (i.e., distortion common to block-based
compression algorithms such as H.264) blurring, jerkiness,
ringing, etc. [14].

RR objective VQA metrics aim to provide a compromise
between the measurement accuracy and flexibility of use. They
use only some information extracted from the reference video,
such as the amount of motion or spatial detail, which have
lower bitrate and are more feasible to be transmitted over the
communication channel [15].

FR objective VQA metrics enable the highest quality es-
timation performance, but they require the presence of the
reference video, as well as precise spatial and temporal syn-
chronisations, and luminance and colour calibration between
the original and the impaired videos. The Peak Signal-to-Noise
Ratio (PSNR), is the most widely used FR objective metric
due to its simplicity, even though is often criticised for having
a poor correlation with the subjective tests [16]. A multitude of
more complex metrics based on natural visual characteristics,
or that aim to model the Human Visual System (HVS), have
also been proposed [4]. These metrics incorporate factors such
as colour perception, contrast sensitivity or pattern masking,
with one example being the Structural Similarity Index (SSIM)
metric and its different variations [17].

1Video Quality Experts Group (VQEG), http://www.its.bldrdoc.gov/vqeg/
vqeg-home.aspx.

Table I
EXAMPLES OF SOLUTIONS FOR MAPPING THE VALUES OF PSNR AND

SSIM OBJECTIVE VQA METRICS TO SUBJECTIVE MOS SCORES, THAT
WERE FOUND IN THE LITERATURE REVIEW.

MOS PSNR [19] PSNR [20] SSIM [20]

5 (Excellent) ≥37 ≥45.0 ≥0.99
4 (Good) ≥31 & <37 ≥33.0 & <45.0 ≥0.95 & <0.99
3 (Fair) ≥25 & <31 ≥27.4 & <33.0 ≥0.88 & <0.95
2 (Poor) ≥20 & <25 ≥18.7 & <27.4 ≥0.50 & <0.88
1 (Bad) <20 <18.7 <0.50

III. METHODOLOGY FOR MAPPING OBJECTIVE VQA
METRIC VALUES TO THE SUBJECTIVE MOS SCALE

A. Overview

The subjective user-perceived video quality is usually ex-
pressed using discrete MOS scales, such as the 5-point scale
(i.e., 1-Bad, 2-Poor, 3-Fair, 4-Good and 5-Excellent). As
opposed, the objective VQA metrics return quality values on
various specific continuous scales such as for example 1-100
in case of the PSNR metric [16], or 0-1 in case of the SSIM
metric [17].

Since the video quality is usually a non-linear measure [18],
it is difficult to interpret the objective quality values in terms
of MOS scores. Moreover while there is much research work
being made on proposing objective quality metrics, there is
little research that provides clear mappings of the objective
VQA metric values to subjective user-perceived quality levels
expressed on the MOS scale. This is because the evaluation
of objective metrics is usually limited only to indicating how
well they correlate with the subjective MOS scores.

Table I presents two mapping solutions that were found in
the literature for the PSNR metric [19], [20], as well as a
mapping for the SSIM metric [20].

The steps of the proposed methodology for mapping the
values of an objective VQA metric to the subjective MOS
scores based on subjective data from public VQA databases,
are presented next.

B. Mapping Methodology Steps

The proposed methodology for mapping objective VQA
metric values to subjective MOS scores consists of the fol-
lowing steps:
Step 1: Identify and select suitable VQA datasets by consult-

ing available public VQA databases, or alternatively
obtain the data through a comprehensive subjective
study. The datasets should provide a clear description
on how the data was collected and processed, should
consider multiple sequences covering a broad range
of content characteristics (e.g., news, sports, cartoons,
etc.), should provide both the reference sequences and
the test sequences affected by the various artefacts
tested, and should provide at least the subjective MOS
scores and standard deviations if not all the individual
participants’ ratings.



Step 2: Convert all subjective ratings to the same scale, if ne-
cessary when using data from multiple VQA datasets.
The set of subjective ratings corresponding to the test
sequences form a VQA dataset s, can be expressed
conceptually as in (1).

MOSs =
{
MOSsk, k = 1, Ns

}
(1)

where k represents the test sequence index, while
Ns represents the number of test sequences from the
dataset s.

Step 3: Compute the values for the objective VQA metric
for which the mapping is desired, for all the test
sequences. Similarily, the set of objective VQA values
(OM) corresponding to the test sequences form a VQA
dataset s, can be expressed conceptually as in (2).

OMs =
{
OMsk, k = 1, Ns

}
(2)

where k represents the test sequence index, while
Ns represents the number of test sequences from the
dataset s.

Step 4: Perform nonlinear regression between the subjective
MOS scores and objective VQA values. This step
is necessary as subjective rating data are often com-
pressed at the ends of the rating scales, and it is not
reasonable for objective models of video quality to
mimic this weakness of subjective data [21]. A non-
linear mapping function that is commonly used as it
was found to perform well empirically [21], [22] is
the cubic polynomial, expressed as in (3).

MOSp
s = a ·OM3

s + b ·OM2
s + c ·OMs + d (3)

where MOSp
s represents the predicted quality by the

particular objective VQA metric, while the a, b, c and
d constants are obtained by fitting the function to the
data [MOSs, OMs].

Step 5: Evaluate the mapping performance by analysing the
goodness of the nonlinear fitting indicated by the R2

measure. An R2 value closer to 1 indicates a better
performance.

Step 6: Compute lower and upper objective VQA metric
threshold values corresponding to the different MOS
quality levels, by applying inverse interpolation on the
nonlinear regression model.

IV. EVALUATION OF THE MAPPING METHODOLOGY

A. VQA Databases

Subjective data from three public video quality assess-
ment databases were used in order to evaluate the quality
estimation accuracy of six different objective VQA metrics,
as well as the proposed mapping methodology for the best
performing metric. The three databases were selected because
they considered the impact of distortions that are introduced
by current generation video codecs such as H.264/MPEG-
4 AVC. Moreover, each database considered multiple test

sequences with different content characteristics, and combined
the databases cover a broad range of video resolutions.

The ETFOS CIF Video Quality (ECVQ) database [23]
contains 8 progressive reference sequences in the raw YUV
4:2:0 format, each of them having a CIF (352×288 pixels)
resolution, a 25 fps framerate, and a 12 seconds duration.
Moreover, the database contains 90 test sequences, compressed
at different bitrates from 73 kbps to 827 kbps, approximately
half of them using the H.264/MPEG-4 AVC codec and the
other half using the MPEG-4 Visual codec.

The ETFOS VGA Video Quality (EVVQ) database [23]
contains 8 progressive reference sequences in the raw YUV
4:2:0 format, each of them having a VGA (640×480 pixels)
resolution, a 25 fps framerate, and a 12 seconds duration. Sim-
ilarly to the ECVQ database, the EVVQ database contains 90
test sequences compressed using the H.264 and the MPEG-4
Visual codecs, but at bitrates between 261 kbps to 1737 kbps.

The LIVE Mobile Video Quality Assessment database [24],
consists of 10 progressive reference sequences in the raw YUV
4:2:0 format, each of them having a HD 720p (1280×720
pixels) resolution, a 30 fps framerate, and a 15 seconds dur-
ation. The video quality subjective data corresponding to 40
test sequences compressed using the H.264 codec at bitrates
between 0.7Mbps to 6Mbps, was used for evaluating the
performance of various objective metrics. The 40 sequences
were rated on a smaller screen smartphone with a resolution
of 960×540, while half of them were also rated on a larger
screen tablet with a resolution of 1280×800.

Single stimulus with hidden reference subjective evaluation
methods were used for all three databases. The databases
contain the MOS scores for each test sequence averaged across
all participants as in (4).

MOSk =
1

N

N∑
i=1

dik (4)

where k is the test sequence index, i is the participant index, N
is the number of participants, while dik are difference scores
obtained on a per subject per test sequence basis.

The difference scores for the ECVQ and EVVQ databases
were computed as in (5) and could take values between 0 to
100, with 100 being the highest quality [23]. As opposed,
the difference scores for the LIVE Mobile database were
computed as in (6) and could range between 0 and 5, with
0 being the highest quality [24].

dik = sik − sik(ref) + 100 (5)

dik = sik − sik(ref) (6)

where sik represents the rating of the participant i for the k test
sequence, while sik(ref) represents the participant’s rating for
the reference video from which the sequence was obtained.

To have all data on the same scale, the MOS scores for
the LIVE Mobile database were converted to the same 0-100
scale as for the ECVQ and EVVQ databases. This was done
according to the formula from (7).

MOSk = (5−MOSk) · 20 (7)



Table II
OBJECTIVE VQA METRICS’S QUALITY ESTIMATION ACCURACY RESULTS FOR THE ECVQ, EVVQ AND LIVE MOBILE DATASETS, AS INDICATED BY

THE PEARSON LINEAR CORRELATION COEFFICIENT (PLCC).

ECVQ EVVQ LIVE Mobile (H.264)

VQA Metric H.264 MPEG-4 Visual All H.264 MPEG-4 Visual All Mobile Tablet All All Data

PSNR 0.7313 0.7233 0.7377 0.677 0.7629 0.7271 0.8392 0.8456 0.8164 0.6807

PSNR-HVS 0.8058 0.7849 0.8006 0.7514 0.8421 0.8064 0.8519 0.8453 0.8252 0.7838

PSNR-HVS-M 0.8909 0.7724 0.8301 0.8237 0.9108 0.8730 0.8927 0.9202 0.8785 0.8592

SSIM 0.9070 0.8868 0.8987 0.8217 0.8904 0.8597 0.7698 0.6203 0.7064 0.7754

MS-SSIM 0.9269 0.8618 0.8960 0.8938 0.9151 0.9049 0.8734 0.8509 0.8512 0.8850

VIFp 0.8851 0.8706 0.8806 0.8486 0.8793 0.8688 0.9209 0.9827 0.9358 0.8986

Table III
OBJECTIVE VQA METRICS’S QUALITY ESTIMATION ACCURACY RESULTS FOR THE ECVQ, EVVQ AND LIVE MOBILE DATASETS, AS INDICATED BY

THE ROOT MEAN SQUARE ERROR (RMSE).

ECVQ EVVQ LIVE Mobile (H.264)

VQA Metric H.264 MPEG-4 Visual All H.264 MPEG-4 Visual All Mobile Tablet All All Data

PSNR 11.9184 11.095 11.5308 11.225 9.3459 10.4085 12.3885 11.8356 13.072 14.0054

PSNR-HVS 10.3469 9.9559 10.2344 10.0633 7.7968 8.967 11.9288 11.8469 12.7864 11.8726

PSNR-HVS-M 7.9362 10.2049 9.5232 8.6481 5.967 7.3938 10.2654 8.6784 10.8159 9.7819

SSIM 7.3602 7.4242 7.4905 8.692 6.5786 7.7447 14.5386 17.3899 16.0237 12.0724

MS-SSIM 6.56 8.1497 7.5841 6.8393 5.8282 6.4519 11.0936 11.6467 11.879 8.9026

VIFp 8.1332 7.9048 8.0927 8.0689 6.8839 7.5084 8.8782 4.109 7.9806 8.3878

B. Objective Metrics Computation

The Video Quality Measurement Tool (VQMT) [25] ver-
sion 1.1, provided by the Multimedia Signal Processing Group
(MMSPG) at Ecole Polytechnique Fédérale de Lausanne
(EPFL) was used in order to compute the following six full-
reference objective VQA metrics: Peak Signal-to-Noise Ratio
(PNSR) [16], Structural Similarity Index (SSIM), Multi-scale
Structural Similarity Index (MS-SSIM) [26], Visual Informa-
tion Fidelity pixel domain version (VIFp) [27], PSNR taking
into account Contrast Sensitivity Function (CSF) (PSNR-
HVS) [28], and PSNR taking into account Contrast Sensitivity
Function (CSF) and between-coefficient contrast masking of
DCT basis functions (PSNR-HVS-M) [29].

Each objective VQA metric is computed for all the test
sequences from the three databases. For each test sequence
the metrics are computed relative to the source uncompressed
clip. This is done on a frame-by-frame basis, while the per-
sequence value of an objective VQA metric is taken as the
average across all video frames. The MMSP VQMT tool has
the advantage of being command line and thus it can be used
for batch computation in case of multiple test sequences.

C. Objective Metrics Performance Comparison Results

The video quality prediction performance of the considered
objective VQA metrics was compared in terms of accur-
acy, monotonicity, and consistency [4], [22]. The prediction
accuracy is usually quantified through the Pearson Linear

Correlation Coefficient (PLCC) and the Root Mean Square
Error (RMSE). The Spearman’s Rank Ordered Correlation
Coefficient (SROCC) is usually used in order to quantify the
monotonicity of the objective metric predictions with respect
to human scores. The Outlier Ratio (OR) defined as the ratio of
the number of predictions outside the range of ±2 times the
standard deviations of the subjective results, is usually used
as a measure of the prediction consistency (i.e., the degree to
which the metric maintains the prediction accuracy).

The four metrics were computed after performing a nonlin-
ear regression using a cubic polynomial as the one expressed in
(3). The non-linear regression and the performance measures
computation was performed individually for each database
(i.e., ECVQ, EVVQ, and LIVE Mobile), for individual subsets
of each database (i.e., H.264 vs. MPEG-4 Visual for the ECVQ
and EVVQ databases, Mobile vs. Tablet for the LIVE Mobile
database), as well across all the combined data of the three
databases. The data processing and the statistical analysis were
conducted using the R v.3.01 statistical software2.

The performance comparison results of the six objective
VQA metrics in terms of the PLCC, SROCC RMSE and OR
measures are presented in Tables II to V respectively. The
results show that overall across the combined data of the three
datasets the VIFp metric offers the best performance in terms
of prediction accuracy (highest PLCC and lowest RMSE),

2The R Project for Statistical Computing, http://www.r-project.org/.



Table IV
OBJECTIVE VQA METRICS’S QUALITY ESTIMATION MONOTONICITY RESULTS FOR THE ECVQ, EVVQ AND LIVE MOBILE DATASETS, AS INDICATED

BY SPEARMAN’S RANK ORDERED CORRELATION COEFFICIENT (SROCC).

ECVQ EVVQ LIVE Mobile (H.264)

VQA Metric H.264 MPEG-4 Visual All H.264 MPEG-4 Visual All Mobile Tablet All All Data

PSNR 0.7815 0.7265 0.7617 0.7112 0.7758 0.7635 0.8270 0.8150 0.8051 0.7306

PSNR-HVS 0.7973 0.7332 0.7769 0.7712 0.8510 0.8273 0.8290 0.8150 0.8054 0.8018

PSNR-HVS-M 0.8439 0.6977 0.7976 0.8295 0.9154 0.8793 0.8926 0.9038 0.8835 0.8533

SSIM 0.8961 0.9066 0.9161 0.7827 0.8968 0.8647 0.6857 0.4060 0.6281 0.7753

MS-SSIM 0.8875 0.8157 0.8771 0.8757 0.9306 0.9112 0.8756 0.8511 0.8644 0.8852

VIFp 0.8766 0.8493 0.8745 0.8234 0.8995 0.8751 0.9154 0.9744 0.9311 0.8877

Table V
OBJECTIVE VQA METRICS’S QUALITY ESTIMATION MONOTONICITY RESULTS FOR THE ECVQ, EVVQ AND LIVE MOBILE DATASETS, AS INDICATED

BY THE OUTLIER RATIO (OR).

ECVQ EVVQ LIVE Mobile (H.264)

VQA Metric H.264 MPEG-4 Visual All H.264 MPEG-4 Visual All Mobile Tablet All All Data

PSNR 0.0465 0.0000 0.0222 0.0000 0.0000 0.0000 0.0000 0.0000 0.0333 0.0250

PSNR-HVS 0.0000 0.0213 0.0111 0.0000 0.0000 0.0000 0.0000 0.0000 0.0333 0.0083

PSNR-HVS-M 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0042

SSIM 0.0000 0.0213 0.0111 0.0000 0.0000 0.0000 0.0500 0.1000 0.0500 0.0125

MS-SSIM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0333 0.0042

VIFp 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

prediction monotonicity (highest SROCC) and prediction con-
sistency (lowest OR). On the overall data the MS-SSIM metric
performs only slightly worse, while the PSNR metric had the
lowest performance among the considered metrics.

Looking individually across the three different databases
the results show that for the ECVQ database, containing
sequences with the lowest resolution 352×288 pixels, the
best performing metric is SSIM. For the EVVQ database that
contains sequences with the middle resolution 640×480 pixels,
the best performing metric is MS-SSIM, whereas the LIVE
Mobile database that contains sequences with the highest
resolution 1280×720 pixels, the best performing metric is
VIFp.

D. Mapping the VIFp Metric to the Subjective MOS Scale

The best performing objective VQA metric VIFp, was
chosen in order to illustrate how its values can be mapped
to the subjective MOS scores, when the proposed mapping
methodology is used.

Following the mapping methodology steps presented in
section III-B, first the subjective data for the LIVE Mobile
database was converted according to the formula from (7),
to the same 0 – 100 scale used by the ECVQ and EVVQ
databases (Step 2). Moreover, the values of the VIFp metric
that are expressed on a continuous scale between 0-1 were
computed (Step 3). After that, a nonlinear regression using a
cubic polynomial function as described by the formula from

(3), was performed between the subjective MOS scores and
the values of the VIFp objective metric (Step 2).

Figure 1 presents the nonlinear fitted cubic polynomial
function used by the mapping methodology in order to map
the values of the VIFp full-reference objective VQA metric
to the MOS scale. The combined data from all three VQA
databases was used for the mapping. The figure also presents
the 95% confidence bands, as well as the four coefficients of
the nonlinear model. The nls function from the R statistical
software was used for computing the optimum coefficients
that minimise the least square errors between the vector of
objective VIFp values and the vector of subjective MOS val-
ues. Analysing the goodness of fit for the nonlinear regression
model (Step 5), the results show that the mapping performance
is as high as 80.76% (R2 = 0.8075, p < 2.2e-16, F = 330,
DF = 236).

Table VI presents the mapping of the VIFp objective VQA
metric values to the subjective MOS scores, obtained by
applying inverse interpolation on the nonlinear model (Step 6).
Following the recommendations on video quality assessment
scales from ITU [8], the continuous 0 – 100 MOS scale was
converted to the discrete 1 – Bad to 5 – Excellent MOS scale,
by dividing it into 5 equal intervals of length 20 and assigning
a discrete quality level to each interval. As illustrated in
Figure 1 the lower VIFp threshold values for the 2, 3, 4 and 5
user-perceived MOS quality levels, correspond to the 20, 40,
60 and 80 levels on the continuous scale.



Table VII
VIFP MAPPING’S QUALITY ESTIMATION ACCURACY (PLCC AND RMSE), MONOTONICITY (SROCC) AND CONSISTENCY (OR) RESULTS FOR THE

ECVQ, EVVQ AND LIVE MOBILE DATASETS.

ECVQ EVVQ LIVE Mobile (H.264)

Performance Measure H.264 MPEG-4 Visual All H.264 MPEG-4 Visual All Mobile Tablet All All Data

PLCC 0.8108 0.8208 0.8147 0.7527 0.8027 0.7818 0.8881 0.9484 0.9041 0.8525
RMSE 10.2285 9.1770 9.9050 10.0418 8.6199 9.4539 10.4684 7.0315 9.6720 9.9952
SROCC 0.6339 0.7204 0.7276 0.6488 0.7602 0.7725 0.8623 0.9297 0.8893 0.7559
OR 0.0233 0.0000 0.0111 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0042

y = - 91.34x3 + 14.17x2 + 177.49x - 7.75

R2 = 0.8075

0
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Figure 1. Nonlinear cubic polynomial mapping function between the values
of the VIFp metric and the subjective MOS scores for the combined data of
the ECVQ, EVVQ and LIVE Mobile databases.

Table VI
MAPPING OF THE VIFP OBJECTIVE VQA METRIC VALUES TO THE

SUBJECTIVE MOS SCALE, OBTAINED BASED ON THE COMBINED DATA
FROM THE ECVQ, EVVQ AND LIVE MOBILE DATABASES.

MOS VIFp Values

5 (Excellent) ≥0.56

4 (Good) ≥0.40 & <0.56

3 (Fair) ≥0.28 & <0.40

2 (Poor) ≥0.16 & <0.28

1 (Bad) <0.16

Table VII presents the quality estimation performance of the
obtained VIFp mapping solution, across the different subsets
from the three databases (i.e., H.264 vs. MPEG-4 Visual for
the ECVQ and EVVQ databases, Mobile vs. Tablet for the
LIVE Mobile database). The quality estimation performance
is analysed in terms of accuracy (using PLCC and RMSE),

monotonicity (using SROCC) and consistency (using OR).
The PLCC results show that across the different databases,
the quality estimation accuracy of the VIFp metric’s mapping
varies from 0.7818 in case of the EVVQ database to 0.9041
in case of the LIVE Mobile database. Across individual
subsets the estimation accuracy is better for the MPEG-4
Visual subset than for the H.264 subset both in case of the
ECVQ database (0.8208 vs. 0.8108), and in case of the EVVQ
database (0.8027 vs. 0.7527). Moreover the PLCC quality
estimation accuracy is better for the tablet subset that the
smartphone subset in case of the LIVE Mobile dataset (0.9484
vs. 0.8881). Similar conclusions can also be drawn in terms of
the RMSE quality estimation accuracy results, SROCC quality
estimation monotonicity results, and the OR quality estimation
consistency results.

V. CONCLUSIONS AND FUTURE WORK

Automatic multimedia quality assessment methods with
clear interpretations are increasingly needed, as multimedia
services are growing at a fast pace and users are becoming
more quality-aware. This paper has proposed a novel method-
ology for mapping the values of full-reference objective VQA
metrics to the subjective MOS scale, based on subjective data
from public VQA databases.

The performance of six different full-reference objective
VQA metrics was compared using data from three recent data-
bases, that provide subjective ratings for multiple compressed
test sequences with different content characteristics and resol-
utions. A mapping solution using the proposed methodology
was demonstrated and evaluated for the Visual Information
Fidelity pixel domain version (VIFp) full-reference objective
VQA metric, which was shown to present the best performance
among the compared metrics.

Future work will aim to improve the proposed methodology
by considering other mapping functions. The evaluation of
the mapping methodology will also be extended for additional
objective VQA metrics, and subjective data for test sequences
with different resolution, framerate and bitrate values.
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quality metrics and performance comparison using different databases,”
Signal Processing: Image Communication, vol. 28, no. 1, pp. 1–19,
2013.

[24] A. K. Moorthy, L. K. Choi, A. C. Bovik, and G. de Veciana, “Video
Quality Assessment on Mobile Devices: Subjective, Behavioral and Ob-
jective Studies,” IEEE Journal of Selected Topics in Signal Processing,
vol. 6, no. 6, pp. 652 –671, 2012.

[25] P. Hanhart, “VQMT: Video Quality Measurement Tool | Multimedia
Signal Processing Group (MMSPG),” Mar. 2013. [Online]. Available:
http://mmspg.epfl.ch/vqmt

[26] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale Structural
Similarity for Image Quality Assessment,” in Conference Record of
the Thirty-Seventh Asilomar Conference on Signals, Systems and Com-
puters, 2004, vol. 2, 2003, pp. 1398–1402.

[27] H. Sheikh and A. Bovik, “Image Information and Visual Quality,” IEEE
Transactions on Image Processing, vol. 15, no. 2, pp. 430–444, 2006.

[28] K. Egiazarian, J. Astola, N. Ponomarenko, V. Lukin, F. Battisti, and
M. Carli, “A New Full-reference Quality Metrics Based on HVS,” in
Proceedings of the Second International Workshop on Video Processing
and Quality Metrics, vol. 4, Scottsdale, Arizona, U.S.A., 2006.
[Online]. Available: http://enpub.fulton.asu.edu/resp/vpqm/vpqm2006/
papers06/270.pdf

[29] N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, and
V. Lukin, “On between-coefficient contrast masking of DCT basis
functions,” in Proceedings of the Third International Workshop on
Video Processing and Quality Metrics, vol. 4, 2007. [Online]. Available:
http://ponomarenko.info/vpqm07 p.pdf


