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Energy-Aware Mobile Learning:
Opportunities and Challenges

Arghir-Nicolae Moldovan, Stephan Weibelzahl, and Cristina Hava Muntean

Abstract—As mobile devices are becoming more powerful
and affordable they are increasingly used for mobile learning
activities. By enabling learners’ access to educational content
anywhere and anytime, mobile learning has both the potential to
provide online learners with new opportunities, and to reach less
privileged categories of learners that lack access to traditional
e-learning services. Among the many challenges with mobile
learning, the battery-powered nature of mobile devices and in
particular their limited battery life, stands out as one issue that
can significantly limit learners’ access to educational content
while on the move. Adaptation and personalisation solutions
have widely been considered for overcoming the differences
between learners and between the characteristics of their mobile
devices. However, while various energy saving solutions have
been proposed in order to provide mobile users with extended
device usage time, the areas of adaptive mobile learning and
energy conservation in wireless communications failed to meet
under the same umbrella. This paper bridges the two areas by
presenting an overview of adaptive mobile learning systems as
well as how these can be extended to make them energy-aware.
Furthermore, the paper surveys various approaches for energy
measurement, modelling and adaptation, three major aspects that
have to be considered in order to deploy energy-aware mobile
learning systems. Discussions on the applicability and limitations
of these approaches for mobile learning are also provided.

Index Terms—Adaptive mobile learning, energy measurement,
energy simulation, energy modelling, energy-aware adaptation.

I. INTRODUCTION

W ITH the rapid growth and development of the infor-
mation and communication technologies, e-learning

has seen a fast evolution over the past decade. Being a
viable alternative to traditional in-class learning, as well as
a cost-effective training solution even in difficult economic
circumstances, e-learning is increasingly adopted by educa-
tional, corporate and governmental worlds. In this context,
the worldwide e-learning services market is projected to
grow from $32.1 billion to $49.9 billion between 2010 and
2015 [1]. More recently, mobile devices such as smartphones
and tablets have become increasingly affordable and powerful.
Not only that sales of such devices are increasing fast with
smartphones already outpacing computer sales globally [2],
but mobile devices are projected to become the primary means
for accessing the Internet over the next few years [3].

Mobile technologies have also changed radically the online
learning landscape. Predominantly concentrated in a reduced
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number of selected countries just a couple of years ago,
mobile learning (m-learning) has been increasingly adopted
worldwide, with a global market for m-learning services
expected to grow from $3.2 billion in 2010 to $9.1 billion
by 2015 [4]. While e-learning users in developed countries
gradually shift from traditional desktop-based e-learning to-
wards mobile learning, users in developing countries may skip
e-learning completely in favor of m-learning [4].

E-learning was the first to facilitate learning through tech-
nology. Among the many advantages of e-learning, the inde-
pendence in time and space are considered to be important
characteristics. M-learning increased this independence to the
extent that learners can move their learning environment as
they move, to the extent that learning can be conducted
anytime and anywhere, across different contexts [5]. However,
along with the advantages brought by mobility, a number of
issues and challenges are posed by the multitude of users,
learning contexts and technologies involved. Apart from mo-
bile devices, mobile learning uses various other technolo-
gies such as, data transport technologies (e.g., WiFi, UMTS,
WiMAX, LTE, etc.), and media technologies (e.g., video,
audio, images, text, flash animations, etc.). An example sce-
nario of ubiquitous mobile learning, where learners can access
the educational content from various locations, using various
devices and wireless networks, is illustrated in Fig. 1. Ideally,
m-learning applications should be able to automatically detect
the different learning contexts and adapt to the needs of
different learners and their technological limitations, in order
to maximise their learning experience and learning outcomes.

The availability of sufficient battery power is a prerequi-
site for access to educational content and successful mobile
learning. The battery-powered nature of mobile devices and
in particular their limited battery capacity, still represents
one of the key limitations of mobile devices, despite the
significant effort that is being made to create low-power device
components, more energy efficient applications and protocols,
as well as new battery technologies. Low battery situations can
negatively impact the learning outcome, as well as learner’s
satisfaction with the m-learning application, since learners
may run out of battery power before completing a learning
activity or they may choose to postpone it in order to keep the
power for other activities. However, despite the fact that many
adaptive solutions have been proposed to overcome learners’
technological limitations, the available energy level has not
been considered as an input in the adaptation process.

A. Survey Novelty and Contributions

As indicated by a number of recent surveys (e.g., [6]–
[14]), energy efficiency receives increasing research attention
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Fig. 1. Ubiquitous mobile learning in heterogeneous wireless environments – generic architecture and example scenario.

in regard to a number of aspects related to wireless data
communications, from servers and data centers, to wireless
networks and mobile devices. Various energy-saving solutions
related to servers, communication links and mobile devices
can be considered in order to deploy green energy-aware
e-learning and mobile learning systems. However, from a
learning point of view, the highest benefit provided by such
systems would be to extend the learning time and support the
learners to maximise their learning outcome. In consequence,
out of the significant body of research on energy saving
in the area of wireless communications and mobile devices,
this paper narrows down the survey to solutions focused on
extending the mobile devices usage time.

Several recent surveys [10]–[14] address energy efficient
mobile computing and applications, and overlap in part both
between them and with this survey. The latest is due to the fact
that, since energy efficiency was not addressed by research
works from the area of mobile learning, this survey had to
rely as well on research works presenting general solutions
related to energy efficient mobile computing. However, there
are several different aspects that differentiate this survey from
the existing ones.

First, the existing surveys focus on general mobile device
energy management techniques [10], on particular applications
such as multimedia streaming [11]–[13], or on particular
scenarios such as wireless content distribution with mobile-
to-mobile cooperation [14]. In contrast, this survey targets
mobile learning systems and applications that involve wireless
delivery, processing and displaying of educational content that
can have different media types such as text, audio and video.

Second, this survey covers several different aspects that are
essential to be understood and addressed in order to propose,
test and deploy energy efficient mobile learning applications

and systems. These are energy measurement (i.e., external
measurement and built-in measurement) and simulation, en-
ergy modelling (i.e., battery, device and user modelling), and
energy-aware adaptation (energy saving). Significant more
attention is paid to the measurement and modelling aspects
which are key prerequisites to energy saving, but were not the
primary focus of the other surveys. While two other surveys
have also addressed in part energy modelling this paper
differentiates itself from these, through two novel approaches:

• Overviewing and discussing various energy modelling
concepts and different approaches for battery, device and
user modelling, while directing the reader to relevant
studies for more details.

• Rather than detailing individual research studies sur-
veyed, it summarises through tables their most important
findings with regard to energy consumption patterns of
mobile device components, use-cases, and mobile users,
which can be exploited to enable m-learning energy
modelling in particular, and improve energy modelling
in general.

Furthermore, since the energy saving aspect was the major
focus of the existing survey papers, we refer the reader to them
for more comprehensive review of various energy saving tech-
niques, while limiting this part to briefly summarising some
adaptive approaches, classifying them with regard to when the
energy is saved (i.e., during content delivery, computation or
displaying).

More importantly, this paper connects the energy mea-
surement, modelling and adaptation aspects to m-learning
by showing where each of these fits in a proposed generic
framework of an Energy-aware Adaptive M-learning System
(EAMLS). The applicability to mobile learning and the lim-
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itations of the presented energy measurement, modelling and
adaptation approaches are also discussed in detail.

B. Survey Structure

The rest of this paper is structured as follows:
• Section II sets the context of the paper by arguing for the

need of energy-aware mobile learning solutions.
• Section III aims to briefly familiarise the reader with the

current state of the art in the adaptive mobile learning
area and with the general architecture of an adaptive m-
learning system.

• Section IV proposes a generic framework of an Energy-
aware Adaptive M-learning System, and also briefly
shows where and how the various energy-related as-
pects (energy measurement, modelling and adaptation),
fit within this framework.

• Sections V, VI and VII survey, classify and discuss
various general approaches for energy measurement,
modelling and adaptation respectively, and further discuss
their applicability to mobile learning.

• Section VIII concludes the paper and provides a broader
overview on the energy measurement, modelling and
adaptation approaches that are most suitable for deploy-
ing energy-aware mobile learning systems, discussing
their opportunities as well as the challenges that will have
to be addressed.

II. THE NEED FOR ENERGY-AWARE MOBILE LEARNING

A. Evolving Devices and Users

With mobile technologies’ global adoption on a fast rise,
Internet and computing are arguably in the middle of a
mobile revolution age. Mobile devices are getting smaller and
more compact, with the latest devices packing high-resolution
touchscreen displays, dual/ quad-core CPU’s, powerful GPU’s
capable to render complex 3D games, increased storage space,
as well as HD video and photo cameras. They may also
have multiple wireless connectivity (e.g., Bluetooth, WiFi,
UMTS, LTE, etc.), and multiple sensing capabilities such
as GPS, accelerometer, gyroscope, proximity sensor, ambient
light sensor, compass, barometer and even eye-tracking [15].

Being more powerful and complex also means that mobile
devices are increasingly used by their users. Mobile devices
have become mobile work, learning and entertainment centres,
being used for communicating, web browsing, social media,
photos and videos capturing, music/ radio listening, multime-
dia playback/ streaming, GPS navigation, mobile payments,
playing games or using any of the hundreds of thousands
of apps available on various online app stores dedicated to
different platforms such as Android, iOS and Windows Phone.

B. Discrepancies between Users’ Power Requirements and
Batteries’ Capacity

Batteries, in particular Li-Ion batteries, are the “de facto”
energy source currently powering the mobile devices. Some
technological advances have been made in terms of improved
battery capacity density and charging cycles [16]. However,
revolutionary promises often found in the literature with regard

to battery capacities [17] and battery charging cycles [18]
orders of magnitude higher, combined with significantly faster
battery charging times [19], continue to fail to materialise in
the end products [20].

Moreover, the increasing capabilities and functionalities of
mobile devices combined with their increased usage, and
decreasing space left for battery, places additional strain on
the battery, so that mobile devices’ power requirements were
growing significantly faster than batteries’ capacity over the
past few years [21]. Additionally, despite next generation of
wireless networks such as LTE offering additional bandwidth
benefits, this usually comes at the expense of significantly
higher battery power drain [7], [22].

While users expect their device battery to last at least a
full day without recharging, currently the latest top-of-the-
line devices can achieve that only with relative moderate
usage as compared to their usage potential. For example,
the iPhone 4S smartphone has a battery rated at 6 hours of
Internet usage over 3G or 10 hours of video playback [23].
In practice however, the battery life will be considerably
reduced below these ratings when conducting more intensive
applications such as for example, playing videos streamed over
3G. Furthermore, the battery may also deplete faster due to
various problems with the device itself [24], or in time due to
the decreasing capacity as a result of the battery aging effect.
In this context, the short battery life continues to represent one
of the biggest factors contributing to users’ dissatisfaction with
mobile devices [25].

C. Evolving Mobile Learning

While initially mobile learning applications were predom-
inantly based on text and low-resolution images, more re-
cently these have evolved to include high quality multimedia,
graphics, as well as mobile educational games. In particular,
multimedia content has started to be increasingly used in e-
learning generally and mobile learning in particular, being
projected to increase exponentially over the coming years [26].

There are many forms of creating multimedia educational
content such as: lecture and lab sessions recordings, screen-
casts and video explanations, educational animations, etc.
Multimedia content has the advantage of providing a rich
display of information and can be used to further enforce the
understanding of the concepts being taught. More recently, as
video streaming was shown to be as well a viable alternative
solution for games delivery across different platforms, educa-
tors have started to see its potential for delivering educational
games and reach an increased number of learners [27].

However, delivering rich multimedia content to mobile
devices connected to wireless networks is a very resource
intensive task. Significant network bandwidth and computa-
tional power are required to decode, receive, and display a
multimedia clip. This in turn drains the device battery power
quicker, and leads to situations when the battery runs low
and the learner cannot finish the online learning session. The
learner needs either to charge the battery or to use another
device in order to be able to continue the learning session.
This interruption can be annoying, a source of frustration and
has negative effects on the learning process in general. In fact,
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short battery life is a major factor contributing to students’
decision to abandon mobile learning tasks [28]. There are
many other activities for which users may prefer to use their
last remaining battery resources, and the users might actually
consider postponing important mobile learning activities if not
provided with additional power resources.

In this context, we argue that learners’ device battery energy
is an important factor to be considered when deploying mobile
learning systems and applications.

III. ADAPTIVE M-LEARNING SYSTEMS

A. Overview

Mobile learning is an interdisciplinary field that covers
computer science and wireless communications, as well as
education [29]. The transfer of traditional learning into the
electronic environment is a complex task, and this requires
an interdisciplinary approach. As it has become clear that a
“one-size-fits-all” approach [30], cannot satisfy the specific
requirements of all learners and technologies, adaptation and
personalisation have gradually been brought to the forefront of
the research in the area of e-learning in general and m-learning
in particular.

The various adaptation and personalisation solutions that
have been proposed address aspects related to the learner
profile (e.g., goals, preferences, knowledge level, learning
styles, etc.), the learning context (e.g., location in time and
space, learner psychological properties such as engagement,
motivation, confusion, level of attention, etc.), and/ or tech-
nological aspects such as the mobile device characteristics
(device screen size and resolution, CPU speed, memory, I/O
interfaces, formats supported, etc.), and the network con-
nectivity (e.g., network type, coverage, available bandwidth,
etc.) [31].

Adaptation based on the learner profile has received much
research interest in the area of e-learning in general, with a
significant number of Adaptive E-learning Systems (AELS)
being proposed over the past decades [32], [33]. Adaptive
mobile learning builds on this knowledge, and extends it
with new solutions addressing issues characteristic to mobile
learning, mainly due to the high variety of mobile devices and
their characteristics, the variable network conditions and the
changing learning context.

Particular device-related adaptive m-learning solutions that
have been proposed include deploying device independent
user interfaces by using device independent languages (e.g.,
XML, HTML, SMIL, etc.) [34], or enabling delivery of inter-
active lecture recordings by using various multimedia adap-
tation techniques (e.g., transcoding, cropping, segmentation,
etc.) [35]. Wireless networks-related adaptive solutions include
various catching strategies to predict and download in advance
learning materials, in order to provide learners with access to
educational content when they lack network coverage [36], or
to reduce the waiting time associated with low-speed wireless
networks [37]. Adaptive solutions addressing the learning
context and in particular the learner location, make use of
technologies such as RFID for object tagging, GPS for outdoor
positioning, or WiFi-based positioning for detecting learners’
indoor location [38].

B. Generic Architecture
The generic architecture of an Adaptive M-learning System

(AMLS), which adapts to the learner’s profile and the learner’s
device is illustrated in Fig. 2. The main components of such a
system are the User Model, the Domain Model, the Adaptation
Model, the Device Model and the Adaptation Engine. While
many adaptive systems would follow this generic architec-
ture, this does not necessarily mean that all the adaptive
systems present all components. Instead, particular systems
may present one or more of these components, and they may
even have additional components depending on the type of
adaptation and personalisation being performed.

The User Model maintains information about the learners
such as: demographic data (e.g., name, age, gender, etc.),
knowledge level on the studied material, goals, preferences,
learning styles, evaluation results, etc. The user model is built
automatically based on information received explicit from the
user (e.g., through forms, questionnaires), or implicit through
monitoring.

The Domain Model stores the educational content and the
relationships between content items. It may be organised in a
hierarchical structure of concepts or learning objects. At the
lowest level, each learning object corresponds to a specific
piece of educational information (e.g., a text, an image,
a media clip, a podcast, a flash animation, etc.). Multiple
elementary concepts can be grouped in order to create more
complex learning concepts.

The Adaptation Model defines how the system adapts to a
particular User Model. It may comprise a set of condition-
action rules which express adaptive strategies based on the
learner characteristics and/ or the device characteristics. Var-
ious navigational, layout and content adaptation techniques
have been applied in order to adapt to each particular learner’s
needs [39]. Such techniques include link hiding, annotation
or disabling, and have the role to guide the learner towards
the relevant information, while hiding the information that is
inappropriate or non-relevant for the learner.

The Device Model stores information about the capabilities
and characteristics of the mobile devices used by the learners,
in form of device profiles. The profiles contain information
about the devices characteristics (e.g., device model and type,
screen size and resolution, CPU speed, memory, I/O interfaces,
formats supported, etc.). The device and its characteristics
may be detected by asking the user to fill a simple form
the first time s/he accesses the system, and by matching the
answers to one of the devices available in a database [40].
Alternatively this information can be retrieved from an online
device repository, based on user agents retrieved automatically
when learners access the server [41].

The Adaptation Engine performs the personalisation and
adaptation of the educational content and the learning process,
for example by selecting from the Domain Model the educa-
tional concepts that are suitable to a specific learner, based on
the adaptation rules.

IV. MAKING ADAPTIVE M-LEARNING SYSTEMS
ENERGY-AWARE

Extending adaptive m-learning systems and applications,
and making them energy-aware has the potential to signif-
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Fig. 2. Generic architecture of an Adaptive M-Learning System (AMLS).

icantly increase the learning outcome as well as learners’
satisfaction and experience with m-learning. However, due to
the multitude of learners and technologies with different char-
acteristics, a complex multi-dimension approach is required.
There are three main dimensions that need to be considered
in order to deploy energy-aware mobile learning systems and
applications. The first refers to what data is collected, as well
as how this is collected and stored. The second dimension is
concerned with data reasoning, or how the raw data is analysed
and processed in order to have a good knowledge about
learners’ available battery energy and their energy needs. The
third dimension is concerned with the energy-saving actions
that can be taken for supporting learners to complete their
learning activity or to increase their learning time.

A generic framework of an Energy-aware Adaptive M-
learning System (EAMLS), which extends the AMLS archi-
tecture with new components characteristic to the three dimen-
sions is presented in Fig. 3. While the framework illustrates
various sources of information and energy modelling and
adaptation techniques, the list is not an exhaustive one and
has more of an illustrative purpose. Furthermore, one system
or another may consider only few sources of information and
modelling/ adaptation techniques.

A. Data Collection for Energy Modelling
Mobile learning involves various learners with different

needs and preferences, using different mobile devices to access
educational content over wireless networks with different
properties. There are a multitude of factors that can influence
a learner’s available battery energy resources, as well as his
energy requirements. Relevant information about these factors
is required in order to accurately predict learners’ energy
needs, and to apply energy saving actions for supporting them
in maximising their learning outcome. A complete mobile
learning energy characterization cannot be made without con-
sidering at the same time information about the learners, the
mobile learning application, the mobile devices used, as well
as the network connectivity.

To access the educational content, learners may use a variety
of mobile devices with different characteristics and different
battery capacity. Static information about the learner device
characteristics (e.g., device manufacturer, name, CPU speed,
network interfaces, media formats supported, Java/ HTML/
XML support, security, etc.), could be automatically retrieved
from device databases such as WURFL (Wireless Universal
Resource FiLe) [42], based on device user agents. Other
relevant but dynamic information such as for example the run-
ning applications, CPU and memory usage, wireless interface
states, etc., can be gathered from the Operating System and/ or
through tracing the system calls of the applications [43], and
delivered to the EAMLS server through a feedback module.
Furthermore, both static information (e.g., battery model, ca-
pacity, chemistry, optimum charging/ discharging parameters,
etc.), and dynamic information (e.g., battery level, voltage,
temperature, current drain, etc.), about the battery could be
retrieved through the smart battery interface [44] and deliv-
ered to the server via the feedback module. Various energy
measurement and to less extent energy simulation solutions,
as well as their applicability in EAMLSs are presented and
discussed in Section V.

The energy consumed by the mobile device to receive the
learning content can vary significantly based on the content
type, the protocol used for transmission, as well as the wireless
network type and its conditions. Relevant information about
the wireless network may include the technology type, cover-
age, capacity, latency, signal strength, available bandwidth, etc.
Various techniques have been proposed for measuring the end-
to-end available bandwidth based on sending probing packets
to the client [45]. One example is to estimate the available
bandwidth by analysing how the time distance between two
probing packets changes during their transmission to the
receiver. Estimating the bandwidth of the wireless connections
is significantly more difficult than for wired connections.
Wireless networks share the physical medium and their ser-
vice is highly affected by interferences and the unreliability
of the wireless signal due to fading, reflections, refraction,
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absorption, etc. While the bandwidth estimation techniques
should provide accurate values, it is also important for the
estimation to be done in a non-intrusive way (i.e., low probing
traffic), and considerably fast especially for applications that
have critical time response requirements [46].

Information about the learning applications such as for
example the media content types used, the maximum delay
and the throughput required for providing a certain quality, are
also necessary in order to make a good compromise between
energy saving and learners’ Quality of Experience (QoE) [47].

Learner preferences could also be considered as an impor-
tant input in the energy-aware adaptation. Information with
regard to, e.g., learning styles, preferred media types for
presenting the learning content, quality preferences, energy
awareness, etc., could be collected for example by asking
learners to fill in some questionnaires at the time of registration
with the m-learning system. Furthermore, in order to be
able to predict learners’ future energy requirements, various
information needs to be collected over time with regard to their
learning schedule, their device charging habits, their roaming
across different locations, etc.

B. Energy Modelling

Characterising the energy consumption of mobile learners is
fundamental in order to be able to predict if and when they will
run out of power before completing their learning activity, and
to efficiently manage the available energy provided by their
mobile device battery. This requires energy models to be build
and integrated with the adaptive m-learning system.

Energy modelling can take as input various data collected
about users, applications, devices and/ or networks. Due to
the multitude of mobile learning scenarios and the complex
interaction between learners and technologies, selecting the
most relevant information and using it as input in energy
modelling is a complex process. While very accurate energy
models may need to consider many parameters, in practice
usually only a limited number are considered. This is due to
the trade-off between the accuracy and the complexity of the
models, in order not to spend undesirable levels of energy
with collecting, processing and sending the required data to
the system.

There are two main aspects that need to be considered for
building energy models: (i) modelling the energy provided by
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the device battery, and (ii) modelling the energy consumption.
The first aspect is necessary in order to be able to accurately
estimate the learner’s available battery energy at different
moments in time, and how much of this can be actually used.
The batteries powering the mobile devices, mainly Lithium-
based batteries, are complex energy sources [16]. The battery
capacity decreases over time due to the ageing effect as well as
with every charge-discharge cycle, while the energy released
by the battery to the device is influenced by a number of
factors such as the discharge current and the temperature.
All these aspects need to be considered in order to have an
accurate battery modelling.

Energy consumption modelling is essential in order to
accurately estimate the energy needed by the learners for
completing specific mobile learning activities. This involves
many different aspects that would need to be considered such
as modelling the energy cost of applications and the energy
consumption of mobile devices and their components under
different workloads. However, predicting learners’ future en-
ergy would also require modelling learner related aspects such
as their device usage patterns, battery charging/ discharging
patterns, mobility patterns, etc. Research work related to
energy modelling is presented and discussed in more details
in Section VI.

C. Energy-aware Adaptation

Apart from being able to predict when learners will need
additional energy resources in order to complete their learning
activities, an energy-aware m-learning system should be able
to take adaptive decisions in order to manage the available
battery energy more efficiently.

Therefore the Adaptation Model is extended with new rules
describing various strategies for saving specific amounts of
battery energy based on information provided by the Energy
Model. Energy saving strategies may include among others
content adaptation, dynamic voltage and frequency scaling,
computation offloading, adapting the wireless traffic flow or
sending the data over a more energy efficient network in
range, reducing the screen brightness, etc. For example, the
system may decrease the technical quality of the learning
content or present this with alternative media types which
are less energy expensive to receive and compute. Having
information available about multiple wireless networks that
are frequently accessed by a learner, the system may compile
a list of alternative solutions for transmitting the data, and send
a command to the device or a recommendation for the learner
to switch to a more energy efficient network in range. Specific
energy-saving techniques that have been proposed and their
applicability to mobile learning are presented and discussed
in Section VII.

The Adaptation Engine (AE) is extended to include mecha-
nisms to continuously compute and monitor learners’ available
battery energy and their energy needs. This is done based on
the energy models stored and continuously updated by the
system, and additional real-time information. The AE should
also integrate mechanisms for selecting and applying energy-
saving strategies when a lower available energy than the one
needed by the learners is predicted. The selection among

the many available energy-saving techniques is a complex
task that would consider different factors such as the amount
of energy needed to be saved, learner preferences, context
dependent factors such as learner location, etc.

V. ENERGY MEASUREMENT AND SIMULATION

To efficiently manage the energy provided by learners’
mobile device battery, good knowledge about the remaining
battery capacity, as well as good understanding of where
and how the energy is consumed by the device is required.
Measuring the device energy consumption under different
workloads is the most basic way to evaluate the energy cost of
applications and device components. By integrating pre-built
energy models, simulators offer a quick and cheap alternative
for testing energy saving theories without having to implement
complex energy measurement set-ups.

A. Energy Consumption Measurement

Rechargeable batteries powering the mobile devices supply
a voltage that decreases around a nominal (average) value
(i.e., 3.7V for Lithium-Ion batteries), as the battery charge
depletes [16]. Using a number of conditioning circuits such
as DC/DC converters, reference regulators and capacitors,
the voltage supplied by the battery is regulated, converted
and distributed to the various components depending on their
voltage supply requirements [48].

Energy measurement can be done at a device-level or at
a component level. The instantaneous power consumption
of the mobile device can be determined by measuring the
battery voltage and the battery current draw and multiplying
the two measures. The energy consumed by the device during
a specific learning activity can be determined by multiplying
the average power consumption with the time duration of that
activity.

Similarly, the energy consumption of individual components
could be measured if their supply voltage and current draw
can be measured. Alternatively, the energy consumption of
individual components can be estimated by running a num-
ber of benchmarks and comparing the device total energy
consumption between different carefully selected cases. As
the contribution of different components in the overall energy
consumption may vary significantly and some tasks have very
short execution times, accurate and fine-grained measurements
are necessary in order to provide relevant input data for
EAMLS’s energy modelling and energy-aware adaptation.
There are two main ways in which the device energy con-
sumption can be measured: externally to the device by using
additional hardware equipment, or built-in through software
access to measurements provided directly by the battery.

1) Device-external Energy Measurement: Device-external
energy measurement is an intrusive approach that requires
physical access to the mobile device and the use of external
equipment for measuring the device voltage and current sup-
ply. A number of different current measurement approaches
such as current shunt, current mirror, current probe and charge
transfer are presented in [48].
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Fig. 4. Generic set-up for external measurement of mobile devices energy
consumption, using the low-side shunt resistor method.

Current shunt methods are the most popular in the literature,
and are based on measuring the voltage drop across a low-
value and high-precision shunt resistor (e.g., 0.01Ω resistance,
±1% tolerance), inserted either on the supply wire (high-side),
or on the ground wires (low-side). The high-side approach
offers the advantage that one can isolate the current draw
of specific device components, as it overcomes the risk for
current leakage in other components of the system [49]. Its
disadvantage is represented by high common-mode voltages
being present on both sides of the shunt in some situations,
which may damage the measuring equipment if not provided
with high voltage input protection. The low-side approach
eliminates the need to account for potential high common-
mode voltages, at the expense of less accurate measurements
if there is current leakage in the system.

Voltage measurement is usually done using software-driven
hardware equipments, which enable to save the data at high
sampling rates for further processing. Particular examples
of equipments that have been used in the literature range
from expensive National Instruments data acquisition systems
(DAQ) [50], which enable measurements with up to 24-
bit resolution (1.67 million independent values), at sampling
frequencies raging from tens of kHz to MHz, to significantly
more affordable but less accurate Arduino boards (10-bit
resolution, at maximum 10kHz) [51] (see Table VI).

Fig. 4 illustrates the generic setup for measuring the power
consumption of a mobile device, using the low-side current
shunt method. Two separate measurement equipments or
preferably two separate inputs of the same equipment are used
for measuring the voltage drop across the battery terminals
(VBattery), and across the shunt resistor (VShunt), at a specific
sampling frequency.

Having the shunt resistor value RShunt known, the device
power consumption P [n] corresponding to a specific sample
n, as well as the device overall energy consumption E for a
time duration between the n1 and n2 measurement samples,
are estimated as in (1) and (2) respectively.

P [n] � VShunt[n] · VBattery [n]

RShunt
(1)

E � 1

n2 − n1 + 1

n2∑
k=n1

P [k] (2)

While the power consumption of individual components
could also be measured directly by inserting shunt resistors on
their power supply rails, this is possible only with prototyping
or open source devices such as Openmoko Neo FreeRunner,
for which place-holders for the shunt resistors have been
specially designed in advance [52]. A less intrusive method
to measure the current consumption without the need to cut
the supply wires would be to use current probes such as
for example the AIM I-prober 520, which enables measuring
the current passing through wires or PCB tracks, as small
as 10mA, with an error smaller than ±1% and at sampling
frequencies of up to 5MHz [53]. However such probes cost
hundreds of dollars and they connect to additional expensive
equipments such as oscilloscopes. To eliminate the impact
of the battery on the device energy consumption measure-
ments a solution is to power the device from an external
source [52], such as for example the Agilent 66319D, a
dedicated commercial equipment for testing battery-powered
mobile devices, which integrates data logging and battery
emulation functionalities [54].

2) Built-in Energy Measurement: In order to be able to
accurately measure and monitor the device energy consump-
tion, software applications running on the mobile device
need to have access to low-level battery information, such as
the battery State-of-Charge (SoC), voltage, current draw and
temperature [55].

Important steps towards enabling more accurate software
measurements are taken with the increasing adoption and stan-
dardisation of smart batteries. Smart batteries are rechargeable
batteries commonly found in portable devices, which integrate
additional circuits aimed “to provide detailed information to
the host device about its state and history so that optimum
charging and discharging can be achieved” [56].

Currently there are two specifications describing such bat-
teries: the Smart Battery System (SBS) [57] and the Battery
Interface (BIF) [58]. SBS dates back to 1995 and consists of
several components describing the data communicated by a
smart battery, the smart battery charger, the SBS Manager used
for controlling multiple smart batteries in the same system,
and the System Management Bus (SMBus) over which the
communication between the various components and the host
device is made.

BIF was recently introduced by the Mobile Industry Proces-
sor Interface (MIPI) Alliance, with the aim to enable wider
adoption of smart batteries, as well as to reduce their cost
and environmental impact. As opposed to SBS, BIF targets
mobile devices specifically, and uses a single wire for data
communication instead of two. BIF also offers a number of
additional features such as fast battery insertion/ presence/
removal detection, support for legacy and low-cost non-smart
batteries, advanced battery authentication and temperature
monitoring for enhanced security and safety, and a scalable
data structure with software access to all battery data and
functions [44].
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Fig. 5. BIF architecture [44] extended with the possible communication
between an EAMLS and a smart battery-equipped mobile device.

Fig. 5 presents the BIF architecture, and how an EAMLS
could communicate with a smart battery-equipped mobile
device in order to retrieve information about the battery and
real-time energy measures. The BIF Master, which can be
placed in the power management integrated circuit (PMIC)
of the mobile device, communicates with the BIF Slave over
the single wire communication line (BCL) using the BIF
protocol. The value of the RID pull-down resistor which is
connected between the battery positive (VBAT) and negative
(GND) terminals, is used to determine the battery presence, if
the battery is smart or low-cost, as well as certain information
about the battery chemistry and electrical characteristics.

For a smart battery, additional information is stored in
the BIF data structure. This may include generic battery
identification information (e.g., manufacturer ID, product ID,
etc.), information about the battery functions (e.g., function
version, function type such as BIF-predefined or manufac-
turer specific), capabilities (e.g., monitoring the battery SoC,
voltage, current, temperature, authentication, etc.), as well as
information about the battery and its field usage history stored
as data objects (e.g., battery model, capacity, chemistry, opti-
mum charging and discharging parameters, number of charge/
discharge cycles, battery ageing information, etc.) [44]. This
information can be accessed by the EAMLS client side appli-
cation through the smart battery software driver, and passed
to the server for further processing.

B. Energy Simulation

Energy simulation software offers a quick way to assess the
impact of various factors on energy consumption and to test
theories without the need to have access to various mobile
devices, nor having to implement time-consuming and com-
plex measurement set-ups. Similarly to energy measurement,

simulations can be carried out at a device or component level,
depending on how complex and detailed the energy models
implemented by the software programs are.

Examples of open source or freeware software packages for
simulating mobile devices’ energy consumption during wire-
less transmissions include the Energy Model for ns-21 [59], the
Energy Framework for ns-32 [60], and the Energy Framework
for OMNeT++3 [61]. Additional extensions for ns-2, including
an analytical battery model that takes into consideration non-
linear battery characteristics such as the recovery effect and the
rate capacity effect [62], as well as legacy power management
functions defined by the IEEE 802.11 wireless networks
standard [63], have also been proposed.

A number of commercial solutions such as Altera Pow-
erPlay [64] and Synopsys Power Compiler [65], are also
available for simulating and optimizing the dynamic and static
energy consumption of integrated circuits such as FPGAs.
However, these are mainly targeted at integrated circuit design-
ers for improving hardware design. For optimizing the energy
consumption of software applications in general and mobile
learning applications in particular, more suitable solutions
would be for example the ARM Development Tools [66]. Ap-
plication processors and system-on-chips based on the ARM
architecture are currently the most widely used in mobile
devices. Furthermore the development tools enable developers
to evaluate the impact of their application on power consump-
tion, by integrating models that correlate power consumption
measurements to the processor usage statistics.

With the increasing integration as a result of decreasing
size in the semiconductor manufacturing process and the lack
of heatsinks in compact mobile devices, the static energy
consumption due to leakage currents increases, and has to
be increasingly considered along with the dynamic energy
consumption characteristic to actual utilisation. A freely avail-
able software that can be used to estimate the static power
consumption of system-on-chips through accurate thermal
modelling is HotSpot [67].

Freeware and commercial solutions for battery simulation
are also available. Dualfoil is a freely available Fortran
program that can be used to simulate how the batteries
properties change depending on the load profile [68]. The
program includes models for various battery chemistries such
as lithium-metal, lithium-ion, sodium-ion, and nickel metal-
hydride. While the models are very accurate, using the pro-
gram requires advanced knowledge of the batteries to be
modelled, as the user needs to appropriately set tens of battery-
related parameters such as for example, the number of current
changes, the temperature of the battery and of the ambient
air, the thickness of the electrodes, the resistance of the anode
and cathode films, the density and columbic capacity of the
positive/negative materials, etc. The most notable example of a
commercial battery simulation solution is Battery Design Stu-
dio, which integrates over 15 electrochemical and equivalent
circuit battery models [69].

1The Network Simulator - ns-2: http://isi.edu/nsnam/ns/.
2ns-3: http://www.nsnam.org/.
3OMNeT++ Network Simulation Framework: http://www.omnetpp.org/.
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C. Applicability to Mobile Learning

The main applicability of device external energy measure-
ment is that this allows collecting more accurate and high-
resolution data, thus enabling building more accurate battery
and device energy modelling of learners’ mobile devices.
However, these require having physical access to learners’
devices which is hardly the case with mobile learning. Even
if it would be possible to gain this access, it would still not
be feasible to create or validate the models for the multitude
of devices learners may use. Such an approach will add
significant monetary cost in the deployment of the m-learning
system. Apart of the cost due to the measurement equipments
that could cost hundreds to thousands of dollars, a lot of
additional work will be required for collecting and analysing
the data used for building the energy models. Furthermore,
since these solutions do not enable continuously collecting
measurements from the learners, the models built solely on
experimental data would not be as accurate when applied to
real-life mobile learning scenarios.

The main advantage of built-in energy measurement ap-
proach is that it enables automatic, non-intrusive and real-time
data collection, which can be used for continuously updating
the EAMLS energy models and as an input for the energy-
aware adaptation. The main limitation of this approach comes
with mobile devices’ fragmentation characterised by multiple
manufacturers with competing interests, and multiple Oper-
ating Systems and devices with different characteristics and
capabilities. While the power consumption can be measured
with reasonable accuracy for some devices, for others it is
not possible due to technological limitations and/ or restricted
access of applications to battery measures. For example, the
Nokia Energy Profiler [70] is a mobile application and API
for Symbian S60 devices, which enables displaying, saving
and sending to other applications information such as the
battery voltage, current and power consumption, CPU activity,
RAM usage, WiFi/ cellular network speed and signal strength,
at a 4Hz sampling rate. As opposed, other devices such as
for example the increasingly popular ones based on Apple
iOS and Google Android, provide access only to a limited
number of battery measures (e.g., current consumption not
provided along with battery SoC, voltage, and temperature).
Furthermore, it is often the case that the measures provided
by the smart batteries are averaged over specific durations
(e.g., 10, 30 or 60 seconds), before being passed to the
applications [71]. Therefore, accurate real-time measurements
are not possible for such devices.

Despite the lower accuracy as compared to external energy
measurement solutions, built-in solutions are more suitable
for mobile learning, as they can be easily integrated with
EAMLS for continuously collecting input data for modelling
the learners’ energy consumption and applying energy saving
solutions. Furthermore, by availing of real-world data even at
lower resolution, more accurate energy models can be built
and more tailored adaptation strategies can be applied.

The main advantage of energy simulations is that these
enable a relatively fast and inexpensive way to evaluate
energy saving strategies and to assess the energy impact of
various factors related to the wireless communication, the

battery and/ or the device. Network simulators also enable
assessing the energy impact of factors that may be otherwise
difficult to control in real experiments (e.g., interferences,
amount of packets retransmissions, learner mobility, signal
strength, etc.), or to overcome limitations due to the lack
of access to technologies. For example, assessing the energy
consumption of a learner’s device when retrieving the same
educational content over different wireless technologies such
as WiFi, UMTS and LTE, could be done without having
access to each of these technologies, to mobile devices and
measurement equipments. This approach however, presents a
number of limitations and drawbacks, including: the high cost
of commercial simulation applications, the simplicity of some
models that do not reflect real measurements, as well as the
requirement for the user to have a good energy modelling
understanding and programming knowledge.

Therefore, while simulations are suitable for testing energy
saving solutions in the early stages of designing energy-
aware mobile learning systems and applications, they cannot
replace actual energy measurements, which are necessary for
validating these solutions in real-life usage scenarios.

Table I summarises the applicability of energy measurement
and simulation approaches to mobile learning as well as the
limitations that may arise.

VI. ENERGY MODELLING

In the context of mobile computing in general and mobile
learning in particular, energy modelling is concerned with
accurately estimating the available battery energy that can be
spent by a user, as well as predicting when the user will deplete
this energy. Since having a good understanding of energy
consumption and good energy modelling are key ingredients
towards deploying efficient energy saving strategies, these
aspects are discussed in more details. However, accurate
energy modelling and prediction is not a trivial task, since this
needs to consider many aspects related to batteries’ behaviour,
the energy consumption of mobile devices and their individual
components, as well as the energy consumption patterns of the
different users. Battery modelling [72] can be integrated with
the battery management systems for accurate estimation and
reporting of the battery state-of-charge, as well as for optimum
charging in order to prolong batteries’ life [73]. EAMLSs
need also to integrate energy models in order to estimate the
available battery charge when accurate values are not provided
by the battery itself, as well as the remaining usage time in
order to be able to efficiently manage the learners remaining
battery energy.

A. Energy Modelling Concepts

Accurately estimating the available battery capacity and
predicting the remaining usage time on this energy is a
complex task, due to the nonlinear battery behaviour, and
the time-varying nature at which mobile devices draw power
from the battery. The total charge released by the battery is
highly influenced by the physical and chemical characteristics
of the battery, as well as by a number of nonlinear battery
effects [74].
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TABLE I
APPLICABILITY OF ENERGY MEASUREMENT AND SIMULATION APPROACHES TO MOBILE LEARNING.

Approach Applicability Limitations

Device-external
energy

measurement

• Collecting high-resolution measurements for offline build-
ing of more accurate m-learning energy models.

•
•
•

• Difficulty to build generic energy models applicable to the
multitude of devices used by mobile learners.

• Added monetary cost in the development of EAMLS.
• Cannot be used for collecting energy measurements during

real-life mobile learning scenarios.

Device built-in
energy

measurement

• Collecting energy measurements during real-life usage of
m-learning systems for online building and updating of the
m-learning energy models.

• Can be easily integrated with EAMLS.
• Real-time evaluation of energy saving strategies during real-

life m-learning scenarios.

• Built-in energy measurements not available for all the
devices used by mobile learners.

• Lower measurement accuracy and resolution.
• Added energy consumption with continuously monitoring

and reporting to the EAMLS server of the battery measure-
ments.

Energy
consumption

simulation

• Rapid testing of energy saving strategies in a variety of
simulated mobile learning scenarios using a variety of
technologies.

•

• The need for good expertise due to the difficulty of using
simulators.

• Not very accurate real-life like energy models are build in
simulators.
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Fig. 6. Non-linear battery effects: (a) Rate capacity effect; and (b) Recovery
effect [75].

Fig. 6 illustrates two important nonlinear battery effects: the
rate capacity effect and the recovery effect [75]. Rate capacity
effect consists in part of the battery capacity being lost at
higher discharge rates C (i.e., C = 1000mA for a battery with
a 1000mAh rated capacity). The recovery effect as opposed,
consists in part of the battery charge being recovered by the
battery during idle periods.

Temperature is another factor affecting the battery per-
formance. Above room temperature the released capacity
increases with the temperature due to higher chemical activity
and decrease of the battery internal resistance [76]. Below
room temperature the released capacity decreases with the
temperature decrease, while prolonged extreme low and high
temperatures can permanently affect the battery performance.

Batteries loose part of their capacity during long periods
of inactivity. However, this is not an important concern for
energy modelling targeting mobile devices, since these are
used almost continuously and they are usually powered by
lithium batteries, which loose little capacity during inactivity.
A more important effect to be considered is the capacity fading
consisting of the battery capacity gradually decreasing from its
original value with the age and with every charge-discharge
cycle, due to reactions taking place inside the battery such
as for example the electrolyte decomposition, which in turn
increase battery’s internal resistance [77].

There are three aspects that are important to be considered
in order to have a more accurate and generic energy model:
the battery state-of-charge, the battery state-of-health and the
remaining run-time. While the first two reflect the available
battery energy, the last is an indication on how much time the
user has left depending on the activity type.

1) Battery State-of-Charge (SoC): Battery SoC represents
the amount of charge present in the battery relative to the
maximum possible charge. Making abstraction of the battery
operating efficiency and ageing, the SoC can be expressed
mathematically as in (3) [78].

SoC =
Qreleaseble

Qnominal
· 100 [%] (3)

where, Qreleaseble is the released capacity of an operating
battery when this is completely discharged, and Qnominal is
the nominal battery capacity as provided by the manufacturer
and usually expressed in ampere-hours (Ah).

Since the maximum releasable capacity of the battery
gradually decreases from the nominal value with the battery
ageing, the SoC estimation needs to be gradually adjusted to
account for these changes. Various solutions for estimating
the battery SoC are presented and discussed in [79] and [80].
The advantages and disadvantages of various SoC estimation
methods are summarised in Table II.

A complete discharge-charge test under controlled condi-
tions is the most reliable method as it does not depend on
the battery state-of-health [79]. However, this is an offline
and time consuming method that cannot be used for real-time
applications and thus it has little applicability in EAMLSs.
Online methods that are more suitable for estimating the
SoC of mobile devices batteries during the device utilisation,
and thus have a higher potential applicability for EAMLSs,
include direct measurements, coulomb/ ampere-hour counting,
or adaptive solutions.

The most simple direct measurement method involves mea-
suring the battery voltage and estimating the SoC based on a
lookup table expressing the relationship between the two [81].
However, the battery voltage is highly affected by factors
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TABLE II
SUMMARY OF SOC ESTIMATION METHODS [79], [80].

Method Advantages Disadvantages

Discharge Test
• Easy and accurate;
• Independent of SoH.

• Offline, time intensive, loss of energy;
• Modifies the battery state.

Direct
Measurement

• Online, easy.
•
•

• Performance varies with battery chemistry, SoH, temperature;
• Requires lookup tables with V-SoC/ EMF-SoC relationships;
• Need long rest time.

Coulomb
Counting

• Online, easy;
• Accurate if enough recalibration points and

good current measurements are available.

• Needs accurate current measures and regular recalibration;
• Needs model for losses and initial SoC.
•

Fuzzy Logic • Online, robust. • Memory expensive in real world applications.

Neural
Networks

• Online, ability to learn and represent non-
linear relationships from the data.

• Needs training data of a similar battery;
• Expensive to implement.

Kalman Filters

• Online, dynamic, flexible, accurate.
•
•

• Computation intensive, needs a good battery model;
• Difficult to implement filtering algorithm that considers all

features (e.g., non-normalities and nonlinearities).

such as temperature, discharge current, or battery ageing.
Furthermore, different battery chemistries present different
voltage profiles, with some chemistries such as for example
lithium-iron-phosphate exhibiting extremely flat profiles [82].
Since many of the assumptions made for voltage modelling
do not hold for batteries with flat voltage profiles [83], for
such batteries the voltage can only indicate the complete
battery discharge when a steep voltage drop occurs, while
differentiating between different intermediate SoC levels based
on the voltage alone is not possible.

A more accurate direct measurement method consists of es-
timating the SoC based on the electro-motive force (EMF), the
driving force of a battery for providing energy to a load [80].
While EMF is less affected by temperature and battery ageing,
this approach requires a detailed lookup table describing the
EMF-SoC relationship, as well as an accurate solution to
compute the EMF. One possible solution is to estimate the
EMF based on the battery voltage, current and impedance,
while differentiating between the linear and hyperbolic regions
of the battery discharge curve [84].

The solutions based on coulomb/ ampere-hour counting,
involve measuring the total current that flows in and out of
the battery, and integrating this current in order to estimate
the battery SoC. The SoC can be expressed mathematically as
in (4) [79].

SoC(t) = SoC(0)− 1

Qnominal

t∫
0

I(t) dt (4)

where, SoC(0) and Qnominal represent the initial SoC and
the nominal battery capacity respectively, while I(t) represents
the measured current (positive current when the battery is
discharged and negative when charged).

The coulomb-counting method is suitable for batteries with
high charge-discharge efficiency such as lithium batteries,
and is widely used for portable electronics thanks to its
computation simplicity. However, it also presents a number

of disadvantages. In order to accurately estimate the battery
SoC, accurate and fine-grained current measures are needed,
while the initial state-of-charge SoC(0) needs also to be
known or accurately estimated through a separate method.
Fine-grained current measurements are usually not possible
through built-in solutions, since smart batteries usually av-
erage the current and report the values at specific intervals,
while current measurement errors may further affect the SoC
estimation. Furthermore, various factors affecting the battery’s
maximum releasable capacity such as the temperature effect,
rate capacity effect and the battery ageing, need also to be
considered for accurate SoC estimation.

To overcome its limitations coulomb-counting is often
combined with direct measurement methods. For example
Codeca et al. [85], have proposed a mixed solution that makes
use of voltage measurement and knowledge about the V-SoC
relationship, in order to correct the estimation errors of the
coulomb-counting approach. By combining coulomb-counting
with EMF measurement, Pop et al. [86] have shown that the
battery SoC and remaining-run-time can be determined within
1% accuracy.

The adaptive solutions [87] aim to improve the accuracy
of the SoC estimation by accounting for the unpredictable
behaviour of batteries and of the users. The solutions make
use of direct measurements and/ or coulomb-counting, as well
as computation intelligence techniques such as Fuzzy logic
(e.g., [88], [89]), artificial neural networks (e.g., [88], [90],
[91]), or Kalman filters (e.g., [91], [92]). Due to their self-
learning ability, the adaptive systems are capable to draw
useful conclusions from ambiguous or imprecise data with a
multitude of variables, and in this way to respond to the time-
varying behaviour of batteries and users. While these solutions
usually enable a higher SoC estimation accuracy, this comes
at the cost of significant higher computation complexity.

2) Battery State-of-Health (SoH): Battery SoH represents
the condition of the battery with regard to its ability to hold
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and deliver a specified charge as compared to an identical new
battery and can be expressed mathematically as in (5) [78].

SoH =
Qmax

Qnominal
· 100 [%] (5)

where, Qmax represents the maximum capacity that can be
released by the fully charged battery, and Qnominal is the
nominal battery capacity specified by the manufacturer.

The SoH is close to 100% for a new battery, since a
Qmax approximately equal to Qnominal can be released if
making abstraction of nonlinear effects affecting the battery
performance during its operation.

However, batteries gradually loose part of their nominal
capacity due to the ageing effect as well as when subjected
to abusive treatment (e.g., extreme operating temperatures,
complete frequent discharges, etc.). Furthermore, different
batteries have different characteristics and different mobile
users use their device batteries differently. Therefore, accu-
rately estimating the battery SoH cannot be made without
considering both information about the battery behaviour and
its usage history.

Battery SoH is often addressed alongside battery SoC in
adaptive solutions for more accurate estimation of the battery’s
actual capacity. In general, these solutions take as input
information about the battery characteristics (e.g., nominal
capacity, chemistry, physical properties, etc.), the changes that
occur in the battery with ageing (e.g., through impedance spec-
troscopy [93]), and/ or charge/ discharge history (e.g., through
charge-discharge cycle count, coulomb count [78], [94]), and
estimate the battery SoC and SoH by using techniques such as
Fuzzy logic, artificial neural networks, and/ or Kalman filters.

An example of an alternative solution aimed at embed-
ded systems with low computation power was proposed by
Mircea et al. [95], which estimates the battery SoH based on
stored information about the maximum battery capacity as a
function of the charge/ discharge cycles and making use of
curve modelling and polynomial regression.

3) Remaining Run-Time (RRT): Remaining run-time can be
defined as the duration of time for which the battery can supply
current to the mobile device before it will stop functioning.
For a constant current load and making abstraction of the
nonlinear battery effects, RRT can be obtained by dividing the
battery releasable capacity (Qreleaseble) measured in ampere-
hour (Ah) to the current I measured in ampere (A) [86], as
in (6).

RRT =
Qreleaseble

I
[h] (6)

However, constant current loads rarely occur in real mobile
device usage scenarios, which are rather characterised by
highly variable current loads due to variations in terms of
the device utilisation both in time and between different users.
Due to the nonlinear battery effects such as rate capacity effect
and recovery effect, the released capacity by the same battery
can greatly vary between two scenarios with different variable
current loads (also known as load profiles). During intervals
with high current loads part of the maximum releasable
capacity is lost, and the loss is partially recovered during idle
intervals or intervals with low current loads.
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Fig. 7. Explanatory figure illustrating the performance of a mobile device
lithium-ion battery for different load profiles (note the variation in terms of
battery run-time RT, and released capacity Q). For each profile the battery
with a nominal capacity of 640 mAh, was completely discharged from fully-
charged to the cut-off point [96].

For example, Rakhmatov and Vrudhula [96] have conducted
a number of experiments in order to assess how the run-
time and the released capacity of a mobile device lithium-
ion battery vary when discharged at various load profiles.
Summarizing some of their results, Fig. 7 shows that simply
by changing the order of four activities with different constant
current loads (i.e., 1011, 814, 518 and 222mA) and different
durations (i.e., 10, 15, 20 and 15 minutes respectively), the
run-time of a battery with a 640mAh nominal capacity can
vary between scenarios with as much as 11 minutes, which
translates in a 20% releasable capacity loss between the two
best and worst performing scenarios. However, note that these
load profiles are still very simple as compared to real-world
ones, for which high current variations occur even during the
same activity, and intervals of inactivity with very low currents
are also common.

Accurate estimation of the RRT requires accurate modelling
of the relationship between the load profile and the battery
releasable capacity, which even for similar load profiles may
vary from device to device. Moreover, constructing an accurate
load profile requires detailed knowledge about the user’s future
activities, as well as where and how their mobile device
consumes energy during these activities. Therefore, estimating
learners’ available battery energy and accurately predicting
when they will deplete their available energy resources cannot
be made without considering at the same time aspects related
to the battery, device and user in the energy modelling. Having
a good energy model, various current load decrease and/ or
task scheduling strategies [97] can then be applied in order
to maximise the battery releasable capacity, better managing
learners’ available energy resources and eventually allowing
them to complete their learning activities.

B. Battery Modelling Approaches

There is a substantial body of research proposing solutions
for modelling the battery behaviour and important aspects
such as the battery voltage, SoC, SoH, and RRT for specific
load profiles. Depending on their particularities, the multitude
of battery models that have been proposed can be classified
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TABLE III
SUMMARY OF BATTERY MODELLING APPROACHES.

Models Advantages Disadvantages

Empirical
• Simple;
• Low computation complexity.

• Very low performance;
• Do not accurately model nonlinear battery effects.

Electrochemical

• Most accurate;
• Account for battery characteristics and internal

processes.

• Very complex with high number of parameters and variables;
• Difficult to configure and implement;
• Computation expensive.

Electrical-circuit

• Simple and intuitive;
• Easy to implement with mobile systems.
•

• Very complex for high accuracy;
• Need lookup tables with stored relationships between parameters;
• Difficult to configure for multiple battery types.

Mathematical
• Robust;
• Battery properties modelled using few equations.

• Abstract, often with low practical meaning;
• Lower accurately for modelling electrical battery characteristics.

Mixed/ Hybrid
• Improved accuracy;
• Combine advantages of different models.

• May be difficult to implement;
• Computation intensive.

in: empirical, electrochemical, electrical-circuit, mathematical,
and mixed/ hybrid models [76], [98]. Presenting detailed
studies corresponding to each of these categories is out of the
scope of this paper, as it can be the subject of a separate survey
on its own. Instead, a brief overview with regard to the main
characteristics, advantages and disadvantages of the different
modelling approaches will be provided, while directing the
reader to selected relevant research studies, some of which
compare the performance of multiple models, for additional
details. The advantages and disadvantages of the various
categories of battery models are summarised in Table III.

1) Empirical Models: Empirical battery models (e.g., [99],
[100]) describe the battery behaviour through simple equations
with parameters usually fitted to match experimental data.
In case of an ideal battery whose voltage stays constant
during operation and drops to zero only when the battery
is completely discharged, and whose released capacity is the
same independently of the load profile, the battery life (run-
time) could be expressed through a simple equation as in (6).
Since this is not the case with real batteries, empirical models
attempt to capture the nonlinear effects by extending the ideal
model equation with parameters derived from experimental
data.

Dating back to 1897, Peukert’s law is probably the most
well known empirical model, which expresses the battery life
as a nonlinear function of its discharge rate [76], as in (7).

L =
Q

Iα
(7)

where, Q represents the battery capacity, I the discharge
current, while α is a constant that depends on the battery type
and generally increases with the battery age.

For a variable discharge current I(t), Peukert’s law can be
extended by using the average current from t = 0 (battery fully
charged), to t = L (battery fully discharged) [98], as in (8).

L =
Q(

1
L

L∫
0

I(t) dt

)α (8)

Peukert’s law however, was found to generally underes-
timate the battery capacity and life for variable discharge
currents and variable operating temperature, as is often the
case with mobile devices lithium batteries [101].

2) Electrochemical Models: Electrochemical battery mod-
els also called physical models (e.g., [102], [103]), are usually
the most accurate ones. This is because the battery behaviour
and its important parameters are modelled at the lowest level
by taking into consideration the particular characteristics of
each battery type being modelled, as well as the chemical,
physical and thermodynamic processes taking place inside the
battery. Their accuracy however, comes at the expense of very
high complexity and is common for these models to include
tens of parameters and variables. Electrochemical models are
difficult to configure and implement since they require good
knowledge about the behaviour of the particular batteries to be
modelled, and being computationally expensive, they are slow
and often not feasible to be integrated with mobile devices
energy management systems.

3) Electrical-circuit Models: Electrical-circuit battery
models (e.g., [104], [105]), aim to provide equivalent
representations of the battery using circuits consisting of
various components such as voltage sources, resistors and
capacitors. These models require lookup tables storing the
relationships between battery parameters (e.g., voltage-
SoC relationship), and can include circuits that discharge
the battery capacity, and discharge-rate normalisers that
determine the lost capacity at high current loads. Various
electrical-circuits models with different complexity have been
proposed, ranging from simple models to complex nonlinear
and dynamic models [106]. The electrical battery properties
can be modelled with good accuracy using this approach, as
electrical-circuit models were shown to outperform a number
of mathematical models [107].

These models are especially applicable in case of mobile
systems, since mobile devices can also be represented through
equivalent-circuits thus obtaining a complete device-battery
energy model. However, due to the need for look-up tables
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and the experimental data needed to create them, electrical-
circuit models may also imply significant configuration and
implementation effort, especially when multiple device types
with different battery characteristics need to be considered,
such as would be the case with EAMLS.

4) Mathematical Models: Mathematical battery models
(e.g., [108]–[111]) make use of equations and/ or other math-
ematical methods such as stochastic processes, to describe
the battery behaviour at a higher level of abstraction than
electrochemical and electric-circuit models.

Analytical models such as for example the KiBaM model
based on the chemical kinetics process [108], and Rakhma-
tov and Vrudhula’s model based on the diffusion of ions
in electrolyte [109], express the battery properties using a
reduced set of equations with very few parameters, and were
shown to offer good performance under different workloads
with less than 10% errors when compared against a detailed
electrochemical model [98].

In contrast, stochastic models represent the battery as a
finite number of states (i.e., charge states), while the battery
behaviour is modelled as the transition between the various
states using stochastic processes such as Markov chains [110].
The approach enables modelling both the battery discharge as
transitions to lower charge states and nonlinear battery effects
such as the recovery effect as transitions from lower to higher
charge state.

While mathematical models provide high analytical insight
being suitable for performance analysis, and are not very
difficult to implement, they are often too abstract and have low
practical meaning as they do not well connect to the battery
electric, physical and chemical processes.

5) Mixed/ Hybrid Models: The mixed or hybrid battery
models aim to offer a better compromise between performance
and complexity by exploiting the advantages provided by
different modelling approaches. Examples include extending
analytical models with stochastic workload representations for
more accurate estimation of the RRT under variable current
loads [75] [112], or combining electrical-circuit models that
are more accurate in predicting the dynamic circuit char-
acteristics of the battery, with analytical models that are
more accurate in predicting the nonlinear battery capacity
effects [113].

C. Device Energy Analyses and Modelling

Along with having a good knowledge about the available
battery charge and how this varies with the operating con-
ditions and the load profile, having accurate load profiles is
equally important in order to be able to compute the device
run-time for different applications. Creating accurate load
profiles in turn, requires a good understanding on where and
how the battery energy is consumed by the mobile device,
and how the device current draw varies with its utilisation
and application load.

However, mobile learners may use a multitude of devices,
and the increasing complexity and fragmentation of these
devices makes it very difficult to construct a generic device-
battery-energy model capable to estimate the RRT with good
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Fig. 8. Generic block diagram of a modern mobile device (e.g., smartphone,
tablet).

accuracy for all devices while maintaining its complexity at
a feasible level. Modern mobile devices such as smartphones
and tablets can run on various operating systems (e.g., An-
droid, iOS, Windows Phone, Symbian, BlackBerry OS, etc.),
and are very complex technological equipments. A generic
block diagram of a modern mobile device is illustrated in
Fig. 8.

It is common nowadays for various mobile device subsys-
tems such as single/ multi-core CPU and GPU to be inte-
grated in the Application Processor system-on-chip. Modern
devices also integrate multiple wireless technologies such as
WiFi (802.11b/g/n/ac), Bluetooth, NFC, GSM/ EDGE/ UMTS/
HSPA/ HSPA+/ LTE/ WiMAX/ W-CDMA, with many of these
usually integrated in the same chips [114]. Some devices
use additional external memory cards for data storage, while
others rely solely on internal flash storage. Furthermore, it has
become a norm for mobile devices to integrate a multitude of
sensors such as GPS, accelerometer, gyroscope, ambient light
sensor, compass, and/ or barometer, as well as one or multiple
photo/ video cameras.

1) Mobile Devices Energy Consumption: Several research
studies aimed to provide a better understanding on where and
how the battery energy is consumed by mobile devices. Some
of these studies have concentrated to assess the device overall
energy consumption under various workload situations, with-
out necessarily trying to understand the contribution of each
of the different components to this energy. Other studies have
tried to break down the device overall energy consumption by
assessing the individual energy consumption of one or several
components commonly present in mobile devices.

Rather than describing each individual study (a common
practice among other surveys), a summary of the most relevant
findings with regard to the energy consumption characteristics
of different device components is presented in Table IV. The
energy consumption characteristics of typical mobile learning
applications usually combining audio-video (e.g., podcasts,
screencasts, lecture recordings, etc.), and/ or static web edu-
cational content (e.g., images, text), are presented in Table V.



MOLDOVAN et al.: ENERGY-AWARE MOBILE LEARNING: OPPORTUNITIES AND CHALLENGES 249

TABLE IV
ENERGY CONSUMPTION CHARACTERISTICS OF VARIOUS COMPONENTS COMMONLY FOUND IN A MOBILE DEVICE.

Component Energy Consumption Characteristics

General

• Mobile device components present low power states (i.e., sleep, idle), to which they are usually turned when not in use.
• Part of the battery energy is lost in the process of converting it to the levels required by the various components [52].
• Up to 50% of total power consumption in modern devices is static energy, consumed by components in Idle states when not

actively used; turning these components to sleep or completely OFF leads to significant power saving [52].
• Display, CPU, WiFi/ Cellular networks are usually the highest energy consumers [52].
• RAM, Flash, Audio, Sensors have smaller impact (still good to be turned OFF when not in use, since they add up) [52].

Display
• Significant energy consumption increase with the brightness level (nonlinear/ linear increase, depending on device) [52], [117].
• Nonlinear increase with content luminance and chrominance (significantly higher for OLED than for LCD displays) [52], [117].

CPU

• Nonlinear increase in dynamic power consumption with the CPU frequency for the same application load [117].
• Significant variation with the application load for the same CPU frequency [52].
• Running some applications at lower frequency, decreases the power consumption but may increase the overall energy consumption

(due to lower performance) [52].
• Decreasing dynamic power consumption and increasing static power consumption due to decreasing nanometer manufacturing

scales, and increased integration of multiple subsystems in system-on-chips [118].

RAM Memory • Presents significant variation with the memory frequency and the application load [52].

Flash Memory

• The energy consumed to read/ write the same amount of data decreases with the read/ write throughput [52].
• Data write (slower) is less energy efficient than read (faster) [52].
• External flash storage such as SD card is slower and is less energy efficient than internal storage (faster) [52].
• Most of the energy consumed to read/ write data is actually spent by CPU and RAM (higher share for internal than external

storage) [52].

WiFi

• Power consumption can be up to 14 times higher in idle than in sleep state for 802.11n [119].
• Data transmission (Tx) is more energy expensive than data reception (Rx) [119].
• Doubling the channel width (i.e., from 20MHz to 40MHz), doubles the bitrate with small impact on power consumption [119].
• Transmit power has little impact on energy consumption [119], [120].
• Using multiple antennas significantly increases energy consumption and can lead to energy saving only for large packets and

strong links. Receiving short packets with a single antenna at lower bitrate, can be twice as energy-efficient than receiving them
as fast as possible with three antennas [119].

• Energy consumption increases with the time increase between successive transfers [121].
• Energy consumed to connect to the network is higher for dynamic than static addressing [122].

Cellular (GSM,
UMTS, LTE, etc.)

• Cellular networks are less energy efficient than WiFi [121], [123].
• GSM accounts for significant power consumption in the sleep and idle device states [52].
• GSM is more energy efficient than 3G, but only when transferring low amounts of data [121], [124].
• Often handover between various cellular technologies leads to energy being wasted (handover from GSM to 3G is faster and

more power intensive than from 3G to GSM, but approximately the same energy is spent in both cases) [124].
• GSM and 3G present significant loss due to tail energy (wireless card is maintained in a high-power state for several seconds

after the actual data transfer), and to less extent due to ramp energy (energy required to switch to the high-power state) [121].
• Energy consumption of 3G increases with the time increase between successive transfers [121].

Bluetooth • Moderate power consumption (usually below 50mW), which increases with the distance between sender and receiver [52].

Camera, GPS,
Sensors (Gyro,

Accelerometer, etc.)

• Usually lower but relatively constant power consumption when turned ON and in use [52], [117], [125].
• GPS usually more power hungry than other sensors; independent power consumption with the signal strength [52], [117].

Audio (Codec,
Amplifier)

• Nonlinear increase with the volume level [117].
• Higher power consumption when using the built-in speakers at high volume levels [117].
• Low increase in power consumption with volume when using external earphones [117].

A mobile learning application may use several different
device components at the same time, with each of these
exhibiting different power consumption patterns. Some device
components such as WiFi/ cellular network cards, Bluetooth,
CPU, RAM and display present high energy consumption vari-
ation in time, being influenced by various application and con-
tent related factors (e.g., download/ upload size, computation
complexity, content/ interface luminance and chrominance,
etc.), as well as by the context (e.g., signal strength, network
load, etc.). Other components such as photo/ video camera,
GPS and the various sensors, present relatively constant power
consumption once turned on, and although this might be

lower than of other components such as CPU and wireless
card, they can lead to significant battery drain if used for
longer periods of time. Mobile learning applications may also
use such components for supporting personalised and context
based learning (e.g., GPS for determining the learner location,
camera to communicate with peers, ask for feedback or upload
their own content, etc.) [115]. Therefore, energy modelling
should address the energy consumption characteristics of all
the different components.

Mobile devices may present multiple wireless and cellular
interfaces with different energy consumption characteristics.
The energy consumption of a wireless interface may vary
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TABLE V
ENERGY CONSUMPTION CHARACTERISTICS OF COMMON MOBILE LEARNING USE-CASES.

Use-case Energy Consumption Characteristics

Podcasts (Audio
Playback/

Streaming)

• Very small amount of energy consumed by the audio codec and amplifier; most of the device energy consumption is represented
by the static contribution of other device components which are not actively used (e.g., GSM, CPU, Graphics, LCD, etc.) [52].

• Wireless network cards account for significant energy consumption in case of audio streaming.

Video Lectures,
Screencasts

(Video Playback/
Streaming)

• For local video playback the display accounts for the highest amount of energy consumed, followed by CPU and graphics [52].
• Playing the video from internal rather than external flash storage has little impact on energy consumption [123].
• Energy consumption significantly increases with video quality settings (e.g., resolution, frame rate, and bitrate) [117], [126]–[129].
• Some video codecs are more energy efficient than others (e.g., H.263 more efficient than H.264), while the file formats has little

impact on energy consumption [127]–[129].
• Energy consumption varies with content characteristics (e.g., temporal dynamicity, colors, etc.) [129], [130].
• Streaming as opposed to locally playing the video can up to double the device energy consumption [117], [126]–[128].
• Downloading then locally playing the video is more energy expensive than streaming [123].
• UDP streaming more energy expensive than TCP streaming [126].
• Poor wireless network signal strength increases the energy consumption (higher impact on TCP than UDP) [126].
• Energy consumption increases with the network traffic load (higher impact on TCP than UDP) [126].

Online Lectures
(Web Browsing)

• Display and graphics have the highest contribution in the device energy consumption [52].
• Wireless transmission accounts for significant amount especially when using low speed networks such as GPRS [52].

depending on different factors such as the operation state
(i.e., Transmit, Receive, Idle or Sleep), the channel width, the
number of antennas used, or the transmit power (see Table IV).
Short-range networks tend to be more energy efficient than
long-range networks [14], such as for example Bluetooth
being more energy efficient than WiFi, and WiFi more energy
efficient than 3G. Some network interfaces such as 3G present
energy losses due to tail energy or the device remaining in a
high-power for few seconds after the actual data transfer has
ended. Other factors related to the wireless network such as
signal strength and traffic load can also impact the energy
consumption of the wireless card.

Therefore, all these aspects should be considered in energy
modelling and different energy models should be built for
different wireless networks. Accurate energy consumption
models for each of the mobile device’s wireless interfaces
extended with information on the condition of the available
networks are necessary for deploying energy saving tech-
niques, such as for example choosing the most energy efficient
network for delivering the content.

Only part of the energy provided by the device battery
is actually used by the device when conducting a certain
learning activity such as playing an educational video clip
(dynamic energy). Part of the battery energy is lost in the
process of converting the non-linear battery voltage to constant
levels required by the different components, as well as static
energy when the device components are in low power states
and not actively used. The dynamic energy consumption of
the same application varies from device to device, and even
on the same device in different situations (e.g., depending
on background applications, device settings, network speed,
background traffic, etc.).

The device components usually present low power sleep
states and mobile operating systems usually have very ag-
gressive policies to turn the components to these states when
not in use. However, faulty implementations (“ebugs”) may
prevent accurate state changes and lead to unnecessary energy

consumption [116]. Energy modelling needs to account for
both the dynamic and static components in order to obtain
accurate load profiles.

2) Device Energy Models: Various research studies have
attempted to model the energy consumption of mobile devices,
device components or applications. A summary of some
relevant studies is presented in Table VI. A common approach
in the literature relies on deriving empirical equations from
experimental data using simple methods such as linear re-
gression. The major limitation of this approach is that the
equations describing the energy consumption as a function of
very few parameters (e.g., OLED screen power consumption
as a function of screen brightness and pixels brightness [117]),
present constants derived from empirical data that are specific
to a particular device(s) being used for constructing the model.
Therefore, constructing or validating a model for multiple
devices requires running experimental tests for each device.

In practice, it is not possible to run experimental mea-
surements in order to collect sufficient data for constructing
accurate energy models, as well as to adjust them for all
the different mobile devices learners may use. Even for a
single device, the number of use cases may be in the order
of millions. This is because there are a multitude of possible
combinations between device settings users can change (e.g.,
display brightness, volume level, static/ dynamic network
addressing, etc.), device components states (e.g., WiFi OFF,
Sleep, Idle, Rx, Tx), application characteristics (e.g., length,
computation complexity, etc.), and other environmental factors
(e.g., network load, signal strength, etc.).

Palit et al. [131], [132] have tried to address this issue by
identifying various categories of parameters (i.e., basic, active,
passive) among multiple devices, and proposing a method-
ology for selecting relevant use cases for particular classes
of applications. While their method can significantly reduce
the testing time for offline energy performance evaluation of
applications in a lab-setting environment, this relies on con-
ducting measurements using external equipment. Therefore,
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TABLE VI
SUMMARY OF SELECTED MOBILE DEVICE ENERGY MODELLING STUDIES.

Ref. Platform (Device) Energy
Measurement

Modelled
Component Independent Variables Modelling

Approach Performance

[43]

Android
(HTC Magic);
Windows Mobile
(HTC Touch,
HTC Tytn II)

HW: Monsoon
Power Monitor
@ 5kHz

CPU, Disk,
WiFi

System calls; Constant coefficients
derived from measurements.

Finite State
Machines; Linear
regression.

<10% for 50sec
interval and <5%
for 1min interval,
across different
applications.

[52]
Android
(Openmoko Neo
FreeRunner)

HW: National
Instruments
PCI-6229 DAQ
@ 5kHz

CPU, Audio,
Video, SMS,
Call, E-mail,
Web

Backlit power in Watts; Time; Constant
coefficients derived from measurements.

Empirical
equations. n.a.

[117] Android
(HTC Nexus One)

HW: Arduino
@ 140Hz Screen, CPU

Screen brightness vs. pixels brightness;
CPU utilisation; Constant coefficients
derived from measurements.

Curve fitting
(best-fit
polynomial
equations).

Screen: R2 = 0.99;
CPU: R2 = 0.89

[121]

Symbian
(Nokia N95);
Windows Mobile
(HTC Fuze)

SW: Nokia Energy
Profler
v1.1 @ 4Hz; HW:
Monsoon Power
Monitor @ 5kHz

3G; GSM;
WiFi

Size of transfer; Time between succes-
sive transfers; Constant coefficients de-
rived from measurements (ramp energy,
tail energy, maintenance energy).

Empirical
equations. n.a.

[133] n.a. n.a. WiFi

Theoretical model: running applications,
components power states, weight factors
indicating the level a component is used
by an application;
Empirical model: WiFi power states,
transfer speed.

Theoretical
history based
model; Empirical
validation.

n.a.

[134]
Android
(HTC Dream,
HTC Magic)

HW: Monsoon
Power Monitor
@ 5kHz

CPU, WiFi,
Audio, LCD,
GPS, 3G

CPU utilisation, frequency, state; Audio
state; WiFi state, number of Rx and
Tx packets per second, uplink channel
rate, uplink data rate, LCD brightness
level; GPS state; 3G state, data rate,
downlink/ uplink queue; Constant co-
efficients derived from measurements;
Battery voltage.

Multi-variable
regression for
HTC Dream
offline model.

<10% avg error
for 1sec intervals;
<2.5% avg error
over application
lifespan.

[135]
Linux
(Dell Latitude
D600 laptop)

HW: Echidna
@ 4.7kHz CPU

CPU frequency & voltage; CPU coun-
ters (number of completed burst trans-
actions, number of lines removed from
the L2 cache); Time spent in idle state;
Temperature.

Regression. R2 = 0.96

the method needs to be adapted in order to be used for online
energy modelling by adaptive systems and applications such
as EAMLSs.

Online energy modelling approaches are more suitable to
be used for constructing energy models for multiple devices
learners may use, as these eliminate in part the need for having
access to the specific devices and to conduct complicated and
time consuming measurements. However, these require mobile
devices to have built-in power measurement capabilities, as
well as to enable access to various information about their state
needed in the modelling (e.g., device settings, list of running
applications and their calls to access device resources, received
network signal strength, etc.). Alternatively, if built-in current
measures are not available, energy consumption measures
could be derived on longer usage intervals and with smaller
accuracy based on battery voltage and temperature measures
and knowledge about the battery discharge behaviour [134].
An initial energy model can be constructed for example by
embedding training software in the mobile learning applica-
tion. The software collects energy measurements while setting
the device components in different states and running a set of

benchmarks. The model can be continuously improved based
on historic and current information.

Modelling the power consumption of device components
can be done based on utilisation information from the corre-
sponding components’ performance counters. While modern
CPUs provide a multitude of performance counters to measure
a large number of events, only a small number of events can be
counted at the same time [135]. Selecting the most important
counters can be quite challenging in practice as this requires
many identical runs for multiple benchmarks and for multiple
settings. CPU performance events were also shown to correlate
with the power consumption of device components external
to CPU, such as memory and I/O, and thus can be used for
energy consumption modelling of these components [136].

By evaluating a number of linear and non-linear regression-
based energy models McCullough et al. [137] have concluded
that while it is possible to estimate the total system power with
relatively small errors, estimating the energy consumption of
device subsystems such as the CPU is more difficult and prone
to high errors due to increased technological complexity and
hidden power states not exposed to the OS.
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Fig. 9. Modelling of (a) communication and (b) computation components,
for a mobile application using Finite State Machines [138].

Pathak et al. [43] have further argued that usage-based en-
ergy modelling approaches do not provide accurate estimation
of the overall device energy consumption, as these do not
account for the non-utilisation energy consumption such as
the tail energy of the wireless cards. The authors proposed to
use system calls via which software applications gain access
to hardware resources for fine-grained energy modelling. This
approach can account as well for non-utilisation energy since
a number of system calls trigger changes in the components’
power states, without implying utilisation. The main limitation
of this approach is that some device drivers are closed source,
and therefore no access to lower level details is provided.

Finite State Machines are frequently used for modelling the
power states and state transitions of different mobile device
components and of the overall mobile device [43], [138].
Palit et al. [138] proposed a model to estimate the energy
cost of applications running on a mobile device, which divides
the total energy consumed by the system in two components
corresponding to computation and communication respectively
(see Fig. 9). Each component is modelled as a state-transition
diagram. By validating the energy cost in each state using
actual measurements, the authors have concluded that due to
the energy lost in transition between different states (e.g., idle
and sleep states), there is a threshold beneath which no energy
saving and possibly even an energy loss is made by changing
to the lower power consumption state.

D. User Energy Modelling

Considering the battery properties and the device energy
consumption characteristics in the energy modelling can be
sufficient to estimate for example the energy required for
running a specific mobile learning application or estimating if
a learner has sufficient battery energy to complete a specific
learning task. However, this offers little insight in the future
usage, and the estimation can be seriously impacted by other

actions such as for example the learner pausing the mobile
learning session in order to answer a phone call and coming
back to it afterwards.

Taking into account that nowadays mobile devices are used
for conducting a multitude of tasks, and learners can schedule
and switch unpredictably between learning tasks and other
tasks, predicting when they will be interrupted from a learning
task due to low battery power cannot be done without having
a good knowledge about their future behaviour.

Usage-related energy modelling however, has been sig-
nificantly less explored in the literature, mainly due to the
difficulties associated with conducting large scale experiments
for collecting sufficient data to draw meaningful conclusions.

A summary of research studies that looked at the interaction
between mobile users and their devices’ energy consumption
are presented in Table VII. Looking across different studies,
most of these confirm that there is high variability between
users’ charging patterns, as well as their device usage and
energy consumption patterns. However, it is possible to cluster
usage characteristics of the same user [139], or users with
similar characteristics [140] in order to find meaningful infor-
mation that can be used in energy modelling and management.

Banerjee et al. [141] have assessed battery charge and usage
behaviour of different users, using interviews and surveys, as
well as trace collection on laptops and mobile phones. Based
on findings from the first study, the authors proposed Llama,
a system that tracks how much energy is usually used and
estimates the remaining energy by the time the device will
be recharged, with the goal to use this excess energy for
other noncritical applications such as increasing the screen
brightness or web prefetching. Although in general the authors
received positive feedback during the system validation study,
they agreed that not all the users will be happy with such an
approach.

Vallina-Rodriguez et al. [142] performed a study in order to
understand the resource management and battery consumption
patterns. The information collected from the mobile devices
covers more than 20 parameters related to OS and applications,
battery, network, GPS, screen and USB connectivity. The
authors have concluded that while the system workload and the
resources utilization vary highly among users and contexts, for
some users it is still possible to determine strict usage routines
as they interact with their devices. Therefore by predicting
when some resources are in high demand, improved energy
modelling and energy management can be performed.

Contextual information was also investigated by Rah-
mati et al. [143] in order to estimate current and future
network conditions and automatically select the most energy
efficient network (802.11b or GSM/ EDGE). The authors
compared different estimation algorithms that make use of
various sources of information such as time, history, cellular
tower ID and fingerprint, network conditions, device motion.
The use of multiple sources of contextual information can
lead to improved estimation performance, while the authors
further argue that deploying a context-based interface selection
mechanism can lead to significant battery life increase (e.g., up
to 35% increase comparing with the case of using the cellular
interface only).
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TABLE VII
SUMMARY OF SELECTED STUDIES ON MOBILE USERS’ ENERGY CONSUMPTION.

Ref. Goal(s) Study (Participants;
Duration; Devices)

Data
Collection

Aspects Analyzed/
Methods Results

[139]

Observe and
understand the
implications of
high-level
workload
characteristics for
smartphones
optimisation.

25 users;
6 months (∼53 days
logged activity per
user on average);
Android smartphones.

Log files

Charging, power
consumption, and
usage patterns.

Clustering

• Users recharge their phones daily and use them until low
battery levels occur.

• Differences in usage patterns (e.g., heavy phone users vs.
heavy WiFi users).

• Idle periods: 89% of the time, and 46% of energy cons.
• Most users do not switch between brightness levels, and do

not install power management software.
• CPU utilisation typically at 100% or below 10%.
• Significant CPU utilisation due to OS-level processes.
• User activity can be automatically clustered to produce

Markov decision processes for individual users.

[140]

Predicting the
energy
consumption.

20100 users;
Blackberry
smartphones.

Log files

User type.
Clustering,
classification
algorithms.

• Users classified in: opportunistic chargers (63%), light
consumers (20%), nighttime chargers (17%).

• By classifying the users, energy level can be predicted with
7% error within 1 hour and with 28% within 24 hours.

[141]

Estimate excess
energy between
recharges.
Evaluate Llama,
a user and
statistics-driven
energy saving
system.

Study 1: 56 users;
15-150 days; laptops.
& 10 users; 42-77
days; Windows
Mobile phones.
Study 2: 20 users; 30
days; 10 laptops and
10 phones.

Log files,
interviews,
survey.

Battery charge usage
behaviour.
Probabilistic algorithm
(i.e., Histogram of
previous battery usage
and current capacity
used to estimate excess
battery.)

Study 1:
• Users tend to recharge when there is substantial energy left.
• Charges are often driven by context (location and time).
• Great variation among users and systems.
Study 2:
• Battery level at charge decreased.
• Laptop users did not perceive changes in battery life.

[142]

Study how users
interactions with
resources affect
battery life.

18 users; 2 weeks;
Android
Smartphones.

Log files

Battery characteristics,
usage/ interaction
patterns.
Multivariable analysis:
Principal Component
Analysis (PCA) and
Factor Analysis (FA).

• System workload, resources utilization and energy demands
vary broadly among users and contexts.

• For some users it is possible to identify strict usage routines
as they interact with their devices.

[143]
[144]

Estimate WiFi
conditions
without powering
up the device.

14 users; 6 months;
Windows Mobile
phones.

Tower
Logger
app

Energy consumption.
Algorithms: Naive and
simple solutions,
Hysteretic, Cell ID,
Fingerprinting.

• Good cellular networks coverage and signal strength exist.
• On average users spent 49% of day time on preferred WiFi.
• Combining multiple heterogeneous sources of context in-

formation improves performance.

[145]

Study the
charging habits
in order to
identify timeslots
for intensive
operations and
better charging.

4035 users; 4 weeks;
Android devices.

Over
Charged
app.

Charging behaviour.

Descriptive Statistics.

• 65% - lowest average battery level at midnight;
• 74% - highest battery level at 5AM; Different charging

patterns;
• 2 major charging periods (6PM to 8 PM and 1AM to 2AM);
• Majority of charging durations are between 0.5 and 2 hours;
• 77% of users overcharge the phones for more than 30 min;
• AC charging more popular than USB (61% vs. 39%).

[146]
[147]

Investigate
consumer
attitudes towards
handsets energy
consumption and
usage behaviour.

Data logging: 253
users, mean 50 active
days over 4 months
(1st year), and 105
users, mean 31 active
days over 3 months
(2nd year); Nokia
Symbian S60
Smartphones.
Questionnaires: 155
users (1st year) and
150 users (2nd year)

Log files,
Survey.

User attitudes; Battery
charging and energy
consumption patterns.

Descriptive Statistics

• Users are reasonably good at estimating energy consump-
tion.

• 39% of users altered power-saving settings to gain more.
• Users are interested in knowing more about energy con-

sumption and to have more accurate battery indications.
• Users present significant variation in battery charging be-

haviour. Two groups: regular and impulsive chargers.
• Charging is driven by context and low battery levels, rather

than low battery alarms.
• Users overcharge the phones, leading to energy wastes.
• Battery level has little impact on users decision to launch

applications.
• Some classes of applications are more often launched.

[148]
Analyze usage
patterns.

20 users; 2 months;
Android smartphones. Log files Usage patterns.

Descriptive Statistics

• Idle periods account for most time and energy consumption.
• Different charging, usage and energy consumption patterns

across users.

[149]

Predict device
configurations
that can optimise
energy
consumption.

5 users; 1 week;
Android smartphones. Log files

Machine learning
algorithms: Linear
Discriminant Analysis
(LDA), Linear Logistic
Regression (LLR),
Neural Networks,
K-Nearest Neighbor.

• Up to 90% successful prediction using neural networks and
k-nearest neighbor.
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TABLE VIII
APPLICABILITY OF ENERGY MODELLING APPROACHES TO MOBILE LEARNING.

Approach Applicability Limitations

General energy
modelling

• To enable learner’s device, learning content and/ or learner
needs-based energy-aware adaptation.

• Online energy modelling based on data collected automatically
from learners is more suitable for mobile learning.

• Need of good expertise in order to build and implement the
energy models with the EAMLS.

•
•

Battery
modelling

• Needed in order to estimate mobile learners’ available battery
charge.

• Electrical-circuit and mathematical models are more suitable
to be integrated on the client side of the EAMLS.

• Electrochemical and hybrid models are more suitable to be
integrated on the server side of the EAMLS.

•

• Difficulty to build generic models applicable to the variety of
batteries used by mobile learners’ devices.

• More accurate models are computation intensive; may lead to
higher power consumption than saving if implemented on the
learner’s device.

• Learner’s usage time on the available battery charge cannot be
predicted using battery modelling solely.

Device energy
modelling

• To more accurately estimate the learning time, given particular
battery charge, device characteristics and application loads.

• Building energy models for categories of learners with similar
devices.

• Online energy modelling approaches are more suitable for
mobile learning.

• More suitable to be implemented on the server side due to
significant data processing.

• Difficulty to build generic energy models applicable to the
multitude of devices and platforms used by mobile learners.

• Need for continuously update of the models as mobile learners
change their devices.

• Difficulty to account for the multitude of mobile learning
scenarios that use various device components in different states.

• Complexity of mobile devices with other applications running
along the mobile learning application.

User energy
modelling

• To more accurately predict when mobile learners will deplete
their battery charge given their different device usage and
learning patterns.

• To enable personalized energy saving based on the energy
needs of individual learners or categories of learners.

• Can reuse information already available in the learner profiles.
• Can exchange information to improve the learner profiles.
• More suitable to be implemented on the server side due to

significant data processing required.

• Accurate modelling requires high amounts of contextual data
to be collected.

• Learners may not be willing to exchange this information.
• Privacy and ethical issues have to be addressed.
• Added monetary cost and energy consumption due to the data

transmission.
•
•
•

E. Applicability to Mobile Learning

Generally speaking energy modelling is necessary in order
to estimate learner’s available battery charge and to predict
their future energy needs. Having a good energy model, en-
ables applying energy adaptation strategies in order to support
the learners maximise their learning outcome in low battery
power situations.

Battery models can be applied with m-learning systems
in order to estimate a learner’s available battery charge. To
predict their energy needs for conducting specific mobile
learning tasks device modelling has also to be addressed.
Furthermore, predicting learner’s energy needs for conducting
mobile learning activities at later times, or in between other
non-learning activities user modelling needs also to be applied.

Therefore, device built-in methods for data collection and
energy measurement are necessary to enable more accurate
energy modelling. Major limitations include the additional
energy consumption and monetary cost involved by the data
collection, as well as privacy and ethical issues arising from
storing and processing the data. Solutions to overcome these
limitations have to be identified.

To minimise the impact of the energy modelling on the
device energy consumption, approaches that offer a good
accuracy while at the same time have a small computation
footprint are desired, especially if aiming to do the modelling
directly on the mobile device. However, since mobile learning
is characterised by highly variable context, empirical models
based on experimental measurements only are not suitable as

they offer poor performance in real-life scenarios. Adaptive
energy modelling solutions are necessary to process the high
amount of contextual data being collected during real-life
mobile learning scenarios. Doing the energy modelling on
the server-side enables minimizing its impact on learner’s
device energy consumption. At the same time, more accurate
but more computation intensive modelling techniques can
be deployed, such as for example hybrid electrochemical -
electrical circuit - mathematical battery models, or advanced
statistics such as classifiers and multi-variable analysis for
device and user energy modelling.

In practice however, compromises will have to be made
as only limited amount of contextual information could be
accessed and/ or send to the server. Furthermore, building
generic energy models to account for high variety of learning
contexts due to different battery properties, device characteris-
tics and operation modes, learning content types and learner’s
unpredictable behaviour, is either too difficult or not feasible
to be achieved.

Table VIII summarises the applicability to mobile learning
as well as the limitations of the main energy modelling
approaches.

VII. ENERGY-AWARE ADAPTATION

Energy saving and management with regard to mobile
devices has presented much research interest due to the limited
energy batteries can provide. Various solutions have been
proposed to effectively manage the device battery power, and
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to reduce the energy consumption of mobile devices, compo-
nents and applications. Since several different surveys have
already addressed this topic, this section starts by pointing the
reader to some relevant surveys for more details. The section
continues by outlining some energy saving directions with
emphasis on their applicability to mobile learning.

A. Related Surveys

Vallina-Rodriguez and Crowcroft [10] have addressed en-
ergy management techniques in modern mobile handsets with
focus on energy efficient operating systems. The authors
presented a number of energy-aware OSs such as EcoSystem,
Odyssey ErdOS and CondOS, as well as a number of resource
profilers and resource management techniques. Various solu-
tions for optimizing energy consumption of wireless interfaces
and protocols, as well as optimization of the device sensors
are presented. The authors go further to discuss the use
of cloud computing and computation offloading to enable
energy saving in mobile handsets. The authors also present
experimental results of various studies analysing the energy
consumption of mobile devices. Their survey however remains
rather descriptive and lacks a clear classification of energy
management solutions.

Zhang et al. [11] have focused on energy saving techniques
for mobile multimedia delivery. The authors group the existing
solutions in power aware video coding and video delivery. One
important as well as difficult aspect regarding video coding is
accurate estimation of codec power consumption based on its
computational complexity, in order to enable energy saving.
The authors identified several main challenges that come when
designing energy efficient mobile multimedia communica-
tion devices: 1) real-time multimedia is delay-sensitive and
bandwidth-intense, making it also the most power consuming
application, 2) the radio frequency environment is changing
dynamically over time and space, 3) the diversity of mobile
devices and their capabilities, 4) the video quality does not
present a linear increase with the increase in complexity,
and 5) the battery discharge behaviour is nonlinear. The
authors conclude that due to the dynamics involved, enabling
power-aware mobile multimedia is extremely challenging, and
involves various tradeoffs. The authors also argue that due
to limited adaptation to the dynamic wireless link conditions
and interaction between layers the traditional layer separated
techniques fail to provide the expected QoS, and further go
to propose a framework for cross-layer optimization in power
aware multimedia applications.

Energy-aware adaptive mobile multimedia was also the fo-
cus of another, more recent survey of Kennedy et al. [12]. The
authors start the survey by identifying major energy consum-
ing components in high-end devices, based on experimental
studies conducted for the Google Nexus One device. The
presentation of existing energy saving solutions is than centred
on the most energy expensive components namely, display,
CPU and network interface. With regard to display related
solutions, the authors distinguish between general solutions
that adapt the entire screen area equally and solutions that
divide the screen area in Regions of Interest (RoI) that can
be passive (i.e., pre-defined) or active (i.e., change in time

based on content). With regard to CPU, the authors distinguish
between dynamic hardware resources configuration through
voltage/ frequency scaling and coding/ decoding related solu-
tions. The authors put particular emphasis on energy saving
solutions addressing the network interfaces, focusing on WiFi
and LTE technologies, as well as solutions exploiting multiple
wireless interfaces. The WiFi related solutions are further
classified in traffic independent (i.e., MAC layer optimization),
and traffic dependant for web browsing (i.e., proxy based),
video streaming (i.e., traffic reshaping and traffic prediction)
and VoIP (i.e., cross-layers) applications. Some cross-layer
solutions as well as major global research initiatives and
projects on energy optimization are also presented.

Hoque et al. [13] have also surveyed various solutions
for improving the energy efficiency of wireless multimedia
streaming in mobile devices. The authors focus on the wireless
communication aspect and categories the existing solutions
according to different layers of the Internet protocol stack
they utilize. They also group the solutions based on the
different traffic scheduling and multimedia content adaptation
mechanisms. This categorization may present interest for the
reader as many of the solutions presented by the authors are
suitable to be integrated with mobile learning systems for
delivery of lecture recordings.

Al-Kanj et al. [14] have adressed energy-aware content
distribution over wireless network in the situation where
there is collaboration between multiple closely located mobile
terminals. In this situation some devices download the content
from the server over long-range more energy-expensive net-
works, and distribute it to the other devices over short-range
more energy-efficient networks. Such solutions could also be
applied for mobile learning in order to save the battery energy
of multiple mobile learners (i.e., from the same classroom) that
want to access the learning content on their personal devices.

B. Characterization of Energy-Saving Solutions

Mobile learning applications have increased in complexity
over the recent years. These may combine various types of
educational content and media formats such as text, images,
audio, video and even games or 3D virtual learning envi-
ronments. Various adaptive energy saving solutions targeting
different components such as wireless interface, display and
CPU can be deployed in order to save learners mobile device
battery life depending on the content type. Mobile learning
applications are not limited to content dissemination only, and
can make use of additional device resources such as GPS for
location detection and context-based mobile learning adapta-
tion, or video camera for learning centred communication.

1) Content Delivery-related Solutions: These solutions fo-
cus on reducing the energy consumption of the device wireless
interface(s). Approaches include among others, maintaining
the wireless card in a low power state for a longer period of
time or using more energy efficient interfaces for part of the
communication.

Wireless standards usually include energy saving mecha-
nisms such as the IEEE 802.11 Power Saving Model (PSM)
or the LTE Discontinuous Reception (DRX), designed to
maintain the network card in low power states while not in
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use [150]. An efficient and basic power conservation method
is to alternate between the operation modes. However, as
an amount of energy is spent as well when activating and
deactivating the components, additional care should be taken
when alternating the operation modes.

These mechanisms exhibit different performance depending
on the type of the content delivered and the transmission
characteristics. For example, IEEE 802.11 PSM was shown
not to be effective enough for the case of real-time multimedia
streaming, since WNIC hardly has the chance to go to sleep
between active periods due to the constant flow of packets with
short intervals in between them [151]. Therefore, a number of
studies have proposed to reshape the traffic flow and send the
packets in bursts instead of sending them individually, thus
allowing the WNIC to sleep for longer between data reception
intervals. The major drawback is that traffic burstiness may
cause congestion in routers or overflows in transmitter buffers
leading to packet losses and a decrease in overall network
quality. To avoid the congestions in the network, Korhonen and
Wang [151] have proposed to adjust the length of the bursts
based on the congestion conditions. The packets from the
original stream are rearranged in bursts, each burst containing
packets in a decreasing priority order. In this case the receiver
can sacrifice some enhancement layer data in order to maintain
stable power efficiency.

Other solutions allowing the WNIC to sleep for a longer
periods of time, include buffering the incoming data on the
mobile device [152], or buffering the data corresponding to
several beacons and releasing them at once after the mobile
device wakes up several times to check if there are any packets
for it [153]. The latter is achieved by introducing an additional
buffer to the one already included in the Access Point.

To further reduce the WNIC energy consumption, Anas-
tasi et al. [154] proposed to completely switch off the wireless
card during long inactivity intervals such as the User Think
Times (UTT) and use the IEEE 802.11 PSM during traffic
bursts. By integrating simple yet efficient algorithms to detect
the beginning of bursts and UTTs, the authors have achieved
between 20% and 96% energy saving as compared to using
the PSM only.

To maintain the WLAN interface in sleep mode for sig-
nificant periods of time during the VoIP calls, the GreenCall
algorithm [155] uses sleep and wake-up schedules, where the
sleep periods are computed based on the maximum delay that
a user can tolerate during a conversation.

To reduce the energy consumed by the WLAN while in idle
mode waiting for a call, Perrucci et al. [156] have proposed to
use a second interface with lower energy consumption such as
GSM, as a signalling channel to wake up the WLAN interface
and run the VoIP service. The authors argue that by sending
the WLAN to sleep and using the wake-up signals the energy
consumption can be reduced significantly in a VoIP scenario.

Most of the research on WiFi energy management has
concentrated on a single mobile device and/ or AP. However,
in dense WiFi environments where multiple APs compete
for the same resources, a mobile device may have to stay
awake for longer, until the corresponding AP gets a chance
to transmit the packets to it. For such scenarios, Manweiler
and Choudhury [157] have proposed SleepWell, a system that

enables energy saving across multiple devices by coordinating
the APs to be active/ inactive during different intervals.

Content delivery-related energy saving solutions, are suit-
able to be considered when deploying energy-aware mobile
learning systems and applications, as it is often the case that
educational content is retrieved over the wireless network
and not stored locally on the device. While these solutions
enable significant battery energy saving, additional care needs
to be taken not to affect the content reception to a level that
negatively impacts the learning experience.

2) Computation-related Solutions: Dynamic Voltage and
Frequency Scaling (DVFS), is a commonly used method for
reducing the energy consumption of the device CPU, by
decreasing the clock frequency, thus enabling a corresponding
reduction of the supply voltage. DVFS was shown to offer
good power saving for the case of multimedia streaming, due
to the fact that the processing power needed to decode a
video sequence is highly variable in time‘ [158]. However this
requires an accurate prediction of the following parameters:

• the time required to decode each particular frame when
the CPU clock is set at the same voltage/ frequency
settings;

• the optimum combination of CPU voltage/ frequency
settings to decode each particular frame in the interval
corresponding to the video sequence frame rate (e.g.,
40ms for a frame rate of 25fps).

An overestimation of this time will lead to unnecessary
power consumption, while an underestimation will decrease
the video quality.

To avoid predictions and therefore missed deadlines caused
by prediction errors, Lu et al. [159] have proposed a solution
that uses a dynamic online scaling feedback to set the average
frame decode rate to the same value as the display refresh rate,
thus reducing the power consumed by the CPU to decode the
data.

Cao et al. [160] have proposed an offline linear program-
ming method to determine the minimum energy consumption
required for processing a multimedia task based on knowledge
about the complexity and the arrival time of each decoding
job. Through simulations, the authors have also shown that
their solution can be extended to online multimedia tasks with
varying unknown workloads, outperforming other existing
online DVFS algorithms, while requiring less than 0.3% more
energy to perform the task than indicated by the offline optimal
method.

Baker et al. [161] have proposed a different approach to
enable energy saving through DVFS on CPU, by generating
H.264 compressed multimedia streams with prioritised slices
(macroblocks). Depending on user selected preference some
slices will be ignored by the decoder, reducing the workload
and thus the CPU energy consumption through DVFS.

DVFS can also be used for decreasing the memory energy
consumption. For example, Amiri et al. [162] proposed a
transcoding scheme to generate H.264 streams that are tolerant
to defective memory cells of the decoding buffer. In this
way energy saving is enabled through voltage scaling on
the memories. The proposed method has good power saving
potential, as memories increase their share in the overall
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mobile device energy consumption with the shift towards
System-on-Chips (SoCs).

DVFS however, was also shown to not have the same energy
saving potential on newer CPU and memory architectures, due
to technological advances that have resulted in the saturation
of clock frequencies, larger static energy consumption, lower
dynamic energy consumption range, and more energy efficient
idle and sleep states [118].

Apart DVFS, the CPU energy consumption can also be
reduced by offloading some of the computations from the
device to the cloud, a server or an intermediate proxy node.
Such a solution, proposed by Zhao et al. [163] was shown to
reduce the energy consumed during web browsing by more
than 45%, along with reducing the delay by more than 80%.
Altamimi et al. [164], as opposed have showed that using a
Mobile Cloud Computing service to encode videos to a format
supported by the mobile device, can save as much as 70% of
the energy required to encode the clip locally on the device.

While mobile learning has increased significantly in com-
plexity, and computation-related solutions are suitable to be
used for reducing the energy consumption of m-learning sys-
tems and applications, various tradeoffs need to be considered.
For example, using DVFS or decreasing the content quality to
reduce the computation-related energy consumption, should be
made within limits that do not negatively impact the learner
experience and his/ her learning outcome.

On another side, using computation offloading techniques,
should consider the tradeoff between the energy required for
local computation and the energy involved by the additional
communication, as well as the impact on the learning process,
in order to maximise the energy saving while maintaining a
good learning experience.

3) Content Display-related Solutions: Various solutions for
saving the display energy consumption have been proposed.
Pasricha et al. [165] have proposed a solution to save power
by optimizing the backlight power consumption. In order to
reduce the effect on the user perceived quality, the backlight
reduction is compensated by changing the luminosity and the
contrast of the video at an intermediate proxy node.

Hsiu et al. [166] have proposed an algorithm to determine
the critical level up to which the backlit can be decreased
without significantly affecting the perceived quality of multi-
media applications. Their solution uses a dedicated server to
compute the critical backlit level for each group of frames in a
video by analysing their luminance, and was shown to provide
between 19% and 31% energy saving when viewing YouTube
videos with different characteristics.

Shim et al. [167] made use of the advantage of transflective
LCD panels that can operate with or without backlight and
allow an image to remain visible even without backlight.
They extended the Dynamic Luminance Scaling (DLS) to cope
with transflective panels, depending on the battery level and
ambient luminance.

Another approach used by Gatti et al. [168], involved
reducing the display refresh frequency from the native rate,
to a value equal with the frame rate of the video that is being
played.

While in the case of LCD displays a significant amount
of power is consumed by the backlit, newer OLED (Organic
Light Emitting Diode) displays that are increasingly used in
mobile devices, do not require the backlit since they are self
illuminated and their power consumption depends both on the
luminosity and of the colour of each pixel being displayed.
Solutions that have been proposed to save the energy con-
sumption of OLED displays, include dimming selected areas
of the display pixel by pixel [169], or changing the colours
of selected areas of the display [170]. Colour transformations
however are mostly feasible for GUIs, and not for applications
such as image or video viewing, in which case natural colours
reproduction are required for providing good quality.

A solution to reduce the OLEDs energy consumption that
is suitable to be applied for applications working with natural
images was proposed by Shin et al. [171]. The solution which
consists of scaling down the voltage supply of the display was
shown to provide more than 50% energy saving for the case
of video playback. As their solution may also incur image
degradations for the case of bright images, the authors propose
an image compensation solution based on the human perceived
colour space.

As the device display is the highest individual energy
consumer in many mobile learning scenarios (e.g., viewing a
mostly static content that involves very little communication
and computation), augmenting mobile learning systems and
applications with display-related energy saving solutions can
offer the highest or even the only way to significantly increase
the learning time in such scenarios.

However, using these solutions needs to also consider vari-
ous factors that may negatively impact the learning experience
(e.g., content characteristics, ambient light), as well as the
additional impact of the energy saving strategies taken by the
operating system or other energy-saving applications installed
on the device.

C. Applicability to Mobile Learning

Depending on their characteristics, different mobile learning
systems and applications can use different learning content
media types and the learning content can be either retrieved
from the server over the wireless network or stored locally on
the learner’s device. Therefore, a variety of energy adaptation
techniques targeting the content-delivery, computation and/ or
displaying are suitable to be integrated within EAMLSs, on
client or on server side.

Content adaptation techniques such as adapting the encod-
ing characteristics and luminance in case of video lectures, or
the colour patterns of static educational content, are usually
recommended to be performed on the server side due to the
additional processing involved that may lead to more energy
consumption than saving in some situations.

Other solutions such as switching between network in-
terfaces, applying DVFS or reducing the screen brightness
require a client component as well.

A major limitation of using the various energy adaptation
solutions is that they usually save the energy at the expense
of impacting the learning experience, through delays, content
quality reduction/ change, and/ or changes in the application’s
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TABLE IX
APPLICABILITY OF ENERGY-AWARE ADAPTATION APPROACHES TO MOBILE LEARNING.

Approach Applicability Limitations

Content
delivery-related

• Adapting the traffic flow of the educational content delivery
on the server side of the EAMLS.

• Adapting the quality of the educational content on the server
side of the EAMLS in order to decrease the energy consump-
tion of the wireless card(s) in receive mode.

• Switching between different network interfaces on the client-
side of an EAMLS, in order to choose more energy efficient
delivery paths.

• Especially suitable for video and audio lectures streaming.

• Delay thresholds maintaining good learning experience need
to be defined for traffic adaptation.

• Quality thresholds maintaining good learning experience need
to be defined for content adaptation.

• Additional information and implementation on the client side
is required for switching between networks.

• Device radio resource management already in place impact
energy saving.

•

Computation-
related

• Adapting the content on the server in order to reduce the
energy consumption of the CPU, GPU and memory for
processing the educational content.

• Dynamic voltage and frequency scaling can be used on the
client side to reduce the CPU energy consumption.

• Techniques to offload computation intensive mobile learning
applications such as video encoding, or educational games
playback to the EAMLS server can also be used.

• Especially suitable for video and audio lectures streaming,
educational games.

• Quality thresholds maintaining good learning experience need
to be defined for content adaptation.

• DVFS optimization required in order not to impact the learn-
ing experience due to performance restrictions.

• Benefits with computation offloading reduced by the addi-
tional communication.

• Device computing resource management already in place
impact energy saving.

•
•

Content
display-related

• Adapting the content on the server to reduce the screen energy
consumption.

• Reducing the screen brightness.
• Suitable for video content as well as mostly static text and

image-based interfaces.

• Quality and brightness thresholds maintaining good learning
experience need to be defined.

• Device screen management already in place impact energy
saving.

•

performance or normal behaviour. Therefore, various delay/
quality/ performance thresholds maintaining good learning
experience would have to be defined in order to apply the
various techniques while minimizing their impact on the
learning process.

Furthermore, mobile devices’ components usually present
various high-power operating states as well as low-power
energy saving states. At the same time, various resource
management methods are embedded in the mobile operating
systems in order to conserve the battery energy by turning the
device components to the low power states when not in use.

Therefore, the selected adaptive techniques that are im-
plemented with the adaptive m-learning systems have to
complement the existing resource management methods, in
order to lead to higher overall energy saving.

Table IX summarises the applicability to mobile learning
as well as the limitations of the main energy-aware adaptation
approaches.

VIII. DISCUSSION AND CONCLUSIONS

Mobile learning applications and services have been in-
creasingly adopted over the past few years, as mobile devices
have improved in functionality and capabilities. The combined
increased usage of mobile devices and the increasing com-
plexity of mobile learning applications put significant pressure
on the limited battery resources. In this context, this survey
argues for the increasing need of energy-awareness in mobile
learning applications and systems in order to avoid situations
when learners cannot continue their learning activity due to
out of power situations.

Starting from the generic architecture of an Adaptive M-
learning System, this survey outlines the benefits as well as the

possibilities to extend mobile learning systems with additional
components to make them energy-aware. There is no simple
solution for doing this however, as estimating the learners’
available battery energy and predicting when they will run out
of battery power requires good knowledge about their device
battery state, device energy consumption characteristics as
well as their usage patterns. Three important aspects necessary
to be considered in order to test and deploy energy-aware
mobile learning systems, and applications are treated in this
survey: measurement, modelling and adaptation. Since energy
modelling appears to be the most challenging part, the survey
focuses especially on this part, by presenting various aspects
that need to be modelled with regard to battery, device and
user.

Although many solutions have been proposed in the liter-
ature, there still are many challenges faced when deploying
energy-aware mobile learning systems and applications. Ac-
curate modelling implies collecting information about learners
and their behaviour, which may actually lead to lower usage
due to privacy concerns and issues. Furthermore, careful se-
lection of the energy saving strategies needs to be performed.
While ideally maximizing the learning outcome requires both
allowing the learners to complete their activity and providing
them with a good learning experience, in practice this may
turn out to be very difficult to achieve and highly context de-
pendent. Learners’ preferences and attitudes to energy saving
should also be considered, as not all learners would be equally
happy to have the mobile learning system or application
automatically taking actions on their device.

There is a multitude of mobile learning contexts char-
acterised by different learners with different learning and
energy needs and preferences, different learning content types
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TABLE X
SUMMARY OF ENERGY MEASUREMENT, MODELLING AND ADAPTATION APPROACHES MOST SUITABLE FOR CREATING ENERGY-AWARE ADAPTIVE

M-LEARNING SYSTEMS (EAMLS).

Most Suitable
Approaches Opportunities Challenges

Built-in energy
measurement

• Mobile devices are increasingly adopting smart batteries, pro-
viding information such as battery State-of-Charge, voltage,
current draw and temperature.

• Can be used to continuously collect measurement data during
real-life m-learning scenarios.

• Data reporting can be easily integrated with EAMLS.
• Availing of history and current energy measurements, more

accurate energy models can be built.
• Enables evaluating in real-time the performance of the energy

saving strategies being applied during real-life m-learning
scenarios.

• Targeting learners whose mobile devices do not integrate or
provide access to energy measurements.

• Minimizing the impact on energy consumption and monetary
cost due to monitoring and reporting to the EAMLS server
of the energy measurements.

•
•
•
•
•
•

Online
server-side

energy modelling

• Mobile devices increasingly integrate advanced device log-
ging, monitoring and environment sensing functionalities,
enabling to more easily detect the learning context.

• Using both history and current data energy models can be con-
tinuously updated and improved to better estimate learner’s
available battery charge and predict their energy needs.

• Highly scalable computation resources available through
cloud computing enable using more accurate but computation
intensive energy modelling techniques.

• Enable minimization of additional energy consumption due to
energy modelling.

• Finding a good balance between modelling accuracy (i.e., how
much and how often input data is collected and reported to the
server), and the additional energy consumption and monetary
cost due to the monitoring and transmission involved.

• Addressing privacy and ethical issues arising with monitoring
learner’s device and energy usage behaviour.

•
•
•
•
•

Server-side
energy-aware

adaptation

• Big range of adaptive solutions suitable to save the energy
consumption of different mobile device components involved
in receiving, processing and displaying different types of
educational content.

• Highly scalable computation resources available through
cloud computing for performing the adaptation on the server.

• Enable minimization of additional energy consumption due to
adaptation.

• Finding a good balance between the amount of energy saved
and the impact on the learning experience of the adaptation
strategies.

• Implementing multiple adaptive energy saving techniques.
• Designing strategies to select the most suitable techniques in

particular mobile learning contexts.
•
•

and particularities, different types of mobile devices with
different characteristics, as well as different requirements
and limitations in deploying particular m-learning systems or
applications. At the same time, from the multitude of energy
measurement, modelling and adaptation techniques proposed
in the literature, a particular technique or combination or
techniques may be more suitable for a particular mobile
learning context.

Therefore, it is very difficult to point out and recommend
one technique over another without addressing the specific
requirements of the particular mobile learning system or
application, as well as the compromises that have to be
made when deploying and operating it. However, from the
multitude of approaches for energy measurement, modelling
and adaptation presented in this survey, it can be concluded
that automatic online solutions are the most suitable to be
integrated with energy-aware adaptive mobile learning systems
and applications. A number of opportunities towards using
online approaches for client-server m-learning systems, as well
as challenges that will have to be overcome are summarised
in Table X.

Starting from data collection in general and energy measure-
ment in particular, automatic solutions built within learner’s
devices are preferable mainly because they relieve the system
designer from the tedious task of building and validating
energy models a priory in the lab, only to find out later

that these models do not offer the expected performance in
real mobile learning scenarios. Furthermore, data collected
during real-life m-learning scenarios, not only enables more
accurate energy modelling, but automatic data collection and
learning context detection are increasingly possible as mobile
devices integrate more powerful device logging, monitoring
and environment sensing functionalities.

The major challenges with automatic data collection and
energy measurement appear to be its impact on learner’s
device energy consumption and induced monetary cost, as
well as the privacy and ethical issues arising from collecting,
storing and processing this data, especially when the users are
young students.

To enable accurate energy modelling a multitude of battery,
device and user-related data may be necessary. Recording and
transmitting all these data during a mobile learning activity
may turn out to have higher impact on energy consumption
than performing the actual task in some situations. At the same
time sending the data to the server over cellular networks
may incur additional costs on the learner’s part. Therefore,
strategies to minimise these impacts have to be designed such
as for example sending the data to the server when learner’s
device is charging and connected to WiFi network.

Energy modelling and adaptation can also involve signifi-
cant computation and energy consumption overload. However,
thanks to the availability of highly scalable resources through
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cloud computing, it is more suitable to select server-side
energy modelling and adaptation approaches, which enable
minimizing their impact on learner’s energy consumption.

In case of energy modelling, more accurate but more
computation intensive techniques can be deployed, such as
for example hybrid electrochemical - electrical circuit - math-
ematical battery models, or advanced statistics such as clas-
sifiers and multi-variable analysis for device and user energy
modelling.

In regard to adaptation there is a wide range of particular
adaptive techniques that can be implemented on the server
side in order to reduce learner’s device energy consumption
while retrieving, processing and displaying the educational
content from the server. However, to account for as many
mobile learning situations with different energy saving re-
quirements that may occur for the same m-learning system,
and to maximise the energy saving capabilities of the system,
multiple techniques may have to be implemented. However,
choosing the techniques to be implemented and selecting the
most appropriate one(s) in a particular mobile learning context
remains challenging and is to be addressed on a case-by-case
basis. Furthermore, many adaptive techniques that would be
suitable for m-learning systems ranging from traffic shaping
to content adaptation, may impact the learning experience
through e.g., delays and quality decreases. Therefore, another
major challenge will be to find a good balance between
energy saving and learning experience, for the ultimate goal
of maximising the learning outcomes.

While many questions would arise, and individual deci-
sions to be made from application to application, this survey
provides a good starting point for researchers interested in
further contributing towards creating energy-aware educational
applications and services for mobile learners in particular and
mobile users in general.
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